SlideShare una empresa de Scribd logo
1 de 38
 
 
Experiencias de F. Griffith Final Bacteria con cápsula (virulenta) Tipo S Tipo R Bacteria sin cápsula (no virulenta) De los ratones muertos se extraen bacterias vivas de la cepa S De los ratones inoculados no se extraen bacterias vivas De los ratones inoculados no se extraen bacterias vivas, pues no crecen en el animal. De los ratones muertos se extraen bacterias vivas de la cepa S 1 Bacterias S muertas por calor Bacterias S muertas por calor Bacterias R vivas 1 2 3 4
 
Estructura del ADN Extremo 3’ Extremo 5’ Extremo 3’ Extremo 5’ Final 6
Los ácidos nucleicos Los ácidos nucleicos son polímeros, formados por la unión de nucleótidos mediante enlaces fosfodiester entre sus grupos fosfato.  DESOXIRRIBOSA RIBOSA CITOSINA  ADENINA GUANINA  TIMINA CITOSINA ADENINA GUANINA URACILO Final DIFERENCIAS EN LA COMPOSICIÓN DE LOS NUCLEÓTIDOS DE ADN Y ARN 3’ 5’ PENTOSA BASES NITROGENADAS ADN ARN
Estructura de un nucleótido BASE NITROGENADA GRUPO FOSFATO PENTOSA (MONOSACÁRIDO) PIRIMIDINA PURINA BASES PÚRICAS BASES PIRIMIDÍNICAS Un nucleótido está formado por: PENTOSA Final AZÚCARES Tipos de bases nitrogenadas: Tipos de pentosas GUANINA ADENINA URACILO TIMINA CITOSINA DESOXIRRIBOSA RIBOSA
Estructura y función del ADN ESTRUCTURA FUNCIÓN ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],Final T  T  A  A  G  G  C  C  Doble hélice de ADN Fosfato Bases nitrogenadas Enlace de hidrógeno Desoxirribosa 5´ 5´ 3´ 3´
Estructura, tipos y función del ARN y la lleva hasta los ribosomas ,[object Object],ARN mensajero (ARN-m) ESTRUCTURA TIPOS y FUNCIÓN ARN ribosómico (ARN-r) ARN de transferencia (ARN-t) ,[object Object],[object Object],[object Object],colaborando en la síntesis de proteínas. para formar la cadena de proteínas  . Final 1 1 2 2 3 3 4 4 5 5
 
ARN mensajero ADN Final ARN mensajero Su función es copiar la información genética del ADN y llevarla hasta los ribosomas. En  eucariotas  porta información para que se sintetice una proteína:  MONOCISTRÓNICO . En  procariotas  contiene información separada para la síntesis de varias proteínas distintas:  POLICISTRÓNICO . Tiene una vida muy corta (algunos minutos) ya que es destruído rápidamente por las  ribonucleasas . 12
ARN ribosómico, nucleolar y otros tipos Ribozima ARN ribosómico Agrupa a varios ARN diferentes y constituye hasta un 80% del total de ARN de una célula. ARN nucleolar Se encuentra asociado a diferentes proteínas formando el nucléolo. Una vez formado se fragmenta dando lugar a los diferentes tipos de ARNr. Otros tipos de ARN Algunos tienen función catalítica:  ribozimas . Otros se asocian con proteínas para formar  ribonucleoproteínas . Existen algunos que pueden escindirse en varios fragmentos por si mismos:  autocatalíticos . Final 14
Niveles de complejidad del ADN ADN monocatenario lineal (virus) ADN bicatenario lineal (virus) ADN monocatenario circular (virus) ADN bicatenario circular (bacterias) Cromatina (eucariotas) ADN asociado a histonas Dímero concatenado (mitocondrias) Cromosomas Final 8
Número de cromosomas ,[object Object],[object Object],[object Object],CARIOTIPO HUMANO FEMENINO CARIOTIPO HUMANO MASCULINO Final 16 Cromosomas sexuales XX Cromosomas sexuales XY
Tipos de mutaciones MUTACIONES MUTACIONES GERMINALES MUTACIONES SOMÁTICAS TEJIDO GERMINAL TEJIDO SOMÁTICO SEGMENTOS DE CROMOSOMAS CROMOSOMAS ENTEROS JUEGOS CROMOSÓMICOS PUEDEN TRANSMITIRSE A LA DESCENDENCIA UN SOLO GEN MUTACIONES GÉNICAS MUTACIONES CROMOSÓMICAS SI SÍ NO según el nivel del material genético afectado según el tipo de tejido afectado afectan a afectan a afectan a afectan a
Flujo de información genética ADN ARN m Transcripción Traducción ARN t PROTEÍNA Entre la información del ADN que se encuentra en el núcleo y la síntesis de proteínas que se realiza en los ribosomas (citoplasma), existe un intermediario: el ARN m Replicación Este esquema fue considerado durante muchos años el “ dogma central de la biología molecular ”. RIBOSOMAS NÚCLEO Final 3
Redefinición del dogma central de la biología molecular ARN ADN Traducción Transcripción Transcripción inversa Replicación PROTEÍNAS Transcriptasa inversa Transcriptasa inversa Transcriptasa inversa RETROVIRUS Final Algunos virus poseen  ARN replicasa , capaz de obtener copias de su ARN. Otros poseen  transcriptasa inversa  que sintetiza ADN a partir de ARN mediante un proceso de retrotranscripción. Replicación ADNc (complementario) ADNc bicatenario ADNc monocatenario Degradación del ARN DOGMA CENTRAL DE LA BIOLOGÍA MOLECULAR 4 Transcriptasa inversa ARN vírico Envoltura Membrana plasmática de la célula huésped
El ciclo celular Fase G 0 Fase G 1 Fase de mitosis Citocinesis Fase S Final Fase G 2 1 Fase permanente en células que no entran nunca en mitosis. Estado de quiescencia. Síntesis de proteínas y aumento del tamaño celular. Replicación del ADN y síntesis de histonas. Transcripción y traducción de genes que codifican proteínas necesarias para la división. Duplicación de los centriolos División celular División del citoplasma Interfase
Posibles modelos en la replicación del ADN CONSERVATIVO DISPERSIVO SEMICONSERVATIVO Final 2
Fases de la replicación: iniciación Consiste en el desenrollamiento y apertura de la doble hélice de ADN Final 4 Ori C Proteínas específicas La helicasa rompe los enlaces de hidrógeno entre las bases y abre la doble hélice Proteínas SSB Helicasa Topoisomerasa Girasa Evitan las tensiones debidas a un superenrrollamiento Impiden que el ADN se vuelva a enrollar Las proteínas específicas se unen al punto de iniciación Burbuja de replicación
El mecanismo de elongación 3’ 5’ 5’ 3’ 3’ 5’ 3’ La ADN polimerasa recorre las hebras molde en el sentido 3’-5’ uniendo los nuevos nucleótidos en el extremo 3’. Final 6 3’ 5’ 5’ 3’ La ADN polimerasa necesita un fragmento de ARN ( cebador  o  primer ) con el extremo 3’ libre para iniciar la síntesis. Una de las hebras se sintetiza de modo contínuo. Es la  conductora  o  lider . Fragmentos de Okazaki La otra hebra se sintetiza de modo discontinuo formándose fragmentos que se unirán más tarde. Es la  retardada .
El mecanismo de elongación (II) La primasa sintetiza un cebador en cada hebra de la burbuja de replicación. Las ADN polimerasa comienzan la síntesis de la hebra conductora  por el extremo 3’ de cada cebador. La primasa sintetiza un nuevo cebador sobre cada hebra retardada. La ADN polimerasa comienza a sintetizar un fragmento de ADN a partir del nuevo cebador. Cuando la ADN polimerasa llega al cebador de ARN, lo elimina y lo reemplaza por ADN. La ligasa une los fragmentos de ADN. Final 7 1 2 3 4 5 6 Nuevo cebador Cebador Ligasas Hebra retardada Hebra retardada Primasas Cebador Nuevo cebador
El proceso de la transcripción INICIACIÓN ELONGACIÓN TERMINACIÓN La ARN-polimerasa reconoce los  centros promotores .  Luego abre la doble hélice para que los ribonucleótidos se unan a la cadena molde. La ARN-polimerasa avanza en sentido 3’-5’ y sintetiza el ARN en sentido 5’-3’. . La ARN-polimerasa reconoce en el ADN unas  señales de terminación  que indican el final de la transcripción.  En procariontes son secuencias  palindrómicas. En eucariontes 1 2 3 Final 6 Cadena inactiva de ADN ARN - polimerasa Cadena molde de ADN  (transcrita) ARN Señal de corte Punto de corte Cola poli-A Poli-A polimerasa
Síntesis de ARN: requisitos previos La síntesis de ARN o transcripción necesita: CADENA DE ADN QUE ACTÚE COMO MOLDE ARN -POLIMERARAS RIBONUCLEÓTIDOS TRIFOSFATO DE A, G, C y U En eucariotas Final 5 Ribonucleótido trifosfato Ribosa Bases ,[object Object],[object Object],[object Object]
La maduración del ARN ORGANISMOS PROCARIONTES ORGANISMOS EUCARIONTES Transcrito primario Bucle Bucle Los ARNm no sufren proceso de maduración. Los ARNt y ARNr se forman a partir de un transcrito primario que contiene muchas copias del ARNt y ARNr. El ARN transcrito primario sufre un proceso llamado  splicing  mediante el que se eliminan los intrones y se unen los exones. Final 8 ARNasa ARNt ARNr RNPpn Exón Intrón Exón Intrón Exón Punto de unión entre exones
Código genético AUG UGA UAA UAG Ej. ¿Qué aminoácido está codificado por el codón GAC? Final 10 Iniciación Terminación
Síntesis de proteínas: iniciación y elongación E P A ARNt - Met ARNm INICIACIÓN ELONGACIÓN Final 14 E P A Codón iniciador (AUG) Subunidad grande Posición E Posición P Posición A Aminoacil -ARNt Enlace peptídico El aminoácido se libera del ARNt Desplazamiento del ribosoma 5’ 3’
Síntesis de proteínas: terminación ARNm Separación de las dos subunidades del ribosoma ARNm A medida que se van sintetizando, las proteínas adquieren la estructura secundaria y terciaria que les corresponde. Final 15 Codón de terminación (UAA, UGA, UAG) ARNt Porción final de la cadena  proteica Factor de liberación
ADN sintético y PCR La reacción en cadena de la polimerasa (PCR), junto con la producción de ADN sintético ha posibilitado la multiplicación de ADN hasta cien mil veces en un tubo de ensayo. 5’ 5’ Desnaturalización Extensión del iniciador Desnaturalización Extensión del iniciador Repetición del ciclo La técnica de la PCR se usa en: - Estudios comparativos o evolutivos. - Amplificar y clonar ADN de restos humanos momificados o restos de animales y plantas ya extinguidos. - Amplificar cantidades pequeñas de ADN en una muestra, muy útil en medicina forense. Final 7 5’ 3’ 5’ 3’ 5’ 3’ 3’ 5’ Genes diana Iniciador  ADN polimerasa
Animales transgénicos para la obtención de sustancias de interés PRODUCCIÓN DE LECHE Rebaño de descendientes transgénicos que producen la proteína Oveja nodriza Transferencia génica Óvulo de oveja fecundado Purificación de la proteína Medicamento como la   -1-antitripsina o el activador del plasminógeno. Final 11
El proyecto Genoma 1989 Comienza la secuenciación del Genoma (3000 millones de pares de bases). ¿Por qué? Porque encierra nuestra identidad, nuestra historia evolutiva, nuestro presente y nuestras posibilidades futuras. Técnicamente: ¿Puede hacerse? OBJETIVOS MEDIOS ¿Para qué? Conocer la base de múltiples enfermedades. Comprender la estructura bioquímica de las células. Saber cómo funcionan y se regulan los genes. Evitar el envejecimiento celular. Final 3
Objetivos del proyecto genoma humano Final 20
 
 
 
Terapia génica Consiste en la introducción de genes en células humanas mediante la utilización de un virus modificado como vector. in vivo Se puede realizar:  in vivo ; introduciendo directamente el virus en el organismo. ex vivo ; modificando en un cultivo de células del paciente que serán    introducidas de nuevo en el organismo. ex vivo Cultivo de virus Partículas virales Inyección de las células Células alteradas genéticamente Extracción de células Vector Introducción en el organismo Gen terapéutico
 
 

Más contenido relacionado

La actualidad más candente

Transcripsion en eucariotas[1]
Transcripsion en eucariotas[1]Transcripsion en eucariotas[1]
Transcripsion en eucariotas[1]jessyaneth
 
Dogma central de la Biología.
Dogma central de la Biología.Dogma central de la Biología.
Dogma central de la Biología.Claudita Aranguiz
 
Transcripcion del ADN
Transcripcion del ADNTranscripcion del ADN
Transcripcion del ADNJohn Sisalima
 
Replicación del dna
Replicación del dnaReplicación del dna
Replicación del dnauniguajira
 
Genetica molecular
Genetica molecularGenetica molecular
Genetica moleculardimaxbatista
 
POLARIDAD DURANTE EL DESARROLLO EMBRIONARIO INICIAL
POLARIDAD DURANTE EL DESARROLLO EMBRIONARIO INICIALPOLARIDAD DURANTE EL DESARROLLO EMBRIONARIO INICIAL
POLARIDAD DURANTE EL DESARROLLO EMBRIONARIO INICIALAsebir
 
Codones inicion y terminacion
Codones inicion y terminacionCodones inicion y terminacion
Codones inicion y terminacionLuzy147
 
Estructura y función de Ácidos nucleicos
Estructura y función de Ácidos nucleicosEstructura y función de Ácidos nucleicos
Estructura y función de Ácidos nucleicosEvelin Rojas
 
Clase 9 cromosomas_y_cariotipo
Clase 9 cromosomas_y_cariotipoClase 9 cromosomas_y_cariotipo
Clase 9 cromosomas_y_cariotipoNatalia Merlo
 
Acidos nucleicos
Acidos nucleicosAcidos nucleicos
Acidos nucleicosN Flores
 

La actualidad más candente (20)

Transcripsion en eucariotas[1]
Transcripsion en eucariotas[1]Transcripsion en eucariotas[1]
Transcripsion en eucariotas[1]
 
Dogma central de la Biología.
Dogma central de la Biología.Dogma central de la Biología.
Dogma central de la Biología.
 
Hacia la forma del adn
Hacia la forma del adnHacia la forma del adn
Hacia la forma del adn
 
Transcripcion del ADN
Transcripcion del ADNTranscripcion del ADN
Transcripcion del ADN
 
Replicación del dna
Replicación del dnaReplicación del dna
Replicación del dna
 
Genética molecular
Genética molecularGenética molecular
Genética molecular
 
Secuenciacion ADN
Secuenciacion ADNSecuenciacion ADN
Secuenciacion ADN
 
Genetica molecular
Genetica molecularGenetica molecular
Genetica molecular
 
Traduccion de procariotas y eucariotas
Traduccion de procariotas y eucariotasTraduccion de procariotas y eucariotas
Traduccion de procariotas y eucariotas
 
Control de la expresión genética
Control de la expresión genéticaControl de la expresión genética
Control de la expresión genética
 
TranscripcióN
TranscripcióNTranscripcióN
TranscripcióN
 
Genetica molecular
Genetica molecularGenetica molecular
Genetica molecular
 
POLARIDAD DURANTE EL DESARROLLO EMBRIONARIO INICIAL
POLARIDAD DURANTE EL DESARROLLO EMBRIONARIO INICIALPOLARIDAD DURANTE EL DESARROLLO EMBRIONARIO INICIAL
POLARIDAD DURANTE EL DESARROLLO EMBRIONARIO INICIAL
 
Transcripcion
TranscripcionTranscripcion
Transcripcion
 
Replicacion del adn
Replicacion del adnReplicacion del adn
Replicacion del adn
 
Codones inicion y terminacion
Codones inicion y terminacionCodones inicion y terminacion
Codones inicion y terminacion
 
Estructura y función de Ácidos nucleicos
Estructura y función de Ácidos nucleicosEstructura y función de Ácidos nucleicos
Estructura y función de Ácidos nucleicos
 
Clase 9 cromosomas_y_cariotipo
Clase 9 cromosomas_y_cariotipoClase 9 cromosomas_y_cariotipo
Clase 9 cromosomas_y_cariotipo
 
Acidos nucleicos
Acidos nucleicosAcidos nucleicos
Acidos nucleicos
 
2.genoma procariotico y eucariotico
2.genoma procariotico y eucariotico2.genoma procariotico y eucariotico
2.genoma procariotico y eucariotico
 

Similar a Genetica Molecular

Similar a Genetica Molecular (20)

Genetica molecular2116
Genetica molecular2116Genetica molecular2116
Genetica molecular2116
 
ADN y biotecnología
ADN y biotecnologíaADN y biotecnología
ADN y biotecnología
 
Tema 7 expresion genica, transcripcion y traduccion 2016
Tema 7 expresion genica, transcripcion y traduccion 2016Tema 7 expresion genica, transcripcion y traduccion 2016
Tema 7 expresion genica, transcripcion y traduccion 2016
 
BASES BIOQUIMICAS DE LA GENETICA diapositivas
BASES BIOQUIMICAS DE LA GENETICA diapositivasBASES BIOQUIMICAS DE LA GENETICA diapositivas
BASES BIOQUIMICAS DE LA GENETICA diapositivas
 
Trabajo 2[1].Parcial
Trabajo 2[1].ParcialTrabajo 2[1].Parcial
Trabajo 2[1].Parcial
 
T15 - Del ADN a las proteínas
T15 - Del ADN a las proteínasT15 - Del ADN a las proteínas
T15 - Del ADN a las proteínas
 
9. Genética Microbiana
9. Genética Microbiana9. Genética Microbiana
9. Genética Microbiana
 
Trascripción iv
Trascripción ivTrascripción iv
Trascripción iv
 
Probando...
Probando...Probando...
Probando...
 
Síntesis de proteínas
Síntesis de proteínasSíntesis de proteínas
Síntesis de proteínas
 
Síntesis de proteínas
Síntesis de proteínasSíntesis de proteínas
Síntesis de proteínas
 
Síntesis de proteínas
Síntesis de proteínasSíntesis de proteínas
Síntesis de proteínas
 
Biotecnología II
Biotecnología IIBiotecnología II
Biotecnología II
 
Biología - Transcripción
Biología - TranscripciónBiología - Transcripción
Biología - Transcripción
 
Genetica Molecular
Genetica MolecularGenetica Molecular
Genetica Molecular
 
Del ADN a las proteínas
Del ADN a las proteínasDel ADN a las proteínas
Del ADN a las proteínas
 
Clase de transcripcion 4°
Clase de transcripcion 4°Clase de transcripcion 4°
Clase de transcripcion 4°
 
Clase de transcripcion 4°
Clase de transcripcion 4° Clase de transcripcion 4°
Clase de transcripcion 4°
 
transcripcion.pptx
transcripcion.pptxtranscripcion.pptx
transcripcion.pptx
 
Acidos Nucleicos
Acidos NucleicosAcidos Nucleicos
Acidos Nucleicos
 

Último

Modulo-Mini Cargador.................pdf
Modulo-Mini Cargador.................pdfModulo-Mini Cargador.................pdf
Modulo-Mini Cargador.................pdfAnnimoUno1
 
EVOLUCION DE LA TECNOLOGIA Y SUS ASPECTOSpptx
EVOLUCION DE LA TECNOLOGIA Y SUS ASPECTOSpptxEVOLUCION DE LA TECNOLOGIA Y SUS ASPECTOSpptx
EVOLUCION DE LA TECNOLOGIA Y SUS ASPECTOSpptxJorgeParada26
 
Innovaciones tecnologicas en el siglo 21
Innovaciones tecnologicas en el siglo 21Innovaciones tecnologicas en el siglo 21
Innovaciones tecnologicas en el siglo 21mariacbr99
 
How to use Redis with MuleSoft. A quick start presentation.
How to use Redis with MuleSoft. A quick start presentation.How to use Redis with MuleSoft. A quick start presentation.
How to use Redis with MuleSoft. A quick start presentation.FlorenciaCattelani
 
PROYECTO FINAL. Tutorial para publicar en SlideShare.pptx
PROYECTO FINAL. Tutorial para publicar en SlideShare.pptxPROYECTO FINAL. Tutorial para publicar en SlideShare.pptx
PROYECTO FINAL. Tutorial para publicar en SlideShare.pptxAlan779941
 
Refrigerador_Inverter_Samsung_Curso_y_Manual_de_Servicio_Español.pdf
Refrigerador_Inverter_Samsung_Curso_y_Manual_de_Servicio_Español.pdfRefrigerador_Inverter_Samsung_Curso_y_Manual_de_Servicio_Español.pdf
Refrigerador_Inverter_Samsung_Curso_y_Manual_de_Servicio_Español.pdfvladimiroflores1
 
EL CICLO PRÁCTICO DE UN MOTOR DE CUATRO TIEMPOS.pptx
EL CICLO PRÁCTICO DE UN MOTOR DE CUATRO TIEMPOS.pptxEL CICLO PRÁCTICO DE UN MOTOR DE CUATRO TIEMPOS.pptx
EL CICLO PRÁCTICO DE UN MOTOR DE CUATRO TIEMPOS.pptxMiguelAtencio10
 
pruebas unitarias unitarias en java con JUNIT
pruebas unitarias unitarias en java con JUNITpruebas unitarias unitarias en java con JUNIT
pruebas unitarias unitarias en java con JUNITMaricarmen Sánchez Ruiz
 
Avances tecnológicos del siglo XXI y ejemplos de estos
Avances tecnológicos del siglo XXI y ejemplos de estosAvances tecnológicos del siglo XXI y ejemplos de estos
Avances tecnológicos del siglo XXI y ejemplos de estossgonzalezp1
 
Avances tecnológicos del siglo XXI 10-07 eyvana
Avances tecnológicos del siglo XXI 10-07 eyvanaAvances tecnológicos del siglo XXI 10-07 eyvana
Avances tecnológicos del siglo XXI 10-07 eyvanamcerpam
 
Resistencia extrema al cobre por un consorcio bacteriano conformado por Sulfo...
Resistencia extrema al cobre por un consorcio bacteriano conformado por Sulfo...Resistencia extrema al cobre por un consorcio bacteriano conformado por Sulfo...
Resistencia extrema al cobre por un consorcio bacteriano conformado por Sulfo...JohnRamos830530
 

Último (11)

Modulo-Mini Cargador.................pdf
Modulo-Mini Cargador.................pdfModulo-Mini Cargador.................pdf
Modulo-Mini Cargador.................pdf
 
EVOLUCION DE LA TECNOLOGIA Y SUS ASPECTOSpptx
EVOLUCION DE LA TECNOLOGIA Y SUS ASPECTOSpptxEVOLUCION DE LA TECNOLOGIA Y SUS ASPECTOSpptx
EVOLUCION DE LA TECNOLOGIA Y SUS ASPECTOSpptx
 
Innovaciones tecnologicas en el siglo 21
Innovaciones tecnologicas en el siglo 21Innovaciones tecnologicas en el siglo 21
Innovaciones tecnologicas en el siglo 21
 
How to use Redis with MuleSoft. A quick start presentation.
How to use Redis with MuleSoft. A quick start presentation.How to use Redis with MuleSoft. A quick start presentation.
How to use Redis with MuleSoft. A quick start presentation.
 
PROYECTO FINAL. Tutorial para publicar en SlideShare.pptx
PROYECTO FINAL. Tutorial para publicar en SlideShare.pptxPROYECTO FINAL. Tutorial para publicar en SlideShare.pptx
PROYECTO FINAL. Tutorial para publicar en SlideShare.pptx
 
Refrigerador_Inverter_Samsung_Curso_y_Manual_de_Servicio_Español.pdf
Refrigerador_Inverter_Samsung_Curso_y_Manual_de_Servicio_Español.pdfRefrigerador_Inverter_Samsung_Curso_y_Manual_de_Servicio_Español.pdf
Refrigerador_Inverter_Samsung_Curso_y_Manual_de_Servicio_Español.pdf
 
EL CICLO PRÁCTICO DE UN MOTOR DE CUATRO TIEMPOS.pptx
EL CICLO PRÁCTICO DE UN MOTOR DE CUATRO TIEMPOS.pptxEL CICLO PRÁCTICO DE UN MOTOR DE CUATRO TIEMPOS.pptx
EL CICLO PRÁCTICO DE UN MOTOR DE CUATRO TIEMPOS.pptx
 
pruebas unitarias unitarias en java con JUNIT
pruebas unitarias unitarias en java con JUNITpruebas unitarias unitarias en java con JUNIT
pruebas unitarias unitarias en java con JUNIT
 
Avances tecnológicos del siglo XXI y ejemplos de estos
Avances tecnológicos del siglo XXI y ejemplos de estosAvances tecnológicos del siglo XXI y ejemplos de estos
Avances tecnológicos del siglo XXI y ejemplos de estos
 
Avances tecnológicos del siglo XXI 10-07 eyvana
Avances tecnológicos del siglo XXI 10-07 eyvanaAvances tecnológicos del siglo XXI 10-07 eyvana
Avances tecnológicos del siglo XXI 10-07 eyvana
 
Resistencia extrema al cobre por un consorcio bacteriano conformado por Sulfo...
Resistencia extrema al cobre por un consorcio bacteriano conformado por Sulfo...Resistencia extrema al cobre por un consorcio bacteriano conformado por Sulfo...
Resistencia extrema al cobre por un consorcio bacteriano conformado por Sulfo...
 

Genetica Molecular

  • 1.  
  • 2.  
  • 3. Experiencias de F. Griffith Final Bacteria con cápsula (virulenta) Tipo S Tipo R Bacteria sin cápsula (no virulenta) De los ratones muertos se extraen bacterias vivas de la cepa S De los ratones inoculados no se extraen bacterias vivas De los ratones inoculados no se extraen bacterias vivas, pues no crecen en el animal. De los ratones muertos se extraen bacterias vivas de la cepa S 1 Bacterias S muertas por calor Bacterias S muertas por calor Bacterias R vivas 1 2 3 4
  • 4.  
  • 5. Estructura del ADN Extremo 3’ Extremo 5’ Extremo 3’ Extremo 5’ Final 6
  • 6. Los ácidos nucleicos Los ácidos nucleicos son polímeros, formados por la unión de nucleótidos mediante enlaces fosfodiester entre sus grupos fosfato. DESOXIRRIBOSA RIBOSA CITOSINA ADENINA GUANINA TIMINA CITOSINA ADENINA GUANINA URACILO Final DIFERENCIAS EN LA COMPOSICIÓN DE LOS NUCLEÓTIDOS DE ADN Y ARN 3’ 5’ PENTOSA BASES NITROGENADAS ADN ARN
  • 7. Estructura de un nucleótido BASE NITROGENADA GRUPO FOSFATO PENTOSA (MONOSACÁRIDO) PIRIMIDINA PURINA BASES PÚRICAS BASES PIRIMIDÍNICAS Un nucleótido está formado por: PENTOSA Final AZÚCARES Tipos de bases nitrogenadas: Tipos de pentosas GUANINA ADENINA URACILO TIMINA CITOSINA DESOXIRRIBOSA RIBOSA
  • 8.
  • 9.
  • 10.  
  • 11. ARN mensajero ADN Final ARN mensajero Su función es copiar la información genética del ADN y llevarla hasta los ribosomas. En eucariotas porta información para que se sintetice una proteína: MONOCISTRÓNICO . En procariotas contiene información separada para la síntesis de varias proteínas distintas: POLICISTRÓNICO . Tiene una vida muy corta (algunos minutos) ya que es destruído rápidamente por las ribonucleasas . 12
  • 12. ARN ribosómico, nucleolar y otros tipos Ribozima ARN ribosómico Agrupa a varios ARN diferentes y constituye hasta un 80% del total de ARN de una célula. ARN nucleolar Se encuentra asociado a diferentes proteínas formando el nucléolo. Una vez formado se fragmenta dando lugar a los diferentes tipos de ARNr. Otros tipos de ARN Algunos tienen función catalítica: ribozimas . Otros se asocian con proteínas para formar ribonucleoproteínas . Existen algunos que pueden escindirse en varios fragmentos por si mismos: autocatalíticos . Final 14
  • 13. Niveles de complejidad del ADN ADN monocatenario lineal (virus) ADN bicatenario lineal (virus) ADN monocatenario circular (virus) ADN bicatenario circular (bacterias) Cromatina (eucariotas) ADN asociado a histonas Dímero concatenado (mitocondrias) Cromosomas Final 8
  • 14.
  • 15. Tipos de mutaciones MUTACIONES MUTACIONES GERMINALES MUTACIONES SOMÁTICAS TEJIDO GERMINAL TEJIDO SOMÁTICO SEGMENTOS DE CROMOSOMAS CROMOSOMAS ENTEROS JUEGOS CROMOSÓMICOS PUEDEN TRANSMITIRSE A LA DESCENDENCIA UN SOLO GEN MUTACIONES GÉNICAS MUTACIONES CROMOSÓMICAS SI SÍ NO según el nivel del material genético afectado según el tipo de tejido afectado afectan a afectan a afectan a afectan a
  • 16. Flujo de información genética ADN ARN m Transcripción Traducción ARN t PROTEÍNA Entre la información del ADN que se encuentra en el núcleo y la síntesis de proteínas que se realiza en los ribosomas (citoplasma), existe un intermediario: el ARN m Replicación Este esquema fue considerado durante muchos años el “ dogma central de la biología molecular ”. RIBOSOMAS NÚCLEO Final 3
  • 17. Redefinición del dogma central de la biología molecular ARN ADN Traducción Transcripción Transcripción inversa Replicación PROTEÍNAS Transcriptasa inversa Transcriptasa inversa Transcriptasa inversa RETROVIRUS Final Algunos virus poseen ARN replicasa , capaz de obtener copias de su ARN. Otros poseen transcriptasa inversa que sintetiza ADN a partir de ARN mediante un proceso de retrotranscripción. Replicación ADNc (complementario) ADNc bicatenario ADNc monocatenario Degradación del ARN DOGMA CENTRAL DE LA BIOLOGÍA MOLECULAR 4 Transcriptasa inversa ARN vírico Envoltura Membrana plasmática de la célula huésped
  • 18. El ciclo celular Fase G 0 Fase G 1 Fase de mitosis Citocinesis Fase S Final Fase G 2 1 Fase permanente en células que no entran nunca en mitosis. Estado de quiescencia. Síntesis de proteínas y aumento del tamaño celular. Replicación del ADN y síntesis de histonas. Transcripción y traducción de genes que codifican proteínas necesarias para la división. Duplicación de los centriolos División celular División del citoplasma Interfase
  • 19. Posibles modelos en la replicación del ADN CONSERVATIVO DISPERSIVO SEMICONSERVATIVO Final 2
  • 20. Fases de la replicación: iniciación Consiste en el desenrollamiento y apertura de la doble hélice de ADN Final 4 Ori C Proteínas específicas La helicasa rompe los enlaces de hidrógeno entre las bases y abre la doble hélice Proteínas SSB Helicasa Topoisomerasa Girasa Evitan las tensiones debidas a un superenrrollamiento Impiden que el ADN se vuelva a enrollar Las proteínas específicas se unen al punto de iniciación Burbuja de replicación
  • 21. El mecanismo de elongación 3’ 5’ 5’ 3’ 3’ 5’ 3’ La ADN polimerasa recorre las hebras molde en el sentido 3’-5’ uniendo los nuevos nucleótidos en el extremo 3’. Final 6 3’ 5’ 5’ 3’ La ADN polimerasa necesita un fragmento de ARN ( cebador o primer ) con el extremo 3’ libre para iniciar la síntesis. Una de las hebras se sintetiza de modo contínuo. Es la conductora o lider . Fragmentos de Okazaki La otra hebra se sintetiza de modo discontinuo formándose fragmentos que se unirán más tarde. Es la retardada .
  • 22. El mecanismo de elongación (II) La primasa sintetiza un cebador en cada hebra de la burbuja de replicación. Las ADN polimerasa comienzan la síntesis de la hebra conductora por el extremo 3’ de cada cebador. La primasa sintetiza un nuevo cebador sobre cada hebra retardada. La ADN polimerasa comienza a sintetizar un fragmento de ADN a partir del nuevo cebador. Cuando la ADN polimerasa llega al cebador de ARN, lo elimina y lo reemplaza por ADN. La ligasa une los fragmentos de ADN. Final 7 1 2 3 4 5 6 Nuevo cebador Cebador Ligasas Hebra retardada Hebra retardada Primasas Cebador Nuevo cebador
  • 23. El proceso de la transcripción INICIACIÓN ELONGACIÓN TERMINACIÓN La ARN-polimerasa reconoce los centros promotores . Luego abre la doble hélice para que los ribonucleótidos se unan a la cadena molde. La ARN-polimerasa avanza en sentido 3’-5’ y sintetiza el ARN en sentido 5’-3’. . La ARN-polimerasa reconoce en el ADN unas señales de terminación que indican el final de la transcripción. En procariontes son secuencias palindrómicas. En eucariontes 1 2 3 Final 6 Cadena inactiva de ADN ARN - polimerasa Cadena molde de ADN (transcrita) ARN Señal de corte Punto de corte Cola poli-A Poli-A polimerasa
  • 24.
  • 25. La maduración del ARN ORGANISMOS PROCARIONTES ORGANISMOS EUCARIONTES Transcrito primario Bucle Bucle Los ARNm no sufren proceso de maduración. Los ARNt y ARNr se forman a partir de un transcrito primario que contiene muchas copias del ARNt y ARNr. El ARN transcrito primario sufre un proceso llamado splicing mediante el que se eliminan los intrones y se unen los exones. Final 8 ARNasa ARNt ARNr RNPpn Exón Intrón Exón Intrón Exón Punto de unión entre exones
  • 26. Código genético AUG UGA UAA UAG Ej. ¿Qué aminoácido está codificado por el codón GAC? Final 10 Iniciación Terminación
  • 27. Síntesis de proteínas: iniciación y elongación E P A ARNt - Met ARNm INICIACIÓN ELONGACIÓN Final 14 E P A Codón iniciador (AUG) Subunidad grande Posición E Posición P Posición A Aminoacil -ARNt Enlace peptídico El aminoácido se libera del ARNt Desplazamiento del ribosoma 5’ 3’
  • 28. Síntesis de proteínas: terminación ARNm Separación de las dos subunidades del ribosoma ARNm A medida que se van sintetizando, las proteínas adquieren la estructura secundaria y terciaria que les corresponde. Final 15 Codón de terminación (UAA, UGA, UAG) ARNt Porción final de la cadena proteica Factor de liberación
  • 29. ADN sintético y PCR La reacción en cadena de la polimerasa (PCR), junto con la producción de ADN sintético ha posibilitado la multiplicación de ADN hasta cien mil veces en un tubo de ensayo. 5’ 5’ Desnaturalización Extensión del iniciador Desnaturalización Extensión del iniciador Repetición del ciclo La técnica de la PCR se usa en: - Estudios comparativos o evolutivos. - Amplificar y clonar ADN de restos humanos momificados o restos de animales y plantas ya extinguidos. - Amplificar cantidades pequeñas de ADN en una muestra, muy útil en medicina forense. Final 7 5’ 3’ 5’ 3’ 5’ 3’ 3’ 5’ Genes diana Iniciador ADN polimerasa
  • 30. Animales transgénicos para la obtención de sustancias de interés PRODUCCIÓN DE LECHE Rebaño de descendientes transgénicos que producen la proteína Oveja nodriza Transferencia génica Óvulo de oveja fecundado Purificación de la proteína Medicamento como la  -1-antitripsina o el activador del plasminógeno. Final 11
  • 31. El proyecto Genoma 1989 Comienza la secuenciación del Genoma (3000 millones de pares de bases). ¿Por qué? Porque encierra nuestra identidad, nuestra historia evolutiva, nuestro presente y nuestras posibilidades futuras. Técnicamente: ¿Puede hacerse? OBJETIVOS MEDIOS ¿Para qué? Conocer la base de múltiples enfermedades. Comprender la estructura bioquímica de las células. Saber cómo funcionan y se regulan los genes. Evitar el envejecimiento celular. Final 3
  • 32. Objetivos del proyecto genoma humano Final 20
  • 33.  
  • 34.  
  • 35.  
  • 36. Terapia génica Consiste en la introducción de genes en células humanas mediante la utilización de un virus modificado como vector. in vivo Se puede realizar: in vivo ; introduciendo directamente el virus en el organismo. ex vivo ; modificando en un cultivo de células del paciente que serán introducidas de nuevo en el organismo. ex vivo Cultivo de virus Partículas virales Inyección de las células Células alteradas genéticamente Extracción de células Vector Introducción en el organismo Gen terapéutico
  • 37.  
  • 38.