SlideShare una empresa de Scribd logo
1 de 16
Todo sobre la física  Todo tiene respuesta lo único que tenemos que hacer es estudiarlo desde varios puntos de vista y hay estará.
Tabla de contenidos 1. Teorías  centrales 1.1  Mecánica clásica 1.2  Electromagnetismo 1.3  Relatividad 1.4  Termodinámica y mecánica  1.5  Mecánica cuántica 2. Áreas d e investigación 2.1  Física teórica 2.2  Materia condensada 2.3  Física atómica y molecular 2.4  Física de partículas o de altas 2.5  Astrofísica 2.6  Biofísica
1.Teorías centrales
1.1 Mecánica clásica Como mecánica clásica se conoce  a   la descripción del movimiento de cuerpos  macroscópicos a velocidades muy  pequeñas en comparación la velocidad de la  luz. Existen dos tipos de formula ciones de ésta mecánica conocidas como  mecánica newtoniana y mecánica a nalítica. La mecánica newtoniana, como  su nombre lo indica, lleva intrínsecos los  preceptos de Newton. A partir de l as tres ecuaciones formuladas por Newton y  mediante el cálculo diferencial e int egral se llega a una muy exacta aproximación  de los fenómenos físicos. La mecánica analítica es una  formulación matemática abstracta sobre la  mecánica, nos permite desligarnos  de esos sistemas de referencia privilegiados y  tener conceptos más generales al  momento de describir un movimiento con el uso  del cálculo de variaciones. En últim a instancia las dos son equivalentes. En la mecánica clásica en genera l se tienen tres aspectos invariantes: el tiempo  es absoluto, la naturaleza de for ma espontánea realiza la mínima acción y la  concepción de un universo determ inado.
1.2 Electromagnetismo El electromagnetismo describe la interacción de partículas cargadas con campos eléctricos y magnéticos. Se puede dividir en electrostática, el estudio de las interacciones entre cargas en reposo, y la electrodinámica, el estudio de las interacciones entre cargas en movimiento y la radiación. La teoría clásica del electromagnetismo se basa en la fuerza de Lorentz y en las ecuaciones de Maxwell. Los principios del electromagnetismo encuentran aplicaciones en diversas disciplinas afines, tales como las microondas, antenas, máquinas eléctricas, comunicaciones por satélite, bioelectromagnetismo, plasmas, investigación nuclear, la fibra óptica, la interferencia y la compatibilidad electromagnéticas, la conversión de energía electromecánica, la meteorología por rádar, y la observación remota. Los dispositivos electromagnéticos incluyen transformadores, redés eléctricos, radio / TV, teléfonos, motores eléctricos, líneas de transmisión, guías de onda, fibras ópticas y láseres. Espectro electromagnético. Espectro electromagnético.
En la teoría de la relatividad especial, Einstein, Lorentz, Minkowski entre otros, unificaron los conceptos de espacio y tiempo, en un ramado tetradimensional al que se le denominó espacio-tiempo. La relatividad especial fue una teoría revolucionaria para su época, con la que el tiempo absoluto de Newton quedo relegado y conceptos como la invariancia en la velocidad de la luz, la dilatación del tiempo, la contracción de la longitud y la equivalencia entre masa y energía fueron introducidos. Además con las formulaciones de la relatividad especial, las leyes de la física son invariantes en todos los sistemas de referencia inerciales, como consecuencia matemática se encuentra como límite superior de velocidad a la luz y se elimina la causalidad determinista que tenía la física hasta entonces. Por otro lado, la relatividad general estudia la interacción gravitatoria como una deformación en la geometría del espacio-tiempo. En esta teoría se introducen los conceptos de la curvatura del espacio-tiempo como la causa de la interacción gravitatoria, el principio de equivalencia que dice que para todos los observadores locales inerciales las leyes de la relatividad especial son invariantes y la introducción del movimiento de un partícula por líneas geodésicas. 1.3 Relatividad
1.4 Termodinámica y mecánica La termodinámica trata los procesos de transferencia de calor, que es una de las formas de energía y como puede producir un trabajo con ella. En esta área se describe como la materia en cualquiera de sus estados (sólido, líquido, gaseoso) va transformándose. Desde un punto de vista macroscópico de la materia se estudia como ésta reacciona a cambios en su volumen, presión, temperatura entre otros. La termodinámica se basa en cuatro leyes principales: el equilibrio termodinámico (o ley cero), el principio de conservación de la energía (primera ley),  el aumento temporal de la entropía (segunda ley) y la imposibilidad del cero absoluto (tercera ley). Una consecuencia de la termodinámica es lo que hoy se conoce como mecánica estadística. Ésta rama estudia, al igual que la termodinámica, los procesos de transferencia de calor, pero contrario a la anterior desde un punto de vista molecular. La materia como se conoce esta compuesta por moléculas y el conocer el comportamiento de una sola de sus moléculas nos lleva a medidas erróneas. Es por eso que se debe tratar como un conjunto de elementos caóticos o aleatorios, y se utiliza el lenguaje estadístico y consideraciones mecánicas para describir comportamientos macroscópicos de este conjunto molecular microscópico.
1.5 Mecánica cuántica La mecánica cuántica es  la rama de la física que trata los sistemas atómicos y subatómicos y sus interacciones con la radiación electromagnética, en términos de cantidades observables. Se basa en la observación de que todas las formas de energía se liberan en unidades discretas o paquetes llamados cuantos. Sorprendentemente, la teoría cuántica sólo permite normalmente cálculos probabilísticos o estadísticos de las características observadas de las partículas elementales, entendidos en términos de funciones de onda. La ecuación de Schrödinger desempeña el papel en la mecánica cuántica que las leyes de Newton y la conservación de la energía hacen en la mecánica clásica. Es decir, la predicción del comportamiento futuro de un sistema dinámico, y es una ecuación de onda en términos de una función de onda la que predice analíticamente la probabilidad  precisa de los eventos o  resultados.
2. Áreas de investigación
2.1 Física teórica La cultura de la investigación en física en los últimos tiempos se ha especializado tanto que ha dado lugar a una separación de los físicos que se dedican a la teoría y otros que se dedican a los experimentos. Los teóricos trabajan en la búsqueda de modelos matemáticos que expliquen los resultados experimentales y que ayuden a predecir resultados futuros. Así pues, teoría y experimentos están relacionados íntimamente. El progreso en física a menudo resulta de que un experimento encuentra un resultado que no se puede explicar con las teorías actuales por lo que hay que buscar un nuevo enfoque conceptual para resolver el problema. Los teóricos pueden con cebir conceptos tales como universos paralelos, espacios  multidimensionales o mi núsculas cuerdas que vibran, y a partir de ahí, realizar  hipótesis físicas.
2.2 Materia condensada La física de la materia condensada se ocupa de las propiedades físicas macroscópicas de la materia, tales como la densidad, la temperatura, la dureza, o el color de un material. Los materiales consisten en un gran número de átomos o moléculas que interaccionan entre ellos, por lo que están "condensados", a diferencia de estar libres sin interaccionar. La física de la materia condensada busca hacer relaciones entre las propiedades macroscópicas, que se pueden medir, y el comportamiento de sus constituyentes a nivel microscópico o atómico y así comprender mejor las propiedades de los materiales. Las fases "condensadas" más comunes son sólidos y líquidos, que surgen del enlace químico entre los átomos, debido a la interacción electromagnética. Fases más exóticas son los superfluidos, los condensados de Bose-Einstein encontrados en ciertos sistemas atómicos a muy bajas temperaturas, la fase superconductora de los electrones de conducción de ciertos materiales, y las fases ferromagnética y antiferromagnética de los spines en las redes atómicas.
2.3 Física atómica y molecular La física atómica y molecular se centran en el estudio de las interacciones materia-materia y luz-materia en la escala de átomos individuales o estructuras que contienen unos pocos átomos. Ambas áreas se agrupan debido a su interrelación, la similitud de los métodos utilizados, así como el carácter común de la escalas de energía relevantes a sus investigaciones. A su vez, ambas incluyen tratamientos tanto clásicos y como cuánticos, ya que pueden tratar sus problemas desde puntos de vista microscópicos y macroscópicos. La física molecular se centra en estructur as moleculares y sus interacciones  con la materia y con la luz.
2.4 Física de partículas o de altas La física de partículas es la rama de la física que estudia los componentes elementales de la materia y las interacciones entre ellos como si éstas fueran partículas. Se la llama también física de altas energías pues muchas de las partículas elementales no se encuentran en la naturaleza y hay que crearlas en colisiones de alta energía entre otras partículas, como se hace en los aceleradores de partículas. Los principales centros de estudio sobre partículas son el Laboratorio Nacional Fermi o Fermilab en Estados Unidos y el Centro Europeo para la Investigación Nuclear o CERN en la frontera entre Suiza y Francia. En éstos laboratorios lo que se logra es obtener energías similares a las que se cree existieron en el Big Bang y así se intenta tener cada vez más pruebas del origen del universo.
2.5 Astrofísica La astrofísica y la astronomía son ciencias que aplican las teorías y métodos de otras ramas de la física al estudio de los objetos que componen nuestro variado universo, tales como estrellas, planetas, galaxias y agujeros negros. La astronomía se centra en la comprensión de los movimientos de los objetos, mientras que la astrofísica busca explicar su origen, su evolución y su comportamiento. Actualmente los términos astrofísica y astronomía se los suele usar indistintamente para referirse al estudio del universo. Esta área, junto a la física de partículas, es una de las áreas mas estudiadas y mas apasionantes del mundo contemporáneo de la física. Desde que el telescopio espacial Hubble nos brindó detallada información de los mas remotos confines del universo, los físicos pudieron tener una visión mas objetiva de lo que hasta ese momento eran solo teorías.
2.6 Biofísica La biofísica es una área interdisciplinaria que estudia a la biología aplicando los principios generales de la física. Al aplicar el carácter probabilística de la mecánica cuántica a sistemas biológicos obtenemos métodos puramente físicos para la explicación de propiedades biológicas. Se puede decir que el intercambio de conocimientos es únicamente en dirección a la biología, ya que ésta se ha ido enriqueciendo de los conceptos físicos y no viceversa. Ésta área esta en constante crecimiento, se estima que durante los inicios del siglo XXI cada vez la confluencia de físicos, biólogos y químicos a los mismos laboratorios se incremente. Los estudios en neurociencia, por ejemplo, han aumentado y cada vez ha tenido mayores frutos desde que se comenzó a implementar las leyes del electromagnetismo, la óptica y la física molecular al estudio de las neuronas.
Hecho por: Universidad de los Andes Estudiante de educación ciencias físico naturales  Ulises Alejandro Morales Zerpa  C.I.: 17.662.221

Más contenido relacionado

La actualidad más candente

física y su relación con otras ciencias y aplicación de la física en la ingen...
física y su relación con otras ciencias y aplicación de la física en la ingen...física y su relación con otras ciencias y aplicación de la física en la ingen...
física y su relación con otras ciencias y aplicación de la física en la ingen...yulianacarrero21
 
La física y su relación con otras ciencias
La física y su relación con otras cienciasLa física y su relación con otras ciencias
La física y su relación con otras cienciasyulianacarrero21
 
La química como ciencia
La química como ciencia La química como ciencia
La química como ciencia dayanarosero
 
APLICACIONES DE LA FÍSICA
APLICACIONES DE LA FÍSICA APLICACIONES DE LA FÍSICA
APLICACIONES DE LA FÍSICA Zarlenin docente
 
Qué es la Física?
Qué es la Física?Qué es la Física?
Qué es la Física?Alex Puerto
 
Division de la fisica
Division de la fisicaDivision de la fisica
Division de la fisicadaniestefania
 
BIOFÍSICA (BIOLOGÍA Y FISICA) - RAMAS DE LA BIOFISICA Por: Natasha Calvopiña
BIOFÍSICA (BIOLOGÍA Y FISICA) - RAMAS DE LA BIOFISICA Por: Natasha CalvopiñaBIOFÍSICA (BIOLOGÍA Y FISICA) - RAMAS DE LA BIOFISICA Por: Natasha Calvopiña
BIOFÍSICA (BIOLOGÍA Y FISICA) - RAMAS DE LA BIOFISICA Por: Natasha CalvopiñaNatashaCalvopiaAguil
 
La ciencia y la física.
La ciencia y la física.La ciencia y la física.
La ciencia y la física.angelgalban
 
Las ramas de la fisica de jean carlos carrillo
Las ramas de la fisica de jean carlos carrillo  Las ramas de la fisica de jean carlos carrillo
Las ramas de la fisica de jean carlos carrillo jeancarloscarrillo
 
Conceptos De La Física Y Su Relación Con Otras Disciplinas.
Conceptos De La Física Y Su  Relación Con Otras Disciplinas.Conceptos De La Física Y Su  Relación Con Otras Disciplinas.
Conceptos De La Física Y Su Relación Con Otras Disciplinas.Yirley Hernandez
 
Que es punto de referencia
Que es punto de referenciaQue es punto de referencia
Que es punto de referenciaLENIN SAIZ
 
Niveles de organización de la ecología
Niveles de organización de la ecologíaNiveles de organización de la ecología
Niveles de organización de la ecologíaDiana Llanos
 
Constituciones 1961 1999
Constituciones 1961 1999Constituciones 1961 1999
Constituciones 1961 1999jose a valero g
 
La fisica y su relación con la quimica
La fisica y su relación con la quimicaLa fisica y su relación con la quimica
La fisica y su relación con la quimicaFHER23RG
 
Relacion entre fisica y biologia
Relacion entre fisica y biologiaRelacion entre fisica y biologia
Relacion entre fisica y biologiaVS Kaviud
 
Introduccion a la fisica
Introduccion a la fisicaIntroduccion a la fisica
Introduccion a la fisicaRommel Sandoval
 

La actualidad más candente (20)

física y su relación con otras ciencias y aplicación de la física en la ingen...
física y su relación con otras ciencias y aplicación de la física en la ingen...física y su relación con otras ciencias y aplicación de la física en la ingen...
física y su relación con otras ciencias y aplicación de la física en la ingen...
 
La física y su relación con otras ciencias
La física y su relación con otras cienciasLa física y su relación con otras ciencias
La física y su relación con otras ciencias
 
La química como ciencia
La química como ciencia La química como ciencia
La química como ciencia
 
APLICACIONES DE LA FÍSICA
APLICACIONES DE LA FÍSICA APLICACIONES DE LA FÍSICA
APLICACIONES DE LA FÍSICA
 
Qué es la Física?
Qué es la Física?Qué es la Física?
Qué es la Física?
 
Cuadro sinóptico en blanco.pdf
Cuadro sinóptico en blanco.pdfCuadro sinóptico en blanco.pdf
Cuadro sinóptico en blanco.pdf
 
Division de la fisica
Division de la fisicaDivision de la fisica
Division de la fisica
 
BIOFÍSICA (BIOLOGÍA Y FISICA) - RAMAS DE LA BIOFISICA Por: Natasha Calvopiña
BIOFÍSICA (BIOLOGÍA Y FISICA) - RAMAS DE LA BIOFISICA Por: Natasha CalvopiñaBIOFÍSICA (BIOLOGÍA Y FISICA) - RAMAS DE LA BIOFISICA Por: Natasha Calvopiña
BIOFÍSICA (BIOLOGÍA Y FISICA) - RAMAS DE LA BIOFISICA Por: Natasha Calvopiña
 
La ciencia y la física.
La ciencia y la física.La ciencia y la física.
La ciencia y la física.
 
Las ramas de la fisica de jean carlos carrillo
Las ramas de la fisica de jean carlos carrillo  Las ramas de la fisica de jean carlos carrillo
Las ramas de la fisica de jean carlos carrillo
 
Conceptos De La Física Y Su Relación Con Otras Disciplinas.
Conceptos De La Física Y Su  Relación Con Otras Disciplinas.Conceptos De La Física Y Su  Relación Con Otras Disciplinas.
Conceptos De La Física Y Su Relación Con Otras Disciplinas.
 
Que es punto de referencia
Que es punto de referenciaQue es punto de referencia
Que es punto de referencia
 
Lengua 5to año
Lengua 5to añoLengua 5to año
Lengua 5to año
 
Niveles de organización de la ecología
Niveles de organización de la ecologíaNiveles de organización de la ecología
Niveles de organización de la ecología
 
Constituciones 1961 1999
Constituciones 1961 1999Constituciones 1961 1999
Constituciones 1961 1999
 
La fisica y su relación con la quimica
La fisica y su relación con la quimicaLa fisica y su relación con la quimica
La fisica y su relación con la quimica
 
Relacion entre fisica y biologia
Relacion entre fisica y biologiaRelacion entre fisica y biologia
Relacion entre fisica y biologia
 
Mapa mixto
Mapa mixtoMapa mixto
Mapa mixto
 
Ramas de la fisica
Ramas de la fisicaRamas de la fisica
Ramas de la fisica
 
Introduccion a la fisica
Introduccion a la fisicaIntroduccion a la fisica
Introduccion a la fisica
 

Similar a Física Todo

Similar a Física Todo (20)

Fisica
FisicaFisica
Fisica
 
Fisica 1
Fisica 1Fisica 1
Fisica 1
 
MECÁNICA CUÁNTICA, PRINCIPIOS DE LA RELATIVIDAD
MECÁNICA CUÁNTICA, PRINCIPIOS DE LA RELATIVIDADMECÁNICA CUÁNTICA, PRINCIPIOS DE LA RELATIVIDAD
MECÁNICA CUÁNTICA, PRINCIPIOS DE LA RELATIVIDAD
 
Fisica
FisicaFisica
Fisica
 
Kike
KikeKike
Kike
 
1.2b CUÁLES SON LAS RAMAS DE LA FÍSICA CLÁSICA Y MODERNA.pdf
1.2b CUÁLES SON LAS RAMAS DE LA FÍSICA CLÁSICA Y MODERNA.pdf1.2b CUÁLES SON LAS RAMAS DE LA FÍSICA CLÁSICA Y MODERNA.pdf
1.2b CUÁLES SON LAS RAMAS DE LA FÍSICA CLÁSICA Y MODERNA.pdf
 
1.2a Las 12 Ramas de la Física Clásica y Moderna.pdf
1.2a Las 12 Ramas de la Física Clásica y Moderna.pdf1.2a Las 12 Ramas de la Física Clásica y Moderna.pdf
1.2a Las 12 Ramas de la Física Clásica y Moderna.pdf
 
La fisica
La fisicaLa fisica
La fisica
 
Clase1b
Clase1bClase1b
Clase1b
 
Informatica
InformaticaInformatica
Informatica
 
Informatica
InformaticaInformatica
Informatica
 
Que es la fisica
Que es la fisicaQue es la fisica
Que es la fisica
 
La física
La físicaLa física
La física
 
Fisica compu
Fisica compuFisica compu
Fisica compu
 
Fisica
FisicaFisica
Fisica
 
Átomo y teoría cuántica
Átomo y teoría cuánticaÁtomo y teoría cuántica
Átomo y teoría cuántica
 
Dinamica atómica
Dinamica atómicaDinamica atómica
Dinamica atómica
 
Dinamica atómica
Dinamica atómicaDinamica atómica
Dinamica atómica
 
Física cuántica
Física cuánticaFísica cuántica
Física cuántica
 
UNIDAD1_QUIMICA.pptx
UNIDAD1_QUIMICA.pptxUNIDAD1_QUIMICA.pptx
UNIDAD1_QUIMICA.pptx
 

Último

POWER POINT YUCRAElabore una PRESENTACIÓN CORTA sobre el video película: La C...
POWER POINT YUCRAElabore una PRESENTACIÓN CORTA sobre el video película: La C...POWER POINT YUCRAElabore una PRESENTACIÓN CORTA sobre el video película: La C...
POWER POINT YUCRAElabore una PRESENTACIÓN CORTA sobre el video película: La C...silviayucra2
 
guía de registro de slideshare por Brayan Joseph
guía de registro de slideshare por Brayan Josephguía de registro de slideshare por Brayan Joseph
guía de registro de slideshare por Brayan JosephBRAYANJOSEPHPEREZGOM
 
trabajotecologiaisabella-240424003133-8f126965.pdf
trabajotecologiaisabella-240424003133-8f126965.pdftrabajotecologiaisabella-240424003133-8f126965.pdf
trabajotecologiaisabella-240424003133-8f126965.pdfIsabellaMontaomurill
 
Trabajo Mas Completo De Excel en clase tecnología
Trabajo Mas Completo De Excel en clase tecnologíaTrabajo Mas Completo De Excel en clase tecnología
Trabajo Mas Completo De Excel en clase tecnologíassuserf18419
 
9egb-lengua y Literatura.pdf_texto del estudiante
9egb-lengua y Literatura.pdf_texto del estudiante9egb-lengua y Literatura.pdf_texto del estudiante
9egb-lengua y Literatura.pdf_texto del estudianteAndreaHuertas24
 
Proyecto integrador. Las TIC en la sociedad S4.pptx
Proyecto integrador. Las TIC en la sociedad S4.pptxProyecto integrador. Las TIC en la sociedad S4.pptx
Proyecto integrador. Las TIC en la sociedad S4.pptx241521559
 
Global Azure Lima 2024 - Integración de Datos con Microsoft Fabric
Global Azure Lima 2024 - Integración de Datos con Microsoft FabricGlobal Azure Lima 2024 - Integración de Datos con Microsoft Fabric
Global Azure Lima 2024 - Integración de Datos con Microsoft FabricKeyla Dolores Méndez
 
Redes direccionamiento y subredes ipv4 2024 .pdf
Redes direccionamiento y subredes ipv4 2024 .pdfRedes direccionamiento y subredes ipv4 2024 .pdf
Redes direccionamiento y subredes ipv4 2024 .pdfsoporteupcology
 
Presentación guía sencilla en Microsoft Excel.pptx
Presentación guía sencilla en Microsoft Excel.pptxPresentación guía sencilla en Microsoft Excel.pptx
Presentación guía sencilla en Microsoft Excel.pptxLolaBunny11
 
International Women's Day Sucre 2024 (IWD)
International Women's Day Sucre 2024 (IWD)International Women's Day Sucre 2024 (IWD)
International Women's Day Sucre 2024 (IWD)GDGSucre
 
pruebas unitarias unitarias en java con JUNIT
pruebas unitarias unitarias en java con JUNITpruebas unitarias unitarias en java con JUNIT
pruebas unitarias unitarias en java con JUNITMaricarmen Sánchez Ruiz
 
KELA Presentacion Costa Rica 2024 - evento Protégeles
KELA Presentacion Costa Rica 2024 - evento ProtégelesKELA Presentacion Costa Rica 2024 - evento Protégeles
KELA Presentacion Costa Rica 2024 - evento ProtégelesFundación YOD YOD
 
EPA-pdf resultado da prova presencial Uninove
EPA-pdf resultado da prova presencial UninoveEPA-pdf resultado da prova presencial Uninove
EPA-pdf resultado da prova presencial UninoveFagnerLisboa3
 
Herramientas de corte de alta velocidad.pptx
Herramientas de corte de alta velocidad.pptxHerramientas de corte de alta velocidad.pptx
Herramientas de corte de alta velocidad.pptxRogerPrieto3
 
CLASE DE TECNOLOGIA E INFORMATICA PRIMARIA
CLASE  DE TECNOLOGIA E INFORMATICA PRIMARIACLASE  DE TECNOLOGIA E INFORMATICA PRIMARIA
CLASE DE TECNOLOGIA E INFORMATICA PRIMARIAWilbisVega
 

Último (15)

POWER POINT YUCRAElabore una PRESENTACIÓN CORTA sobre el video película: La C...
POWER POINT YUCRAElabore una PRESENTACIÓN CORTA sobre el video película: La C...POWER POINT YUCRAElabore una PRESENTACIÓN CORTA sobre el video película: La C...
POWER POINT YUCRAElabore una PRESENTACIÓN CORTA sobre el video película: La C...
 
guía de registro de slideshare por Brayan Joseph
guía de registro de slideshare por Brayan Josephguía de registro de slideshare por Brayan Joseph
guía de registro de slideshare por Brayan Joseph
 
trabajotecologiaisabella-240424003133-8f126965.pdf
trabajotecologiaisabella-240424003133-8f126965.pdftrabajotecologiaisabella-240424003133-8f126965.pdf
trabajotecologiaisabella-240424003133-8f126965.pdf
 
Trabajo Mas Completo De Excel en clase tecnología
Trabajo Mas Completo De Excel en clase tecnologíaTrabajo Mas Completo De Excel en clase tecnología
Trabajo Mas Completo De Excel en clase tecnología
 
9egb-lengua y Literatura.pdf_texto del estudiante
9egb-lengua y Literatura.pdf_texto del estudiante9egb-lengua y Literatura.pdf_texto del estudiante
9egb-lengua y Literatura.pdf_texto del estudiante
 
Proyecto integrador. Las TIC en la sociedad S4.pptx
Proyecto integrador. Las TIC en la sociedad S4.pptxProyecto integrador. Las TIC en la sociedad S4.pptx
Proyecto integrador. Las TIC en la sociedad S4.pptx
 
Global Azure Lima 2024 - Integración de Datos con Microsoft Fabric
Global Azure Lima 2024 - Integración de Datos con Microsoft FabricGlobal Azure Lima 2024 - Integración de Datos con Microsoft Fabric
Global Azure Lima 2024 - Integración de Datos con Microsoft Fabric
 
Redes direccionamiento y subredes ipv4 2024 .pdf
Redes direccionamiento y subredes ipv4 2024 .pdfRedes direccionamiento y subredes ipv4 2024 .pdf
Redes direccionamiento y subredes ipv4 2024 .pdf
 
Presentación guía sencilla en Microsoft Excel.pptx
Presentación guía sencilla en Microsoft Excel.pptxPresentación guía sencilla en Microsoft Excel.pptx
Presentación guía sencilla en Microsoft Excel.pptx
 
International Women's Day Sucre 2024 (IWD)
International Women's Day Sucre 2024 (IWD)International Women's Day Sucre 2024 (IWD)
International Women's Day Sucre 2024 (IWD)
 
pruebas unitarias unitarias en java con JUNIT
pruebas unitarias unitarias en java con JUNITpruebas unitarias unitarias en java con JUNIT
pruebas unitarias unitarias en java con JUNIT
 
KELA Presentacion Costa Rica 2024 - evento Protégeles
KELA Presentacion Costa Rica 2024 - evento ProtégelesKELA Presentacion Costa Rica 2024 - evento Protégeles
KELA Presentacion Costa Rica 2024 - evento Protégeles
 
EPA-pdf resultado da prova presencial Uninove
EPA-pdf resultado da prova presencial UninoveEPA-pdf resultado da prova presencial Uninove
EPA-pdf resultado da prova presencial Uninove
 
Herramientas de corte de alta velocidad.pptx
Herramientas de corte de alta velocidad.pptxHerramientas de corte de alta velocidad.pptx
Herramientas de corte de alta velocidad.pptx
 
CLASE DE TECNOLOGIA E INFORMATICA PRIMARIA
CLASE  DE TECNOLOGIA E INFORMATICA PRIMARIACLASE  DE TECNOLOGIA E INFORMATICA PRIMARIA
CLASE DE TECNOLOGIA E INFORMATICA PRIMARIA
 

Física Todo

  • 1. Todo sobre la física Todo tiene respuesta lo único que tenemos que hacer es estudiarlo desde varios puntos de vista y hay estará.
  • 2. Tabla de contenidos 1. Teorías centrales 1.1 Mecánica clásica 1.2 Electromagnetismo 1.3 Relatividad 1.4 Termodinámica y mecánica 1.5 Mecánica cuántica 2. Áreas d e investigación 2.1 Física teórica 2.2 Materia condensada 2.3 Física atómica y molecular 2.4 Física de partículas o de altas 2.5 Astrofísica 2.6 Biofísica
  • 4. 1.1 Mecánica clásica Como mecánica clásica se conoce a la descripción del movimiento de cuerpos macroscópicos a velocidades muy pequeñas en comparación la velocidad de la luz. Existen dos tipos de formula ciones de ésta mecánica conocidas como mecánica newtoniana y mecánica a nalítica. La mecánica newtoniana, como su nombre lo indica, lleva intrínsecos los preceptos de Newton. A partir de l as tres ecuaciones formuladas por Newton y mediante el cálculo diferencial e int egral se llega a una muy exacta aproximación de los fenómenos físicos. La mecánica analítica es una formulación matemática abstracta sobre la mecánica, nos permite desligarnos de esos sistemas de referencia privilegiados y tener conceptos más generales al momento de describir un movimiento con el uso del cálculo de variaciones. En últim a instancia las dos son equivalentes. En la mecánica clásica en genera l se tienen tres aspectos invariantes: el tiempo es absoluto, la naturaleza de for ma espontánea realiza la mínima acción y la concepción de un universo determ inado.
  • 5. 1.2 Electromagnetismo El electromagnetismo describe la interacción de partículas cargadas con campos eléctricos y magnéticos. Se puede dividir en electrostática, el estudio de las interacciones entre cargas en reposo, y la electrodinámica, el estudio de las interacciones entre cargas en movimiento y la radiación. La teoría clásica del electromagnetismo se basa en la fuerza de Lorentz y en las ecuaciones de Maxwell. Los principios del electromagnetismo encuentran aplicaciones en diversas disciplinas afines, tales como las microondas, antenas, máquinas eléctricas, comunicaciones por satélite, bioelectromagnetismo, plasmas, investigación nuclear, la fibra óptica, la interferencia y la compatibilidad electromagnéticas, la conversión de energía electromecánica, la meteorología por rádar, y la observación remota. Los dispositivos electromagnéticos incluyen transformadores, redés eléctricos, radio / TV, teléfonos, motores eléctricos, líneas de transmisión, guías de onda, fibras ópticas y láseres. Espectro electromagnético. Espectro electromagnético.
  • 6. En la teoría de la relatividad especial, Einstein, Lorentz, Minkowski entre otros, unificaron los conceptos de espacio y tiempo, en un ramado tetradimensional al que se le denominó espacio-tiempo. La relatividad especial fue una teoría revolucionaria para su época, con la que el tiempo absoluto de Newton quedo relegado y conceptos como la invariancia en la velocidad de la luz, la dilatación del tiempo, la contracción de la longitud y la equivalencia entre masa y energía fueron introducidos. Además con las formulaciones de la relatividad especial, las leyes de la física son invariantes en todos los sistemas de referencia inerciales, como consecuencia matemática se encuentra como límite superior de velocidad a la luz y se elimina la causalidad determinista que tenía la física hasta entonces. Por otro lado, la relatividad general estudia la interacción gravitatoria como una deformación en la geometría del espacio-tiempo. En esta teoría se introducen los conceptos de la curvatura del espacio-tiempo como la causa de la interacción gravitatoria, el principio de equivalencia que dice que para todos los observadores locales inerciales las leyes de la relatividad especial son invariantes y la introducción del movimiento de un partícula por líneas geodésicas. 1.3 Relatividad
  • 7. 1.4 Termodinámica y mecánica La termodinámica trata los procesos de transferencia de calor, que es una de las formas de energía y como puede producir un trabajo con ella. En esta área se describe como la materia en cualquiera de sus estados (sólido, líquido, gaseoso) va transformándose. Desde un punto de vista macroscópico de la materia se estudia como ésta reacciona a cambios en su volumen, presión, temperatura entre otros. La termodinámica se basa en cuatro leyes principales: el equilibrio termodinámico (o ley cero), el principio de conservación de la energía (primera ley), el aumento temporal de la entropía (segunda ley) y la imposibilidad del cero absoluto (tercera ley). Una consecuencia de la termodinámica es lo que hoy se conoce como mecánica estadística. Ésta rama estudia, al igual que la termodinámica, los procesos de transferencia de calor, pero contrario a la anterior desde un punto de vista molecular. La materia como se conoce esta compuesta por moléculas y el conocer el comportamiento de una sola de sus moléculas nos lleva a medidas erróneas. Es por eso que se debe tratar como un conjunto de elementos caóticos o aleatorios, y se utiliza el lenguaje estadístico y consideraciones mecánicas para describir comportamientos macroscópicos de este conjunto molecular microscópico.
  • 8. 1.5 Mecánica cuántica La mecánica cuántica es la rama de la física que trata los sistemas atómicos y subatómicos y sus interacciones con la radiación electromagnética, en términos de cantidades observables. Se basa en la observación de que todas las formas de energía se liberan en unidades discretas o paquetes llamados cuantos. Sorprendentemente, la teoría cuántica sólo permite normalmente cálculos probabilísticos o estadísticos de las características observadas de las partículas elementales, entendidos en términos de funciones de onda. La ecuación de Schrödinger desempeña el papel en la mecánica cuántica que las leyes de Newton y la conservación de la energía hacen en la mecánica clásica. Es decir, la predicción del comportamiento futuro de un sistema dinámico, y es una ecuación de onda en términos de una función de onda la que predice analíticamente la probabilidad precisa de los eventos o resultados.
  • 9. 2. Áreas de investigación
  • 10. 2.1 Física teórica La cultura de la investigación en física en los últimos tiempos se ha especializado tanto que ha dado lugar a una separación de los físicos que se dedican a la teoría y otros que se dedican a los experimentos. Los teóricos trabajan en la búsqueda de modelos matemáticos que expliquen los resultados experimentales y que ayuden a predecir resultados futuros. Así pues, teoría y experimentos están relacionados íntimamente. El progreso en física a menudo resulta de que un experimento encuentra un resultado que no se puede explicar con las teorías actuales por lo que hay que buscar un nuevo enfoque conceptual para resolver el problema. Los teóricos pueden con cebir conceptos tales como universos paralelos, espacios multidimensionales o mi núsculas cuerdas que vibran, y a partir de ahí, realizar hipótesis físicas.
  • 11. 2.2 Materia condensada La física de la materia condensada se ocupa de las propiedades físicas macroscópicas de la materia, tales como la densidad, la temperatura, la dureza, o el color de un material. Los materiales consisten en un gran número de átomos o moléculas que interaccionan entre ellos, por lo que están "condensados", a diferencia de estar libres sin interaccionar. La física de la materia condensada busca hacer relaciones entre las propiedades macroscópicas, que se pueden medir, y el comportamiento de sus constituyentes a nivel microscópico o atómico y así comprender mejor las propiedades de los materiales. Las fases "condensadas" más comunes son sólidos y líquidos, que surgen del enlace químico entre los átomos, debido a la interacción electromagnética. Fases más exóticas son los superfluidos, los condensados de Bose-Einstein encontrados en ciertos sistemas atómicos a muy bajas temperaturas, la fase superconductora de los electrones de conducción de ciertos materiales, y las fases ferromagnética y antiferromagnética de los spines en las redes atómicas.
  • 12. 2.3 Física atómica y molecular La física atómica y molecular se centran en el estudio de las interacciones materia-materia y luz-materia en la escala de átomos individuales o estructuras que contienen unos pocos átomos. Ambas áreas se agrupan debido a su interrelación, la similitud de los métodos utilizados, así como el carácter común de la escalas de energía relevantes a sus investigaciones. A su vez, ambas incluyen tratamientos tanto clásicos y como cuánticos, ya que pueden tratar sus problemas desde puntos de vista microscópicos y macroscópicos. La física molecular se centra en estructur as moleculares y sus interacciones con la materia y con la luz.
  • 13. 2.4 Física de partículas o de altas La física de partículas es la rama de la física que estudia los componentes elementales de la materia y las interacciones entre ellos como si éstas fueran partículas. Se la llama también física de altas energías pues muchas de las partículas elementales no se encuentran en la naturaleza y hay que crearlas en colisiones de alta energía entre otras partículas, como se hace en los aceleradores de partículas. Los principales centros de estudio sobre partículas son el Laboratorio Nacional Fermi o Fermilab en Estados Unidos y el Centro Europeo para la Investigación Nuclear o CERN en la frontera entre Suiza y Francia. En éstos laboratorios lo que se logra es obtener energías similares a las que se cree existieron en el Big Bang y así se intenta tener cada vez más pruebas del origen del universo.
  • 14. 2.5 Astrofísica La astrofísica y la astronomía son ciencias que aplican las teorías y métodos de otras ramas de la física al estudio de los objetos que componen nuestro variado universo, tales como estrellas, planetas, galaxias y agujeros negros. La astronomía se centra en la comprensión de los movimientos de los objetos, mientras que la astrofísica busca explicar su origen, su evolución y su comportamiento. Actualmente los términos astrofísica y astronomía se los suele usar indistintamente para referirse al estudio del universo. Esta área, junto a la física de partículas, es una de las áreas mas estudiadas y mas apasionantes del mundo contemporáneo de la física. Desde que el telescopio espacial Hubble nos brindó detallada información de los mas remotos confines del universo, los físicos pudieron tener una visión mas objetiva de lo que hasta ese momento eran solo teorías.
  • 15. 2.6 Biofísica La biofísica es una área interdisciplinaria que estudia a la biología aplicando los principios generales de la física. Al aplicar el carácter probabilística de la mecánica cuántica a sistemas biológicos obtenemos métodos puramente físicos para la explicación de propiedades biológicas. Se puede decir que el intercambio de conocimientos es únicamente en dirección a la biología, ya que ésta se ha ido enriqueciendo de los conceptos físicos y no viceversa. Ésta área esta en constante crecimiento, se estima que durante los inicios del siglo XXI cada vez la confluencia de físicos, biólogos y químicos a los mismos laboratorios se incremente. Los estudios en neurociencia, por ejemplo, han aumentado y cada vez ha tenido mayores frutos desde que se comenzó a implementar las leyes del electromagnetismo, la óptica y la física molecular al estudio de las neuronas.
  • 16. Hecho por: Universidad de los Andes Estudiante de educación ciencias físico naturales Ulises Alejandro Morales Zerpa C.I.: 17.662.221