SlideShare una empresa de Scribd logo
1 de 10
Descargar para leer sin conexión
18  Antena de Telecomunicación / ABRIL 2012
Los superconductores
Francisco Enrique Sánchez-Lafuente Pérez,
Ingeniero Técnico de Telecomunicación
REPORTAJE
las cuales se pudo ensayar y conocer el
comportamiento de sus parámetros. En su
origen se utilizó helio líquido que licua a
una temperatura de 4º K sumergiendo el
material dentro del mismo y analizando
sus propiedades.
Al enfriar el material superconductor
por debajo de TC situándolo en el interior
de un campo magnético, se generan en
este una corriente de apantallamiento
cuyo campo generado se opone al aplica-
do hasta un valor denominado campo crí-
tico en el que vuelve a comportarse como
en su estado normal.
Fue H. Kamerling Omnes de la Uni-
versidad de Leiden quien investigo pri-
mero la producción de helio líquido en
1908. Tres años más tarde, investigando
L
os materiales superconductores no
presentan en determinadas condicio-
nes ninguna resistencia al paso de la
corriente eléctrica, lo que hace que no se
calienten por efecto Joule, por lo que no
existen pérdidas de energía. Este fenóme-
no se produce al enfriarlo por debajo de
su Temperatura Crítica (TC) en la que los
electrones agrupados en parejas se des-
plazan por el conductor sin chocar con
los átomos del material de que se trate
(pares de Cooper). Esta temperatura co-
mo es sabido es característica de cada
material superconductor.
En el inicio del descubrimiento de las
características este tipo de materiales es-
tuvo unido a la obtención de esas bajas
temperaturas en el laboratorio a partir de
Imagen de las instalaciones del Cern.
Antena de Telecomunicación / ABRIL 2012  19
sobre las variaciones de las propiedades
del Hg con la temperatura, descubrió la
superconductividad en este metal al en-
friarlo a una temperatura de -269º C. Es
importante señalar que al ser en un super-
conductor el valor de R = 0, una vez apli-
cada una corriente ésta fluye por el con-
ductor de forma permanente sin que se
precise diferencia de potencial aplicada.
El descubrimiento del fenómeno de la
superconductividad se debe pues a este
físico holandés. De su biografía, decir
que de 1871 a 1873 estudió en la Univer-
sidad de Heidelberg, donde fue alumno
de los físicos alemanes Robert Bunsen y
Gustav Kirchhoff, y se doctoró en la Uni-
versidad de Groninga (1879). De 1878 a
1882 fue profesor en la Escuela Politéc-
nica de Delft, puesto que dejó ese mismo
año para ocupar el de profesor de física
en la Universidad de Leiden hasta que se
retiró en 1923
Así pues la mayoría de los supercon-
ductores manifiestan sus propiedades
solo a temperaturas muy bajas y próxi-
mas al cero absoluto.
Al subir la temperatura y llegar a la
temperatura crítica empiezan a perder sus
propiedades características y vuelven a
recuperar las propias del material de que
se trate.
Por el contrario, cuando la temperatu-
ra desciende por debajo del punto crítico
disminuye su resistencia y la corriente
puede llegar a circular por el material sin
resistencia alguna.
Campos magnéticos
En principio la superconductividad
puede considerase como una transición
de fase que se produce bien por aumento
de la temperatura, por variación del cam-
po magnético aplicado hasta un valor de-
terminado, o por el paso de una densidad
de corriente mayor de un determinado
valor a causa de los cuales el supercon-
ductor pasa de nuevo a estado normal en
el que va a conducir de nuevo con un
cierto valor de resistencia.
El estado superconductor no solo se
caracteriza por una resistencia nula, sino
también por la respuesta de a los campos
magnéticos que se le aplican. El campo
magnético aplicado puede tener la sufi-
ciente intensidad para alcanzar la transi-
ción de fase y penetrar en el material, o
bien que el superconductor se proteja del
campo magnético aplicado y aparezcan
corrientes superconductoras internas que
apantallen el campo externo y le impidan
penetrar en el material.
Por lo anterior decir que un material
superconductor no solamente no presenta
resistencia al paso de corriente, sino que
también tiene otra propiedad importante
que es su capacidad para apantallar un
campo magnético.
Si enfriamos el superconductor por
debajo de su temperatura crítica y lo co-
locamos en presencia de un campo mag-
nético, éste crea corrientes de apantalla-
miento capaces de generar un campo
magnético opuesto al aplicado. Esto ocu-
rre hasta que el campo magnético alcanza
un valor, llamado campo crítico, momen-
to en el que el superconductor deja de
apantallar el campo magnético y el mate-
rial transita a su estado normal.
En estas condiciones de temperatura
no solamente son capaces de transportar
energía eléctrica sin ningún tipo de pérdi-
das, sino que además poseen la propiedad
de rechazar las líneas de un campo mag-
nético aplicado. Se denomina “Efecto
Meissner” a esta capacidad de los super-
conductores de rechazar un campo mag-
nético que intente penetrar en su interior;
de manera que si acercamos un imán a un
superconductor, se genera una fuerza
magnética de repulsión la cual es capaz
de contrarrestar el peso del imán produ-
ciendo así la sobreelevación (levitación)
del mismo. Hoy día el uso más extendido
de ese fenómeno se da en los trenes de
levitación magnética.
El hecho de que el superconductor
pueda apantallar totalmente el campo
magnético de su interior se conoce como
supercondutividad tipo I. Lamentable-
mente el campo crítico de estos materiales
es tan pequeño que no se pueden desarro-
llar aplicaciones tecnológicas con ellos.
Los de “Tipo 1” y como se ha dicho
son aquellos que no permiten en absoluto
que penetre el campo magnético externo.
Algunos elementos metálicos como el
plomo, estaño, mercurio y  el aluminio
pertenecen a este grupo. Son conocidos
como “perfectos”. Al superar la tempera-
tura crítica que es muy baja (no superior
a los 7 Kelvins), se produce una ruptura
brusca del estado superconductor al con-
trario que los del tipo II que tienen dos
temperaturas criticas Tc1 y Tc2 entre las
cuales se halla mezclado el estado super-
conductor y el estado normal.
«La mayoría de los
superconductores
manifiestan
sus propiedades
solo a temperaturas
muy bajas»
El tren magnético Maglev.
20  Antena de Telecomunicación / ABRIL 2012
Igualmente tienen un solo campo
magnético crítico Hc y de un valor relati-
vamente bajo (aproximadamente 0.2 Tes-
las) y todos ellos son superconductores
convencionales,  es decir que se pueden
explicar mediante la teoría BCS.
La superconductividad solo existe por
debajo de una temperatura crítica y de
un campo magnético crítico.
Los de “Tipo 2” son superconducto-
res “imperfectos”, en el sentido que el
campo realmente penetra a través de pe-
queñas canalizaciones, denominadas vór-
tices de Abrikosov, o fluxones.
Es un grupo heterogéneo constituido
por aleaciones, cerámicas o elementos pu-
ros; entre estos últimos encontramos tan
sólo cuatro: el carbono (pero sólo los fu-
lerenos y los nanotubos, pues cuando se
encuentra en forma de diamante o grafito
nunca alcanza el estado superconductor),
el niobio, tecnecio y  vanadio.
Tienen dos temperaturas críticas en el
que el material está en un estado mixto en
el que conviven el estado superconductor
y el normal (mientras que en los super-
conductores de tipo I el paso de un estado
a otro es discontinuo). Si partiendo de un
valor inicial vamos aumentando el campo
magnético, estas dos temperaturas van
siendo cada vez más bajas, y si es el cam-
po es lo suficientemente grande, el mate-
rial no es conductor ni siquiera en el cero
absoluto.
Tienen igualmente dos campos mag-
néticos críticos: a una misma temperatura
y aplicando un campo magnético a partir
de un cierto valor Hc1 el campo comienza
a poder penetrar el material, y si lo au-
mentamos hasta un valor  Hc2  el estado
superconductor desaparece por completo.
Al aumentar el campo magnético externo
aumenta su magnetización (imanación),
para contrarrestarlo y consecuentemente
en su interior dicho campo sea nulo, lo
que da lugar al efecto Meissner.
La mayoría de ellos no son conven-
cionales, es decir que sus propiedades no
pueden explicarse con la teoría BCS ex-
cepto en el caso del niobio Tc = 9 K o el
diboruro de magnesio.
De este último decir que sus propie-
dades no son particularmente destacables,
pero son químicamente muy distintos a
cualquier otro superconductor en que no
es un complejo de óxido de cobre ni un
metal. Debido a esta diferencia se espera
que el estudio de este material conduzca
a un mejor conocimiento del fenómeno
de la superconductividad.
La característica más importante
de un superconductor, desde el punto de
vista de las aplicaciones prácticas, es la
máxima densidad de corriente que el su-
perconductor es capaz de transportar sin
resistencia. 
Los máximos valores de temperatura,
densidad crítica de corriente y campo mag-
nético están relacionados entre si. Cuando
son representados en una gráfica en tres
ejes forma la llamada “superficie crítica”.
La imagen muestra la superficie críti-
ca para un superconductor Tipo II, fron-
tera entre las condiciones superconducto-
ras y las de resistividad normal, en el es-
pacio de tres dimensiones. El  campo
aplicado (B), la temperatura (T) y la den-
sidad de corriente (J) deben quedar bajo
la superficie crítica para mantener la  su-
perconductividad.
Efecto Meissner
En realidad los superconductores se
comportan como un diamagnético per-
fecto.
Espacio que ocupan las instalaciones subterráneas del Cern.
Antena de Telecomunicación / ABRIL 2012  21
Crean un campo magnético opuesto al
aplicado y no permiten que el campo
magnético penetre en su interior. Si el
campo aplicado alcanza un determinado
valor el superconductor deja de apantallar
el campo magnético y el material recobra
sus características anteriores. Esto es lo
que se conoce como efecto Meissner.
El flujo magnético del interior de un
superconductor es expulsado al exterior
cuando la temperatura es T<Tc, La induc-
ción magnética en el interior de un super-
conductor pasa a ser cero cuando T<Tc.
El flujo magnético se expulsa al exterior
del superconductor quedando una peque-
ña parte en el interior. La longitud de esta
penetración es lo que se conoce como
profundidad de penetración (λ).
Con una densidad de electrones de
ns = 1023 electrones por cm3 obtenemos una
profundidad de penetración λL ~ 1700 Å,
Al ir aproximando escalonadamente
la temperatura de una muestra a la tempe-
ratura crítica va disminuyendo el número
de electrones que se encuentran en estado
superconductor formando pares de Co-
oper y aumentando los que están en esta-
do normal, es decir desapareados. La
densidad de unos y otros depende pues de
la temperatura.
La Teoría BCS
Sus autores: John Bardeen, Leon Co-
oper y Robert Schrieffer.
La teoría BCS explica el comporta-
miento de los materiales superconducto-
res a temperaturas próximas al cero abso-
luto.
Según esta teoría cuando determinados
materiales se encuentran a esas temperatu-
ras y sin que estas varíen, los electrones se
van a unir en parejas formando pares de
electrones “pares de Cooper” que serán los
responsables de transportar la carga eléc-
trica a través de la red molecular sin pre-
sentar resistencia eléctrica alguna.
A medida que varíen esas condiciones
en el sentido de adquirir energía, la unión
de una parte de los electrones se rompe
pasando a transformarse en energía ciné-
tica y transformando los electrones que
estaban agrupados en parejas en electro-
nes libres, mientras que otros continúan
en forma de pares coexistiendo ambas si-
tuaciones dentro del material supercon-
ductor. Esta energía se denomina “ener-
gía de gap” y como se ha dicho está
relacionada con la temperatura.
Esta teoría explica algunos hechos co-
nocidos hasta ese momento y que son: la
existencia de una temperatura crítica,
igualmente la existencia de una disconti-
nuidad al pasar al estado superconductor
(en este estado su valor es 2,43 veces su-
perior al de su valor normal a la tempera-
tura crítica), el efecto Meissner y el efecto
isotópico descubierto 7 años antes, y se-
gún el cual
	 1
Tc ∝
	 √A
es decir, para distintos isótopos de un ele-
mento superconductor dado, la tempera-
tura crítica es inversamente proporcional
a la raíz cuadrada del número másico.
El comportamiento de los materiales
cerámicos se explica mediante el deno-
minado efecto Josephson.
Efecto Josephson
El efecto Josephson es un efecto físico
que se manifiesta por la aparición de una
corriente eléctrica por efecto túnel entre
dos superconductores separados por una
capa de aun medio aislante o un metal no
superconductor de algunos nanometros de
espesor. Debido a la estrechez de esta ca-
pa, los pares de Cooper y por efecto túnel
si van a poder atravesarla guardando ade-
más su coherencia de fase.
El descubrimiento de Josephson con-
siste en comprobar como una  corriente
eléctrica distinta de cero puede fluye de
un bloque a otro a través del aislante sin
que sea preciso que exista diferencia de
potencial ni campo magnético aplicado
entre uno y otro.
Se distinguen dos tipos de efecto Jose-
phson, el efecto Josephson continuo (D.C.
Josephson effect) y el efecto Josephson
alterno (A.C. Josephson effect).
El efecto Josephson alterno (AC-Jose-
phson) tiene lugar cuando se aplica una
tensión eléctrica continua a una unión Jo-
sephson, generándose una corriente alter-
na cuya frecuencia es: fJosephson= 2 e
V / h, siendo e la carga del electrón, h la
constante de Plank y V la tensión aplicada
(1 V produce 483.597,9 GHz).
Imagen del Transrapid.
Heike Kamerling.
22  Antena de Telecomunicación / ABRIL 2012
De manera inversa, al aplicar una ra-
diofrecuencia se genera una tensión eléc-
trica de valor: V= h fJosephson/ 2 e. Esta
propiedad se emplea, por ejemplo, para
elaborar patrones de tensión eléctrica.
En el efecto Josephson continuo se
manifiesta como un efecto túnel supercon-
ductor en el que una corriente continua
fluirá a través de la junta túnel en ausencia
de voltaje o campo magnético aplicado.
El efecto Josephson continuo se apro-
vecha en los SQUIDs (Superconducting
Quantum Inteference Device) para medir
los campos magnéticos.
Superconductores
de alta temperatura
Este tipo de superconductividad fue
descubierto en 1986 por Karl Alexander
Müller y Johannes Georg Bednorz.
Trataron la superconductividad en
materiales (óxidos de cobre o cupratos) a
temperaturas superiores a 35 K (–238 ºC)
y más allá del punto de ebullición del ni-
trógeno líquido (–196 ºC). El hallazgo de
superconductividad a eata temperatura se
produjo en una nueva cerámica, un óxido
de bario/lantano/cobre (LaBa)2CuO4.
De esta forma se empezaron a dife-
renciar los superconductores convencio-
nales y los de alta temperatura. Mientras
los primeros necesitan helio líquido para
enfriarse, los segundos se pueden enfriar
con nitrógeno líquido, un refrigerante
mucho mas accesible y barato y que per-
mitió numerosas nuevas aplicaciones.
Otra característica que los distingue
es la anisotropía que demuestra que hay
planos en lo que se refiere a la estructura
atómica que presentan mejor conductivi-
dad que otros.
YBCO  es la sigla del nombre in-
glés Yttrium Barium Copper Oxide, que
es famoso por ser el primer material des-
cubierto mostrando la superconductivi-
dad por encima del punto de ebullición
del nitrógeno líquido.
Todos los superconductores de alta
temperatura son de tipo II y no conven-
cionales.
El YBCO tiene la misma estructura
cristalina que la perovskita, razón por la
cual se dice que tiene estructura de pero-
vskita. Téngase en cuenta que, no obstan-
te, la perovskita es un óxido de titanio y
calcio, por lo que su composición es bien
distinta de la del YBCO: lo único que
comparten ambos es la misma estructura
cristalina, es decir, la posición relativa en
la que están colocados los átomos de que
están compuestos.
La síntesis de YBCO a pequeña esca-
la está al alcance de algunos Institutos de
Enseñanza Secundaria. 
En el 2008, con el descubrimiento de
una nueva familia de superconductores a
alta temperatura crítica basados en hierro y
arsénico (AsFe), llega la segunda gran re-
volución en el universo de la superconduc-
tividad. Los nuevos compuestos, sin cobre
(Cu) y con oxígeno (O), flúor (F) o arséni-
co (As), amplían las perspectivas de los
científicos para resolver incógnitas abiertas
en el mundo de la física del estado sólido.
Entre los 10 descubrimientos científi-
cos del año 2008 se incluye esta nueva
familia de superconductores de alta tem-
peratura, según la revista ‘Science’.
Aplicaciones de los
Superconductores
Tren de levitación
magnética de alta
velocidad
El transporte de levitación magnética,
o Maglev (Magnetically Levitated), es un
sistema de transporte que incluye la sus-
pensión, guía y propulsión de vehículos,
principalmente trenes, utilizando un gran
número de imanes para la sustentación y la
propulsión a base de levitación magnética
(sobreelevación sobre el elemento guía).
Dentro de este tipo de transporte, ade-
más del tren, se incluyen también las
montañas rusas y la propulsión de naves
espaciales que actualmente se encuentran
en estudio.
Un tren de levitación magnética es un
vehículo que viaja suspendido sobre el
carril (algunos de estos trenes van a 1 cm
por encima de la vía y otros pueden levi-
tar hasta 15 cm) y que se desliza a lo lar-
go del mismo.
Potencialmente puede alcanzar en
vacío la velocidad de 6.400 km/h pero de-
bido al rozamiento del aire la velocidad
registrada hasta ahora es de 581 km/h, lo-
grado en Japón en 2003, aunque se sabe
pueden alcanzar los 650 km/h,.
Su principio de funcionamiento se ba-
sa en la atracción/repulsión entre dos
campos magnéticos:
Sistema EMS (electromagnetic sus-
pensión): En la parte inferior del tren e
inferior también del rail se sitúan unos
electroimanes que al circular por ellos
una corriente eléctrica sobreelevarán el
tren haciendo que este quede en suspen-
sión 1 cm sobre los rieles.
Unos imanes guía (repulsión), situa-
dos en la vía y el tren se encargan de cen-
trar la Unidad en los rieles.
«Los trenes magnéticos utilizan
un gran número de imanes para
la sustentación y propulsión en levitación»
Aleksei Abrikosov saludando al rey de Suecia.
Antena de Telecomunicación / ABRIL 2012  23
La fuerza de tracción se realiza en
ambos lados y simultáneamente mediante
imanes electromagnéticos situados en la
vía y en los laterales del tren de forma
que mientras en un instante determinado
una pareja de los citados electroimanes
situados en un lateral se repele entre sí,
otra ejerce una fuerza de atracción ha-
ciendo que el conjunto de ambas impulse
la Unidad hacia delante. Añadido a lo an-
terior, además se hace que en su despla-
zamiento los imanes vayan cambiando la
polaridad lo que permitirá además que el
movimiento sea continuado.
El sistema de frenado se realiza me-
diante electroimanes asistido por frenos
aerodinámicos tipo flash. Al reducir su
velocidad a 10 Km/hora se desprenden
unos patines con un coeficiente de fric-
ción determinado que hace que el tren se
detenga.
Este sistema se utiliza en el Transra-
pid de tecnología alemana que presta ser-
vicio en China y que hace el recorrido
entre Shanghai y el aeropuerto de Pudong
transportando pasajeros a lo largo de
30 km en tan solo 7 minutos y 20 segun-
dos, consiguiendo habitualmente una ve-
locidad punta máxima de 431 km/h y una
media de 250 km/h en el trayecto.
Su construcción se realizó en el perio-
do 2001 a 2004, fecha esta última en la
que se realiza el primer servicio comer-
cial, siendo el coste aproximado del pro-
yecto 1.000 millones de euros, distribui-
dos en dos años y medio de línea trazada
casi en su totalidad en un alzado de unos
ocho metros sobre el nivel del resto de
construcciones urbanas, y en el coste de la
infraestructura motriz (locomotoras ma-
glev), sistemas energéticos electromagné-
ticos de generación, distribución y redun-
dancia, e instalaciones de mantenimiento.
Sistema EDS (electrdynamic suspen-
sión): se trata de una tecnología con la
que se puede alcanzar más velocidad que
con la anterior pero que al mismo tiempo
resulta más costosa. Este sistema se basa
en la propiedad de ciertos materiales su-
perconductores que rechazan cualquier
campo magnético que intente penetrar en
ellos (efecto Meissner).
La suspensión, por tanto, consiste en
que el superconductor rechazará las lí-
neas de campo magnético de manera que
no pasen por su interior, lo que provocará
la elevación del tren. En diversos prototi-
pos de suspensión EDS se ubica un mate-
rial superconductor a los lados de la parte
inferior del vehículo, tal como puede ver-
se en la figura.
Al desplazarse el vehículo a lo largo
del carril se inducirá una corriente en las
bobinas de este que actuarán entonces
«El tren transrapid, cuya tecnología
es alemana, presta servicio entre Shanghai
y el aeropuerto de Pudong»
24  Antena de Telecomunicación / ABRIL 2012
como electroimanes.Al interactuar con los
superconductores montados en el tren, se
producirá la levitación. La fuerza de levi-
tación será cero cuando el vehículo se en-
cuentre detenido e ira aumentando a medi-
da que vaya creciendo la velocidad del
tren hasta producirse la sobreelevación
del mismo sobre el carril y consecuente-
mente las ruedas quedar fuera de servicio.
A la llegada del tren se produce
el proceso inverso. A la velocidad de
10 km/h. volverá a descansar de nuevo
sobre el carril (de forma voluntaria), so-
bre ruedas neumáticas y utilizando desde
ese momento frenos hidráulicos hasta de-
tenerse. Así pues la velocidad inicial sufi-
ciente para sobreelevarse (levitar), se
consigue haciéndolo circular inicialmen-
te sobre ruedas y hasta que se produce la
elevación del mismo sobre el carril.
En este caso (EDS), la elevación so-
bre el carril puede sobreelevar (levitar) el
tren hasta unos 15 cm lo que supone cier-
tas ventaja sobre el sistema anterior en
cuanto no es necesaria tanta precisión so-
bre las guías y permite además en los tra-
yectos de curvas compensar la acelera-
ción lateral produciendo menos efecto
sobre los viajeros que el anterior.
El sistema de propulsión es el mismo
que en el anterior caso.
Como desventajas cabe citar los fuer-
tes campos magnéticos producidos por
las bobinas y el elevado coste de super-
conductores y equipo de refrigeración
para mantener éste a tan baja temperatura
(Nitrógeno a –183 ºC).
El guiado lateral se efectúa en el sis-
tema EMS mediante imanes laterales que
actuarán cuando el tren se desplace irre-
gularmente hacia uno de los lados corri-
giendo la distancia que más se haya ale-
jado de la vía.
En el sistema EDS son los supercon-
ductores y las bobinas de levitación que
se encuentran conectadas mediante un
lazo los elementos encargados del guiado
lateral del tren. Cuando se desplaza late-
ralmente se induce una corriente en el
lazo que obliga al vehiculo a centrarse.
Si el tren por alguna causa se hundie-
se en el carril-guía, éste respondería con
un aumento de la fuerza repulsiva, lo cual
equilibraría este acercamiento; en con-
traste con el sistema EMS en el cual la
fuerza atractiva aumenta si el vehículo se
acerca a la guía.
La regulación de la velocidad del tren
se logra, bien regulando la frecuencia de
la onda magnética (o sea, variando la fre-
cuencia de la corriente alterna), o bien,
variando el número de espiras por unidad
de longitud en el estator y el rotor.
Añadir que en este sistema de trans-
porte la energía que mueve al tren no la
provee el mismo tren, sino que se sumi-
nistra a través de las vías, estando activos
únicamente los tramos por los que esté
circulando el tren.
SQUIDS (Superconducting Quantum
Interference Devices)
Inventado en 1962. Es un dispositivo
superconductor de interferencia cuántica
y una de las primeras aplicaciones comer-
ciales de la superconductividad.
Hay dos tipos de SQUID, DC y RF
(o AC). Los SQUIDs RF sólo tienen una
unión de Josephson, mientras que los
SQUIDs DC tienen dos o más. Esto los
hace más difíciles y caros de producir,
pero también mucho más sensibles.
Una de las aplicaciones más conocida
es la la  Magnetoencefalografía  (MEG).
Esta prueba se realiza mediante un apa-
rato denominado magnetómetro que in-
corpora varios Squids (entre 100 y 150)
dispuestos de forma que rodean simultá-
neamente sin contacto físico con la cabe-
za del sujeto o paciente.
El método se basa en la captación del
campo magnético que sale del cerebro
al exterior a través del cráneo (el campo
eléctrico es retenido por la materia orgá-
nica), permitiendo así investigar las rela-
ciones entre las estructuras cerebrales y
sus funciones.
La señal es analizada por un ordena-
dor donde aparece la imagen del encéfa-
lo, obtenida mediante resonancia magné-
tica, y sobre ella se observan las regiones
encefálicas que poseen una gran activi-
dad eléctrica.
La capacidad de la MEG, tanto en
análisis como en organización de la infor-
mación recibida, es tan grande que per-
mite valorar en milisegundos la actividad
cerebral y organizar mapas funcionales
cerebrales con delimitación de la estruc-
tura cerebral en espacio de pequeños cen-
tímetros, e incluso, milímetros cúbicos.
Esto permite generar mapas funcionales
de la actividad cerebral capaces de ser
organizados y representados temporal y
espacialmente.
En particular la MEG registra la
actividad postsináptica generada por
las dendritas apicales de las células pira-
midales cuya justificación desde el pun-
to de vista  neurofisiológico  la podemos
encontrar en los potenciales postsinápti-
cos (PPS) que son potenciales con una ci-
nética más lenta, durando entre 10 y más
de 100 ms. Los PPS originan la actividad
neuromagnética de baja frecuencia (entre
10 y 100 Hz).
Comparándola con técnicas que estu-
dian o miden procesos bioeléctricos
como la Electroencefalografía (EEG), la
cual tiene una resolución temporal cerca-
na a la MEG, pero la resolución espacial
Walther Meissner.
Karl Alexander Müller.
Antena de Telecomunicación / ABRIL 2012  25
es muy limitada. Por otro lado, las seña-
les registradas por la EEG se ven afecta-
das por los diferentes grados de resisten-
cia de los tejidos que traspasan hasta
alcanzar el electrodo externo, lo que con-
lleva dificultades e imprecisiones al in-
terpretar la localización de las diferentes
fuentes cerebrales generadoras de la se-
ñal electroencefalográfica. Por el contra-
rio la MEG registra la actividad eléctrica
primaria, cuyos campos magnéticos aso-
ciados no sufren problemas de atenua-
ción, distorsión o modificación de la con-
ductividad.
Así pues, el elemento diferencial de la
MEG es que aporta una medida directa
de la actividad electromagnética neuro-
nal, combinando una resolución temporal
de milisegundos (en tiempo real) con una
resolución espacial de milímetros. 
La producción de
grandes campos
magnéticos:
Resonancia Magnética. Un ejemplo
de la aplicación de estos grandes campos
magnéticos son los equipos de resonan-
cia magnética que se utilizan habitual-
mente en investigación, hospitales y cen-
tros de diagnóstico.
Explicado de una forma muy simple,
la RMN consiste en orientar el momento
magnético de ciertos átomos (hidrógeno)
en la dirección de un campo magnético
constante aplicando una emisión de ra-
diofrecuencia a su frecuencia de resonan-
cia para orientar su momento en un senti-
do distinto del inicial.Al cesar el impulso,
los átomos van a liberar energía en forma
de onda de radiofrecuencia (relajación)
que se capta desde el exterior mediante
una antena.
Finalmente y mediante un sistema in-
formático se transforman las señales pro-
venientes de cada volumen elemental de
la zona en una escala de grises, según la
intensidad de emisión de la señal de ra-
diofrecuencia en el proceso de relaja-
ción.
Se aplica en estudios del sistema ner-
vioso central (detección de tumores del
cerebro o metástasis cerebrales selectivas,
así como de enfermedades desmielinizan-
tes como la esclerosis múltiple, malfor-
maciones arteriovenosas y aneurismas o
dilataciones de los vasos sanguíneos cere-
brales, alteraciones congénitas y adquiri-
das del SNC y lesiones o enfermedades de
la médula espinal, entre otras.
Sistema músculo-esquelético (buenas
posibilidades en la detección de altera-
ciones de los meniscos, ligamentos, ten-
dones y cartílagos de las grandes articula-
ciones como la rodilla, el hombro, el
tobillo o la cadera. En el estudio de los
tumores del esqueleto y de las partes
blandas (músculos, etc.) también ha de-
mostrado ventajas respecto a otras técni-
cas.
Abdomen (lesiones del hígado, bazo,
páncreas, glándulas suprarrenales, riño-
nes y órganos de la pelvis como los órga-
nos ginecológicos, la vejiga de la orina o
la próstata) y tórax (bronquios, pulmo-
nes, corazón y grandes vasos).
En su conjunto, la RMN presenta
ventajas importantes sobre otras técnicas
de imagen. No utiliza radiaciones ioni-
zantes, permite la obtención de imágenes
en todos los planos del espacio y alcanza
un gran contraste entre los tejidos corpo-
rales, mayor que el obtenido con cual-
quier otra técnica de imagen. Esta última
característica permite diferenciar unos te-
jidos de otros, caracterizar tejidos y lesio-
nes y determinar con precisión su exten-
sión.
Aceleradores de partículas. Disposi-
tivos que utilizan campos electromagné-
ticos para acelerar partículas (electrones,
iones o protones) cargadas y a muy altas
velocidades hacerlas colisionar con otras,
generando así otras nuevas generalmente
inestables y de muy corta duración
El LHC utiliza materiales supercon-
ductores (Niobio y Titanio a –271 ºC)
para generar los campos magnéticos lo
que implica una instalación de dimensio-
nes más pequeñas y un consumo además
más reducido.
Magnetómetros superconductores. El
desarrollo de magnetómetros de alta sen-
sibilidad por interferencia cuántica
(SQUID) está basado en las uniones Jo-
sephson superconductor-aislante super-
conductor.
Éste demostró, como se ha dicho, que
los pares superconductores podían atra-
vesar la zona aislante, si ésta era suficien-
temente delgada, por efecto túnel con una
diferencia de potencial nula. Además se
mantiene la coherencia de fase en ambos
lados.
Los SQUID llevan utilizándose inin-
terrumpidamente desde los años 60 en
multitud de aplicaciones:
Comprobación no destructiva de tu-
berías y puentes (la fatiga del metal pro-
duce una firma magnética peculiar),
Paleomagnetismo, sensores geológi-
cos para prospecciones petrolíferas, etc.
Dentro de estos y con resoluciones de
10-21 Wb, en diagnosis médica, detec-
ción submarina ó de movimiento ó eva-
luación de materiales.
Separación magnética. Es un proceso
utilizado para concentrar minerales que
poseen diferencias en su susceptibilidad
«Un ejemplo de la aplicación
de los superconductores son los equipos
médicos de resonancia magnética»
«Esta tecnología médica es muy útil
para el estudio del sistema nerviosos central
y la detección de tumores»
26  Antena de Telecomunicación / ABRIL 2012
magnética, es decir, que responden en
forma diferente ante la aplicación de un
campo magnético.
La selectividad de la separación mag-
nética está determinada por el balance de
las fuerzas que interactúan sobre cada
una de las partículas a separar, estas son:
Fuerza magnética, Fuerza de gravedad,
Fuerza centrífuga, Fuerzas hidrodinámi-
cas, Fuerzas interparticulares (de atrac-
ción o repulsión).
Se utiliza en la industria del caolín,
para separar sustancias magnéticas de la
arcilla (materiales paramagnéticos y ma-
teriales ferromagnéticos). Para separar
para la limpieza magnética selectiva del
carbón, o sea, separación de sustancias
minerales de sustancias orgánicas.
Limpieza de aguas contaminadas. por
medio de campos magnéticos se pueden
separar las impurezas que al estar disuel-
tas en agua quedan ionizadas y al fluir a
través de un campo magnético pueden ser
desviadas por éste y ser apartadas del
agua.
Otras aplicaciones
Cables de superconductores de alta
temperatura HTS (High-Temperature
Superconductor). Son cables de transpor-
te de la electricidad que se enfrían con ni-
trógeno líquido para conseguir la propie-
dad de la superconductividad, lo que les
permite tener un precio asequible para
proyectos industriales, obras públicas e
investigación.
Añadido a lo anterior, decir que pre-
sentan una resistencia eléctrica casi nula
a su temperatura de funcionamiento de
aproximadamente –200 °C. Pueden
transportar corrientes más altas con sec-
ciones considerablemente reducidas en
relación a los cables clásicos en alumi-
nio o cobre. Pueden transportar cinco
veces más potencia eléctrica que los ca-
bles actuales (Nexans) en un espacio
cinco veces inferior, sin emitir  campos
electromagnéticos, ni calor, permitiendo
situar las diferentes fases más cerca unas
de otras, lo que se traduce en más espa-
cio subterráneo para ser usado con más
eficacia.
Conclusiones
Actualmente, el objetivo sigue siendo
conseguir materiales superconductores a
temperatura ambiente, lo que haría posi-
ble ampliar enormemente su uso en dis-
tribución de electricidad y en otras áreas
como Tecnología y Electrónica, que en su
conjunto probablemente harían cambiar
significativamente nuestras vidas.
Consiguientemente se trataría de con-
seguir materiales superconductores con
la mayor temperatura crítica posible, ma-
yor campo magnético crítico posible,
mayor densidad de corriente crítica posi-
ble, mayor estabilidad y facilidad de fa-
bricación posible y todo ello con un coste
mínimo. ●
BIBLIOGRAFÍA
Direcciones y Bibliografía utilizadas:
http://www.wikipedia.org/
http://www.unizar.es/icma/divulgacion/pdf/pdflevitsupercon.pdf_técnica
http://www.biblioteca.org.ar/libros/90080.pdf
http://www.monografias.com/trabajos82/materiales-superconductores/materiales-superconductores2.
shtml#tipodemata
http://fundamental.fis.ucm.es/trabajosFinMaster/trabajos0809/jonathan-correa.pdf
http://www.investigacionyciencia.es/Archivos/06-07_Vicent.pdf
http://usuarios.fceia.unr.edu.ar/~fisica3/MagLev.pdf
http://www.transrapid.de/
http://biologiaemocional.blogspot.com/2011/09/la-magnetoencefalografia-como-tecnica_02.
html
http://genaltruista.com/notas2/g111077.pdf
http://www.textoscientificos.com/fisica/superconductividad/almacenamiento-energiahttp://www.
hola.com/salud/enciclopedia-salud/2010050145472/deporte-ejercicio/lesiones-deportivas/
resonancia-magnetica-nuclear-rmn/1/
http://www.tecnun.es/asignaturas/PFM_Mat/Prog/Supercv2.pdf
http://www.nexans.es/
Libros:
Ingeniería e Infraestructura de los Transportes
Autor: Daniel Álvarez Mántaras y Pablo Luque Rodríguez
Superconductividad
Autores: Miguel Ángel Alario Franco y Jose Luis Vicent.
Editorial: Eudema
Videos:
http://www.dailymotion.com/video/x797n2_magnetoencefalografia-meg_school
http://www.youtube.com/watch?feature=player_embedded&v=IT-mVT-ORww#!
Agradecimientos:
Agradecimiento al doctor Rafal Nowak por su aportación en la parte de Magnetoencefalografía.
|04c superconductores

Más contenido relacionado

La actualidad más candente

La actualidad más candente (19)

Electricidad estatica 1
Electricidad estatica 1Electricidad estatica 1
Electricidad estatica 1
 
electostàtica
electostàticaelectostàtica
electostàtica
 
Electricidad estatica
Electricidad estaticaElectricidad estatica
Electricidad estatica
 
Eleticidad estatica stick
Eleticidad estatica  stickEleticidad estatica  stick
Eleticidad estatica stick
 
Energía estática
Energía estáticaEnergía estática
Energía estática
 
La electrostática es la rama de la física que estudia los fenómenos producido...
La electrostática es la rama de la física que estudia los fenómenos producido...La electrostática es la rama de la física que estudia los fenómenos producido...
La electrostática es la rama de la física que estudia los fenómenos producido...
 
Electrostática
ElectrostáticaElectrostática
Electrostática
 
Dos Experimentos Sencillos De Electrostatica
Dos Experimentos Sencillos De ElectrostaticaDos Experimentos Sencillos De Electrostatica
Dos Experimentos Sencillos De Electrostatica
 
la electricidad
la electricidadla electricidad
la electricidad
 
Campos electromagnéticos
Campos electromagnéticosCampos electromagnéticos
Campos electromagnéticos
 
Los fenómenos eléctrico
Los fenómenos eléctricoLos fenómenos eléctrico
Los fenómenos eléctrico
 
DanielaOcampoF
DanielaOcampoFDanielaOcampoF
DanielaOcampoF
 
Estatica
EstaticaEstatica
Estatica
 
Unidad de carga electrica
Unidad de carga electricaUnidad de carga electrica
Unidad de carga electrica
 
La electrostatica
La electrostaticaLa electrostatica
La electrostatica
 
La electroestatica
La electroestaticaLa electroestatica
La electroestatica
 
Polo a tierra
Polo a tierraPolo a tierra
Polo a tierra
 
Campanas De Franklin
Campanas De FranklinCampanas De Franklin
Campanas De Franklin
 
Energía estática
Energía estáticaEnergía estática
Energía estática
 

Destacado (6)

Superconductores
SuperconductoresSuperconductores
Superconductores
 
Superconductores
SuperconductoresSuperconductores
Superconductores
 
Superconductores
SuperconductoresSuperconductores
Superconductores
 
Cromo
CromoCromo
Cromo
 
Titanio
TitanioTitanio
Titanio
 
Superconductores
SuperconductoresSuperconductores
Superconductores
 

Similar a |04c superconductores (20)

supercond.pdf
supercond.pdfsupercond.pdf
supercond.pdf
 
Ensayo t. electromagnetica superconductores
Ensayo t. electromagnetica   superconductoresEnsayo t. electromagnetica   superconductores
Ensayo t. electromagnetica superconductores
 
Superconductores Y Semiconductores 2
Superconductores Y Semiconductores 2Superconductores Y Semiconductores 2
Superconductores Y Semiconductores 2
 
Materiales superconductores
Materiales superconductoresMateriales superconductores
Materiales superconductores
 
Materiales superconductores
Materiales superconductoresMateriales superconductores
Materiales superconductores
 
Super
SuperSuper
Super
 
Electricidad
ElectricidadElectricidad
Electricidad
 
Teoría de Ginzburg-Landau y Superconductividad
Teoría de Ginzburg-Landau y SuperconductividadTeoría de Ginzburg-Landau y Superconductividad
Teoría de Ginzburg-Landau y Superconductividad
 
Superconductores
SuperconductoresSuperconductores
Superconductores
 
Superconductores
SuperconductoresSuperconductores
Superconductores
 
Materiales superconductores
Materiales superconductoresMateriales superconductores
Materiales superconductores
 
Materiales superconductores
Materiales superconductoresMateriales superconductores
Materiales superconductores
 
PROPIEDADES ELÉCTRICAS
PROPIEDADES ELÉCTRICAS PROPIEDADES ELÉCTRICAS
PROPIEDADES ELÉCTRICAS
 
Superconductores
SuperconductoresSuperconductores
Superconductores
 
electromagnetismo
electromagnetismoelectromagnetismo
electromagnetismo
 
Superconductores23
Superconductores23Superconductores23
Superconductores23
 
Propiedades electricas
Propiedades electricasPropiedades electricas
Propiedades electricas
 
Proyecto
ProyectoProyecto
Proyecto
 
Superconductores
SuperconductoresSuperconductores
Superconductores
 
Cuestionario 5
Cuestionario 5Cuestionario 5
Cuestionario 5
 

|04c superconductores

  • 1. 18  Antena de Telecomunicación / ABRIL 2012 Los superconductores Francisco Enrique Sánchez-Lafuente Pérez, Ingeniero Técnico de Telecomunicación REPORTAJE las cuales se pudo ensayar y conocer el comportamiento de sus parámetros. En su origen se utilizó helio líquido que licua a una temperatura de 4º K sumergiendo el material dentro del mismo y analizando sus propiedades. Al enfriar el material superconductor por debajo de TC situándolo en el interior de un campo magnético, se generan en este una corriente de apantallamiento cuyo campo generado se opone al aplica- do hasta un valor denominado campo crí- tico en el que vuelve a comportarse como en su estado normal. Fue H. Kamerling Omnes de la Uni- versidad de Leiden quien investigo pri- mero la producción de helio líquido en 1908. Tres años más tarde, investigando L os materiales superconductores no presentan en determinadas condicio- nes ninguna resistencia al paso de la corriente eléctrica, lo que hace que no se calienten por efecto Joule, por lo que no existen pérdidas de energía. Este fenóme- no se produce al enfriarlo por debajo de su Temperatura Crítica (TC) en la que los electrones agrupados en parejas se des- plazan por el conductor sin chocar con los átomos del material de que se trate (pares de Cooper). Esta temperatura co- mo es sabido es característica de cada material superconductor. En el inicio del descubrimiento de las características este tipo de materiales es- tuvo unido a la obtención de esas bajas temperaturas en el laboratorio a partir de Imagen de las instalaciones del Cern.
  • 2. Antena de Telecomunicación / ABRIL 2012  19 sobre las variaciones de las propiedades del Hg con la temperatura, descubrió la superconductividad en este metal al en- friarlo a una temperatura de -269º C. Es importante señalar que al ser en un super- conductor el valor de R = 0, una vez apli- cada una corriente ésta fluye por el con- ductor de forma permanente sin que se precise diferencia de potencial aplicada. El descubrimiento del fenómeno de la superconductividad se debe pues a este físico holandés. De su biografía, decir que de 1871 a 1873 estudió en la Univer- sidad de Heidelberg, donde fue alumno de los físicos alemanes Robert Bunsen y Gustav Kirchhoff, y se doctoró en la Uni- versidad de Groninga (1879). De 1878 a 1882 fue profesor en la Escuela Politéc- nica de Delft, puesto que dejó ese mismo año para ocupar el de profesor de física en la Universidad de Leiden hasta que se retiró en 1923 Así pues la mayoría de los supercon- ductores manifiestan sus propiedades solo a temperaturas muy bajas y próxi- mas al cero absoluto. Al subir la temperatura y llegar a la temperatura crítica empiezan a perder sus propiedades características y vuelven a recuperar las propias del material de que se trate. Por el contrario, cuando la temperatu- ra desciende por debajo del punto crítico disminuye su resistencia y la corriente puede llegar a circular por el material sin resistencia alguna. Campos magnéticos En principio la superconductividad puede considerase como una transición de fase que se produce bien por aumento de la temperatura, por variación del cam- po magnético aplicado hasta un valor de- terminado, o por el paso de una densidad de corriente mayor de un determinado valor a causa de los cuales el supercon- ductor pasa de nuevo a estado normal en el que va a conducir de nuevo con un cierto valor de resistencia. El estado superconductor no solo se caracteriza por una resistencia nula, sino también por la respuesta de a los campos magnéticos que se le aplican. El campo magnético aplicado puede tener la sufi- ciente intensidad para alcanzar la transi- ción de fase y penetrar en el material, o bien que el superconductor se proteja del campo magnético aplicado y aparezcan corrientes superconductoras internas que apantallen el campo externo y le impidan penetrar en el material. Por lo anterior decir que un material superconductor no solamente no presenta resistencia al paso de corriente, sino que también tiene otra propiedad importante que es su capacidad para apantallar un campo magnético. Si enfriamos el superconductor por debajo de su temperatura crítica y lo co- locamos en presencia de un campo mag- nético, éste crea corrientes de apantalla- miento capaces de generar un campo magnético opuesto al aplicado. Esto ocu- rre hasta que el campo magnético alcanza un valor, llamado campo crítico, momen- to en el que el superconductor deja de apantallar el campo magnético y el mate- rial transita a su estado normal. En estas condiciones de temperatura no solamente son capaces de transportar energía eléctrica sin ningún tipo de pérdi- das, sino que además poseen la propiedad de rechazar las líneas de un campo mag- nético aplicado. Se denomina “Efecto Meissner” a esta capacidad de los super- conductores de rechazar un campo mag- nético que intente penetrar en su interior; de manera que si acercamos un imán a un superconductor, se genera una fuerza magnética de repulsión la cual es capaz de contrarrestar el peso del imán produ- ciendo así la sobreelevación (levitación) del mismo. Hoy día el uso más extendido de ese fenómeno se da en los trenes de levitación magnética. El hecho de que el superconductor pueda apantallar totalmente el campo magnético de su interior se conoce como supercondutividad tipo I. Lamentable- mente el campo crítico de estos materiales es tan pequeño que no se pueden desarro- llar aplicaciones tecnológicas con ellos. Los de “Tipo 1” y como se ha dicho son aquellos que no permiten en absoluto que penetre el campo magnético externo. Algunos elementos metálicos como el plomo, estaño, mercurio y  el aluminio pertenecen a este grupo. Son conocidos como “perfectos”. Al superar la tempera- tura crítica que es muy baja (no superior a los 7 Kelvins), se produce una ruptura brusca del estado superconductor al con- trario que los del tipo II que tienen dos temperaturas criticas Tc1 y Tc2 entre las cuales se halla mezclado el estado super- conductor y el estado normal. «La mayoría de los superconductores manifiestan sus propiedades solo a temperaturas muy bajas» El tren magnético Maglev.
  • 3. 20  Antena de Telecomunicación / ABRIL 2012 Igualmente tienen un solo campo magnético crítico Hc y de un valor relati- vamente bajo (aproximadamente 0.2 Tes- las) y todos ellos son superconductores convencionales,  es decir que se pueden explicar mediante la teoría BCS. La superconductividad solo existe por debajo de una temperatura crítica y de un campo magnético crítico. Los de “Tipo 2” son superconducto- res “imperfectos”, en el sentido que el campo realmente penetra a través de pe- queñas canalizaciones, denominadas vór- tices de Abrikosov, o fluxones. Es un grupo heterogéneo constituido por aleaciones, cerámicas o elementos pu- ros; entre estos últimos encontramos tan sólo cuatro: el carbono (pero sólo los fu- lerenos y los nanotubos, pues cuando se encuentra en forma de diamante o grafito nunca alcanza el estado superconductor), el niobio, tecnecio y  vanadio. Tienen dos temperaturas críticas en el que el material está en un estado mixto en el que conviven el estado superconductor y el normal (mientras que en los super- conductores de tipo I el paso de un estado a otro es discontinuo). Si partiendo de un valor inicial vamos aumentando el campo magnético, estas dos temperaturas van siendo cada vez más bajas, y si es el cam- po es lo suficientemente grande, el mate- rial no es conductor ni siquiera en el cero absoluto. Tienen igualmente dos campos mag- néticos críticos: a una misma temperatura y aplicando un campo magnético a partir de un cierto valor Hc1 el campo comienza a poder penetrar el material, y si lo au- mentamos hasta un valor  Hc2  el estado superconductor desaparece por completo. Al aumentar el campo magnético externo aumenta su magnetización (imanación), para contrarrestarlo y consecuentemente en su interior dicho campo sea nulo, lo que da lugar al efecto Meissner. La mayoría de ellos no son conven- cionales, es decir que sus propiedades no pueden explicarse con la teoría BCS ex- cepto en el caso del niobio Tc = 9 K o el diboruro de magnesio. De este último decir que sus propie- dades no son particularmente destacables, pero son químicamente muy distintos a cualquier otro superconductor en que no es un complejo de óxido de cobre ni un metal. Debido a esta diferencia se espera que el estudio de este material conduzca a un mejor conocimiento del fenómeno de la superconductividad. La característica más importante de un superconductor, desde el punto de vista de las aplicaciones prácticas, es la máxima densidad de corriente que el su- perconductor es capaz de transportar sin resistencia.  Los máximos valores de temperatura, densidad crítica de corriente y campo mag- nético están relacionados entre si. Cuando son representados en una gráfica en tres ejes forma la llamada “superficie crítica”. La imagen muestra la superficie críti- ca para un superconductor Tipo II, fron- tera entre las condiciones superconducto- ras y las de resistividad normal, en el es- pacio de tres dimensiones. El  campo aplicado (B), la temperatura (T) y la den- sidad de corriente (J) deben quedar bajo la superficie crítica para mantener la  su- perconductividad. Efecto Meissner En realidad los superconductores se comportan como un diamagnético per- fecto. Espacio que ocupan las instalaciones subterráneas del Cern.
  • 4. Antena de Telecomunicación / ABRIL 2012  21 Crean un campo magnético opuesto al aplicado y no permiten que el campo magnético penetre en su interior. Si el campo aplicado alcanza un determinado valor el superconductor deja de apantallar el campo magnético y el material recobra sus características anteriores. Esto es lo que se conoce como efecto Meissner. El flujo magnético del interior de un superconductor es expulsado al exterior cuando la temperatura es T<Tc, La induc- ción magnética en el interior de un super- conductor pasa a ser cero cuando T<Tc. El flujo magnético se expulsa al exterior del superconductor quedando una peque- ña parte en el interior. La longitud de esta penetración es lo que se conoce como profundidad de penetración (λ). Con una densidad de electrones de ns = 1023 electrones por cm3 obtenemos una profundidad de penetración λL ~ 1700 Å, Al ir aproximando escalonadamente la temperatura de una muestra a la tempe- ratura crítica va disminuyendo el número de electrones que se encuentran en estado superconductor formando pares de Co- oper y aumentando los que están en esta- do normal, es decir desapareados. La densidad de unos y otros depende pues de la temperatura. La Teoría BCS Sus autores: John Bardeen, Leon Co- oper y Robert Schrieffer. La teoría BCS explica el comporta- miento de los materiales superconducto- res a temperaturas próximas al cero abso- luto. Según esta teoría cuando determinados materiales se encuentran a esas temperatu- ras y sin que estas varíen, los electrones se van a unir en parejas formando pares de electrones “pares de Cooper” que serán los responsables de transportar la carga eléc- trica a través de la red molecular sin pre- sentar resistencia eléctrica alguna. A medida que varíen esas condiciones en el sentido de adquirir energía, la unión de una parte de los electrones se rompe pasando a transformarse en energía ciné- tica y transformando los electrones que estaban agrupados en parejas en electro- nes libres, mientras que otros continúan en forma de pares coexistiendo ambas si- tuaciones dentro del material supercon- ductor. Esta energía se denomina “ener- gía de gap” y como se ha dicho está relacionada con la temperatura. Esta teoría explica algunos hechos co- nocidos hasta ese momento y que son: la existencia de una temperatura crítica, igualmente la existencia de una disconti- nuidad al pasar al estado superconductor (en este estado su valor es 2,43 veces su- perior al de su valor normal a la tempera- tura crítica), el efecto Meissner y el efecto isotópico descubierto 7 años antes, y se- gún el cual 1 Tc ∝ √A es decir, para distintos isótopos de un ele- mento superconductor dado, la tempera- tura crítica es inversamente proporcional a la raíz cuadrada del número másico. El comportamiento de los materiales cerámicos se explica mediante el deno- minado efecto Josephson. Efecto Josephson El efecto Josephson es un efecto físico que se manifiesta por la aparición de una corriente eléctrica por efecto túnel entre dos superconductores separados por una capa de aun medio aislante o un metal no superconductor de algunos nanometros de espesor. Debido a la estrechez de esta ca- pa, los pares de Cooper y por efecto túnel si van a poder atravesarla guardando ade- más su coherencia de fase. El descubrimiento de Josephson con- siste en comprobar como una  corriente eléctrica distinta de cero puede fluye de un bloque a otro a través del aislante sin que sea preciso que exista diferencia de potencial ni campo magnético aplicado entre uno y otro. Se distinguen dos tipos de efecto Jose- phson, el efecto Josephson continuo (D.C. Josephson effect) y el efecto Josephson alterno (A.C. Josephson effect). El efecto Josephson alterno (AC-Jose- phson) tiene lugar cuando se aplica una tensión eléctrica continua a una unión Jo- sephson, generándose una corriente alter- na cuya frecuencia es: fJosephson= 2 e V / h, siendo e la carga del electrón, h la constante de Plank y V la tensión aplicada (1 V produce 483.597,9 GHz). Imagen del Transrapid. Heike Kamerling.
  • 5. 22  Antena de Telecomunicación / ABRIL 2012 De manera inversa, al aplicar una ra- diofrecuencia se genera una tensión eléc- trica de valor: V= h fJosephson/ 2 e. Esta propiedad se emplea, por ejemplo, para elaborar patrones de tensión eléctrica. En el efecto Josephson continuo se manifiesta como un efecto túnel supercon- ductor en el que una corriente continua fluirá a través de la junta túnel en ausencia de voltaje o campo magnético aplicado. El efecto Josephson continuo se apro- vecha en los SQUIDs (Superconducting Quantum Inteference Device) para medir los campos magnéticos. Superconductores de alta temperatura Este tipo de superconductividad fue descubierto en 1986 por Karl Alexander Müller y Johannes Georg Bednorz. Trataron la superconductividad en materiales (óxidos de cobre o cupratos) a temperaturas superiores a 35 K (–238 ºC) y más allá del punto de ebullición del ni- trógeno líquido (–196 ºC). El hallazgo de superconductividad a eata temperatura se produjo en una nueva cerámica, un óxido de bario/lantano/cobre (LaBa)2CuO4. De esta forma se empezaron a dife- renciar los superconductores convencio- nales y los de alta temperatura. Mientras los primeros necesitan helio líquido para enfriarse, los segundos se pueden enfriar con nitrógeno líquido, un refrigerante mucho mas accesible y barato y que per- mitió numerosas nuevas aplicaciones. Otra característica que los distingue es la anisotropía que demuestra que hay planos en lo que se refiere a la estructura atómica que presentan mejor conductivi- dad que otros. YBCO  es la sigla del nombre in- glés Yttrium Barium Copper Oxide, que es famoso por ser el primer material des- cubierto mostrando la superconductivi- dad por encima del punto de ebullición del nitrógeno líquido. Todos los superconductores de alta temperatura son de tipo II y no conven- cionales. El YBCO tiene la misma estructura cristalina que la perovskita, razón por la cual se dice que tiene estructura de pero- vskita. Téngase en cuenta que, no obstan- te, la perovskita es un óxido de titanio y calcio, por lo que su composición es bien distinta de la del YBCO: lo único que comparten ambos es la misma estructura cristalina, es decir, la posición relativa en la que están colocados los átomos de que están compuestos. La síntesis de YBCO a pequeña esca- la está al alcance de algunos Institutos de Enseñanza Secundaria.  En el 2008, con el descubrimiento de una nueva familia de superconductores a alta temperatura crítica basados en hierro y arsénico (AsFe), llega la segunda gran re- volución en el universo de la superconduc- tividad. Los nuevos compuestos, sin cobre (Cu) y con oxígeno (O), flúor (F) o arséni- co (As), amplían las perspectivas de los científicos para resolver incógnitas abiertas en el mundo de la física del estado sólido. Entre los 10 descubrimientos científi- cos del año 2008 se incluye esta nueva familia de superconductores de alta tem- peratura, según la revista ‘Science’. Aplicaciones de los Superconductores Tren de levitación magnética de alta velocidad El transporte de levitación magnética, o Maglev (Magnetically Levitated), es un sistema de transporte que incluye la sus- pensión, guía y propulsión de vehículos, principalmente trenes, utilizando un gran número de imanes para la sustentación y la propulsión a base de levitación magnética (sobreelevación sobre el elemento guía). Dentro de este tipo de transporte, ade- más del tren, se incluyen también las montañas rusas y la propulsión de naves espaciales que actualmente se encuentran en estudio. Un tren de levitación magnética es un vehículo que viaja suspendido sobre el carril (algunos de estos trenes van a 1 cm por encima de la vía y otros pueden levi- tar hasta 15 cm) y que se desliza a lo lar- go del mismo. Potencialmente puede alcanzar en vacío la velocidad de 6.400 km/h pero de- bido al rozamiento del aire la velocidad registrada hasta ahora es de 581 km/h, lo- grado en Japón en 2003, aunque se sabe pueden alcanzar los 650 km/h,. Su principio de funcionamiento se ba- sa en la atracción/repulsión entre dos campos magnéticos: Sistema EMS (electromagnetic sus- pensión): En la parte inferior del tren e inferior también del rail se sitúan unos electroimanes que al circular por ellos una corriente eléctrica sobreelevarán el tren haciendo que este quede en suspen- sión 1 cm sobre los rieles. Unos imanes guía (repulsión), situa- dos en la vía y el tren se encargan de cen- trar la Unidad en los rieles. «Los trenes magnéticos utilizan un gran número de imanes para la sustentación y propulsión en levitación» Aleksei Abrikosov saludando al rey de Suecia.
  • 6. Antena de Telecomunicación / ABRIL 2012  23 La fuerza de tracción se realiza en ambos lados y simultáneamente mediante imanes electromagnéticos situados en la vía y en los laterales del tren de forma que mientras en un instante determinado una pareja de los citados electroimanes situados en un lateral se repele entre sí, otra ejerce una fuerza de atracción ha- ciendo que el conjunto de ambas impulse la Unidad hacia delante. Añadido a lo an- terior, además se hace que en su despla- zamiento los imanes vayan cambiando la polaridad lo que permitirá además que el movimiento sea continuado. El sistema de frenado se realiza me- diante electroimanes asistido por frenos aerodinámicos tipo flash. Al reducir su velocidad a 10 Km/hora se desprenden unos patines con un coeficiente de fric- ción determinado que hace que el tren se detenga. Este sistema se utiliza en el Transra- pid de tecnología alemana que presta ser- vicio en China y que hace el recorrido entre Shanghai y el aeropuerto de Pudong transportando pasajeros a lo largo de 30 km en tan solo 7 minutos y 20 segun- dos, consiguiendo habitualmente una ve- locidad punta máxima de 431 km/h y una media de 250 km/h en el trayecto. Su construcción se realizó en el perio- do 2001 a 2004, fecha esta última en la que se realiza el primer servicio comer- cial, siendo el coste aproximado del pro- yecto 1.000 millones de euros, distribui- dos en dos años y medio de línea trazada casi en su totalidad en un alzado de unos ocho metros sobre el nivel del resto de construcciones urbanas, y en el coste de la infraestructura motriz (locomotoras ma- glev), sistemas energéticos electromagné- ticos de generación, distribución y redun- dancia, e instalaciones de mantenimiento. Sistema EDS (electrdynamic suspen- sión): se trata de una tecnología con la que se puede alcanzar más velocidad que con la anterior pero que al mismo tiempo resulta más costosa. Este sistema se basa en la propiedad de ciertos materiales su- perconductores que rechazan cualquier campo magnético que intente penetrar en ellos (efecto Meissner). La suspensión, por tanto, consiste en que el superconductor rechazará las lí- neas de campo magnético de manera que no pasen por su interior, lo que provocará la elevación del tren. En diversos prototi- pos de suspensión EDS se ubica un mate- rial superconductor a los lados de la parte inferior del vehículo, tal como puede ver- se en la figura. Al desplazarse el vehículo a lo largo del carril se inducirá una corriente en las bobinas de este que actuarán entonces «El tren transrapid, cuya tecnología es alemana, presta servicio entre Shanghai y el aeropuerto de Pudong»
  • 7. 24  Antena de Telecomunicación / ABRIL 2012 como electroimanes.Al interactuar con los superconductores montados en el tren, se producirá la levitación. La fuerza de levi- tación será cero cuando el vehículo se en- cuentre detenido e ira aumentando a medi- da que vaya creciendo la velocidad del tren hasta producirse la sobreelevación del mismo sobre el carril y consecuente- mente las ruedas quedar fuera de servicio. A la llegada del tren se produce el proceso inverso. A la velocidad de 10 km/h. volverá a descansar de nuevo sobre el carril (de forma voluntaria), so- bre ruedas neumáticas y utilizando desde ese momento frenos hidráulicos hasta de- tenerse. Así pues la velocidad inicial sufi- ciente para sobreelevarse (levitar), se consigue haciéndolo circular inicialmen- te sobre ruedas y hasta que se produce la elevación del mismo sobre el carril. En este caso (EDS), la elevación so- bre el carril puede sobreelevar (levitar) el tren hasta unos 15 cm lo que supone cier- tas ventaja sobre el sistema anterior en cuanto no es necesaria tanta precisión so- bre las guías y permite además en los tra- yectos de curvas compensar la acelera- ción lateral produciendo menos efecto sobre los viajeros que el anterior. El sistema de propulsión es el mismo que en el anterior caso. Como desventajas cabe citar los fuer- tes campos magnéticos producidos por las bobinas y el elevado coste de super- conductores y equipo de refrigeración para mantener éste a tan baja temperatura (Nitrógeno a –183 ºC). El guiado lateral se efectúa en el sis- tema EMS mediante imanes laterales que actuarán cuando el tren se desplace irre- gularmente hacia uno de los lados corri- giendo la distancia que más se haya ale- jado de la vía. En el sistema EDS son los supercon- ductores y las bobinas de levitación que se encuentran conectadas mediante un lazo los elementos encargados del guiado lateral del tren. Cuando se desplaza late- ralmente se induce una corriente en el lazo que obliga al vehiculo a centrarse. Si el tren por alguna causa se hundie- se en el carril-guía, éste respondería con un aumento de la fuerza repulsiva, lo cual equilibraría este acercamiento; en con- traste con el sistema EMS en el cual la fuerza atractiva aumenta si el vehículo se acerca a la guía. La regulación de la velocidad del tren se logra, bien regulando la frecuencia de la onda magnética (o sea, variando la fre- cuencia de la corriente alterna), o bien, variando el número de espiras por unidad de longitud en el estator y el rotor. Añadir que en este sistema de trans- porte la energía que mueve al tren no la provee el mismo tren, sino que se sumi- nistra a través de las vías, estando activos únicamente los tramos por los que esté circulando el tren. SQUIDS (Superconducting Quantum Interference Devices) Inventado en 1962. Es un dispositivo superconductor de interferencia cuántica y una de las primeras aplicaciones comer- ciales de la superconductividad. Hay dos tipos de SQUID, DC y RF (o AC). Los SQUIDs RF sólo tienen una unión de Josephson, mientras que los SQUIDs DC tienen dos o más. Esto los hace más difíciles y caros de producir, pero también mucho más sensibles. Una de las aplicaciones más conocida es la la  Magnetoencefalografía  (MEG). Esta prueba se realiza mediante un apa- rato denominado magnetómetro que in- corpora varios Squids (entre 100 y 150) dispuestos de forma que rodean simultá- neamente sin contacto físico con la cabe- za del sujeto o paciente. El método se basa en la captación del campo magnético que sale del cerebro al exterior a través del cráneo (el campo eléctrico es retenido por la materia orgá- nica), permitiendo así investigar las rela- ciones entre las estructuras cerebrales y sus funciones. La señal es analizada por un ordena- dor donde aparece la imagen del encéfa- lo, obtenida mediante resonancia magné- tica, y sobre ella se observan las regiones encefálicas que poseen una gran activi- dad eléctrica. La capacidad de la MEG, tanto en análisis como en organización de la infor- mación recibida, es tan grande que per- mite valorar en milisegundos la actividad cerebral y organizar mapas funcionales cerebrales con delimitación de la estruc- tura cerebral en espacio de pequeños cen- tímetros, e incluso, milímetros cúbicos. Esto permite generar mapas funcionales de la actividad cerebral capaces de ser organizados y representados temporal y espacialmente. En particular la MEG registra la actividad postsináptica generada por las dendritas apicales de las células pira- midales cuya justificación desde el pun- to de vista  neurofisiológico  la podemos encontrar en los potenciales postsinápti- cos (PPS) que son potenciales con una ci- nética más lenta, durando entre 10 y más de 100 ms. Los PPS originan la actividad neuromagnética de baja frecuencia (entre 10 y 100 Hz). Comparándola con técnicas que estu- dian o miden procesos bioeléctricos como la Electroencefalografía (EEG), la cual tiene una resolución temporal cerca- na a la MEG, pero la resolución espacial Walther Meissner. Karl Alexander Müller.
  • 8. Antena de Telecomunicación / ABRIL 2012  25 es muy limitada. Por otro lado, las seña- les registradas por la EEG se ven afecta- das por los diferentes grados de resisten- cia de los tejidos que traspasan hasta alcanzar el electrodo externo, lo que con- lleva dificultades e imprecisiones al in- terpretar la localización de las diferentes fuentes cerebrales generadoras de la se- ñal electroencefalográfica. Por el contra- rio la MEG registra la actividad eléctrica primaria, cuyos campos magnéticos aso- ciados no sufren problemas de atenua- ción, distorsión o modificación de la con- ductividad. Así pues, el elemento diferencial de la MEG es que aporta una medida directa de la actividad electromagnética neuro- nal, combinando una resolución temporal de milisegundos (en tiempo real) con una resolución espacial de milímetros.  La producción de grandes campos magnéticos: Resonancia Magnética. Un ejemplo de la aplicación de estos grandes campos magnéticos son los equipos de resonan- cia magnética que se utilizan habitual- mente en investigación, hospitales y cen- tros de diagnóstico. Explicado de una forma muy simple, la RMN consiste en orientar el momento magnético de ciertos átomos (hidrógeno) en la dirección de un campo magnético constante aplicando una emisión de ra- diofrecuencia a su frecuencia de resonan- cia para orientar su momento en un senti- do distinto del inicial.Al cesar el impulso, los átomos van a liberar energía en forma de onda de radiofrecuencia (relajación) que se capta desde el exterior mediante una antena. Finalmente y mediante un sistema in- formático se transforman las señales pro- venientes de cada volumen elemental de la zona en una escala de grises, según la intensidad de emisión de la señal de ra- diofrecuencia en el proceso de relaja- ción. Se aplica en estudios del sistema ner- vioso central (detección de tumores del cerebro o metástasis cerebrales selectivas, así como de enfermedades desmielinizan- tes como la esclerosis múltiple, malfor- maciones arteriovenosas y aneurismas o dilataciones de los vasos sanguíneos cere- brales, alteraciones congénitas y adquiri- das del SNC y lesiones o enfermedades de la médula espinal, entre otras. Sistema músculo-esquelético (buenas posibilidades en la detección de altera- ciones de los meniscos, ligamentos, ten- dones y cartílagos de las grandes articula- ciones como la rodilla, el hombro, el tobillo o la cadera. En el estudio de los tumores del esqueleto y de las partes blandas (músculos, etc.) también ha de- mostrado ventajas respecto a otras técni- cas. Abdomen (lesiones del hígado, bazo, páncreas, glándulas suprarrenales, riño- nes y órganos de la pelvis como los órga- nos ginecológicos, la vejiga de la orina o la próstata) y tórax (bronquios, pulmo- nes, corazón y grandes vasos). En su conjunto, la RMN presenta ventajas importantes sobre otras técnicas de imagen. No utiliza radiaciones ioni- zantes, permite la obtención de imágenes en todos los planos del espacio y alcanza un gran contraste entre los tejidos corpo- rales, mayor que el obtenido con cual- quier otra técnica de imagen. Esta última característica permite diferenciar unos te- jidos de otros, caracterizar tejidos y lesio- nes y determinar con precisión su exten- sión. Aceleradores de partículas. Disposi- tivos que utilizan campos electromagné- ticos para acelerar partículas (electrones, iones o protones) cargadas y a muy altas velocidades hacerlas colisionar con otras, generando así otras nuevas generalmente inestables y de muy corta duración El LHC utiliza materiales supercon- ductores (Niobio y Titanio a –271 ºC) para generar los campos magnéticos lo que implica una instalación de dimensio- nes más pequeñas y un consumo además más reducido. Magnetómetros superconductores. El desarrollo de magnetómetros de alta sen- sibilidad por interferencia cuántica (SQUID) está basado en las uniones Jo- sephson superconductor-aislante super- conductor. Éste demostró, como se ha dicho, que los pares superconductores podían atra- vesar la zona aislante, si ésta era suficien- temente delgada, por efecto túnel con una diferencia de potencial nula. Además se mantiene la coherencia de fase en ambos lados. Los SQUID llevan utilizándose inin- terrumpidamente desde los años 60 en multitud de aplicaciones: Comprobación no destructiva de tu- berías y puentes (la fatiga del metal pro- duce una firma magnética peculiar), Paleomagnetismo, sensores geológi- cos para prospecciones petrolíferas, etc. Dentro de estos y con resoluciones de 10-21 Wb, en diagnosis médica, detec- ción submarina ó de movimiento ó eva- luación de materiales. Separación magnética. Es un proceso utilizado para concentrar minerales que poseen diferencias en su susceptibilidad «Un ejemplo de la aplicación de los superconductores son los equipos médicos de resonancia magnética» «Esta tecnología médica es muy útil para el estudio del sistema nerviosos central y la detección de tumores»
  • 9. 26  Antena de Telecomunicación / ABRIL 2012 magnética, es decir, que responden en forma diferente ante la aplicación de un campo magnético. La selectividad de la separación mag- nética está determinada por el balance de las fuerzas que interactúan sobre cada una de las partículas a separar, estas son: Fuerza magnética, Fuerza de gravedad, Fuerza centrífuga, Fuerzas hidrodinámi- cas, Fuerzas interparticulares (de atrac- ción o repulsión). Se utiliza en la industria del caolín, para separar sustancias magnéticas de la arcilla (materiales paramagnéticos y ma- teriales ferromagnéticos). Para separar para la limpieza magnética selectiva del carbón, o sea, separación de sustancias minerales de sustancias orgánicas. Limpieza de aguas contaminadas. por medio de campos magnéticos se pueden separar las impurezas que al estar disuel- tas en agua quedan ionizadas y al fluir a través de un campo magnético pueden ser desviadas por éste y ser apartadas del agua. Otras aplicaciones Cables de superconductores de alta temperatura HTS (High-Temperature Superconductor). Son cables de transpor- te de la electricidad que se enfrían con ni- trógeno líquido para conseguir la propie- dad de la superconductividad, lo que les permite tener un precio asequible para proyectos industriales, obras públicas e investigación. Añadido a lo anterior, decir que pre- sentan una resistencia eléctrica casi nula a su temperatura de funcionamiento de aproximadamente –200 °C. Pueden transportar corrientes más altas con sec- ciones considerablemente reducidas en relación a los cables clásicos en alumi- nio o cobre. Pueden transportar cinco veces más potencia eléctrica que los ca- bles actuales (Nexans) en un espacio cinco veces inferior, sin emitir  campos electromagnéticos, ni calor, permitiendo situar las diferentes fases más cerca unas de otras, lo que se traduce en más espa- cio subterráneo para ser usado con más eficacia. Conclusiones Actualmente, el objetivo sigue siendo conseguir materiales superconductores a temperatura ambiente, lo que haría posi- ble ampliar enormemente su uso en dis- tribución de electricidad y en otras áreas como Tecnología y Electrónica, que en su conjunto probablemente harían cambiar significativamente nuestras vidas. Consiguientemente se trataría de con- seguir materiales superconductores con la mayor temperatura crítica posible, ma- yor campo magnético crítico posible, mayor densidad de corriente crítica posi- ble, mayor estabilidad y facilidad de fa- bricación posible y todo ello con un coste mínimo. ● BIBLIOGRAFÍA Direcciones y Bibliografía utilizadas: http://www.wikipedia.org/ http://www.unizar.es/icma/divulgacion/pdf/pdflevitsupercon.pdf_técnica http://www.biblioteca.org.ar/libros/90080.pdf http://www.monografias.com/trabajos82/materiales-superconductores/materiales-superconductores2. shtml#tipodemata http://fundamental.fis.ucm.es/trabajosFinMaster/trabajos0809/jonathan-correa.pdf http://www.investigacionyciencia.es/Archivos/06-07_Vicent.pdf http://usuarios.fceia.unr.edu.ar/~fisica3/MagLev.pdf http://www.transrapid.de/ http://biologiaemocional.blogspot.com/2011/09/la-magnetoencefalografia-como-tecnica_02. html http://genaltruista.com/notas2/g111077.pdf http://www.textoscientificos.com/fisica/superconductividad/almacenamiento-energiahttp://www. hola.com/salud/enciclopedia-salud/2010050145472/deporte-ejercicio/lesiones-deportivas/ resonancia-magnetica-nuclear-rmn/1/ http://www.tecnun.es/asignaturas/PFM_Mat/Prog/Supercv2.pdf http://www.nexans.es/ Libros: Ingeniería e Infraestructura de los Transportes Autor: Daniel Álvarez Mántaras y Pablo Luque Rodríguez Superconductividad Autores: Miguel Ángel Alario Franco y Jose Luis Vicent. Editorial: Eudema Videos: http://www.dailymotion.com/video/x797n2_magnetoencefalografia-meg_school http://www.youtube.com/watch?feature=player_embedded&v=IT-mVT-ORww#! Agradecimientos: Agradecimiento al doctor Rafal Nowak por su aportación en la parte de Magnetoencefalografía.