SlideShare una empresa de Scribd logo
1 de 66
Descargar para leer sin conexión
NUTRI-RIEGO DE MELÓN
CANTALOUPE (Cucumis melo cv.
Cruiser) CON ALTA TECNOLOGÍA
DE PRODUCCIÓN EN MICHOACÁN
Luís Mario TAPIA VARGAS
Héctor Rómulo RICO PONCE
Antonio LARIOS GUZMÁN
Roberto TOLEDO BUSTOS
Rafael MORENO PADILLA
Javier Z. CASTELLANOS RAMOS
INSTITUTO NACIONAL DE INVESTIGACIONES FORESTALES,
AGRÍCOLAS Y PECUARIAS
CENTRO DE INVESTIGACIÓN REGIONAL DEL PACÍFICO CENTRO
CAMPO EXPERIMENTAL URUAPAN
Folleto Técnico Núm. 8 Septiembre del 2008
NUTRI-RIEGO DE MELÓN CANTALOUPE
(Cucumis melo cv Cruiser) CON ALTA TECNOLOGÍA
DE PRODUCCIÓN EN MICHOACÁN
No está permitida la reproducción total o parcial de esta publicación, ni la
transmisión de ninguna forma o por cualquier medio, ya sea electrónico,
mecánico, fotocopia, por registro u otros métodos, sin el permiso previo y
por escrito de la Institución.
Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias.
Progreso Núm. 5, Colonia Barrio de Santa Catarina.
Delegación Coyoacán.
04010 México, D. F.
Tel. (55) 38 71 87 00
Primera edición: 2008 		 	Septiembre del 2008
ISBN: 978-607-425-014-5
Centro de Investigación Regional del Pacífico Centro.
Parque Los Colomos S/N 2da. Sección Col. Providencia, C.P. 44660,
Guadalajara, Jal.
Campo Experimental Uruapan.
Av. Latinoamericana No. 1101. Col. Revolución.
C.P. 60150 Uruapan, Michoacán. México.
La cita correcta de la obra es:
Tapia Vargas L. M., H. R. Rico P., .A. Larios G., R. Toledo B., R. Moreno
P., J. Z. Castellanos R. Fertiriego de melón Cantaloupe (cucumis melo cv
cruiser) con alta tecnología de producción en Michoacán. Folleto Técnico
No. 8 INIFAP – CIRPAC. Guadalajara, Jalisco, México.
Página
7
8
9
13
14
18
18
18
19
19
21
21
23
27
28
30
34
36
53
55
56
57
CONTENIDO
RESUMEN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
INTRODUCCIÓN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ANTECEDENTES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
FERTILIZACIÓN DEL MELÓN . . . . . . . . . . . . . . . . . . . . .
ANÁLISIS FINANCIERO . . . . . . . . . . . . . . . . . . . . . . . . . .
COSTOS DE PRODUCCIÓN . . . . . . . . . . . . . . . . . . . . . .
COSTOS DIRECTOS E INDIRECTOS . . . . . . . . . . . . . . .
COSTOS FIJOS Y VARIABLES . . . . . . . . . . . . . . . . . . . .
FISIOLOGÍA DE LA NUTRICIÓN DEL MELÓN. . . . . . . . .
RIEGO LOCALIZADO . . . . . . . . . . . . . . . . . . . . . . . . . . . .
RIEGO POR GOTEO . . . . . . . . . . . . . . . . . . . . . . . . . . . .
FERTILIZANTES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ELABORACIÓN DE LOS PROGRAMAS DE RIEGO
LOCALIZADO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
EL ANÁLISIS DE EXTRACTO CELULAR DE PECÍOLO
(ECP) COMO HERRAMIENTA DE DIAGNOSTICO DEL
ESTADO NUTRIMENTAL DEL CULTIVO. . . . . . . . . . . . .
DESCRIPCIÓN DE LA TECNOLOGÍA DE FERTIRIEGO.
DISEÑO EXPERIMENTAL . . . . . . . . . . . . . . . . . . . . . . . .
RESULTADOS EXPERIMENTALES . . . . . . . . . . . . . . . .
DISCUSIÓN GENERAL . . . . . . . . . . . . . . . . . . . . . . . . . .
RECOMENDACIONES Y SUGERENCIAS . . . . . . . . . . . .
CONCLUSIONES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
REFERENCIAS	 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
INDICE CUADROS
							
Cuadro 1. Precios de fertilizantes aplicados al melón en el
Valle de Apatzingán. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Cuadro 2. Superficie sembrada por municipio del Valle de
Apatzingán, Mich. 2005-06. . . . . . . . . . . . . . . . . . . . . . . .
Cuadro 3. Longitud de la guía principal (cm) en melón
con diferentes dosis de fertilización nitrogenada en
Apatzingán. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Cuadro 4. Respuesta en concentración de sólidos solubles
del melón por efecto del fósforo y potasio, en el Valle de
Apatzingán. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Cuadro 5. Fertilizantes aplicados en el agua de riego. .
Cuadro 6. Ejemplos de fuentes de nutrientes usados en
fertiriego. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Cuadro 7. Componentes del sistema de fertiriego en
melón de alto rendimiento en Michoacán. . . . . . . . . . . .
Cuadro 8. Componentes físicos del sistema de fertiriego
en melón del Valle de Apatzingán, Mich. 2006. . . . . . . .
Cuadro 9. Programa nutrimental y de riego (N-P2
O5
-K2
O,
kg ha-1
) a aplicar en melón con fertiriego en el Valle de
Apatzingán. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Cuadro 10. Lista de tratamientos evaluados en melón con
alta tecnología de producción del Valle de Apatzingán. .
Cuadro 11. Análisis de varianza de las variables
consideradas en melón con alta tecnología de producción
del Valle de Apatzingán en dos años de estudio. . . . . . .
Cuadro 12. Análisis de varianza del contenido nutricional
foliar (%) en melón con alta tecnología de producción del
Valle de Apatzingán en 2007. . . . . . . . . . . . . . . . . . . . . . .
Cuadro 13. Rendimiento de fruto en melón en calidad
exportación y comercial en diferentes dosis de
fertilización. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Página
11
12
20
20
25
26
31
32
33
34
38
38
39
Cuadro 14. Características nutricionales promedio de
la solución del suelo en melón bajo diferentes dosis de
fertilización en el Valle de Apatzingán. 2007. . . . . . . . . .
Cuadro 15. Relación entre la concentración de NO3
en la
solución del suelo (x) y el contenido de N-NO3
en ECP (y),
en diferentes fases de desarrollo del melón. . . . . . . . . . . 	
Cuadro 16. Relación entre la producción de biomasa y el
rendimiento de fruto de melón en el Valle de Apatzingán.
Cuadro 17. Costos Fijos de producción del cultivo del
melón con y sin fertiriego en el Valle de Apatzingán Ciclo
Otoño- Invierno 2005-06-07. . . . . . . . . . . . . . . . . . . . . . .
Cuadro 18. Costos variables (CV) ($/ha), por tratamiento
nutrimental en melón con alta tecnología de producción
del Valle de Apatzingán. . . . . . . . . . . . . . . . . . . . . . . . . . .
Cuadro 19. Rendimiento de fruto comercial y beneficios
netos en melón con fertiriego en el Valle de Apatzingán,
Mich. promedio de dos años 2006-07. . . . . . . . . . . . . . .
Cuadro 20. Monitoreo nutrimental en extracto celular del
pecíolo en melón del Valle de Apatzingán. . . . . . . . . . . . .
INDICE FIGURAS
Figura 1. Principales municipios de la Tierra Caliente
michoacana productores de Melón para exportación y
mercado nacional. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Figura 2. Rendimiento y superficie sembrada de melón
en el estado de Michoacán. . . . . . . . . . . . . . . . . . . . . . . .
Figura 3. Zonas representativas para fertilización en
Michoacán. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Figura 4. Distribución clásica del bulbo de humedad en
riego localizado en melón. . . . . . . . . . . . . . . . . . . . . . . . .
Figura 5. Riego por microaspersión y goteo y bulbos de
humedad formados en campo. . . . . . . . . . . . . . . . . . . . . .
Página
41
43
45
48
49
50
56
13
14
17
21
22
Figura 6. Técnica del fertiriego en el Valle de Apatzingán,
Mich. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Figura 7 Concentración nutrimental N-NO3
en extracto
celular de pecíolo (ECP) en melón por efecto de la
concentración de NO3
en solución del suelo. . . . . . . . . . .
Figura 8. Efecto de la disponibilidad de N-NO3
en la
solución del suelo, en la concentración de N-NO3
en fruto
y en la longitud de la guía de melón. . . . . . . . . . . . . . . . .
Figura 9. Efecto del contenido de N-NO3
del ECP en la
calidad y rendimiento de fruto de melón en el Valle de
Apatzingán. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Figura 10. Relación contenido N total (%) en fructificación
y rendimiento de fruto en dos calidades de melón con
fertiriego y acolchado plástico. . . . . . . . . . . . . . . . . . . . . .
Figura 11. Análisis de dominancia de tratamientos
nutricionales en melón con y sin fertiriego del Valle de
Apatzingán. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Figura 12. Tasa de retorno marginal (TRM) para los
diferentes tratamientos con alta tecnología de producción
en el Valle de Apatzingán. . . . . . . . . . . . . . . . . . . . . . . . . .
Página
31
42
43
44
46
52
53
7
Nutri-riego de melón cantaloupe (Cucumis melo cv. Cruiser)
NUTRI-RIEGO DE MELÓN CANTALOUPE
(Cucumis melo cv. Cruiser) CON ALTA
TECNOLOGÍA DE PRODUCCIÓN
EN MICHOACÁN
				 Luis Mario Tapia Vargas1
				 Héctor R. Rico Ponce2
				 Antonio Larios Guzmán1
				 Roberto Toledo Bustos1
				 Rafael Moreno Padilla4
Javier Z. Castellanos R.3
RESUMEN
El melón con fertiriego y acolchado plástico es sometido a uso
intensivo de insumos, agua y nutrientes buscando generar altos
rendimientos y calidad de fruto. El objetivo de este trabajo fue evaluar
el manejo nutricional, su relación con el rendimiento, calidad de
fruta y con el contenido nutricional en solución del suelo, en hoja y
extracto celular de peciolo (ECP), además de los beneficios netos de
esta tecnología. Con este propósito, se evaluaron dos experimentos
en marzo de 2006 y 2007. Los tratamientos analizados fueron
siete dosis de fertilización, originadas de la combinación de cinco
niveles de nitrógeno (0, 60, 120, 180 y 240 kg ha-1
), dos de fósforo
(0 y 100 kg ha-1
) y dos de potasio (0 y 200 kg ha-1
), adicionándose,
tres tratamientos de fertilización foliar con la dosis 180-100-200.
Se evaluó, la concentración de N-NO3
y K+
(mg litro-1
) en solución
del suelo y en ECP, el contenido de nitrógeno y potasio total (%)
en hoja, el rendimiento bruce y nacional y contenido de azúcares.
Los resultados indicaron relevancia del nitrógeno, significativa en
rendimiento y calidad de fruto y en concentración de N-NO3
en
ECP y N total foliar (%). Hubo relación significativa en rendimiento
1. Investigadores Titulares del INIFAP. Av. Latinoamericana 1101. Uruapan,
Mich. C.P. 60080 tel (452) 523-7392 ext 101-104-108.
2. Investigador Titular del INIFAP. Km 17.5 carr. Apatzingán-Nueva Italia.
Parácuaro, Mich. 425-592-5140.
3. Investigador Titular INIFAP. Campo Experimental Bajío. Celaya Guanajuato
4. Colaborador Proyecto. UMSNH.
8 Nutri-riego de melón cantaloupe (Cucumis melo cv. Cruiser)
y condición nutricional (r>0.70* p<0.05), con valores máximos de
N-NO3
entre 230 y 418 mg litro-1
y de 2.41% para N total foliar, así
como para variables relacionadas con la disponibilidad, estado
nutrimental foliar y el rendimiento bruce. Los mayores beneficios
netosselogranconlaaplicacióndefoliareshormonaleseinorgánicos
con $37,352.00/ha utilidades que no dominan las generadas con
menor dosis nutricional y sin foliares (tratamiento 120-100-200), con
$32,400.00/ha, por lo que es factible reducir la intensidad nutricional
de N hasta 120 kg ha-1
, P2
O5
y K2
O hasta 0.0 kg ha-1
y sin aplicaciones
de foliares, sin afectar la calidad y rendimiento de fruto y el estado
nutrimental de la hoja y de ECP de melón Cantaloupe.
ABSTRACT
FERTIGATION OF MUSKMELON CANTALOUPE
(Cucumis melo cv Cruiser) WITH INTENSE
PRODUCTION TECHNOLOGY IN MICHOACAN
Plastic mulch and fertigated muskmelon is cultivated under intensive
use of soil and nutrients to pursue high fruit yields and fruit quality.The
aim of this paper was to evaluate the effect of nutrition management
in relation with quality yield fruit, the nutrient content in soil solution,
leaves and in cellular extract of petioles (ECP) and net benefits of
this production system fertigated muskmelon. Two experiments were
established on March of 2006 and 2007. The evaluated treatments
consisted of seven doses of fertilizers derived from combination of
five levels of nitrogen (0, 60, 120, 180 and 240 kg/ha), two levels
of phosphorous (0 and 100 kg/ha) and two levels of potassium (0
and 200 kg/ha), moreover, three other treatments were sprayed with
three types of foliar nutrients. The concentration of N-NO3 and K+
were evaluated in the cellular extract of petiole (ECP) and the total
content of nitrogen and potassium were evaluated in the leaves.Also,
the fruit quality and yield and sugar concentration were evaluated.
The results indicated that nitrogen was the main factor affecting fruit
quality and fruit yield and ECP N-NO3 concentration (mg liter-1)
and total N foliar (%). Significant relationship between fruit yield and
nutritional condition was found (r>0.70* p<0.05). Maximum values for
N-NO3 were between 230 and 418 mg L-1 and 2.41% for total foliar
9
Nutri-riego de melón cantaloupe (Cucumis melo cv. Cruiser)
N (%). Also, there were a significant relationships among available
soil nutrient, plant nutrition and bruce yield fruit Main net benefits
were achieved with foliar inorganic and hormonal applications with
$37,352.00 per hectare, but treatment three (120-100-200 without
foliar applications), generated high net benefits with $32,400.00
per hectare. It is feasible to reduce intense use of fertilizers until
N= 120 kg ha-1; P2O5 and K2O until 0.0 kg ha-1 and removing
foliar nutrients, this management no affects fruit quality, fruit yield,
adequate foliar and ECP nutrient content of melon Cantaloupe.
INTRODUCCIÓN
El cultivo del melón Cantaloupe, en sus versiones híbridos y
cultivares como: Primo, Cruiser, Cabrillo, Laredo, Top Mark, se
desarrolla principalmente en el ciclo de invierno y genera más de
200 mil jornales por año, por lo que su importancia como cultivo
generador de empleo es muy alta con una derrama económica
directa estatal de más de 100 millones de pesos (SAGARPA,
2007). La constante presencia de plagas y enfermedades, además
del desconocimiento de las condiciones del suelo, propician que
los siniestros en este cultivo sean cada vez más frecuentes,
confundiéndose las deficiencias nutrimentales con problemas
de enfermedades y viceversa y en ocasiones la pérdida total de
la cosecha (Arias, 1994). Por lo que a partir de 1989 se tuvo una
disminución de la producción de fruto (Hernández et al., 2006).
Nuevas tecnologías de producción como el uso de acolchados
plásticos y el fertiriego han permitido la siembra del cultivo en áreas
anteriormente vedadas. Estos métodos mejoran la producción del
cultivo (Farías y Orozco, 1997), proporcionan mejores condiciones
ambientales para la planta (Pérez et al., 2004) y se mejoran las
prácticas culturales en el caso de problemas de inocuidad del fruto
(Hernández et al., 2006).
En Michoacán como en gran parte de México, la aplicación de
fertilizantes es una práctica que puede absorber hasta un 35% de
los costos de producción de los cultivos. En plantaciones de alta
rentabilidad como aguacate, el gasto en fertilizantes es de $11,000
por hectárea, que equivalen al 21% de los costos de producción
(Torres, 2006), en fresa se gastan $18,000 pesos por hectárea,
10 Nutri-riego de melón cantaloupe (Cucumis melo cv. Cruiser)
que representan un 20% de los costos (Cintora, 2003), en melón
significan 28% de los costos, en trigo y maíz representan el 21%
con un valor de $2,500 (Castellanos, 2005) y en pepino representan
el 35% de los costos con una inversión de $8,500. En el Cuadro 1
se indican los precios de algunos productos fertilizantes aplicados
al melón en Apatzingán.
11
Nutri-riego de melón cantaloupe (Cucumis melo cv. Cruiser)
Cuadro 1. Precios de fertilizantes aplicados al melón en el Valle de
Apatzingán.
Producto
Unidad de
medida
Precio
($)
Nitrofoska 25-10-17.5-1.5 Mg kg 75.00
Fórmula 20-10-10 ton 4,450.00
Fórmula IAUSA 12-24-12 ton 5,533.00
Rhizobac Combi kg 600.00
Micro Plus L 331.00
Eezygro 9-18-9 L 80.00
Eezygro Zing 15 % L 110.00
Eezygro Boro 5 % L 122.00
Nitrosol Kg 22.00
Fuente: IAUSA (2007)
Además de estos conceptos habría que agregar el precio de mano
de obra por concepto de la aplicación de los fertilizantes. Los altos
costos que representan la inversión de fertilizantes pueden llegar
en el caso de melón hasta $10,000.ha-1
solo en N, P y K, más el
gasto en otros nutrientes como Ca, Mg, Mn, Zn, B y Fe que pueden
incrementar los costos en $2,000.00 ha-1
dependiendo de la fuente,
o incluso una práctica más común es la aplicación de activadores
y hormonales, que pueden llegar hasta $5,000 ha-1
. Todo este
gasto puede ser superfluo si existen condiciones para causar
inmovilización, fijación o volatilización de nutrimentos en el suelo.
Debido a la situación expuesta, es importante mejorar la eficiencia
del uso de fertilizantes en cuanto a una mayor disponibilidad de
nutrientes absorbibles con bajo gasto de energía, a nivel radicular,
una mejor condición nutrimental en hoja y un mayor rendimiento
de fruto en cantidad con óptima calidad. El atender o seguir
estas consideraciones, asegura tener un beneficio positivo en la
recuperación del costo y en reducir el impacto al ambiente por efecto
del fertilizante no utilizado o perdido en escurrimiento o lixiviación.
A pesar del uso de tecnología de punta con acolchado, túneles y
sistemas de fertirrigación, las altas cantidades de aplicación de
fertilizantes pueden ser contraproducentes ya que pueden competir
en la absorción de otros nutrimentos (Tapia, 2006), pueden causar
enlaces químicos insolubles no disponibles para la planta (Cíntora,
2003), o bien darse el caso de causar antagonismo en el interior
12 Nutri-riego de melón cantaloupe (Cucumis melo cv. Cruiser)
de la planta (Castellanos, 1997). En los tres casos la planta
presenta trastornos fisiológicos aunque el elemento nutritivo haya
sido aplicado (Castillo, 1998). La mejor base para la aplicación
de fertilizantes es primero el análisis de suelo y posteriormente el
rastreo nutrimental foliar como herramienta de diagnóstico y manejo
nutrimental (Castellanos et al, 2000).
La técnica de fertiriego en el Valle de Apatzingán ha mostrado
incremento en la calidad y rendimiento de fruto en cultivos como
papaya con rendimientos de fruto comercial de 90 ton ha-1
(Mellado
et al., 2005), Limón con 35 ton ha-1
(Tapia et al., 2006), tomate con
rendimientos de 60 ton ha-1
de fruto (Tapia et al., 2001). El cultivo de
melón, tradicionalmente era una opción atractiva en el Valle ya que
redituaba importantes ganancias económicas con tasas de retorno
de 300% o más (INIFAP, 1989), sin embargo, la presencia de plagas
y enfermedades redujo el área de siembra a menos del 10% de
las 6,000 ha que anteriormente se sembraban; los municipios que
continúan sembrando el cultivo se muestran en el Cuadro 2, donde
nuevas regiones de la Tierra Caliente de Michoacán sobresalen en
importancia en este cultivo como Huetamo y San Lucas.
En esta publicación se presenta el manejo nutrimental y de agua
apropiado al cultivo con la técnica de fertiriego para el logro de altos
rendimiento de fruto de óptima calidad y su efecto en la disponibilidad
nutricional en suelo, en la condición nutrimental foliar, en extracto
celular de peciolo (ECP) y en los beneficios netos obtenidos para
cada situación nutrimental.
Cuadro 2. Superficie sembrada por municipio del Valle de Apatzingán, Mich.
2005-06.
Municipio Superficie (ha)
Rendimiento (ton/
ha)
Buenavista 75.0 15.000
Parácuaro 30.0 15.000
Tepalcatepec 65.0 13.155
Coahuayana 52.0 20.192
Huetamo 2,134.0 50.000
San Lucas 300.0 40.000
Fuente: Subsecretaría de Agricultura, C.G.D. y S.I.A.P. CADER,
s de SAGARPA.
DDR 089. Apatzingán, Mich. Ciclo O-I 2005/2006
13
Nutri-riego de melón cantaloupe (Cucumis melo cv. Cruiser)
ANTECEDENTES
El melón, desde principios del siglo XX, ha sido un producto
generador de divisas para el país, así como importante fuente de
empleo y utilidades para los productores mexicanos. No obstante,
a partir de los años sesenta de dicho siglo, comenzó a tener más
importancia para los productores mexicanos, debido a la mayor
demanda tanto del mercado nacional como del internacional. Sin
embargo, la creciente participación de países centroamericanos que
han empezado a ganar espacios en el mercado estadounidense
(importador del 99% de las exportaciones mexicanas), complica
la comercialización de esta fruta, limitando la participación de
más productores mexicanos en dicho mercado (Hernández et al.,
2006).
México cuenta con tecnología adecuada, pero es preciso que
maneje las cosechas en periodos más cortos, mejore los procesos
de poscosecha, así como la comercialización del producto. Las
principales regiones productoras de melón se concentran, en el caso
de Michoacán, en Nueva Italia, El Aguaje, Huetamo, Cupuán, Las
Cruces y Tepalcatepec (Figura 1); en el resto del país, en Sonora
en la Costa de Hermosillo; en Jalisco en el Distrito de Tomatlán, en
Colima en Ixtlahuacán, Colima y Tecomán y en Durango y Coahuila
en la Comarca Lagunera (SAGARPA, 2003).
1. Tepalcatepec
2. Buenavista
3. Apatzingán
4. Lombardía
5. Parácuaro
6. Nueva Italia
7. Churumuco
8. Huacana
9. Huetamo
10. San Lucas
Figura 1. Principales municipios de la Tierra Caliente michoacana productores
de melón para exportación y mercado nacional (SAGARPA, 2007).
14 Nutri-riego de melón cantaloupe (Cucumis melo cv. Cruiser)
La producción nacional de melón en el periodo 1992-2001 disminuyó
en 5.7% (28 mil ton). En Michoacán en la década de los 90 la
superficie cosechada rondó las 65 mil ton producidas, cantidad que
para 1996 había disminuido hasta 42 mil ton (-35 %). Sin embargo,
en 1997 tuvo un repunte importante al llegar a 86 mil toneladas
(incremento del 105%), aunque dicho incremento se vio disminuido
al año siguiente, cayendo 17 % al generar una producción de tan
solo 72 mil ton. A partir de 1999 y en lo que va del siglo hasta el
año pasado, las tendencias de rendimiento de fruto y la superficie
sembrada, se han estabilizado como se aprecia en la Figura 2
(SAGARPA, 2007).
Figura 2. Rendimiento y superficie sembrada de melón en el estado de
Michoacán.
FERTILIZACIÓN DEL MELÓN
Pinales y Arellano (2001), indican que en el cultivo del melón,
el fertilizante debe aplicarse en bandas al centro de la cama de
preferencia con máquina fertilizadora. La aplicación básica se
hace antes de la siembra con 100 kg ha-1
de 18-46-00 ajustando
el programa de fertilización con frecuencia, de acuerdo al análisis
del cultivo y de la solución del suelo. Pérez y Cigales (2001),
recomiendan aplicar el fertilizante en banda a 5 cm del centro y a 5
cm de la semilla.
15
Nutri-riego de melón cantaloupe (Cucumis melo cv. Cruiser)
El pH apropiado del suelo para la producción de melón es de 6.0 a
6.5. Si se requiere aplicar algún producto mejorador de la reacción
del suelo, se debe incorporar bien con el suelo de dos a tres meses
antes de la siembra. Terrenos con pH de 6.5 a más pueden ser
deficientes de elementos en algunos suelos del Valle de Apatzingán
como es el caso de Fe, Zn, N, B, K, entre otros.
Los requerimientos de nutrientes del melón varían con el tipo del
suelo y prácticas previas de fertilización, Nicklow y Gómez (1965)
efectuaron un trabajo de fertilización en melón y argumentan que el
suelo en cuanto a pH, P y K disponibles, son variables importantes
para la aplicación de fertilizantes. Estos mismos autores, indican
que la aplicación de estiércol al suelo, puede reducir la cantidad de
N y P a aplicar (una tonelada de estiércol equivale a 24 kg de N y
18 de P por hectárea) y para complementar la nutrición se puede
aplicar de 40 a 50 kg de N por hectárea, a un lado de las plantas
cuando empiezan a formar guías y antes del riego que se efectúa
de los 35-40 días obteniéndose rendimientos de 25 t ha-1
.
Las prácticas de fertilización en el cultivo de melón, dependen del
tipo de suelo y la cantidad de nutrientes que contiene, Whitaker y
Mondragón (1970) mencionan que el melón crece mejor en suelos
ricos en materia orgánica pudiendo agregarse abonos animales
que en cantidades de 10 ton ha-1
, han dado buen resultado. En
este caso, Pérez et al (1995), mencionan que altos rendimientos
pueden obtenerse con bajas cantidades de fertilizante (45 kg ha-1
de
N) pero combinados con abonos verdes, en caso contrario pueden
ser necesarios hasta 500 kg de nitrógeno para obtener los mismos
rendimientos (45 a 80 ton ha-1
de fruta).
El fertilizante, según Whitaker y Mondragón (1970), debe aplicarse
antes de barbechar y cruzar; debe hacerse antes de dar un primer
riego (en temporada de secas de febrero a abril). También se puede
proporcionar materia orgánica como alfalfa, trébol, soya, fríjol y
ajonjolí. La mayor parte del melón se produce sin abonos, pero
los fertilizantes químicos siempre son necesarios. La evidencia
experimental ha demostrado que el melón debe recibir de 60 a
120 kg por hectárea de nitrógeno y 25 a 50 kg ha-1
de P. El N
generalmente se aplica la mitad antes o al principio de la siembra y
la otra mitad cuando las plantas comienzan a formar guías.
16 Nutri-riego de melón cantaloupe (Cucumis melo cv. Cruiser)
El P se aplica antes o al momento de sembrar en una sola ocasión,
experimentalmente se demostró de 4 a 5 % más eficiente cuando se
aplica en banda que cuando se aplicó al voleo. En ciertas condiciones
se sugiere no aplicar fósforo en el agua de riego, ya que se fija
rápidamente en el suelo y puede que no llegue al área de las raíces
de las plantas, esto ocurre principalmente en suelos alcalinos, en el
que el ortofosfato (-
H2
PO4
) y el Ca, forman precipitados insolubles
de fósforo mientras que en suelos ácidos con el Fe y el Al propician
inmovilización del ión ortofosfato (Fuentes et al., 2006).
Gómez y García (1980), indican para el Valle de Mexicali que los
suelos arenosos y los de textura franca son óptimos para el melón,
recomiendan la aplicación de 150 kg de nitrógeno y 40 kg de P por
hectárea; aplicando la segunda parte de N después del aclareo.
Si se aplica amoniaco anhídrido en el agua de riego cuidar que la
concentración sea apropiada y que el agua no llegue a las plantas,
ya que podría sufrir quemaduras si el amoniaco está en contacto
con ellas.
En el Campo Agrícola Experimental Valle de Apatzingán (CAEVA),
León (1984) aplicó la dosis de fertilización sugerida para riego
superficial; mencionó que la dosis se ajusta a los diferentes tipos
de suelos predominantes en la región, los cuales se han dividido
en 8 subzonas representativas: Buenos Aires, Antúnez, Nueva Italia
y Lombardía (180 – 60 – 60) de N – P – K en suelos vertisoles
y para Gambara, Apatzingán, Presa del Rosario y Tepalcatepec
recomendó las dosis (200 – 60 – 80, 180 – 80 – 60, 180 – 70 – 60
y 180 – 60 – 60) de N - P – K, en el mismo orden respectivamente,
los cuales son de textura menos arcillosa Figura 3. La fertilización
se aplica de la siguiente forma: la mitad de N, todo el fósforo y todo
el potasio, en la siembra, posteriormente la parte restante del N en
la escarda, antes del primer riego de auxilio.
17
Nutri-riego de melón cantaloupe (Cucumis melo cv. Cruiser)
La nutrición del cultivo de acuerdo a Vidales et al (1987) debe
efectuarse con 200 kg de N, 60 kg de P y 80 kg de K, aplicando la
mitad de N, todo el P y el K al momento de la siembra, el resto del N
se aplica en la escarda antes del primer riego de auxilio.
Otras investigaciones efectuadas porArias et al (1983) recomiendan
lafórmula180–60-100ysepreparamezclándosehomogéneamente
878 kg de sulfato de amonio al 20.5 %, 300 kg de súper fosfato de
calcio simple al 20 % y 200 kg de sulfato de potasio al 50 % para el
municipio de Tepalcatepec, Mich.
La correcta nutrición del cultivo permite que el melón desarrolle alto
potencial de rendimiento (Pinales y Arellano, 2001), sin embargo,
las plantas con parámetros nutricionales por debajo de los niveles
referenciales (Hochmuth, 1994), tendrán problemas de disminución
en los rendimientos, en la calidad de fruto y en las utilidades netas.
Una técnica que arroja resultados instantáneos in situ es el análisis
de tejido, el cual se usa para determinar los requerimientos de
nutrientes en cultivos hortícolas de ciclo corto (Badillo et al., 2001).
La concentración de P, N, K, disminuye con la madurez de la planta,
Figura 3. Zonas representativas para fertilización en Michoacán. (León, 1984).
18 Nutri-riego de melón cantaloupe (Cucumis melo cv. Cruiser)
de tal manera que es necesario relacionar la composición de la planta
con su edad (Hochmuth, 1994). El análisis se basa en el muestreo
de pecíolos de las hojas que recientemente han madurado (la hoja
sexta a partir de la punta de la guía (Castellanos et al., 1998).
ANÁLISIS FINANCIERO
La aplicación de diferentes tratamientos de manejo producirá
un efecto diferencial en el rendimiento y calidad de fruto ligado
intrínsicamente al tratamiento. Esta respuesta diferencial se analiza
por medio de una técnica matemático-financiera y analítica, a través
de la cual se determinan los beneficios y/o pérdidas en los que se
puede incurrir al realizar una inversión, el análisis financiero apoya
la toma de decisiones referente a las actividades de inversión dado
a cada tratamiento. Las decisiones se basan en la información, en
particular de los datos sobre costos y utilidades, debiendo reflejar la
mejor alternativa, dados los recursos disponibles, las restricciones
que se impongan y las utilidades generadas. Ante todo estar seguro
de que la decisión se realiza de manera eficiente (Van Home,
2006).
COSTOS DE PRODUCCIÓN
Del Río (2000), menciona que el costo se refiere al costo de algo,
costo unitario de un producto específico o de la inversión de un
producto (que puede ser el fertilizante aplicado), durante un
período de tiempo. Cada $1 de costo invertido debe producir un
beneficio $ X.XX, por tanto manifiesta las consecuencias obtenidas
por la alternativa elegida. La clasificación de costos, se analizan
adecuadamente por tipo de costo, ya que los detalles analizados
ofrecerán información fidedigna para el productor en comparación a
la obtenida de la información total (Pech, 2003).
COSTOS DIRECTOS E INDIRECTOS
Existen costos relacionados directamente con la producción de un
artículo determinado. Estos costos se llaman costos directos, por
ejemplo los costos de la semilla y fertilizante.
19
Nutri-riego de melón cantaloupe (Cucumis melo cv. Cruiser)
Los costos indirectos, como su nombre lo indica, no tienen una
relación directa con la producción de un artículo determinado. En
el caso de este trabajo son todos aquellos que no se relacionan
directamente con el manejo nutricional como, la maquinaria, los
implementos agrícolas, la tasa de interés. No se analizan porque
están fuera del propósito de este trabajo.
COSTOS FIJOS Y VARIABLES
Los costos fijos son aquellos que no varían en relación con el
volumen de producción. Por ejemplo, en este trabajo la semilla, los
pesticidas, el plástico, la cinta de riego, son costos que no varían y
son independientes de la cantidad de rendimiento producido. Los
costos variables están directamente relacionados con el volumen
de producción. Cuanto más se produzca, los costos variables serán
mayores. Por ejemplo, más rendimiento de fruto requiere más
inversión en fertilizante, en mano de obra para cosecha, más viajes
de remolque para el transporte del fruto (Aguilar, 1997).
FISIOLOGÍA DE LA NUTRICIÓN DEL MELÓN
Nitrógeno. El exceso de N produce plantas excesivamente
vigorosas, retrasa la floración y maduración de frutos, tienden a
ser éstos de grueso calibre, ahuecados, de corteza gruesa y bajo
contenido en azúcares. Dicho elemento, acentúa la sensibilidad a
enfermedades fungosas (hongos) y ataque de insectos (pulgones,
mosquita blanca) (Vidales et al., 1987). El 90% del N se encuentra
en la parte aérea, del cual más del 14 % está en las hojas y el 20
% en el fruto, interviene en el crecimiento y desarrollo de la planta
(Cuadro 3), entra como componente de las proteínas, clorofila y
aminoácidos. Es el elemento del que mayor necesidad tiene la
planta, absorbiéndolo en su mayoría en forma nítrica y muy poca
cantidad bajo forma amoniacal (Pizarro, 1996).
La deficiencia produce plantas de poco vigor, hojas adultas de color
amarillento que tornan a amarillo y se secan. Los frutos pequeños,
muy coloreados, de piel fina, contienen semillas pequeñas. Como
consecuencia la falta de crecimiento y raquitismo, facilita la caída
de flores y frutos, pérdida uniforme de la clorofila en toda la hoja,
tornándose de un color amarillento, esta se presenta con mayor
20 Nutri-riego de melón cantaloupe (Cucumis melo cv. Cruiser)
intensidad de guías en el fruto, el rendimiento es bajo y de mala
calidad (Castañer, 1993).
Cuadro 3. Longitud de la guía principal (cm) en melón con diferentes dosis de
fertilización nitrogenada en Apatzingán.
Dosis N Días del ciclo vegetativo
20 30 60
0 41 61 186b
60 53 84 215a
120 59 94 230a
240 61 99 242a
DMS (Tukey 5%) 21.1 38.8 28.2
Fuente: Silva (2006); nota: valores con la misma letra o sin letra iguales
estadísticamente (p≥0.05)
Fósforo. El exceso de P no produce síntomas visuales en la planta.
El 57 % se encuentra formando parte de las raíces y el 28 % del fruto.
Es el tercer elemento después del K en necesidades de la planta,
interviene en la formación de las raíces y flores, en la maduración
de la cosecha, disminuye la absorción del Zn y del Cu, las hojas
jóvenes tienen mayores concentraciones de P que las hojas viejas
(Castañer, 1993).La insuficiencia produce deficiente desarrollo
radicular, entrenudos cortos, disminución del vigor vegetativo, de
la floración y del cuajado de frutos. Abundan los frutos pequeños
de mala calidad, de estos gran cantidad se cae prematuramente y
disminuye el rendimiento, los frutos son huecos (separación de los
segmentos del fruto en la zona centro), disminuye el contenido de
sólidos solubles aunque no de manera significativa (Cuadro 4).
Cuadro 4. Respuesta en concentración de sólidos solubles del melón por
efecto del fósforo y potasio, en el Valle de Apatzingán.
Dosis de
fertilización
Descripción
Grados Brix
(%)
180-100-200 Normal 13.2a
180-00-200 Sin fósforo 12.6a
180-100-00 Sin potasio 12.4a
Nota valores con la misma letra iguales estadísticamente (p≥0.05). Fuente: Silva
(2006)
Potasio. El exceso de K produce un desarrollo vegetativo de poco
vigor, con las yemas terminales muy débiles, Los frutos de pequeño
21
Nutri-riego de melón cantaloupe (Cucumis melo cv. Cruiser)
calibre, maduran prematuramente. El 31 % se encuentra en las hojas
y 20 % en el fruto, la planta tiene grandes exigencias de floración
a engorde (fruto), prácticamente todo el ciclo, aunque sus mayores
necesidades vienen después del cuajado. En el fruto hay mayor
movilidad que el P, pero menos que el N, el 60 % del K, de toda la
planta va al fruto, lo que quiere decir que en años de abundante
cosecha tendrá que incrementarse la aportación normal calculada
(Castañer, 1993).
La deficiencia interviene en la calidad del fruto, presentando
éste pulpa arenosa y ligero sabor amargo y el borde de las hojas
jóvenes con una decoloración tornando a blanco. También influye
en el crecimiento de la planta (menor desarrollo), mayor desarrollo
de la hoja y color pálido que suelen causar abscisión de flores,
maduración precoz de frutos, las nuevas guías son débiles y por
falta de resistencia mecánica tienden a formar una “S”, la floración
es escasa y el cuajado de frutos deficiente (Castañer, 1993).
RIEGO LOCALIZADO
El riego localizado consiste en la aplicación del agua al suelo en
forma localizada, y se empezó a ensayar en Alemania en 1860 y
en Estados Unidos en 1918 (Figura 4); Israel ha sido uno de los
países pioneros de la investigación y desarrollo de este tipo de
riegos (Martínez, 1991).
Figura 4. Distribución clásica del bulbo de humedad en riego localizado en
melón.
RIEGO POR GOTEO
El riego por goteo tuvo sus comienzos en Inglaterra en la década
de 1940, pero hasta la introducción del polietileno (después de
los 60’
s), se desarrolló en forma de tecnología y comercial en los
Estados Unidos e Israel (Roberts y Stuart, 1997).
22 Nutri-riego de melón cantaloupe (Cucumis melo cv. Cruiser)
Los sistemas de riego por goteo aplican el agua con un caudal no
superior a 20 L h-1
, por punto de emisión o metro lineal de manguera
de goteo; el agua es llevada a los cultivos por una red de tuberías,
de tal manera que se aplica directamente en el sistema radical de
las plantas a través de los emisores o goteros (Pantoja, 1997). Los
beneficios del sistema de riego por goteo incluyen una disminución
en el consumo de agua de un 50 a 70 % y una disminución de un 20
a 50 % en insumos químicos (Berigan, 1998); además, éste sistema
es particularmente ventajoso en cultivos con espaciamientos amplios
(por ejemplo frutales y viñedos, Figura 5), porque las pérdidas por
filtración lateral y evaporación son pequeñas y como la mayor parte
de la superficie del suelo permanece seca, las malas hierbas no se
desarrollan (Tapia et al., 2005).
En riego localizado de alta frecuencia (microaspersión y goteo), no
puede tenerse un cubrimiento total del terreno (Pizarro, 1996), sin
embargo, debe manejarse el criterio de no sobrepasar la capacidad
de almacenamiento de humedad del suelo (263 mm), por lo que la
selección del emisor debe contemplar este aspecto para no originar
lixiviación de nutrimentos y percolación de agua a capas del suelo
fuera del alcance del sistema radicular. Aún cuando el emisor por su
naturaleza, cubra sólo una fracción del área de goteo, la mayoría de
los cultivos responden bien al riego localizado y al humedecimiento
parcial del suelo.
Figura 5. Riego por microaspersión y goteo y bulbos de humedad 	
formados en campo
23
Nutri-riego de melón cantaloupe (Cucumis melo cv. Cruiser)
FERTILIZANTES
La selección adecuada de un fertilizante bajo esta práctica
agronómica, debe considerar aquella características que influyen
sobre el suelo, la planta y el manejo del sistema de riego (Torres,
1999), además los aspectos económicos ligados a la producción
(De Santiago, 1998), así como la calidad (Ludwick, 1997) y la
solubilidad (Arciniega, 1999) son determinantes en la elección de
los productos a emplear.
Los fertilizantes nitrogenados, dada su alta solubilidad y pureza,
no presentan ningún problema en su empleo; se debe aplicar del
40 al 50 % antes de la siembra o antes del trasplante, ya que es
precisamente con N con lo que la fertirrigación será más efectiva,
puesto que la mayor cantidad de este nutrimento se necesita en las
etapas posteriores del desarrollo de las plantas (Pantoja, 1999).
Las soluciones de fertilizantes nitrogenados no presentan
problemas dada su movilidad en el suelo, con excepción del
amoniaco anhidro (82-00-00) y el agua amoniacal (27-00-00) que
producen una elevación del pH y puede causar precipitación de Ca
y Mg ocasionando problemas de obturación (Martínez, 1991). El
nitrato cálcico y el nitrato potásico tienen reacción alcalina, por lo
que es recomendable añadir ácido clorhídrico cuando estos sean
utilizados. El sulfato de amonio (20.5-00-00), el nitrato de amonio
(33.5-00-00) y la urea (46-00-00) son fertilizantes nitrogenados que
pueden ser aplicados razonablemente sin tener efectos laterales
en el agua o en el sistema de riego (CNA, 1995). La absorción de
N alcanza su máximo nivel durante los períodos de crecimiento
del fruto y conforme los frutos maduran y se inicia la cosecha, las
necesidades de éste se reducen (Castellanos, 1997).
El P es sin duda el elemento nutritivo cuya aplicación en el agua de
riego presenta los mayores problemas, como baja solubilidad, alto
costo, fácil precipitación que causa obturaciones y baja movilidad.
Para aplicar éste elemento se ha empleado el ácido fosfórico en
una dosis muy concentrada y espesa, la cual mantiene un pH bajo
que evita la precipitación del Ca y el Mg (CNA, 1995).
24 Nutri-riego de melón cantaloupe (Cucumis melo cv. Cruiser)
Entre los fertilizantes fosfatados se tiene el superfosfato triple (00-
46-00), el cual es moderadamente soluble en agua y como tal
no puede ser utilizado en riego localizado para fertilización. Esta
consideración puede parecer contradictoria porque el superfosfato
triple (SPT) es considerado como soluble en agua, pero la disolución
actual del súper fosfato de calcio triple (SPT) en agua es limitada
porque el fosfato monocálcico es el principal componente del SPT
y cambia espontáneamente a fosfato dicálcico, el cual es de baja
solubilidad en agua, aunque cabe mencionar que esta directamente
influenciado por el pH del suelo. El P es demandado en mayor
proporción en las etapas iniciales de desarrollo de los cultivos
(Castellanos, 1997).
En cuanto al K se cita que generalmente del 40 al 60 % debe ser
aplicado antes de plantar (Pantoja, 1999). No existe problema para
aplicar este elemento a través del agua de riego. Los fertilizantes
más empleados como fuentes de K son los cloruros, sulfatos y
nitratos potásicos.
El K al igual que el P tiene poca movilidad, algunas investigaciones
han demostrado que el K se ha movido de 60 a 90 cm en cuatro
meses, cuando ha sido aplicado con sistemas de microirrigación
(CNA, 1995). En términos generales, el ritmo de consumo del K es
muy similar al del N, aunque su volumen aumenta en la medida que
se requiere de una mayor calidad de los frutos (De Santiago, 1999).
Este elemento se demanda en etapas avanzadas de desarrollo de
la planta llegando a su pico en la etapa de crecimiento del fruto
(Castellanos, 1997).
Para proporcionar micronutrimentos varias fuentes han sido
utilizadas en riego por goteo como el sulfato de manganeso, el
bórax o ácido bórico, los quelatos y las mezclas de Zn con N. (De
Santiago, 1999). Los fertilizantes más usados en riego por goteo se
presentan en el Cuadro 5.
25
Nutri-riego de melón cantaloupe (Cucumis melo cv. Cruiser)
Cuadro 5. Fertilizantes aplicados en el agua de riego.
Fertilizante
Análisis garantizado (%)
Solubilidad
(Kg 100 L-1
)
Temperatura
(ºC)
N P2
O5
K2
O otro
Nitrato de
amonio
34 0 0 - 18.3 -
Urea 46 0 0 - 100.0 20.0
Nitrato de Ca 15.5 0 0 19 Ca 121.2 16.6
A. fosfórico
blanco
0 52 0 - 45.7 -
A. fosfórico
verde
11 37 0 - 45.7 -
Fosfato
monoamónico
8 24 0 - 22.0 20.0
Polifosfato de
amonio
10 34 0 - Alta -
Nitrato de K 13 0 44 - 13.3 -
Cloruro de K 0 0 60 47 Cl 34.7 20.0
Sulfato de K 0 0 50 18 S 12.0 25.0
Nitrato de Mg 11 0 0 9.5 Mg - -
Sulfato de Mg 13 Mg 71.0 20.0
Quelato de
hierro
14 Fe
Muy
soluble
-
Sulfato de hierro 20 Fe 15.6 20.0
Quelato de zinc 14 Zn
Muy
soluble
-
Sulfato de zinc 36 Zn 96.5 20.0
Quelato de
manganeso
12 Mn
Muy
soluble
-
Sulfato de
manganeso
27 Mn 105.3 -
Ácido bórico 18 B 6.3 30.0
Fuente: Torres (1999).
26 Nutri-riego de melón cantaloupe (Cucumis melo cv. Cruiser)
Características de los fertilizantes:
Como norma general, cualquier fertilizante para riego localizado ha
de reunir las siguientes características:
Exentos de cloruros, sulfatos y sodio, que incrementen el
•	
contenido salino o alcalino del suelo.
Reacción neutra o ácida, a fin de evitar precipitados.
•	
Alto grado de solubilidad y pureza (Arciniega, 1999).
•	
En el Cuadro 6 se anotan algunos de los fertilizantes mas
frecuentemente usados en los sistemas de fertiriego.
Cuadro 6. Ejemplos de fuentes de nutrientes usados en fertiriego.
Producto
Solubilidad
(kg lt-1
)
Reacción
MAP 0.37 Alcalina
Urea 0.51 Neutra
Sulfato potasio 0.11 Ácida
N32
0.66 Neutra
Ácido fosfórico 0.80 Ácida
Hidróxido Potasio 0.86 Alcalina
Fuente: Tapia et al (2005)
En los casos de fertilizantes líquidos, se debe conocer su densidad
que permita transformar las unidades de masa a volumen,
además del comprobar posibles adulteraciones de fertilizante.
También ha de tenerse en cuenta que estos fertilizantes, al ser
soluciones saturadas, si se someten a bajas temperaturas pueden
favorecer depósitos de cristales, induciendo no sólo problemas de
obstrucciones sino alteraciones en la concentración de la solución
restante. Por ejemplo, considerar el ácido fosfórico líquido (H3
PO4
)
al 62% con una densidad de 1.6. Si se pide aplicar 60 kg de P2
O5
,
cuanto ácido es necesario aplicar.
1 L de H3
PO4
tiene 1.6 kg de peso y 62% de pentoxido de fósforo
1 L de H3
PO4
tendrá: 0.99 kg de P2
O5
.
Entonces se requieren aplicar:
27
Nutri-riego de melón cantaloupe (Cucumis melo cv. Cruiser)
ELABORACIÓN DE LOS PROGRAMAS DE RIEGO
LOCALIZADO
Un plan de manejo nutrimental inicia con el conocimiento del sistema
de producción, debe contar con técnicas de diagnóstico, conocer la
dinámica nutrimental en suelo y planta y la naturaleza de la respuesta
a la aplicación de fertilizantes, entender las tecnologías del uso de
fertilizantes, así como aspectos económicos de la fertilización. El
primer paso en el diseño de un plan de manejo nutrimental de un
cultivo es definir los rendimientos máximos posibles en la zona de
interés, el segundo es conocer que proporción de la demanda es
cubierta por el suelo (Etchevers, 1996).
Para realizar la aplicación del fertilizante a través del sistema de
riego existen dos estrategias: aplicación diaria a través de una
concentración determinada que se mide mediante la conductividad
eléctrica y una relación de nutrimentos de aplicación semanal de
acuerdo con la demanda, suministrando el nutrimento antes de la
misma (Castillo, 1998).
El análisis foliar es una herramienta para evaluar directamente el
estado nutrimental de las plantas y la efectividad de las prácticas
de fertilización, e indirectamente la disponibilidad de nutrimentos en
el suelo, análisis que usualmente se efectúan en laboratorio. Los
principales criterios para la interpretación de los análisis de tejido
vegetal son el nivel crítico e intervalos de concentración (Castellanos
et al., 1998).
En la práctica, la técnica del diagnóstico nutrimental maneja dos
aproximaciones para definir los niveles de suficiencia: una que se
basa en la relación entre el contenido nutrimental en el tejido vegetal
28 Nutri-riego de melón cantaloupe (Cucumis melo cv. Cruiser)
y el crecimiento o el rendimiento, y la otra que se obtiene a través
de generar datos de una población grande de análisis, con la que se
obtiene un histograma de frecuencias que generalmente obedece a
una distribución normal (Castellanos, 1999).
En dicha distribución normal se establece arbitrariamente que los
niveles a la izquierda son bajos, a la derecha altos y los del medio
son normales. En ausencia de datos regionales, esta técnica da
al menos una idea aproximada para interpretar los resultados, sin
embargo es muy imprecisa, pues el hecho de que los niveles sean
bajos no significa que estén al nivel de deficiencia ni el que sea alto
que sean excesivos. Por lo contrario, la técnica que relaciona el
nivel nutrimental con la condición de desarrollo del cultivo es más
precisa (Castellanos, 1999).
EL ANÁLISIS DE EXTRACTO CELULAR DE
PECÍOLO (ECP) COMO HERRAMIENTA DE
DIAGNOSTICO DEL ESTADO NUTRIMENTAL DEL
CULTIVO
El análisis de la planta es actualmente la herramienta mas integral
para diagnosticar el estado nutrimental tanto de los cultivos anuales
como perennes, en el caso de estos últimos, por lo regular se
aprovecha para dar solución a los problemas nutrimentales hasta
el siguiente año (Dow y Roberts, 1982). La interpretación de
resultados del análisis debe de estar basado en la relación entre
la concentración elemental obtenida del análisis y la materia seca
actual o el rendimiento de la planta (Jones, 1985).
Desde 1920 se tienen antecedentes del empleo de esta técnica y del
uso del termino “análisis de savia” (Jones et al., 1991; Hochmuth,
1994), término que esta mal empleado porque la metodología
aplicada desde entonces no completa la verdadera extracción de
líquidos citoplasmáticos, vacuolares y savia. Por lo que savia es la
solución que fluye por los vasos cribosos del xilema del tallo principal
(savia bruta) y al que se trasporta por el floema (savia elaborada).
Ya en la actualidad se manejan términos como extracto celular de
pecíolo o jugo de la porción muestreada (Halvorson et al., 1975).
Hernando y Cadahia (1973) definen al análisis del extracto celular
como la extracción que se realiza a toda la planta u órgano de
29
Nutri-riego de melón cantaloupe (Cucumis melo cv. Cruiser)
referencia con el fin de determinar elementos minerales, orgánicos
y fracciones orgánicas. Así que en lo sucesivo será usado el nombre
de extracto celular y en su caso extracto celular de pecíolo (ECP).
Gilbert y Hardin (1927) obtuvieron valores de suficiencia para N, P
y K para extracto celular en varias hortalizas.
Obtención de muestras de ECP
La técnica del análisis de extracto celular de pecíolo (ECP) a grandes
rasgos es la siguiente: a) Muestreo y transporte al laboratorio
en el caso de ser necesario, b) En caso de que sea necesario el
transporte se requiere detener la actividad metabólica por medio
de temperatura fría y de un inhibidor, tal como éter etílico anhidro,
c) Extracción, esta se realiza a temperatura ambiente con ayuda
de aditamentos que van desde un exprimidor de ajos hasta una
prensa hidráulica, y d) Determinación de elementos deseados, por
una gran variedad de metodologías (Hochmuth, 1994).
Precauciones en el uso de la técnica de análisis de ECP
El análisis de extracto celular es una técnica rápida y simple de
análisis y no requiere de digestiones ni de equipo muy sofisticado;
sin embargo, se debe tener en cuenta algunos aspectos tales como:
elección adecuada del órgano de muestreo, tomar en cuenta la hora
de toma de muestra, si el cultivo no ha recibido alguna aplicación
de fertilizante, los posibles efectos que sobre la concentración del
extracto celular pudiera tener la humedad del suelo y la radiación
solar y además en el caso del potasio cuando esta en muy altas
concentraciones en el ECP este se debe diluir con sulfatos de
aluminio 0.075M al menos en cada caso (Castellanos et al., 1998).
Niveles óptimos de N-NO3 publicados en la literatura
Los niveles óptimos de N-NO3
obtenidos de investigaciones
realizadas por algunos centros de investigación para el análisis
de extracto celular para el cultivo del melón. Los valores con en
el contenido de N en forma de nitrato varían de 1200-1500 mg L-1
(etapa: Guías de 15 cm de largo) de 1000–1200 mg L-1
(fase: primer
botón) de 1000–1200 mg L-1
(etapa: Frutos de 3 a 5 cm de largo)
de 800–1000 mg L-1
(etapa: Frutos a medio madurar) de 600 – 800
30 Nutri-riego de melón cantaloupe (Cucumis melo cv. Cruiser)
mg L-1
(etapa: Primer corte). Lo que es para P y K no muestran
reporte de medición. Se ha reportado que los niveles de nitratos en
extracto celular disminuyen conforme avanza el ciclo de desarrollo
del cultivo (Castellanos et al., 1998).
DESCRIPCIÓN DE LA TECNOLOGÍA DE FERTIRIEGO
Prácticas Culturales:
Estas prácticas son las mismas que eventualmente se aplican en el
cultivo sembrado de manera normal sin fertiriego:
Barbecho con arado a una profundidad de al menos 30 cm
1.	
Cruza si el terreno lo amerita a juicio del técnico o
2.	
productor
Rastra y cruza éstas prácticas dependerán del estado del
3.	
terreno
Melgas, pueden construirse a 1.80 m para siembras al
4.	
centro de la cama, hasta 2.40 para siembra en el borde de
la cama
Acolchado, se prefiere utilizar acolchadora mecánica con
5.	
perforaciones ya prediseñadas
Siembra, se sugiere sembrar en húmedo con el sistema de
6.	
fertiriego ya funcionando a una distancia entre plantas de
0.30 m
Riegos,sepuederegarcada7días8horasopreferentemente
7.	
2 horas cada dos días, en cada riego se debe aplicar
fertilizantes de acuerdo a como se indica más adelante
Técnica de Fertiriego:
Cada componente de esta técnica, debe suministrarse con la debida
oportunidadyaquecomotantoelriegocomolanutriciónalserendosis
pequeñas, la planta puede estresarse si no recibe con oportunidad
estos insumos. La Figura 6 muestra los diferentes componentes que
son básicos para integrar un sistema de fertirrigación. El Cuadro
7 presenta la descripción de cada componente enumerado en la
Figura 6 con el tipo de material empleado y sus dimensiones. El
Cuadro 8 indica los materiales que complementan al sistema de
producción de melón con alta tecnología, así como los costos de
31
Nutri-riego de melón cantaloupe (Cucumis melo cv. Cruiser)
cada insumo referidos a una hectárea. La información proporcionada
aquí es general, ya que equipos como el cabezal de bombeo y de
filtración pueden ser utilizados en más de una hectárea sembrada.
El costo total de los componentes físicos del fertiriego, acolchado,
tubería, conexiones y cinta, es de $13,824.00 ha-1
.
Cuadro 7. Componentes del sistema de fertiriego en melón de alto 	
Número Descripción
1 Tubería o manguera de succión corrugada
2 Bomba centrífuga 3 HP 220 VAC
3 Válvula alivio 25 mm
4 Manómetro 0-7 glicerina
5 Medidor de volumen 38 mm
6 Filtro 120 mesch anillos
7 Válvula compuerta 50 mm
8 Válvula alivio 25 mm
9 Válvula sección 50 mm
10 Tubería distribución 50 mm (lateral)
11 Tubería conducción 50 mm (principal)
12 Cinta de riego (regante)
Figura 6. Técnica del fertiriego en el Valle de Apatzingán, Mich.
32 Nutri-riego de melón cantaloupe (Cucumis melo cv. Cruiser)
Cuadro 8. Componentes físicos del sistema de fertiriego en melóndel Valle de
Apatzingán, Mich. 2006
Descripción Cantidad
Costo U
($)
Costo
total
($/ha)
Acolchado plástico calibre 120
dos colores
4 rollos 1 420.00 5,680.00
Bomba estacionaria 4 HP 3.8
LPS
1 pza 5,500.00 5,500.00
Sistema de filtración 120 mesh 1 pza 2,300.00 2,300.00
Tubería y conexiones PVC C5 100 m 15.00 1,900.00
Válvulas, conexiones y
accesorios
Varias 1,800.00
Cinta 8 mill 3.8 LPH 5,555 m 0.80 4,444.00
Total (sin Incluir cabezal de
bombeo y filtración)
13,824.00
Programa Nutrimental:
La descripción del siguiente programa esta basado para suelos de
barro (vertisol pélico), los cuales son los predominantes de la Tierra
Caliente de Michoacán. El programa contempla la aplicación de una
fórmula de fertilización base a aplicar antes de la siembra, la cual
es con la dosis, 90-100-100, de N-P2
O5
-K2
O en kg ha-1
, así como el
programa de riego con cinta 2.5 LPH calibre 8 mill y regando a una
tensión matricial de 30 cb como máximo (Cuadro 9).
Respuesta nutrimental del cultivo en melón
Para determinar el efecto de diferentes dosis nutricionales en la
disponibilidad nutrimental en suelo, la nutrición de la planta y el
efecto en la calidad y rendimiento de fruto, se establecieron dos
experimentos al inicio de marzo de los años 2006 y 2007, con la
dosificación de fertilizantes N, P y K. Las dosis fueron las siguientes:
para N 0, 60, 120, 180 y 240 kg ha-1
, en P2
O5
0 y 100 y para K2
O 0 y
200 kg/ha-1
, la descripción de tratamientos se muestra en el Cuadro
10. En ambos experimentos se adicionaron 3 tratamientos con la
dosis de fertilización sugerida por Tapia et al (2001), de 180-100-
200, los tratamientos adicionales consistieron en consecutivamente
los tratamientos 8, 9 y 10:
33
Nutri-riego de melón cantaloupe (Cucumis melo cv. Cruiser)
Aplicaciones foliares de activadores metabólicos orgánicos
-	
(ácido amino butírico al 5%) en dosis de 300 g ha-1
, al inicio
de la floración y al inicio de la fructificación, además se
agrego el foliar inorgánico multinutriente (N, P, K, Zn, B, Mg
(5-0.4-2.5-0.1-0.02-0.3) en dosis de 2 kg 100 L-1
agua cada
8 días desde los 15 días de nacido.
Aplicacióndefoliarorgániconutricional(guanodemurciélago
-	
líquido al 22%), en dosis de 2.0 L ha-1
a los 20 días de
nacido, al inicio de floración y al inicio de fructificación, El
programa incluye la aplicación al suelo en dosis de 3 L ha-1
al inicio de floración y al inicio de fructificación.
Aplicación foliares hormonales (citocinina en concentración
-	
de 2.3 g litro-1
más giberelina en concentración de 40 mg
litro-1
), en dosis de 0.25 litros 100 litros-1
de agua, al inicio de
floración y en crecimiento de fruto, más fertilizantes foliares
macro y micronutrientes similar al tratamiento 8.
Cuadro 9. Programa nutrimental y de riego (N-P2
O5
-K2
O, kg ha-1
) a 	 aplicar
en melón con fertiriego en el Valle de Apatzingán.
Fase de
desarrollo
Días del
ciclo
vegetativo
N P2
O5
K2
O
Tiempo
de
riego
(horas)
Volumen
aplicado
(m3
/ha)
Pre-siembra 0 90 100 100 13 274.4
Siembra a
inicio flor
25 22.5 0 0 27 569.9
Inicio flor-
acomodo
guía
35 22.5 0 0 12 253.3
Acomodo
guía-inicio
fructificación
45 22.5 0 50 10 211.1
Inicio
fructificación-
inicio cosecha
65 22.5 0 50 30 633.2
Inicio
cosecha - Fin
de cosecha
90 0 0 0 33 696.6
Total 90 180 100 200 125 2,638.5
Fuente: Rico et al (2007)
34 Nutri-riego de melón cantaloupe (Cucumis melo cv. Cruiser)
Cuadro 10. Lista de tratamientos evaluados en melón con alta 	
tecnología de producción del Valle de Apatzingán.
Número de
tratamiento
N
P2
O5
K2
O Observaciones
1 0 100 200
2 60 100 200
3 120 100 200
4 (sugerido) 180 100 200
5 240 100 200
6 180 0 200
7 180 100 0
8 180 100 200
Ácidos orgánicos más
inorgánicos minerales
9 180 100 200 Orgánicos
10 180 100 200
Hormonales más foliares
inorgánicos minerales
La fertilización de fondo en todos los tratamientos fue el 50% del
N de acuerdo a tratamiento, el 100% del P2
O5
, y el 50% del K2
O.
Las fuentes de fertilizantes aplicados fueron Urea, superfosfato de
calcio triple y sulfato de potasio. Las dosis experimentales de cada
tratamiento fueron aplicadas de acuerdo al programa nutrimental
explicado en el Cuadro 9 en la proporción correspondiente a cada
tratamiento.
DISEÑO EXPERIMENTAL
Los tratamientos se distribuyeron bajo diseño bloques al azar con 4
repeticiones. Cada tratamiento se sembró en tres camas de 1.80 m
de ancho y cinco metros de largo. Las plantas se sembraron a 30
cm de distancia con la variedad Cruiser. La parcela útil experimental
fue el surco central. Cada unidad experimental fue bloqueada con
válvulas para evitar el cruzamiento de tratamientos y asegurar la
aplicación específica del tratamiento nutrimental. El manejo de
los tratamientos fue el mismo en todos los casos para control y
prevención de enfermedades y prácticas culturales, excepto en lo
referente a la nutrición y tratamientos adicionales.
Variables evaluadas
Las variables registradas en ambos experimentos fueron
disponibilidad nutrimental NO
-	 3
, P y K en solución del suelo
(sólo en 2007).
35
Nutri-riego de melón cantaloupe (Cucumis melo cv. Cruiser)
análisis nutricional N- NO
-	 3
, P y K en extracto celular de
pecíolo en inicio de floración, inicio de fructificación e inicio
de cosecha.
análisis foliar en base a peso seco de N, P y K en hojas en
-	
las mismas fechas anteriores y análisis de fruto.
Rendimiento de fruto por calidad, exportación, nacional y
-	
comercial (exportación + nacional), “fruto pachanga” no fue
considerado para análisis.
Concentración de sólidos solubles en fruto de exportación
-	
en el primer y tercer corte.
Producción de biomasa aérea y radicular en base a peso
-	
seco.
Costos de producción de cada tratamiento.
-	
Base estadística de la información experimental
La información experimental se sometió a análisis estadístico para
las diferentes variables evaluadas, para probar el efecto de las dosis
nutricionales en la magnitud de las variables consideradas. Análisis
de varianza para lo relacionado con:
disponibilidad nutrimental en suelo
-	
nutrición foliar y en ECP
-	
rendimiento y calidad de fruto
-	
producción de materia seca
-	
Para explicar el desempeño de cada tratamiento en función de la
nutrición y de la disponibilidad nutrimental se ajustaron modelos de
regresión para obtener concentraciones óptimas que maximicen
el rendimiento y la calidad de fruto y el estudio de las relaciones
entre la disponibilidad nutrimental y la nutrición del cultivo y la
concentración nutrimental in situ y la evaluada en laboratorio en
base a peso seco.
Respecto al análisis financiero de la información experimental, se
siguió la metodología propuesta por el Centro Internacional de
Mejoramiento de Maíz y Trigo (CIMMYT, 1985), para el análisis
económico de experimentos agronómicos para la investigación en
fincas tomando como ejemplo básico lo sugerido en Bonilla (1994).
Básicamente consiste en:
36 Nutri-riego de melón cantaloupe (Cucumis melo cv. Cruiser)
Desarrollo del
1.	 presupuesto parcial para el experimento.
Análisis Marginal.
2.	
Evaluación de Costos Fijos y Costos Variables (CV).
3.	
Beneficios brutos y beneficios netos (BN).
4.	
Comparación de costos variables y beneficios netos.
5.	
Obtención de la tasa de retorno marginal (TRM):
6.	
RESULTADOS EXPERIMENTALES
Efecto en variables experimentales
Los análisis de varianza mostraron efecto significativo de las dosis
nutrimentales ensayadas en los dos años de estudio (Cuadro 11).
En el año 2007 el efecto fue en las variables de calidad de fruto,
con valores de F, como rendimiento de fruto bruce (12.3**), fruto
nacional (2.72*), fruto comercial (10.96**), más no en concentración
de sólidos solubles (1.19 n.s.). En 2006 el efecto fue fruto bruce
(3.5**) y comercial (3.2**) más no en fruto nacional y sólidos
solubles. En 2007, también se tuvo efecto en la concentración de
N-NO3
(3.7**), en extracto celular de peciolo (ECP) en floración y en
inicio de cosecha (2.3*). No se tuvo efecto nutrimental en N-NO3
en
el inicio de fructificación ni en el contenido de K en ECP.
La disponibilidad de nutrimentos en solución del suelo no fue
afectada para el N pero si para el pH de la solución y el contenido
de K con 1.6, 2.06* y 2.0, respectivamente. Respecto a la respuesta
en las características agronómicas del cultivo como longitud de guía
si se detectó diferencia (2.73 *) y en la producción de materia seca
foliar (2.34 *), pero no en la radicular (0.64 n.s.).
El contenido nutricional total (%) también tuvo efecto debido a los
tratamientos nutricionales. En N se encontró diferencia significativa
(p<0.10) en el inicio de la fructificación y al inicio de la cosecha,
mientras que para K sólo se tuvo efecto al inicio de la fructificación
(p<0.10). Para la pulpa del fruto, se encontró efecto significativo en
37
Nutri-riego de melón cantaloupe (Cucumis melo cv. Cruiser)
N (3.7**) pero no en K (1.6) (Cuadro 12). En este sentido Lima et al
(2007), tampoco encontraron respuesta a K en este cultivo.
Rendimiento y calidad de fruto
El promedio de rendimiento y calidad de fruto para cada año de
estudio se muestran en el Cuadro 13. El tratamiento de mayor
rendimiento por calidad de exportación en 2006 fue el 10 (180-
100-200 más hormonales) con 66.6 ton ha-1
, sin embargo, fue igual
estadísticamente al tratamiento 2 (60,100-200) con 46.3 ton ha-1
, de
hecho en este año el único tratamiento diferente en esta variable fue
el 1 (00-100-200), con 34 ton ha-1
. En 2007, las tendencias fueron
similares en cuanto al desempeño de los tratamientos, siendo el
de mayor rendimiento bruce otra vez el 10 y 8 (180-100-200 más
ácidos orgánicos) con similares 49.5 ton ha-1
, separándose de este
valor el 1 y el 2 con 33.7 ton ha-1
, y 14.7 ton ha-1
, respectivamente.
En el rendimiento comercial, las tendencias fueron las mismas
con respecto al 2006, pero en 2007 el mejor tratamiento fue el 8,
destacando también el 10 y el 9.
38 Nutri-riego de melón cantaloupe (Cucumis melo cv. Cruiser)
Cuadro 11. Análisis de varianza de las variables consideradas en melón con
alta tecnología de producción en el Valle de Apatzingán en dos
años de estudio.
Variable gl t CMT CME gl e Fc Pr>F
Fruto 2006
Bruce 9 321581327 93097744 3.5** 0.01
Nacional 9 15010792 11811066 1.4
Comercial 9 253233021 80236792 3.2** 0.01
Sólido
solubles
9 1.4235 1.2134 1.2
Fruto 2007
Bruce 9 452844568 36708352 27 12.3** 0.001
Nacional 9 22819538 559228767 27 2.72 * 0.02
Comercial 9 441389351 40494412 27 10.9** 0.001
Sólido
solubles
9 1.3722 1.1555 27 1.19 0.34
ECP 2007
Floración
N-NO3
9 40119 10854 27 3.7** 0.004
K 9 43222 106629 27 0.41 0.92
Inicio fruto
N-NO3
9 79469.2 136253.6 27 0.58 0.79
K 9 617777 897111 27 0.69 0.71
Inicio
cosecha
N-NO3
9 28946.9 12435.1 27 2.3* 0.04
K 9 3753.9 4362 27 0.86 0.57
Solución
suelo
pH 9 0.3144 0.1529 81 2.06* 0.04
NO3
9 720557 12978 81 1.6 0.13
K 9 24047 11995 81 2.0* 0.05
Longitud
guía
9 0.2979 0.1091 27 2.73* 0.02
Materia
seca
Foliar 9 9.192 3.92 27 2.34* 0.04
Radicular 9 84.2 130.8 27 0.64 0.75
gl t, gl e: grados de libertad de tratamientos y error, respectivamente, CMT, CME:
cuadrado medio de tratamiento y del error, respectivamente. ECP extracto celular
de pecíolo.
Cuadro 12. Análisis de varianza del contenido nutricional foliar (%) en melón
con alta tecnología de producción en el Valle de Apatzingán en
2007.
Variable gl t CMT CME gl e Fc Pr>F
Inicio fruto
N 9 0.19 0.1005 27 1.9 0.09
K 9 0.054 0.028 27 1.9 0.09
Inicio cosecha
N 9 0.204 0.11 27 1.9 0.09
K 9 0.36 0.27 27 1.3 0.18
Pulpa
N 9 0.349 0.095 27 3.7** 0.004
K 9 0.0356 0.273 27 1.6 0.13
gl t, gl e: grados de libertad de tratamientos y error, respectivamente, CMT, CME:
cuadrado medio de tratamiento y del error, respectivamente.
39
Nutri-riego de melón cantaloupe (Cucumis melo cv. Cruiser)
En los dos años de estudio, la aplicación de tratamientos adicionales,
con foliares orgánicos e inorgánicos, tuvo efecto significativo con
respecto a la misma dosis pero sin utilización de estos insumos,
este efecto fue más pronunciado en 2007 que en 2006 y sobretodo
en el rendimiento de primera calidad. Al agregarse la producción de
calidad nacional, el efecto es más difuso pero se mantiene en estos
tratamientos adicionales, sobretodo en 2007.
El elemento nutritivo más importante para óptima producción de
fruto, fue el N (Cuadro 13), en los dos años de estudio, se aprecia
que el rendimiento de fruto en ambas calidades, es directamente
proporcional a la aplicación de N. No obstante, en 2006 la respuesta
es diferente ya que no se tuvo un efecto inhibitorio del rendimiento,
ya que aunque la tasa es menor en las altas dosis, el rendimiento se
incrementa hasta la última dosis (61.0 ton ha-1
). Lo contrario ocurrió
en 2007, donde el rendimiento en ambas calidades se inhiben con
la dosis más alta de nitrógeno, ya que de 44.3 y 56.4 ton ha-1
, con la
dosis 180-100-200, pasa a 42.6 y 51.4 ton ha-1
, con la dosis 240-100-
100 para bruce y comercial respectivamente. Estos resultados son
importantes si se toma en cuenta que algunos productores pueden
aplicar más de 400 kg de nitrógeno en este cultivo (Pérez et al.,
2004), lo cual carece de efecto en rendimiento y calidad, pudiendo
ser incluso detrimental como en este trabajo se aprecia.
Cuadro 13. Rendimiento de fruto en melón en calidad exportación 	
y comercial en diferentes dosis de fertilización.
Fruto bruce ton ha-1
Fruto Comercial ton ha-1
Trat 2006 2007 2006 2007
1 00–100-200 34.0 b 14.7 d 44.2 b 26.5 d
2 60–100–200 46.3 ab 33.7 bc 53.1 ab 40.9 cd
3 120–100–200 53.2 ab 43.8 abc 63.7 ab 52.0 abc
4 180–100–200 50.8 ab 44.3 abc 57.7 ab 56.4 abc
5 240–100–200 61.0 a 42.6 abc 68.2 a 51.6 abc
6 180– 00–200 60.7 a 33.4 c 64.9 ab 46.6 bc
7 180–100– 00 55.4 ab 42.8 abc 60.9 ab 56.3 abc
8 (4) + ácidos
orgânicos foliares
54.5 ab 49.6 a 61.8 ab 62.1 a
9 (4) + orgánicos 55.2 ab 48.1 a 62.6 ab 56.0 ab
10 (4) + inorgánicos 66.6 a 49.5 a 72.6 a 59.0 ab
DMS (Tukey 5%) 23.4 14.7 21.8 15.4
Nota: cantidades con la misma letra en columnas, iguales (p≤0.05)
40 Nutri-riego de melón cantaloupe (Cucumis melo cv. Cruiser)
Respecto al efecto del P y el K en rendimiento, en el primer año de
estudio, no hay respuesta a ambos nutrimentos, por el contrario,
cuando no se aplicaron estos elementos dados por el tratamiento 6
(100-00-200) y 7 (100-100-00), los rendimiento son más altos con
60.7 y 55.4 ton ha-1
, en calidad bruce, para respectivos tratamientos,
contra 50.8 y 57.7 ton ha-1
, en el tratamiento 100-100-200, es decir,
el rendimiento fue inhibido por las aplicación de P y K en 2006.
En 2007 la situación fue diferente, al menos para el P y en
menor grado para el K, el tratamiento 4 (180-100-200) tuvo mejor
rendimiento de calidad exportación y comercial que los tratamientos
sin P y K ya que de tener 44.3 y 56.4 ton/ha para ambas calidades,
se redujo a 33.4 y 46.6 en 180-00-200 (sin P) y 42.8 y 56.3 ton/ha
en 180-100-00 (sin K). Como se aprecia, en este cultivo el potasio
aplicado al suelo o en fertiriego, aún no tiene influencia clara en el
rendimiento. Estos resultados contrastan con lo obtenido por Morales
et al (2007), quienes encontraron respuesta a las aplicaciones con
K, pero la diferencia de es que en este caso es un suelo franco-
arenoso, diferente del vertisol arcilloso del Valle de Apatzingán.
Relaciones nutrimentales en melón con diferentes
niveles nutricionales
Esta parte del trabajo muestra como la aplicación de diferentes
niveles nutrimentales en el melón con alta tecnología de producción
de la Tierra Caliente de Michoacán, puede afectar la disponibilidad
de nutrimentos en el suelo y las propiedades químicas en la zona
radicular. Asimismo se observan los efectos de estas propiedades
del suelo en la condición nutrimental de la planta, en la producción
de biomasa y en el rendimiento y la calidad del fruto.
Efecto en la disponibilidad nutrimental
El monitoreo sistemático de la solución del suelo, permitió detectar
que el pH y el contenido de K son afectados por las dosis de
fertilización pero no el contenido de N-NO3
. Un posible efecto de
la fertilización es la reducción significativa del pH de la solución del
suelo como se aprecia en el Cuadro 14, que con las aplicaciones de
fertilizantes se logra reducir la alcalinidad del suelo, lo cual provee un
mejor medio para la disponibilidad de nutrientes a nivel radicular.
41
Nutri-riego de melón cantaloupe (Cucumis melo cv. Cruiser)
Destaca también el hecho de que la disponiblidad de N-NO3
en la
solución del suelo no se incremente con el aumento de la dosis
de nitrógeno aplicado (Cuadro 14), como cabría esperar por el
gradiente nutricional. Ese efecto si fue posible detectar con el K, ya
que el tratamiento 7 (180-100-00), presenta la menor disponibilidad
de potasio (57.1 ppm), sin embargo, los tratamientos 1 (00-100-
200) y 10 (180-100-200), que si contienen potasio, también
tuvieron bajos niveles con 77.6 ppm y 68.0 ppm, respectivamente.
Esto en el caso del tratamiento 1 puede ser explicado porque en
cantidades adecuadas el N puede tener una acción sinérgica con la
disponibilidad de potasio (Castellanos et al., 1998), en este caso la
ausencia de N pudo tener efecto desfavorable en la disponibilidad
del potasio.
Cuadro 14. Características nutricionales promedio de la solución del suelo
en melón bajo diferentes dosis de fertilización en el Valle de
Apatzingán, 2007.
Núm. Tratamiento pH NO3
K
1 00–100-200 8.08 ab 102.5 77.6 b
2 60–100–200 8.25 a 99.0 123.5 ab
3 120–100–200 8.03 ab 92.8 109.1 ab
4 180–100–200 7.78 ab 99.9 104.9 ab
5 240–100–200 7.68 ab 129.4 106.7 ab
6 180– 00–200 7.70 b 167.2 196.4 a
7 180–100– 00 7.86 ab 107.4 57.1 b
8
(4) + ácidos orgânicos
foliares
7.94 ab 130.2 96.1 ab
9 (4) + orgánicos 7.84 ab 232.8 201.2 a
10 (4) + inorgánicos 7.86 ab 176.9 68.0 b
DMS (Tukey 5%) 0.569 165.9 115.1
Nota: cantidades con la misma letra en columnas, iguales (p≤0.05).
Relación disponibilidad nutricional y contenido
nutrimental en ECP
El primer efecto de la disponibilidad de N-NO3
en la solución del
suelo dado por el suministro diferencial de nutrientes, fue en el
contenido de N-NO3
en el extracto celular del pecíolo (ECP). Los
valores mostrados en la Figura 7, revelan que hubo diferencia
significativa entre tratamientos, el modelo presenta un buen ajuste a
42 Nutri-riego de melón cantaloupe (Cucumis melo cv. Cruiser)
los datos experimentales (r2
= 0.63) y su optimización indica que con
180 ppm de N-NO3
en la solución del suelo, se obtendría la máxima
concentración de N-NO3
en ECP.
Por fase de desarrollo, la condición nutrimental en ECP también
fue evaluada en 2006 y 2007 (Cuadro 15). La obtención de estas
funciones permite obtener valores óptimos de N-NO3
en solución
del suelo para cada fase de desarrollo del cultivo. Transformados
debidamente los valores de NO3
a N-NO3
en solución del suelo, en
la etapa de floración el nivel optimo en el suelo de N-NO3
es de 43.8
ppm de N-NO3
, en el inicio de fructificación es de 41.1 ppm y en el
inicio de la cosecha es de 39.3. La aplicabilidad de estas funciones
es más firme en la etapa de floración e inicio de la fructificación por
sus altos coeficientes de ajuste, estadísticamente significativos (R2
=
0.73 y 0.56 respectivamente). Cabe mencionar que estos valores,
son relativamente bajos como para causar problemas ambientales
o de contaminación en este tipo de climas y suelos (Mora et al.,
2005).
Figura 7 Concentración nutrimental N-NO3
en extracto celular de pecíolo
(ECP) en melón por efecto de la concentración de NO3
en solución
del suelo.
43
Nutri-riego de melón cantaloupe (Cucumis melo cv. Cruiser)
Cuadro 15. Relación entre la concentración de NO3
en la solución del suelo
(x) y el contenido de N-NO3
en ECP (y), en diferentes fases de
desarrollo del melón.
Fase de
desarrollo
Función R2
Floración y = -0.0209 x2
+ 8.07 x - 355.18 0.73**
Inicio fruto y = -0.0236 x2
+ 8.58 x - 443.51 0.56 *
Inicio cosecha y = -0.0212 x2
+ 7.35 x + 28.254 0.12
Total y = -0.0223 x2
+ 8.04 x – 247.96 0.63*
*P < 0.05, **P < 0.01
La condición nutrimental de la solución del suelo en cada tratamiento
estudiado, afectó también aunque en menor grado el contenido de
N-NO3
en el fruto, en la Figura 8 se observa que el efecto en la
concentración de N-NO3
tuvo un coeficiente de ajuste de 0.54 mejor
que el ajuste en la longitud de la guía con 0.36. La optimización de
la función indica que con un valor de 181.9 ppm de N-NO3
se logra
la maximización de la concentración de N-NO3
en fruto y de 218
ppm de N-NO3
producen el mismo efecto en la longitud de la guía.
Figura 8. Efecto de la disponibilidad de N-NO3
en la solución del suelo, en la
concentración de N-NO3
en fruto y en la longitud de la guía de melón.
44 Nutri-riego de melón cantaloupe (Cucumis melo cv. Cruiser)
Relación contenido nutricional y calidad de fruto de melón
El contenido nutrimental en ECP a su vez, afectó la producción y
la calidad de fruta de manera significativa. El contenido de sólidos
solubles por efecto de la condición nutrimental en ECP (N-NO3
),
tuvo un efecto lineal positivo con una tasa de 0.055 (t=2.7*, p<0.02),
de incremento en el contenido de azúcar, sobre una base de 10.1.
Ello indica que a mayor contenido de N-NO3
en ECP el sabor de la
fruta es más azucarado (Figura 9).
Figura 9. Efecto del contenido de N-NO3 del ECP en la calidad y rendimiento
de fruto de melón en el Valle de Apatzingán (las barras indican el
error estándar).
45
Nutri-riego de melón cantaloupe (Cucumis melo cv. Cruiser)
El rendimiento y la calidad de fruto en sus modalidades exportación
y comercial fueron afectados significativamente por el contenido de
N-NO3
en ECP. Respecto a la producción de fruto de exportación, los
coeficientes de regresión fueron significativos con 3.39* (p<0.011)
para el componente lineal y de 3.2* (p<0.015) para el término
cuadrático. En cuanto a la producción de fruto comercial también
se detectó diferencia estadística pero sólo en el componente lineal
con 2.01* (p<0.08), mientras que el componente cuadrático tuvo
sólo 1.85 (p<0.11).
La ventaja de estos modelos matemáticos es que puede maximizarse
la concentración de N-NO3
para óptimo rendimiento de fruto de
exportación (alta calidad) y nacional (exportación + nacional). Estos
valores son de 409 ppm para la exportación y de 418 ppm para
nacional.
La producción de biomasa en los diferentes tratamientos tuvo efecto
importante en el rendimiento de fruto (Cuadro 16). Un mayor efecto
se tiene en el rendimiento de fruto de exportación (r2
= 0.61) que
en la producción comercial (r2
=0.57), sin embargo, ninguno de los
coeficientes de las ecuaciones fueron significativos.
Cuadro 16. Relación entre la producción de biomasa y el rendimiento de fruto
de melón en el Valle de Apatzingán.
Función R2
y = -1867.4 x2
+ 67577 x – 565767 0.61*
y = -1649.6 x2
+ 59228 x – 475723 0.57
*p < 0.05, **p < 0.01
Relación concentración N total foliar y rendimiento de fruto
Las concentraciones de nitrógeno total (%), evaluado al inicio de la
fructificación, tuvieron también efecto significativo en la expresión
del rendimiento de fruto tanto de exportación como en calidad
nacional (Figura 10). Claramente, se observa el efecto del contenido
de nitrógeno foliar total, donde ambas relaciones son altamente
significativas, r>0.90** (p<0.01), tanto para el rendimiento de fruto de
46 Nutri-riego de melón cantaloupe (Cucumis melo cv. Cruiser)
exportación como de calidad comercial (exportación más nacional),
en ambas funciones se aprecia como a medida que se incrementa
el valor del contenido de N foliar total (%), también el rendimiento
de fruto en ambas calidades se incrementa, hasta un valor máximo
que en las dos calidades coincide de manera semejante ya que
para exportación el valor que maximiza el rendimiento es 2.42
% de nitrógeno foliar mientras que para calidad comercial es de
2.41%. Estas funciones matemáticas coinciden por su forma con
las encontradas para el análisis de ECP (Figura 9), incluso en la
inhibición del rendimiento a mayores valores de la variable nitrógeno
tanto nítrico como total.
Figura 10. Relación contenido N total (%) en fructificación y rendimiento
de fruto en dos calidades de melón con fertiriego y acolchado
plástico. (las barras acotadas indican el error estándar).
Análisis económico de los resultados en melón con fertiriego:
Una de las principales características de la técnica de fertiriego es
que al proporcionar bajas dosis de agua y nutrimentos, la planta
satisface sus requerimientos nutricionales y de agua conforme su
47
Nutri-riego de melón cantaloupe (Cucumis melo cv. Cruiser)
crecimiento avanza, el suelo no está saturado y las condiciones
ambientales a nivel radicular son las adecuadas para que el cultivo
muestre un alto potencial productivo, al tener los nutrimentos
fácilmente disponibles, en solución y el agua a bajas tensiones de
retención, usualmente menores de 40 cb.
Los costos fijos considerados para este cultivo, se muestran en
el Cuadro 17, el cual engloba todas las actividades necesarias y
fijas para la producción del cultivo, sin intromisión de los insumos o
actividades de cada tratamiento.
En el Cuadro 18 se muestran los costos de producción inherentes
al cultivo del melón con fertiriego, sin fertiriego y en fertiriego con
foliares (Costos Variables). Se desglosa con precisión cuanto
se gasta en cada tratamiento en los conceptos de fertilizantes,
tratamientos adicionales, sistema de fertiriego, acolchado plástico y
las labores manuales de cada tratamiento, así como los costos de
cosecha, entendiendo como más cosecha más costo de flete y de
recolección.
En el Cuadro 19 se muestra el efecto de la aplicación del fertiriego en
el rendimiento y la calidad de fruto en el cultivo de melón Cantaloupe,
híbrido Cruiser F1 en un promedio de dos años de estudio. Como
se aprecia la técnica de fertiriego paga el valor de la inversión y
produce la más alta tasa de retorno, al comparar los resultados del
Cuadro 16 y el Cuadro 17, se aprecia que es capaz de producir la
más alta ganancia con beneficios netos de $31,521.57 (tratamiento
4), comparados con el testigo sin fertiriego que apenas produce
$17,774.00, pero con costos de producción más bajos.
El análisis económico incluye los costos variables intrínsicos a cada
tratamiento como diferente valor en la inversión por la cantidad de
fertilizante utilizado y la inversión en los costos de los tratamientos
adicionales. Así el tratamiento con mayor inversión (tratamiento
10, 180-100-200 más foliares inorgánicos), requirió $65,061.33 por
hectárea pero también produjo la mayor utilidad con $37,352.70
por hectárea. En general excepto el tratamiento 1 (00-100-200),
todos los tratamientos producen mayor utilidad económica que el
tratamiento sin fertiriego, incluso con bajas dosis nutricionales, la
utilidad es alta, como el caso del tratamiento 2 (60-100-200), con
$21,444.83 por hectárea.
48 Nutri-riego de melón cantaloupe (Cucumis melo cv. Cruiser)
Cuadro 17. Costos Fijos de producción del cultivo del melón con y sin
fertiriego en el Valle de Apatzingán. Ciclo Otoño-Invierno 2005-06-
07.
Concepto Costo ($/ha)
Barbecho y cruza 1,400
Rastreo (2 pasos) 700
Encamada 480
Desterrone 240
Riegos 1,500
Semilla híbrida 4,800
Siembra 960
Desahije 240
Alineación de guías 600
Borneo de fruta 960
Aplicaciones fitosanitarias 1,700
Pesticidas 5,000
Total C.F 18,580.00
49
Nutri-riego de melón cantaloupe (Cucumis melo cv. Cruiser)
Tratamiento
CV
fertilización
CV
foliares
CV
cosecha
Limpias
Acolchado
Sistema
Fertiriego
Total
CV
00–100-200
1356.00
12366.44
600
3600.00
13900.00
31,822.44
60–100–200
1876.00
15656.52
600
3600.00
13900.00
35,632.52
120–100–200
2396.00
18621.15
600
3600.00
13900.00
39,117.15
180–100–200
2916.00
18526.36
600
3600.00
13900.00
39,542.36
240–100–200
3436.00
19550.73
600
3600.00
13900.00
41,086.73
180–
00–200
2916.00
18328.89
600
3600.00
13900.00
39,344.89
180–100–
00
2916.00
19277.68
600
3600.00
13900.00
40,293.68
Adicionales
(4)
+ácidos
orgânicos
foliares
2916.00
5250.00
20203.72
600
3600.00
13900.00
46,469.72
(4)
+
orgánicos
2916.00
1200.00
19699.63
600
3600.00
13900.00
41,915.63
(4)
+
inorgánicos
2916.00
4300.00
21165.63
600
3600.00
13900.00
46,481.63
Testigo
sin
fertiriego
180-100-200
2916.00
0.00
10850.00
2400.00
0.00
0.00
16,166.00
Cuadro
18.
Costos
variables
(CV)
($/ha),
por
tratamiento
nutrimental
en
melón
con
alta
tecnología
de
producción
del
Valle
de
	
	
Apatzingán.
50 Nutri-riego de melón cantaloupe (Cucumis melo cv. Cruiser)
Cuadro
19.
Rendimiento
de
fruto
comercial
y
beneficios
netos
en
melón
con
fertiriego
en
el
Valle
de
Apatzingán,
Mich.
promedio
de
dos
años
2006-07.
Nutrición
Export.
(ton/ha)
Nal
(ton/ha)
Total
(ton/ha)
Valor
producción
($/ha)
Costos
de
producción
($/ha)
Beneficios
netos
($/ha)
00-100-200
24.3
10.9
39.9
59,837.60
50,402.44
9,435.16
60-100-200
40.0
6.9
50.5
75,757.35
54,212.52
21,544.83
120-100-200
48.5
9.4
60.1
90,102.35
57,697.15
32,405.20
180-100-200
47.5
9.5
59.8
89,643.68
58,122.36
31,521.32
240-100-200
51.8
8.0
63.1
94,600.29
59,666.73
34,933.57
180-00-200
47.0
8.6
59.1
88,688.18
57,924.89
30,763.29
180-100-00
49.1
9.5
62.2
93,279.11
58,873.68
34,405.43
Adicionales
180-100-200
+
ácidos
orgánicos
52.0
9.9
65.2
97,759.92
65,049.72
32,710.20
180-100-200
+
foliares
orgánicos
51.7
7.6
63.5
95,320.80
60,495.63
34,825.17
180-100-200+
foliares
inorgánicos
58.1
7.7
68.3
102,414.33
65,061.63
37,352.70
Testigo
sin
fertiriego
180-100-200
30.0
5.0
35.0
52,500.00
34,746.00
17,754.00
Nota:
precio
medio
rural
$1.50
kg
de
fruto
comercial,
inferior
al
reportado
por
SIAP
(2007),
para
el
periodo
1999-2005
$2.20/kg
51
Nutri-riego de melón cantaloupe (Cucumis melo cv. Cruiser)
El nutrimento con mayor impacto económico lo constituye el N, ya
que entre la no aplicación y la dosis máxima, media un beneficio
de $23,500.00 por hectárea y su efecto se nota incluso en la dosis
más baja con un diferencial de aproximadamente $12,000.00 por
hectárea. El P no tiene un efecto en la rentabilidad del cultivo, con
este nutriente (180-100-200), o sin él (180-00-200), el beneficio
es casi el mismo ($900.00 con su aplicación), mientras que el
potasio su aplicación representa un efecto negativo ya su utilización
(180-100-200) produjo $31,521.00 mientras que su no utilización
(180-100-00), produjo mayor utilidad $34,405.43 por hectárea. Se
requiere en este aspecto mayor investigación respecto al efecto de
este elemento.
La aplicación de fertilizantes adicionales, se justifica en el aspecto
económico de los resultados. La adición de compuestos orgánicos
e inorgánicos, aplicados vía foliar y al suelo produjo mayor beneficio
económico en todos los casos, la inversión se paga y además se
logra mayor rentabilidad. Los resultados indicaron que sobre la base
del tratamiento sin foliares (180-100-200), la utilización de foliares
produce ganancias extra por $900.00 en el tratamiento 8 (ácidos
orgánicos más foliares inorgánicos), de $3,300.00 con el uso de
foliares orgánicos (orgánicos) y de $5,800.00 con el tratamiento 10
(hormonales y foliares inorgánicos.
Análisis de Dominancia
Con la información mostrada en los Cuadros 17 y 18 se puede
observar que el testigo sin fertiriego tiene los costos variables más
bajos con $16,166.00 y a partir de aquí, todos los tratamientos con
fertiriego tienen los costos variables más altos y con excepción del
tratamiento 1, ningún tratamiento tiene menores beneficios netos
que el testigo sin fertiriego, por lo que solo el tratamiento 1 (00-100-
200) es dominado (Figura 11). Claramente se aprecia que excepto
el tratamiento 1, los demás tratamientos se encuentran por encima
del testigo, con lo que la aplicación de alta tecnología en este cultivo
con acolchado y sistema de fertiriego, justifica la inversión y supera
en rentabilidad al beneficio proporcionado por el cultivo sin nuevas
tecnologías.
52 Nutri-riego de melón cantaloupe (Cucumis melo cv. Cruiser)
Tasa de Retorno Marginal
En este aspecto se calcularon las relaciones mostradas en la
ecuación (1), los resultados se muestran en la Figura 12, en el que
se aprecia la tasa de incremento en porcentaje de los beneficios
netos, sobre el incremento en los costos variables, lo cual puede ser
un factor de elección de tratamiento para melón con alta tecnología y
que justifica el uso de esta tecnología para incrementar las utilidades
económicas, con respecto al no uso. Así se tienen TRM superiores
al 60% como en los tratamientos 3, 5, 7 9 y 10. Es importante estas
relaciones porque con respecto a las TMR, algunos tratamientos
adicionales como el 8, pueden no justificarse ya que tratamientos
con bajas dosis nutricionales (120-100-200) tienen TRM de 64%,
superiores al T8 con TRM de sólo 57.7%.
Figura 11. Análisis de dominancia de tratamientos nutricionales en melón con
y sin fertiriego del Valle de Apatzingán.
53
Nutri-riego de melón cantaloupe (Cucumis melo cv. Cruiser)
DISCUSIÓN GENERAL
Los experimentos realizados a lo largo de los dos años de estudio,
permitieron comprobar la enorme influencia de la fertilización en el
cambio en rendimiento de fruto y en su calidad. No se concibe la
producción de este cultivo en sistemas de alta tecnología, sin el
concurso de dosificaciones de fertilizantes para el logro de fruto
de calidad y altos rendimientos, lo cual es claramente contrario a
lo que ocurre en otras regiones meloneras del país (Pérez et al.,
2004). Aunque el uso en si del fertiriego y el acolchado plástico es
una garantía de mejoramiento de las condiciones ambientales para
incrementar el potencial productivo de los cultivos (Manrique, 1995,
Farías y Orozco 1997), el aprovisionamiento nutrimental puede en
su momento influir más en el rendimiento y la calidad.
El efecto significativo de la condición nutrimental, se hizo patente
en varias de las variables evaluadas, propiedades químicas de la
solución del suelo, aunque extrañamente no se detectó diferencia
en los contenidos de N-NO3
en los tratamientos evaluados, ya que
cabría esperar que el tratamiento 1 (00-100-200), presentara los
valores más bajos de este compuesto más no fue así (23.3 ppm),
mientras que el tratamiento más contrastante (240-100-200), se
encontraron en promedio 29.4 ppm de N-NO3
.
Figura 12. Tasa de retorno marginal (TRM) para los diferentes tratamientos
con alta tecnología de producción en el Valle de Apatzingán.
54 Nutri-riego de melón cantaloupe (Cucumis melo cv. Cruiser)
El rendimiento de fruto en calidad exportación y comercial fue
afectado por las variables nutricionales. Aquí los valores absolutos
fueron completamente diferentes. El nitrógeno mostró un alto efecto
en la calidad y el rendimiento total aún en las dosis más bajas
aplicadas, al pasar con N=0 kg ha-1
de 34 ton ha-1
en 2006 y de 14.7
ton ha-1
en 2007 en fruto bruce a 46.3 y 33.7 ton ha-1
en respectivos
años con el primer nivel de nitrógeno aplicado (60 kg ha-1
). Este
incremento del rendimiento, aunque a menores tasas, se mantuvo
hasta la dosis 180 kg ha-1
que alcanzó su valor máximo con 44.3 ton
ha-1
en 2007, mientras que en 2006 el valor máximo lo alcanzo con
240 kg ha-1
de nitrógeno con 61 ton ha-1
. Este mismo desempeño
fue reportado por Pérez et al (2004) en cuanto al decremento de
las tasas de respuesta a nitrógeno con valores de 58 ton ha-1
para
0 kg ha-1
de N y un valor máximo para 160 kg ha-1
de N con 70 ton
ha-1
de fruto de primera. No obstante, no detectó decremento en el
rendimiento, como se obtuvo en esta investigación en 2007.
En este trabajo no logró obtenerse respuesta clara al fósforo y al
potasio, en 2006 las aplicaciones de fósforo y potasio redujo en
aproximadamente 10 y 5 toneladas la producción de fruto de primera
por la aplicación de fósforo y de potasio, respectivamente (Cuadro
12), mientras que en 2007 sin fósforo se produce 10 ton ha-1
menos
de fruto de alta calidad y con respecto al potasio su aplicación o no,
consigue aproximadamente la misma cantidad de fruto (44 ton ha-1
).
Esto puede deberse a las altas cantidades presentes en este tipo
de suelos que no permiten obtener una respuesta clara a ambos
nutrimentos, que incluso su aplicación puede ser contraproducente
(Castellanos et al., 2005).
La concentración nutricional en extracto celular de peciolo (ECP),
mostró un efecto claro en relación con el rendimiento de fruto, la
disponibilidad de N-NO3
en solución del suelo, en fruto y en longitud
final de la planta. Esto significa que hay relaciones directamente
proporcionales entre estas variables, pero en todas es común que
se tienen valores máximos, susceptibles de optimizarse como
que con 40.9 ppm de N-NO3
en solución del suelo se obtendrá la
máxima concentración de N-NO3
en ECP, la que a su vez con 409
ppm producirá el mayor rendimiento de fruto de primera (bruce). La
relación con la concentración de sólidos solubles no fue curvilínea,
sino más bien lineal y positiva. La concentración en °brix no tuvo
55
Nutri-riego de melón cantaloupe (Cucumis melo cv. Cruiser)
efecto significativo por el manejo nutricional aplicado en ninguno de
los dos años de estudio, lo cual concuerda con reportes anteriores
de Morales et al (2007)
El análisis financiero permitió detectar que la aplicación de productos
fertilizantes en este sistema de producción es costeable y genera
los más altos dividendos. Aún cuando se pueden llegar a tener los
mayores costos variables en los tratamientos con mayor cantidad
de insumos como el 180-100-200 con $39,542.00 y los adicionales
con inversión de 42,000.00 a $44,500.00 por hectárea, comparados
con el tratamiento 1 (00-100-200) que requiere sólo $31,822.00 por
hectárea, las tasas de retorno marginal son mucho más altas en
estos tratamiento con 59 en el 4 y con rangos de 68 a 73% en
los adicionales, estos últimos superiores a todos los tratamientos,
mientras que en el 1 (00-100-200) la tasa de retorno es negativa,
es decir, la no utilización del nitrógeno, genera pérdidas para los
productores, mientras que la no utilización de fósforo y potasio
no tiene el mismo efecto ya que hay ganancias positivas entre un
56-69%. El tratamiento 3 (120-100-200) es muy competitivo en
este aspecto ya que produce tasas de retorno muy altas (64%),
comparables a los mejores tratamientos y con menor utilización de
N y foliares, lo cual puede ser importante si se toma en cuenta el
impacto ambiental y el efecto invernadero del exceso de fertilizantes
(Mora et al., 2005).
RECOMENDACIONES Y SUGERENCIAS
Seguimiento Nutrimental en melón:
El programa nutrimental en este cultivo puede efectuarse durante
su ciclo de desarrollo a través de la técnica denominada extracto
de savia de pecíolo (Castellanos et al., 1998). La técnica también
permite el seguimiento de la disponibilidad nutrimental en la solución
del suelo, sometido a diferentes tratamientos de fertilización,
basados en la aplicación proporcional mostrada en el Cuadro 9 y la
cantidad total mostrada en el Cuadro 10.
Para fines prácticos en el caso del cultivo del melón se sugiere
realizar dos muestreos uno al inicio de la floración y otro al inicio de
la formación de frutos, aproximadamente entre los 30 y 45 días del
56 Nutri-riego de melón cantaloupe (Cucumis melo cv. Cruiser)
ciclo de cultivo, respectivamente, para las condiciones del Valle de
Apatzingán. En el Cuadro 20 se muestran los rangos de valores a
determinar para una correcta nutrición del cultivo.
Cuadro 20. Monitoreo nutrimental en extracto celular del pecíolo en melón del
Valle de Apatzingán
Fase de desarrollo Concentración en extracto celular de pecíolo
N-NO3
(ppm)
P
(%)
K
(ppm)
Inicio Floración 900-1100 0.03-0.05 2700-3100
Fructificación 250-300 0.002-0.004 2500-2900
CONCLUSIONES
Se tuvo un alto efecto significativo en nutrición y calidad de
1.	
fruto por el N con tasas diferenciales en cada dosis de 30 al
100% y contenidos nutricionales en la misma proporción.
El fertiriego en el cultivo del melón en el Valle de Apatzingán
2.	
incrementa de manera sustantiva el rendimiento de fruto
en calidad y cantidad, por lo que los beneficios netos
mantienen a este cultivo como de los más redituables de la
Tierra Caliente de Michoacán.
La inversión inicial en esta técnica es alta ($59,030.00) 51
3.	
% más que sin fertiriego, pero la ganancia neta puede llegar
a ser de más de $30,000 ha-1
a un precio medio rural de
$1.50 por kilo de fruto comercial con bajo nivel nutricional
(120-100-200) y sin foliares.
Un buen manejo nutricional combinado con el uso de
4.	
foliares apropiados puede en un solo ciclo, amortizar el
costo de producción y obtener tasas de retorno marginal
hasta del 70%.
La disponibilidad de nutrimentos en suelo afectó a diversas
5.	
variables agronómicas del cultivo como, la concentración
de nutrimentos en extracto celular de pecíolo, la longitud de
guía, el rendimiento de fruto y su calidad y la producción
de biomasa.
El uso de foliares orgánicos o inorgánicos incrementa los
6.	
rendimientos de fruto comercial en al menos 10% sobre el
no uso y los beneficios netos en hasta $7,000.00/ha sobre
el tratamiento de no aplicación de foliares.
57
Nutri-riego de melón cantaloupe (Cucumis melo cv. Cruiser)
REFERENCIAS
Aguilar V. A. 1997. Tratado para administrar los Agronegocios.
Quinta edición. Noriega U.T.E.H.A. México. p.p. 602.
Arias S., F.;Alcántar R., J.J.; Tapia V., M.; Vega P.,A.1994. Validación
comercial de un manejo integrado de organismos dañinos en la
producción de melón en Michoacán, Mex. Rev. Mex. de Fitop.
12:155-161
Arciniega, R. J. 1999. Fertilizantes usados en fertiriego. Memoria
del segundo curso Nacional de Fertigación, Culiacán, Sinaloa.
180 p.
Arellano A. M. 2003. Respuesta del limonero Citrus aurantifolia
(christ.), a la aplicación de N, P y K, en fertiriego por
microaspersion en Apatzingán, Michoacán. UMSNH. Uruapan,
Mich. 45 p.
Anónimo, 1992. Fertilización Foliar para la producción de las
cucurbitáceas, Guía Informática de la Bayer de México, S. A.
de C. V. México. pp. 3 – 10.
Arias, S. J. F. A. Vega P., J. Javier M., D. Munro O. 1987. En como
producir melón en el Valle de Apatzingán CAEVA –SARH,
INIFAP., Michoacán, México. Folleto para Productores 5 pp.
1–3.
Arias, J. F., J.A. Vidales F.,A. Contreras M., J. Javier M., D. Munro O.
1983. Guía para la asistencia técnica agrícola, Área de influencia
del campo. Agrícola Experimental Valle de Apatzingán. INIA.
SARH – CIAPAC. Mich., México. 165 p.
Badillo T., V.; Castellanos R., J.Z.; Sánchez G., P.; Galvis S., A.;
Álvarez S., E.; Uvalle B., J.X.; González E., D.; Enríquez R.,
S.A. 2001. Niveles de referencia de nitrógeno en tejido vegetal
de papa var. Alpha. Agrociencia. 35:615-623
Berigan, A. 1998. Claras ventajas de la adaptación de tecnologías.
Productores de Hortalizas. 7(5):7-8
Bonilla, V.S. 1994. Factibilidad económica de cinco componentes
tecnológicos de labranza de conservación en maíz de temporal
del Valle de Apatzingán. Tesis Profesional ECA-UMSNH. 63 p.
Castañer, A. M. 1993. Riego por goteo en cítricos. Mundi - prensa,
Madrid, Barcelona, España. 280 p.
Castellanos, R. J. Z. 1997. El seguimiento de la nutrición del cultivo
en los sistemas de Fertirrigación. Informaciones Agronómicas.
1(3):5-7
58 Nutri-riego de melón cantaloupe (Cucumis melo cv. Cruiser)
Castellanos, J. Z. 1999. El seguimiento de la nutrición del cultivo
en los sistemas de Fertirrigación. Informaciones Agronómicas.
Vol. 3, No. 4, Querétaro, México. pp 6-8
Castellanos, J.Z., X. Uvalle B. y A. Aguilar S. 1998. Manual de in-
terpretación de análisis de suelos y agua. INCAPA. Celaya
Gto.226 p.
Castellanos R., J. Cueto, J. Macias, J. Salinas, L. M. Tapia V., J.
Cortes, I. González, H. Mata. 2005. La fertilización de los cul-
tivos de maíz, sorgo y trigo en México. Folleto Técnico 1. INI-
FAP. Celaya, Gto. 44 p.
Castillo J. P. 1998 Los fertilizantes y sus componentes esenciales
SAGARPA- INIFAP. Publicación Técnica 7. México, D.F. 20 p.
Centro Internacional de Mejoramiento de Maíz y Trigo (CIMMYT).
1985. Introducción al análisis económico de experimento en
finca. Cuaderno de trabajo, borrador. Programa de Economía
CIMMYT. México. pp. 64-93.
Cintora O. C., 2003. Rentabilidad y paquete tecnológico del cultivo
de fresa. Memoria Técnica. D.D.R. 088 Zamora, Mich. 64 p.
Cotecoca, 1979. Estado de Michoacán y Colima. SARH. México.
pp. 150 – 170.
CNA. 1995. Aplicación de fertilizantes en el agua de riego. Comisión
Nacional del Agua. México, D.F. 80 p.
De Santiago T. B. Condiciones generales para el manejo de una
fertilización eficiente. Productores de hortalizas. Año 8 No 4.
México.
Del Río G., C. 2000. Costos I. Históricos. ECAFSA. Vigésima Edi-
ción. México. p.p II-3 –V-64.
Dow, A. I., Y S. Roberts. 1982. Proposal. Critical nutrient ranges for
crop diagnosis. Agron J. 74: 401 – 403.
Etchevers, B., J. D. 1996. Los análisis de agua, suelo y planta en
apoyo a la ferti–irrigación. Simposium internacional de ferti–ir-
rigación memorias. Hermosillo, Sonora. FAO/UNESCO/ISRIC.
65 p.
Farías L.J., M. Orozco S. 1997. Effect of polyethylene mulch colour
on aphid populations, soil temperature, fruit quality, and yield of
watermelon under tropical conditions. New Zealand Journal of
Crop and Horticultural Science. 25:369-374
Fiskll, J. G. 1967. Effect of fertilizer placements and rates on water-
melon yields. Vol. 80 proceedings of the Florida state horticul-
tural society. USA. pp. 168 – 172.
nutririego-meloncantaloupe-mich.pdf
nutririego-meloncantaloupe-mich.pdf
nutririego-meloncantaloupe-mich.pdf
nutririego-meloncantaloupe-mich.pdf
nutririego-meloncantaloupe-mich.pdf
nutririego-meloncantaloupe-mich.pdf
nutririego-meloncantaloupe-mich.pdf

Más contenido relacionado

Similar a nutririego-meloncantaloupe-mich.pdf

Manual de riego
Manual de riegoManual de riego
Manual de riego
ronaldalan
 
Informe final de trabajo del 13 de junio al 13 de octubre del 2010, agro indu...
Informe final de trabajo del 13 de junio al 13 de octubre del 2010, agro indu...Informe final de trabajo del 13 de junio al 13 de octubre del 2010, agro indu...
Informe final de trabajo del 13 de junio al 13 de octubre del 2010, agro indu...
Francisco Martin
 
Resultados proceso eca agricultores ocotepeque
Resultados proceso eca agricultores ocotepequeResultados proceso eca agricultores ocotepeque
Resultados proceso eca agricultores ocotepeque
Pedro Baca
 
Aprovechamiento de Carbonato de calcio obtenido de diferentes moluscos bivalv...
Aprovechamiento de Carbonato de calcio obtenido de diferentes moluscos bivalv...Aprovechamiento de Carbonato de calcio obtenido de diferentes moluscos bivalv...
Aprovechamiento de Carbonato de calcio obtenido de diferentes moluscos bivalv...
beabello3090
 
Manual Optifer 2
Manual Optifer 2Manual Optifer 2
Manual Optifer 2
moyarr
 
Cartilla cultivo de melon
Cartilla cultivo de melonCartilla cultivo de melon
Cartilla cultivo de melon
Jorge Carrillo
 

Similar a nutririego-meloncantaloupe-mich.pdf (20)

Aguacate 2006
Aguacate 2006Aguacate 2006
Aguacate 2006
 
PROPUESTA_PARA_EL_MEJORAMIENTO_DE_LA_PLA.pdf
PROPUESTA_PARA_EL_MEJORAMIENTO_DE_LA_PLA.pdfPROPUESTA_PARA_EL_MEJORAMIENTO_DE_LA_PLA.pdf
PROPUESTA_PARA_EL_MEJORAMIENTO_DE_LA_PLA.pdf
 
Manual de riego
Manual de riegoManual de riego
Manual de riego
 
Informe de vt de zumo de papa
Informe de vt de zumo de papaInforme de vt de zumo de papa
Informe de vt de zumo de papa
 
Sector cafe-peru
Sector cafe-peruSector cafe-peru
Sector cafe-peru
 
Informe final de trabajo del 13 de junio al 13 de octubre del 2010, agro indu...
Informe final de trabajo del 13 de junio al 13 de octubre del 2010, agro indu...Informe final de trabajo del 13 de junio al 13 de octubre del 2010, agro indu...
Informe final de trabajo del 13 de junio al 13 de octubre del 2010, agro indu...
 
Resultados proceso eca agricultores ocotepeque
Resultados proceso eca agricultores ocotepequeResultados proceso eca agricultores ocotepeque
Resultados proceso eca agricultores ocotepeque
 
Guia Papa.pdf
Guia Papa.pdfGuia Papa.pdf
Guia Papa.pdf
 
Guía técnica de cr
Guía técnica de crGuía técnica de cr
Guía técnica de cr
 
5508_guia-tecnica-reuso-aguas.pdf
5508_guia-tecnica-reuso-aguas.pdf5508_guia-tecnica-reuso-aguas.pdf
5508_guia-tecnica-reuso-aguas.pdf
 
Guia reuso aguas residuales.pdf
Guia reuso aguas residuales.pdfGuia reuso aguas residuales.pdf
Guia reuso aguas residuales.pdf
 
Guia de pl_para_el_sector_de_sgbp
Guia de pl_para_el_sector_de_sgbpGuia de pl_para_el_sector_de_sgbp
Guia de pl_para_el_sector_de_sgbp
 
Informe
InformeInforme
Informe
 
Aprovechamiento de Carbonato de calcio obtenido de diferentes moluscos bivalv...
Aprovechamiento de Carbonato de calcio obtenido de diferentes moluscos bivalv...Aprovechamiento de Carbonato de calcio obtenido de diferentes moluscos bivalv...
Aprovechamiento de Carbonato de calcio obtenido de diferentes moluscos bivalv...
 
Manual Optifer 2
Manual Optifer 2Manual Optifer 2
Manual Optifer 2
 
04 bcs caprinos vf
04 bcs caprinos vf04 bcs caprinos vf
04 bcs caprinos vf
 
04 bcs caprinos vf
04 bcs caprinos vf04 bcs caprinos vf
04 bcs caprinos vf
 
La huerta de_camilo
La huerta de_camiloLa huerta de_camilo
La huerta de_camilo
 
Cartilla cultivo de melon
Cartilla cultivo de melonCartilla cultivo de melon
Cartilla cultivo de melon
 
Mpepap
MpepapMpepap
Mpepap
 

Último

INSUMOS QUIMICOS Y BIENES FISCALIZADOS POR LA SUNAT
INSUMOS QUIMICOS Y BIENES FISCALIZADOS POR LA SUNATINSUMOS QUIMICOS Y BIENES FISCALIZADOS POR LA SUNAT
INSUMOS QUIMICOS Y BIENES FISCALIZADOS POR LA SUNAT
evercoyla
 
ANALISIS Y DISEÑO POR VIENTO, DE EDIFICIOS ALTOS, SEGUN ASCE-2016, LAURA RAMIREZ
ANALISIS Y DISEÑO POR VIENTO, DE EDIFICIOS ALTOS, SEGUN ASCE-2016, LAURA RAMIREZANALISIS Y DISEÑO POR VIENTO, DE EDIFICIOS ALTOS, SEGUN ASCE-2016, LAURA RAMIREZ
ANALISIS Y DISEÑO POR VIENTO, DE EDIFICIOS ALTOS, SEGUN ASCE-2016, LAURA RAMIREZ
gustavoiashalom
 
analisis tecnologico( diagnostico tecnologico, herramienta de toma de deciones)
analisis tecnologico( diagnostico tecnologico, herramienta de toma de deciones)analisis tecnologico( diagnostico tecnologico, herramienta de toma de deciones)
analisis tecnologico( diagnostico tecnologico, herramienta de toma de deciones)
Ricardo705519
 

Último (20)

INSUMOS QUIMICOS Y BIENES FISCALIZADOS POR LA SUNAT
INSUMOS QUIMICOS Y BIENES FISCALIZADOS POR LA SUNATINSUMOS QUIMICOS Y BIENES FISCALIZADOS POR LA SUNAT
INSUMOS QUIMICOS Y BIENES FISCALIZADOS POR LA SUNAT
 
Sistema de lubricación para motores de combustión interna
Sistema de lubricación para motores de combustión internaSistema de lubricación para motores de combustión interna
Sistema de lubricación para motores de combustión interna
 
Resistencia-a-los-antimicrobianos--laboratorio-al-cuidado-del-paciente_Marcel...
Resistencia-a-los-antimicrobianos--laboratorio-al-cuidado-del-paciente_Marcel...Resistencia-a-los-antimicrobianos--laboratorio-al-cuidado-del-paciente_Marcel...
Resistencia-a-los-antimicrobianos--laboratorio-al-cuidado-del-paciente_Marcel...
 
ANALISIS Y DISEÑO POR VIENTO, DE EDIFICIOS ALTOS, SEGUN ASCE-2016, LAURA RAMIREZ
ANALISIS Y DISEÑO POR VIENTO, DE EDIFICIOS ALTOS, SEGUN ASCE-2016, LAURA RAMIREZANALISIS Y DISEÑO POR VIENTO, DE EDIFICIOS ALTOS, SEGUN ASCE-2016, LAURA RAMIREZ
ANALISIS Y DISEÑO POR VIENTO, DE EDIFICIOS ALTOS, SEGUN ASCE-2016, LAURA RAMIREZ
 
CALCULO DE ENGRANAJES RECTOS SB-2024.pptx
CALCULO DE ENGRANAJES RECTOS SB-2024.pptxCALCULO DE ENGRANAJES RECTOS SB-2024.pptx
CALCULO DE ENGRANAJES RECTOS SB-2024.pptx
 
Sistemas de Ecuaciones no lineales-1.pptx
Sistemas de Ecuaciones no lineales-1.pptxSistemas de Ecuaciones no lineales-1.pptx
Sistemas de Ecuaciones no lineales-1.pptx
 
2. Cristaloquimica. ingenieria geologica
2. Cristaloquimica. ingenieria geologica2. Cristaloquimica. ingenieria geologica
2. Cristaloquimica. ingenieria geologica
 
semana-08-clase-transformadores-y-norma-eep.ppt
semana-08-clase-transformadores-y-norma-eep.pptsemana-08-clase-transformadores-y-norma-eep.ppt
semana-08-clase-transformadores-y-norma-eep.ppt
 
Propuesta para la creación de un Centro de Innovación para la Refundación ...
Propuesta para la creación de un Centro de Innovación para la Refundación ...Propuesta para la creación de un Centro de Innovación para la Refundación ...
Propuesta para la creación de un Centro de Innovación para la Refundación ...
 
ingenieria grafica para la carrera de ingeniera .pptx
ingenieria grafica para la carrera de ingeniera .pptxingenieria grafica para la carrera de ingeniera .pptx
ingenieria grafica para la carrera de ingeniera .pptx
 
Clasificación de Equipos e Instrumentos en Electricidad.docx
Clasificación de Equipos e Instrumentos en Electricidad.docxClasificación de Equipos e Instrumentos en Electricidad.docx
Clasificación de Equipos e Instrumentos en Electricidad.docx
 
EFICIENCIA ENERGETICA-ISO50001_INTEC_2.pptx
EFICIENCIA ENERGETICA-ISO50001_INTEC_2.pptxEFICIENCIA ENERGETICA-ISO50001_INTEC_2.pptx
EFICIENCIA ENERGETICA-ISO50001_INTEC_2.pptx
 
Libro de ingeniería sobre Tecnología Eléctrica.pdf
Libro de ingeniería sobre Tecnología Eléctrica.pdfLibro de ingeniería sobre Tecnología Eléctrica.pdf
Libro de ingeniería sobre Tecnología Eléctrica.pdf
 
analisis tecnologico( diagnostico tecnologico, herramienta de toma de deciones)
analisis tecnologico( diagnostico tecnologico, herramienta de toma de deciones)analisis tecnologico( diagnostico tecnologico, herramienta de toma de deciones)
analisis tecnologico( diagnostico tecnologico, herramienta de toma de deciones)
 
ESPECIFICACIONES TECNICAS COMPLEJO DEPORTIVO
ESPECIFICACIONES TECNICAS COMPLEJO DEPORTIVOESPECIFICACIONES TECNICAS COMPLEJO DEPORTIVO
ESPECIFICACIONES TECNICAS COMPLEJO DEPORTIVO
 
Análisis_y_Diseño_de_Estructuras_con_SAP_2000,_5ta_Edición_ICG.pdf
Análisis_y_Diseño_de_Estructuras_con_SAP_2000,_5ta_Edición_ICG.pdfAnálisis_y_Diseño_de_Estructuras_con_SAP_2000,_5ta_Edición_ICG.pdf
Análisis_y_Diseño_de_Estructuras_con_SAP_2000,_5ta_Edición_ICG.pdf
 
Matrices Matemáticos universitario pptx
Matrices  Matemáticos universitario pptxMatrices  Matemáticos universitario pptx
Matrices Matemáticos universitario pptx
 
27311861-Cuencas-sedimentarias-en-Colombia.ppt
27311861-Cuencas-sedimentarias-en-Colombia.ppt27311861-Cuencas-sedimentarias-en-Colombia.ppt
27311861-Cuencas-sedimentarias-en-Colombia.ppt
 
Ficha Tecnica de Ladrillos de Tabique de diferentes modelos
Ficha Tecnica de Ladrillos de Tabique de diferentes modelosFicha Tecnica de Ladrillos de Tabique de diferentes modelos
Ficha Tecnica de Ladrillos de Tabique de diferentes modelos
 
[1LLF] UNIDADES, MAGNITUDES FÍSICAS Y VECTORES.pdf
[1LLF] UNIDADES, MAGNITUDES FÍSICAS Y VECTORES.pdf[1LLF] UNIDADES, MAGNITUDES FÍSICAS Y VECTORES.pdf
[1LLF] UNIDADES, MAGNITUDES FÍSICAS Y VECTORES.pdf
 

nutririego-meloncantaloupe-mich.pdf

  • 1.
  • 2. NUTRI-RIEGO DE MELÓN CANTALOUPE (Cucumis melo cv. Cruiser) CON ALTA TECNOLOGÍA DE PRODUCCIÓN EN MICHOACÁN Luís Mario TAPIA VARGAS Héctor Rómulo RICO PONCE Antonio LARIOS GUZMÁN Roberto TOLEDO BUSTOS Rafael MORENO PADILLA Javier Z. CASTELLANOS RAMOS INSTITUTO NACIONAL DE INVESTIGACIONES FORESTALES, AGRÍCOLAS Y PECUARIAS CENTRO DE INVESTIGACIÓN REGIONAL DEL PACÍFICO CENTRO CAMPO EXPERIMENTAL URUAPAN Folleto Técnico Núm. 8 Septiembre del 2008
  • 3. NUTRI-RIEGO DE MELÓN CANTALOUPE (Cucumis melo cv Cruiser) CON ALTA TECNOLOGÍA DE PRODUCCIÓN EN MICHOACÁN No está permitida la reproducción total o parcial de esta publicación, ni la transmisión de ninguna forma o por cualquier medio, ya sea electrónico, mecánico, fotocopia, por registro u otros métodos, sin el permiso previo y por escrito de la Institución. Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias. Progreso Núm. 5, Colonia Barrio de Santa Catarina. Delegación Coyoacán. 04010 México, D. F. Tel. (55) 38 71 87 00 Primera edición: 2008 Septiembre del 2008 ISBN: 978-607-425-014-5 Centro de Investigación Regional del Pacífico Centro. Parque Los Colomos S/N 2da. Sección Col. Providencia, C.P. 44660, Guadalajara, Jal. Campo Experimental Uruapan. Av. Latinoamericana No. 1101. Col. Revolución. C.P. 60150 Uruapan, Michoacán. México. La cita correcta de la obra es: Tapia Vargas L. M., H. R. Rico P., .A. Larios G., R. Toledo B., R. Moreno P., J. Z. Castellanos R. Fertiriego de melón Cantaloupe (cucumis melo cv cruiser) con alta tecnología de producción en Michoacán. Folleto Técnico No. 8 INIFAP – CIRPAC. Guadalajara, Jalisco, México.
  • 4. Página 7 8 9 13 14 18 18 18 19 19 21 21 23 27 28 30 34 36 53 55 56 57 CONTENIDO RESUMEN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . INTRODUCCIÓN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ANTECEDENTES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . FERTILIZACIÓN DEL MELÓN . . . . . . . . . . . . . . . . . . . . . ANÁLISIS FINANCIERO . . . . . . . . . . . . . . . . . . . . . . . . . . COSTOS DE PRODUCCIÓN . . . . . . . . . . . . . . . . . . . . . . COSTOS DIRECTOS E INDIRECTOS . . . . . . . . . . . . . . . COSTOS FIJOS Y VARIABLES . . . . . . . . . . . . . . . . . . . . FISIOLOGÍA DE LA NUTRICIÓN DEL MELÓN. . . . . . . . . RIEGO LOCALIZADO . . . . . . . . . . . . . . . . . . . . . . . . . . . . RIEGO POR GOTEO . . . . . . . . . . . . . . . . . . . . . . . . . . . . FERTILIZANTES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ELABORACIÓN DE LOS PROGRAMAS DE RIEGO LOCALIZADO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . EL ANÁLISIS DE EXTRACTO CELULAR DE PECÍOLO (ECP) COMO HERRAMIENTA DE DIAGNOSTICO DEL ESTADO NUTRIMENTAL DEL CULTIVO. . . . . . . . . . . . . DESCRIPCIÓN DE LA TECNOLOGÍA DE FERTIRIEGO. DISEÑO EXPERIMENTAL . . . . . . . . . . . . . . . . . . . . . . . . RESULTADOS EXPERIMENTALES . . . . . . . . . . . . . . . . DISCUSIÓN GENERAL . . . . . . . . . . . . . . . . . . . . . . . . . . RECOMENDACIONES Y SUGERENCIAS . . . . . . . . . . . . CONCLUSIONES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . REFERENCIAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
  • 5. INDICE CUADROS Cuadro 1. Precios de fertilizantes aplicados al melón en el Valle de Apatzingán. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Cuadro 2. Superficie sembrada por municipio del Valle de Apatzingán, Mich. 2005-06. . . . . . . . . . . . . . . . . . . . . . . . Cuadro 3. Longitud de la guía principal (cm) en melón con diferentes dosis de fertilización nitrogenada en Apatzingán. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Cuadro 4. Respuesta en concentración de sólidos solubles del melón por efecto del fósforo y potasio, en el Valle de Apatzingán. . . . . . . . . . . . . . . . . . . . . . . . . . . . . Cuadro 5. Fertilizantes aplicados en el agua de riego. . Cuadro 6. Ejemplos de fuentes de nutrientes usados en fertiriego. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Cuadro 7. Componentes del sistema de fertiriego en melón de alto rendimiento en Michoacán. . . . . . . . . . . . Cuadro 8. Componentes físicos del sistema de fertiriego en melón del Valle de Apatzingán, Mich. 2006. . . . . . . . Cuadro 9. Programa nutrimental y de riego (N-P2 O5 -K2 O, kg ha-1 ) a aplicar en melón con fertiriego en el Valle de Apatzingán. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Cuadro 10. Lista de tratamientos evaluados en melón con alta tecnología de producción del Valle de Apatzingán. . Cuadro 11. Análisis de varianza de las variables consideradas en melón con alta tecnología de producción del Valle de Apatzingán en dos años de estudio. . . . . . . Cuadro 12. Análisis de varianza del contenido nutricional foliar (%) en melón con alta tecnología de producción del Valle de Apatzingán en 2007. . . . . . . . . . . . . . . . . . . . . . . Cuadro 13. Rendimiento de fruto en melón en calidad exportación y comercial en diferentes dosis de fertilización. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Página 11 12 20 20 25 26 31 32 33 34 38 38 39
  • 6. Cuadro 14. Características nutricionales promedio de la solución del suelo en melón bajo diferentes dosis de fertilización en el Valle de Apatzingán. 2007. . . . . . . . . . Cuadro 15. Relación entre la concentración de NO3 en la solución del suelo (x) y el contenido de N-NO3 en ECP (y), en diferentes fases de desarrollo del melón. . . . . . . . . . . Cuadro 16. Relación entre la producción de biomasa y el rendimiento de fruto de melón en el Valle de Apatzingán. Cuadro 17. Costos Fijos de producción del cultivo del melón con y sin fertiriego en el Valle de Apatzingán Ciclo Otoño- Invierno 2005-06-07. . . . . . . . . . . . . . . . . . . . . . . Cuadro 18. Costos variables (CV) ($/ha), por tratamiento nutrimental en melón con alta tecnología de producción del Valle de Apatzingán. . . . . . . . . . . . . . . . . . . . . . . . . . . Cuadro 19. Rendimiento de fruto comercial y beneficios netos en melón con fertiriego en el Valle de Apatzingán, Mich. promedio de dos años 2006-07. . . . . . . . . . . . . . . Cuadro 20. Monitoreo nutrimental en extracto celular del pecíolo en melón del Valle de Apatzingán. . . . . . . . . . . . . INDICE FIGURAS Figura 1. Principales municipios de la Tierra Caliente michoacana productores de Melón para exportación y mercado nacional. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figura 2. Rendimiento y superficie sembrada de melón en el estado de Michoacán. . . . . . . . . . . . . . . . . . . . . . . . Figura 3. Zonas representativas para fertilización en Michoacán. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figura 4. Distribución clásica del bulbo de humedad en riego localizado en melón. . . . . . . . . . . . . . . . . . . . . . . . . Figura 5. Riego por microaspersión y goteo y bulbos de humedad formados en campo. . . . . . . . . . . . . . . . . . . . . . Página 41 43 45 48 49 50 56 13 14 17 21 22
  • 7. Figura 6. Técnica del fertiriego en el Valle de Apatzingán, Mich. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figura 7 Concentración nutrimental N-NO3 en extracto celular de pecíolo (ECP) en melón por efecto de la concentración de NO3 en solución del suelo. . . . . . . . . . . Figura 8. Efecto de la disponibilidad de N-NO3 en la solución del suelo, en la concentración de N-NO3 en fruto y en la longitud de la guía de melón. . . . . . . . . . . . . . . . . Figura 9. Efecto del contenido de N-NO3 del ECP en la calidad y rendimiento de fruto de melón en el Valle de Apatzingán. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figura 10. Relación contenido N total (%) en fructificación y rendimiento de fruto en dos calidades de melón con fertiriego y acolchado plástico. . . . . . . . . . . . . . . . . . . . . . Figura 11. Análisis de dominancia de tratamientos nutricionales en melón con y sin fertiriego del Valle de Apatzingán. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figura 12. Tasa de retorno marginal (TRM) para los diferentes tratamientos con alta tecnología de producción en el Valle de Apatzingán. . . . . . . . . . . . . . . . . . . . . . . . . . Página 31 42 43 44 46 52 53
  • 8. 7 Nutri-riego de melón cantaloupe (Cucumis melo cv. Cruiser) NUTRI-RIEGO DE MELÓN CANTALOUPE (Cucumis melo cv. Cruiser) CON ALTA TECNOLOGÍA DE PRODUCCIÓN EN MICHOACÁN Luis Mario Tapia Vargas1 Héctor R. Rico Ponce2 Antonio Larios Guzmán1 Roberto Toledo Bustos1 Rafael Moreno Padilla4 Javier Z. Castellanos R.3 RESUMEN El melón con fertiriego y acolchado plástico es sometido a uso intensivo de insumos, agua y nutrientes buscando generar altos rendimientos y calidad de fruto. El objetivo de este trabajo fue evaluar el manejo nutricional, su relación con el rendimiento, calidad de fruta y con el contenido nutricional en solución del suelo, en hoja y extracto celular de peciolo (ECP), además de los beneficios netos de esta tecnología. Con este propósito, se evaluaron dos experimentos en marzo de 2006 y 2007. Los tratamientos analizados fueron siete dosis de fertilización, originadas de la combinación de cinco niveles de nitrógeno (0, 60, 120, 180 y 240 kg ha-1 ), dos de fósforo (0 y 100 kg ha-1 ) y dos de potasio (0 y 200 kg ha-1 ), adicionándose, tres tratamientos de fertilización foliar con la dosis 180-100-200. Se evaluó, la concentración de N-NO3 y K+ (mg litro-1 ) en solución del suelo y en ECP, el contenido de nitrógeno y potasio total (%) en hoja, el rendimiento bruce y nacional y contenido de azúcares. Los resultados indicaron relevancia del nitrógeno, significativa en rendimiento y calidad de fruto y en concentración de N-NO3 en ECP y N total foliar (%). Hubo relación significativa en rendimiento 1. Investigadores Titulares del INIFAP. Av. Latinoamericana 1101. Uruapan, Mich. C.P. 60080 tel (452) 523-7392 ext 101-104-108. 2. Investigador Titular del INIFAP. Km 17.5 carr. Apatzingán-Nueva Italia. Parácuaro, Mich. 425-592-5140. 3. Investigador Titular INIFAP. Campo Experimental Bajío. Celaya Guanajuato 4. Colaborador Proyecto. UMSNH.
  • 9. 8 Nutri-riego de melón cantaloupe (Cucumis melo cv. Cruiser) y condición nutricional (r>0.70* p<0.05), con valores máximos de N-NO3 entre 230 y 418 mg litro-1 y de 2.41% para N total foliar, así como para variables relacionadas con la disponibilidad, estado nutrimental foliar y el rendimiento bruce. Los mayores beneficios netosselogranconlaaplicacióndefoliareshormonaleseinorgánicos con $37,352.00/ha utilidades que no dominan las generadas con menor dosis nutricional y sin foliares (tratamiento 120-100-200), con $32,400.00/ha, por lo que es factible reducir la intensidad nutricional de N hasta 120 kg ha-1 , P2 O5 y K2 O hasta 0.0 kg ha-1 y sin aplicaciones de foliares, sin afectar la calidad y rendimiento de fruto y el estado nutrimental de la hoja y de ECP de melón Cantaloupe. ABSTRACT FERTIGATION OF MUSKMELON CANTALOUPE (Cucumis melo cv Cruiser) WITH INTENSE PRODUCTION TECHNOLOGY IN MICHOACAN Plastic mulch and fertigated muskmelon is cultivated under intensive use of soil and nutrients to pursue high fruit yields and fruit quality.The aim of this paper was to evaluate the effect of nutrition management in relation with quality yield fruit, the nutrient content in soil solution, leaves and in cellular extract of petioles (ECP) and net benefits of this production system fertigated muskmelon. Two experiments were established on March of 2006 and 2007. The evaluated treatments consisted of seven doses of fertilizers derived from combination of five levels of nitrogen (0, 60, 120, 180 and 240 kg/ha), two levels of phosphorous (0 and 100 kg/ha) and two levels of potassium (0 and 200 kg/ha), moreover, three other treatments were sprayed with three types of foliar nutrients. The concentration of N-NO3 and K+ were evaluated in the cellular extract of petiole (ECP) and the total content of nitrogen and potassium were evaluated in the leaves.Also, the fruit quality and yield and sugar concentration were evaluated. The results indicated that nitrogen was the main factor affecting fruit quality and fruit yield and ECP N-NO3 concentration (mg liter-1) and total N foliar (%). Significant relationship between fruit yield and nutritional condition was found (r>0.70* p<0.05). Maximum values for N-NO3 were between 230 and 418 mg L-1 and 2.41% for total foliar
  • 10. 9 Nutri-riego de melón cantaloupe (Cucumis melo cv. Cruiser) N (%). Also, there were a significant relationships among available soil nutrient, plant nutrition and bruce yield fruit Main net benefits were achieved with foliar inorganic and hormonal applications with $37,352.00 per hectare, but treatment three (120-100-200 without foliar applications), generated high net benefits with $32,400.00 per hectare. It is feasible to reduce intense use of fertilizers until N= 120 kg ha-1; P2O5 and K2O until 0.0 kg ha-1 and removing foliar nutrients, this management no affects fruit quality, fruit yield, adequate foliar and ECP nutrient content of melon Cantaloupe. INTRODUCCIÓN El cultivo del melón Cantaloupe, en sus versiones híbridos y cultivares como: Primo, Cruiser, Cabrillo, Laredo, Top Mark, se desarrolla principalmente en el ciclo de invierno y genera más de 200 mil jornales por año, por lo que su importancia como cultivo generador de empleo es muy alta con una derrama económica directa estatal de más de 100 millones de pesos (SAGARPA, 2007). La constante presencia de plagas y enfermedades, además del desconocimiento de las condiciones del suelo, propician que los siniestros en este cultivo sean cada vez más frecuentes, confundiéndose las deficiencias nutrimentales con problemas de enfermedades y viceversa y en ocasiones la pérdida total de la cosecha (Arias, 1994). Por lo que a partir de 1989 se tuvo una disminución de la producción de fruto (Hernández et al., 2006). Nuevas tecnologías de producción como el uso de acolchados plásticos y el fertiriego han permitido la siembra del cultivo en áreas anteriormente vedadas. Estos métodos mejoran la producción del cultivo (Farías y Orozco, 1997), proporcionan mejores condiciones ambientales para la planta (Pérez et al., 2004) y se mejoran las prácticas culturales en el caso de problemas de inocuidad del fruto (Hernández et al., 2006). En Michoacán como en gran parte de México, la aplicación de fertilizantes es una práctica que puede absorber hasta un 35% de los costos de producción de los cultivos. En plantaciones de alta rentabilidad como aguacate, el gasto en fertilizantes es de $11,000 por hectárea, que equivalen al 21% de los costos de producción (Torres, 2006), en fresa se gastan $18,000 pesos por hectárea,
  • 11. 10 Nutri-riego de melón cantaloupe (Cucumis melo cv. Cruiser) que representan un 20% de los costos (Cintora, 2003), en melón significan 28% de los costos, en trigo y maíz representan el 21% con un valor de $2,500 (Castellanos, 2005) y en pepino representan el 35% de los costos con una inversión de $8,500. En el Cuadro 1 se indican los precios de algunos productos fertilizantes aplicados al melón en Apatzingán.
  • 12. 11 Nutri-riego de melón cantaloupe (Cucumis melo cv. Cruiser) Cuadro 1. Precios de fertilizantes aplicados al melón en el Valle de Apatzingán. Producto Unidad de medida Precio ($) Nitrofoska 25-10-17.5-1.5 Mg kg 75.00 Fórmula 20-10-10 ton 4,450.00 Fórmula IAUSA 12-24-12 ton 5,533.00 Rhizobac Combi kg 600.00 Micro Plus L 331.00 Eezygro 9-18-9 L 80.00 Eezygro Zing 15 % L 110.00 Eezygro Boro 5 % L 122.00 Nitrosol Kg 22.00 Fuente: IAUSA (2007) Además de estos conceptos habría que agregar el precio de mano de obra por concepto de la aplicación de los fertilizantes. Los altos costos que representan la inversión de fertilizantes pueden llegar en el caso de melón hasta $10,000.ha-1 solo en N, P y K, más el gasto en otros nutrientes como Ca, Mg, Mn, Zn, B y Fe que pueden incrementar los costos en $2,000.00 ha-1 dependiendo de la fuente, o incluso una práctica más común es la aplicación de activadores y hormonales, que pueden llegar hasta $5,000 ha-1 . Todo este gasto puede ser superfluo si existen condiciones para causar inmovilización, fijación o volatilización de nutrimentos en el suelo. Debido a la situación expuesta, es importante mejorar la eficiencia del uso de fertilizantes en cuanto a una mayor disponibilidad de nutrientes absorbibles con bajo gasto de energía, a nivel radicular, una mejor condición nutrimental en hoja y un mayor rendimiento de fruto en cantidad con óptima calidad. El atender o seguir estas consideraciones, asegura tener un beneficio positivo en la recuperación del costo y en reducir el impacto al ambiente por efecto del fertilizante no utilizado o perdido en escurrimiento o lixiviación. A pesar del uso de tecnología de punta con acolchado, túneles y sistemas de fertirrigación, las altas cantidades de aplicación de fertilizantes pueden ser contraproducentes ya que pueden competir en la absorción de otros nutrimentos (Tapia, 2006), pueden causar enlaces químicos insolubles no disponibles para la planta (Cíntora, 2003), o bien darse el caso de causar antagonismo en el interior
  • 13. 12 Nutri-riego de melón cantaloupe (Cucumis melo cv. Cruiser) de la planta (Castellanos, 1997). En los tres casos la planta presenta trastornos fisiológicos aunque el elemento nutritivo haya sido aplicado (Castillo, 1998). La mejor base para la aplicación de fertilizantes es primero el análisis de suelo y posteriormente el rastreo nutrimental foliar como herramienta de diagnóstico y manejo nutrimental (Castellanos et al, 2000). La técnica de fertiriego en el Valle de Apatzingán ha mostrado incremento en la calidad y rendimiento de fruto en cultivos como papaya con rendimientos de fruto comercial de 90 ton ha-1 (Mellado et al., 2005), Limón con 35 ton ha-1 (Tapia et al., 2006), tomate con rendimientos de 60 ton ha-1 de fruto (Tapia et al., 2001). El cultivo de melón, tradicionalmente era una opción atractiva en el Valle ya que redituaba importantes ganancias económicas con tasas de retorno de 300% o más (INIFAP, 1989), sin embargo, la presencia de plagas y enfermedades redujo el área de siembra a menos del 10% de las 6,000 ha que anteriormente se sembraban; los municipios que continúan sembrando el cultivo se muestran en el Cuadro 2, donde nuevas regiones de la Tierra Caliente de Michoacán sobresalen en importancia en este cultivo como Huetamo y San Lucas. En esta publicación se presenta el manejo nutrimental y de agua apropiado al cultivo con la técnica de fertiriego para el logro de altos rendimiento de fruto de óptima calidad y su efecto en la disponibilidad nutricional en suelo, en la condición nutrimental foliar, en extracto celular de peciolo (ECP) y en los beneficios netos obtenidos para cada situación nutrimental. Cuadro 2. Superficie sembrada por municipio del Valle de Apatzingán, Mich. 2005-06. Municipio Superficie (ha) Rendimiento (ton/ ha) Buenavista 75.0 15.000 Parácuaro 30.0 15.000 Tepalcatepec 65.0 13.155 Coahuayana 52.0 20.192 Huetamo 2,134.0 50.000 San Lucas 300.0 40.000 Fuente: Subsecretaría de Agricultura, C.G.D. y S.I.A.P. CADER, s de SAGARPA. DDR 089. Apatzingán, Mich. Ciclo O-I 2005/2006
  • 14. 13 Nutri-riego de melón cantaloupe (Cucumis melo cv. Cruiser) ANTECEDENTES El melón, desde principios del siglo XX, ha sido un producto generador de divisas para el país, así como importante fuente de empleo y utilidades para los productores mexicanos. No obstante, a partir de los años sesenta de dicho siglo, comenzó a tener más importancia para los productores mexicanos, debido a la mayor demanda tanto del mercado nacional como del internacional. Sin embargo, la creciente participación de países centroamericanos que han empezado a ganar espacios en el mercado estadounidense (importador del 99% de las exportaciones mexicanas), complica la comercialización de esta fruta, limitando la participación de más productores mexicanos en dicho mercado (Hernández et al., 2006). México cuenta con tecnología adecuada, pero es preciso que maneje las cosechas en periodos más cortos, mejore los procesos de poscosecha, así como la comercialización del producto. Las principales regiones productoras de melón se concentran, en el caso de Michoacán, en Nueva Italia, El Aguaje, Huetamo, Cupuán, Las Cruces y Tepalcatepec (Figura 1); en el resto del país, en Sonora en la Costa de Hermosillo; en Jalisco en el Distrito de Tomatlán, en Colima en Ixtlahuacán, Colima y Tecomán y en Durango y Coahuila en la Comarca Lagunera (SAGARPA, 2003). 1. Tepalcatepec 2. Buenavista 3. Apatzingán 4. Lombardía 5. Parácuaro 6. Nueva Italia 7. Churumuco 8. Huacana 9. Huetamo 10. San Lucas Figura 1. Principales municipios de la Tierra Caliente michoacana productores de melón para exportación y mercado nacional (SAGARPA, 2007).
  • 15. 14 Nutri-riego de melón cantaloupe (Cucumis melo cv. Cruiser) La producción nacional de melón en el periodo 1992-2001 disminuyó en 5.7% (28 mil ton). En Michoacán en la década de los 90 la superficie cosechada rondó las 65 mil ton producidas, cantidad que para 1996 había disminuido hasta 42 mil ton (-35 %). Sin embargo, en 1997 tuvo un repunte importante al llegar a 86 mil toneladas (incremento del 105%), aunque dicho incremento se vio disminuido al año siguiente, cayendo 17 % al generar una producción de tan solo 72 mil ton. A partir de 1999 y en lo que va del siglo hasta el año pasado, las tendencias de rendimiento de fruto y la superficie sembrada, se han estabilizado como se aprecia en la Figura 2 (SAGARPA, 2007). Figura 2. Rendimiento y superficie sembrada de melón en el estado de Michoacán. FERTILIZACIÓN DEL MELÓN Pinales y Arellano (2001), indican que en el cultivo del melón, el fertilizante debe aplicarse en bandas al centro de la cama de preferencia con máquina fertilizadora. La aplicación básica se hace antes de la siembra con 100 kg ha-1 de 18-46-00 ajustando el programa de fertilización con frecuencia, de acuerdo al análisis del cultivo y de la solución del suelo. Pérez y Cigales (2001), recomiendan aplicar el fertilizante en banda a 5 cm del centro y a 5 cm de la semilla.
  • 16. 15 Nutri-riego de melón cantaloupe (Cucumis melo cv. Cruiser) El pH apropiado del suelo para la producción de melón es de 6.0 a 6.5. Si se requiere aplicar algún producto mejorador de la reacción del suelo, se debe incorporar bien con el suelo de dos a tres meses antes de la siembra. Terrenos con pH de 6.5 a más pueden ser deficientes de elementos en algunos suelos del Valle de Apatzingán como es el caso de Fe, Zn, N, B, K, entre otros. Los requerimientos de nutrientes del melón varían con el tipo del suelo y prácticas previas de fertilización, Nicklow y Gómez (1965) efectuaron un trabajo de fertilización en melón y argumentan que el suelo en cuanto a pH, P y K disponibles, son variables importantes para la aplicación de fertilizantes. Estos mismos autores, indican que la aplicación de estiércol al suelo, puede reducir la cantidad de N y P a aplicar (una tonelada de estiércol equivale a 24 kg de N y 18 de P por hectárea) y para complementar la nutrición se puede aplicar de 40 a 50 kg de N por hectárea, a un lado de las plantas cuando empiezan a formar guías y antes del riego que se efectúa de los 35-40 días obteniéndose rendimientos de 25 t ha-1 . Las prácticas de fertilización en el cultivo de melón, dependen del tipo de suelo y la cantidad de nutrientes que contiene, Whitaker y Mondragón (1970) mencionan que el melón crece mejor en suelos ricos en materia orgánica pudiendo agregarse abonos animales que en cantidades de 10 ton ha-1 , han dado buen resultado. En este caso, Pérez et al (1995), mencionan que altos rendimientos pueden obtenerse con bajas cantidades de fertilizante (45 kg ha-1 de N) pero combinados con abonos verdes, en caso contrario pueden ser necesarios hasta 500 kg de nitrógeno para obtener los mismos rendimientos (45 a 80 ton ha-1 de fruta). El fertilizante, según Whitaker y Mondragón (1970), debe aplicarse antes de barbechar y cruzar; debe hacerse antes de dar un primer riego (en temporada de secas de febrero a abril). También se puede proporcionar materia orgánica como alfalfa, trébol, soya, fríjol y ajonjolí. La mayor parte del melón se produce sin abonos, pero los fertilizantes químicos siempre son necesarios. La evidencia experimental ha demostrado que el melón debe recibir de 60 a 120 kg por hectárea de nitrógeno y 25 a 50 kg ha-1 de P. El N generalmente se aplica la mitad antes o al principio de la siembra y la otra mitad cuando las plantas comienzan a formar guías.
  • 17. 16 Nutri-riego de melón cantaloupe (Cucumis melo cv. Cruiser) El P se aplica antes o al momento de sembrar en una sola ocasión, experimentalmente se demostró de 4 a 5 % más eficiente cuando se aplica en banda que cuando se aplicó al voleo. En ciertas condiciones se sugiere no aplicar fósforo en el agua de riego, ya que se fija rápidamente en el suelo y puede que no llegue al área de las raíces de las plantas, esto ocurre principalmente en suelos alcalinos, en el que el ortofosfato (- H2 PO4 ) y el Ca, forman precipitados insolubles de fósforo mientras que en suelos ácidos con el Fe y el Al propician inmovilización del ión ortofosfato (Fuentes et al., 2006). Gómez y García (1980), indican para el Valle de Mexicali que los suelos arenosos y los de textura franca son óptimos para el melón, recomiendan la aplicación de 150 kg de nitrógeno y 40 kg de P por hectárea; aplicando la segunda parte de N después del aclareo. Si se aplica amoniaco anhídrido en el agua de riego cuidar que la concentración sea apropiada y que el agua no llegue a las plantas, ya que podría sufrir quemaduras si el amoniaco está en contacto con ellas. En el Campo Agrícola Experimental Valle de Apatzingán (CAEVA), León (1984) aplicó la dosis de fertilización sugerida para riego superficial; mencionó que la dosis se ajusta a los diferentes tipos de suelos predominantes en la región, los cuales se han dividido en 8 subzonas representativas: Buenos Aires, Antúnez, Nueva Italia y Lombardía (180 – 60 – 60) de N – P – K en suelos vertisoles y para Gambara, Apatzingán, Presa del Rosario y Tepalcatepec recomendó las dosis (200 – 60 – 80, 180 – 80 – 60, 180 – 70 – 60 y 180 – 60 – 60) de N - P – K, en el mismo orden respectivamente, los cuales son de textura menos arcillosa Figura 3. La fertilización se aplica de la siguiente forma: la mitad de N, todo el fósforo y todo el potasio, en la siembra, posteriormente la parte restante del N en la escarda, antes del primer riego de auxilio.
  • 18. 17 Nutri-riego de melón cantaloupe (Cucumis melo cv. Cruiser) La nutrición del cultivo de acuerdo a Vidales et al (1987) debe efectuarse con 200 kg de N, 60 kg de P y 80 kg de K, aplicando la mitad de N, todo el P y el K al momento de la siembra, el resto del N se aplica en la escarda antes del primer riego de auxilio. Otras investigaciones efectuadas porArias et al (1983) recomiendan lafórmula180–60-100ysepreparamezclándosehomogéneamente 878 kg de sulfato de amonio al 20.5 %, 300 kg de súper fosfato de calcio simple al 20 % y 200 kg de sulfato de potasio al 50 % para el municipio de Tepalcatepec, Mich. La correcta nutrición del cultivo permite que el melón desarrolle alto potencial de rendimiento (Pinales y Arellano, 2001), sin embargo, las plantas con parámetros nutricionales por debajo de los niveles referenciales (Hochmuth, 1994), tendrán problemas de disminución en los rendimientos, en la calidad de fruto y en las utilidades netas. Una técnica que arroja resultados instantáneos in situ es el análisis de tejido, el cual se usa para determinar los requerimientos de nutrientes en cultivos hortícolas de ciclo corto (Badillo et al., 2001). La concentración de P, N, K, disminuye con la madurez de la planta, Figura 3. Zonas representativas para fertilización en Michoacán. (León, 1984).
  • 19. 18 Nutri-riego de melón cantaloupe (Cucumis melo cv. Cruiser) de tal manera que es necesario relacionar la composición de la planta con su edad (Hochmuth, 1994). El análisis se basa en el muestreo de pecíolos de las hojas que recientemente han madurado (la hoja sexta a partir de la punta de la guía (Castellanos et al., 1998). ANÁLISIS FINANCIERO La aplicación de diferentes tratamientos de manejo producirá un efecto diferencial en el rendimiento y calidad de fruto ligado intrínsicamente al tratamiento. Esta respuesta diferencial se analiza por medio de una técnica matemático-financiera y analítica, a través de la cual se determinan los beneficios y/o pérdidas en los que se puede incurrir al realizar una inversión, el análisis financiero apoya la toma de decisiones referente a las actividades de inversión dado a cada tratamiento. Las decisiones se basan en la información, en particular de los datos sobre costos y utilidades, debiendo reflejar la mejor alternativa, dados los recursos disponibles, las restricciones que se impongan y las utilidades generadas. Ante todo estar seguro de que la decisión se realiza de manera eficiente (Van Home, 2006). COSTOS DE PRODUCCIÓN Del Río (2000), menciona que el costo se refiere al costo de algo, costo unitario de un producto específico o de la inversión de un producto (que puede ser el fertilizante aplicado), durante un período de tiempo. Cada $1 de costo invertido debe producir un beneficio $ X.XX, por tanto manifiesta las consecuencias obtenidas por la alternativa elegida. La clasificación de costos, se analizan adecuadamente por tipo de costo, ya que los detalles analizados ofrecerán información fidedigna para el productor en comparación a la obtenida de la información total (Pech, 2003). COSTOS DIRECTOS E INDIRECTOS Existen costos relacionados directamente con la producción de un artículo determinado. Estos costos se llaman costos directos, por ejemplo los costos de la semilla y fertilizante.
  • 20. 19 Nutri-riego de melón cantaloupe (Cucumis melo cv. Cruiser) Los costos indirectos, como su nombre lo indica, no tienen una relación directa con la producción de un artículo determinado. En el caso de este trabajo son todos aquellos que no se relacionan directamente con el manejo nutricional como, la maquinaria, los implementos agrícolas, la tasa de interés. No se analizan porque están fuera del propósito de este trabajo. COSTOS FIJOS Y VARIABLES Los costos fijos son aquellos que no varían en relación con el volumen de producción. Por ejemplo, en este trabajo la semilla, los pesticidas, el plástico, la cinta de riego, son costos que no varían y son independientes de la cantidad de rendimiento producido. Los costos variables están directamente relacionados con el volumen de producción. Cuanto más se produzca, los costos variables serán mayores. Por ejemplo, más rendimiento de fruto requiere más inversión en fertilizante, en mano de obra para cosecha, más viajes de remolque para el transporte del fruto (Aguilar, 1997). FISIOLOGÍA DE LA NUTRICIÓN DEL MELÓN Nitrógeno. El exceso de N produce plantas excesivamente vigorosas, retrasa la floración y maduración de frutos, tienden a ser éstos de grueso calibre, ahuecados, de corteza gruesa y bajo contenido en azúcares. Dicho elemento, acentúa la sensibilidad a enfermedades fungosas (hongos) y ataque de insectos (pulgones, mosquita blanca) (Vidales et al., 1987). El 90% del N se encuentra en la parte aérea, del cual más del 14 % está en las hojas y el 20 % en el fruto, interviene en el crecimiento y desarrollo de la planta (Cuadro 3), entra como componente de las proteínas, clorofila y aminoácidos. Es el elemento del que mayor necesidad tiene la planta, absorbiéndolo en su mayoría en forma nítrica y muy poca cantidad bajo forma amoniacal (Pizarro, 1996). La deficiencia produce plantas de poco vigor, hojas adultas de color amarillento que tornan a amarillo y se secan. Los frutos pequeños, muy coloreados, de piel fina, contienen semillas pequeñas. Como consecuencia la falta de crecimiento y raquitismo, facilita la caída de flores y frutos, pérdida uniforme de la clorofila en toda la hoja, tornándose de un color amarillento, esta se presenta con mayor
  • 21. 20 Nutri-riego de melón cantaloupe (Cucumis melo cv. Cruiser) intensidad de guías en el fruto, el rendimiento es bajo y de mala calidad (Castañer, 1993). Cuadro 3. Longitud de la guía principal (cm) en melón con diferentes dosis de fertilización nitrogenada en Apatzingán. Dosis N Días del ciclo vegetativo 20 30 60 0 41 61 186b 60 53 84 215a 120 59 94 230a 240 61 99 242a DMS (Tukey 5%) 21.1 38.8 28.2 Fuente: Silva (2006); nota: valores con la misma letra o sin letra iguales estadísticamente (p≥0.05) Fósforo. El exceso de P no produce síntomas visuales en la planta. El 57 % se encuentra formando parte de las raíces y el 28 % del fruto. Es el tercer elemento después del K en necesidades de la planta, interviene en la formación de las raíces y flores, en la maduración de la cosecha, disminuye la absorción del Zn y del Cu, las hojas jóvenes tienen mayores concentraciones de P que las hojas viejas (Castañer, 1993).La insuficiencia produce deficiente desarrollo radicular, entrenudos cortos, disminución del vigor vegetativo, de la floración y del cuajado de frutos. Abundan los frutos pequeños de mala calidad, de estos gran cantidad se cae prematuramente y disminuye el rendimiento, los frutos son huecos (separación de los segmentos del fruto en la zona centro), disminuye el contenido de sólidos solubles aunque no de manera significativa (Cuadro 4). Cuadro 4. Respuesta en concentración de sólidos solubles del melón por efecto del fósforo y potasio, en el Valle de Apatzingán. Dosis de fertilización Descripción Grados Brix (%) 180-100-200 Normal 13.2a 180-00-200 Sin fósforo 12.6a 180-100-00 Sin potasio 12.4a Nota valores con la misma letra iguales estadísticamente (p≥0.05). Fuente: Silva (2006) Potasio. El exceso de K produce un desarrollo vegetativo de poco vigor, con las yemas terminales muy débiles, Los frutos de pequeño
  • 22. 21 Nutri-riego de melón cantaloupe (Cucumis melo cv. Cruiser) calibre, maduran prematuramente. El 31 % se encuentra en las hojas y 20 % en el fruto, la planta tiene grandes exigencias de floración a engorde (fruto), prácticamente todo el ciclo, aunque sus mayores necesidades vienen después del cuajado. En el fruto hay mayor movilidad que el P, pero menos que el N, el 60 % del K, de toda la planta va al fruto, lo que quiere decir que en años de abundante cosecha tendrá que incrementarse la aportación normal calculada (Castañer, 1993). La deficiencia interviene en la calidad del fruto, presentando éste pulpa arenosa y ligero sabor amargo y el borde de las hojas jóvenes con una decoloración tornando a blanco. También influye en el crecimiento de la planta (menor desarrollo), mayor desarrollo de la hoja y color pálido que suelen causar abscisión de flores, maduración precoz de frutos, las nuevas guías son débiles y por falta de resistencia mecánica tienden a formar una “S”, la floración es escasa y el cuajado de frutos deficiente (Castañer, 1993). RIEGO LOCALIZADO El riego localizado consiste en la aplicación del agua al suelo en forma localizada, y se empezó a ensayar en Alemania en 1860 y en Estados Unidos en 1918 (Figura 4); Israel ha sido uno de los países pioneros de la investigación y desarrollo de este tipo de riegos (Martínez, 1991). Figura 4. Distribución clásica del bulbo de humedad en riego localizado en melón. RIEGO POR GOTEO El riego por goteo tuvo sus comienzos en Inglaterra en la década de 1940, pero hasta la introducción del polietileno (después de los 60’ s), se desarrolló en forma de tecnología y comercial en los Estados Unidos e Israel (Roberts y Stuart, 1997).
  • 23. 22 Nutri-riego de melón cantaloupe (Cucumis melo cv. Cruiser) Los sistemas de riego por goteo aplican el agua con un caudal no superior a 20 L h-1 , por punto de emisión o metro lineal de manguera de goteo; el agua es llevada a los cultivos por una red de tuberías, de tal manera que se aplica directamente en el sistema radical de las plantas a través de los emisores o goteros (Pantoja, 1997). Los beneficios del sistema de riego por goteo incluyen una disminución en el consumo de agua de un 50 a 70 % y una disminución de un 20 a 50 % en insumos químicos (Berigan, 1998); además, éste sistema es particularmente ventajoso en cultivos con espaciamientos amplios (por ejemplo frutales y viñedos, Figura 5), porque las pérdidas por filtración lateral y evaporación son pequeñas y como la mayor parte de la superficie del suelo permanece seca, las malas hierbas no se desarrollan (Tapia et al., 2005). En riego localizado de alta frecuencia (microaspersión y goteo), no puede tenerse un cubrimiento total del terreno (Pizarro, 1996), sin embargo, debe manejarse el criterio de no sobrepasar la capacidad de almacenamiento de humedad del suelo (263 mm), por lo que la selección del emisor debe contemplar este aspecto para no originar lixiviación de nutrimentos y percolación de agua a capas del suelo fuera del alcance del sistema radicular. Aún cuando el emisor por su naturaleza, cubra sólo una fracción del área de goteo, la mayoría de los cultivos responden bien al riego localizado y al humedecimiento parcial del suelo. Figura 5. Riego por microaspersión y goteo y bulbos de humedad formados en campo
  • 24. 23 Nutri-riego de melón cantaloupe (Cucumis melo cv. Cruiser) FERTILIZANTES La selección adecuada de un fertilizante bajo esta práctica agronómica, debe considerar aquella características que influyen sobre el suelo, la planta y el manejo del sistema de riego (Torres, 1999), además los aspectos económicos ligados a la producción (De Santiago, 1998), así como la calidad (Ludwick, 1997) y la solubilidad (Arciniega, 1999) son determinantes en la elección de los productos a emplear. Los fertilizantes nitrogenados, dada su alta solubilidad y pureza, no presentan ningún problema en su empleo; se debe aplicar del 40 al 50 % antes de la siembra o antes del trasplante, ya que es precisamente con N con lo que la fertirrigación será más efectiva, puesto que la mayor cantidad de este nutrimento se necesita en las etapas posteriores del desarrollo de las plantas (Pantoja, 1999). Las soluciones de fertilizantes nitrogenados no presentan problemas dada su movilidad en el suelo, con excepción del amoniaco anhidro (82-00-00) y el agua amoniacal (27-00-00) que producen una elevación del pH y puede causar precipitación de Ca y Mg ocasionando problemas de obturación (Martínez, 1991). El nitrato cálcico y el nitrato potásico tienen reacción alcalina, por lo que es recomendable añadir ácido clorhídrico cuando estos sean utilizados. El sulfato de amonio (20.5-00-00), el nitrato de amonio (33.5-00-00) y la urea (46-00-00) son fertilizantes nitrogenados que pueden ser aplicados razonablemente sin tener efectos laterales en el agua o en el sistema de riego (CNA, 1995). La absorción de N alcanza su máximo nivel durante los períodos de crecimiento del fruto y conforme los frutos maduran y se inicia la cosecha, las necesidades de éste se reducen (Castellanos, 1997). El P es sin duda el elemento nutritivo cuya aplicación en el agua de riego presenta los mayores problemas, como baja solubilidad, alto costo, fácil precipitación que causa obturaciones y baja movilidad. Para aplicar éste elemento se ha empleado el ácido fosfórico en una dosis muy concentrada y espesa, la cual mantiene un pH bajo que evita la precipitación del Ca y el Mg (CNA, 1995).
  • 25. 24 Nutri-riego de melón cantaloupe (Cucumis melo cv. Cruiser) Entre los fertilizantes fosfatados se tiene el superfosfato triple (00- 46-00), el cual es moderadamente soluble en agua y como tal no puede ser utilizado en riego localizado para fertilización. Esta consideración puede parecer contradictoria porque el superfosfato triple (SPT) es considerado como soluble en agua, pero la disolución actual del súper fosfato de calcio triple (SPT) en agua es limitada porque el fosfato monocálcico es el principal componente del SPT y cambia espontáneamente a fosfato dicálcico, el cual es de baja solubilidad en agua, aunque cabe mencionar que esta directamente influenciado por el pH del suelo. El P es demandado en mayor proporción en las etapas iniciales de desarrollo de los cultivos (Castellanos, 1997). En cuanto al K se cita que generalmente del 40 al 60 % debe ser aplicado antes de plantar (Pantoja, 1999). No existe problema para aplicar este elemento a través del agua de riego. Los fertilizantes más empleados como fuentes de K son los cloruros, sulfatos y nitratos potásicos. El K al igual que el P tiene poca movilidad, algunas investigaciones han demostrado que el K se ha movido de 60 a 90 cm en cuatro meses, cuando ha sido aplicado con sistemas de microirrigación (CNA, 1995). En términos generales, el ritmo de consumo del K es muy similar al del N, aunque su volumen aumenta en la medida que se requiere de una mayor calidad de los frutos (De Santiago, 1999). Este elemento se demanda en etapas avanzadas de desarrollo de la planta llegando a su pico en la etapa de crecimiento del fruto (Castellanos, 1997). Para proporcionar micronutrimentos varias fuentes han sido utilizadas en riego por goteo como el sulfato de manganeso, el bórax o ácido bórico, los quelatos y las mezclas de Zn con N. (De Santiago, 1999). Los fertilizantes más usados en riego por goteo se presentan en el Cuadro 5.
  • 26. 25 Nutri-riego de melón cantaloupe (Cucumis melo cv. Cruiser) Cuadro 5. Fertilizantes aplicados en el agua de riego. Fertilizante Análisis garantizado (%) Solubilidad (Kg 100 L-1 ) Temperatura (ºC) N P2 O5 K2 O otro Nitrato de amonio 34 0 0 - 18.3 - Urea 46 0 0 - 100.0 20.0 Nitrato de Ca 15.5 0 0 19 Ca 121.2 16.6 A. fosfórico blanco 0 52 0 - 45.7 - A. fosfórico verde 11 37 0 - 45.7 - Fosfato monoamónico 8 24 0 - 22.0 20.0 Polifosfato de amonio 10 34 0 - Alta - Nitrato de K 13 0 44 - 13.3 - Cloruro de K 0 0 60 47 Cl 34.7 20.0 Sulfato de K 0 0 50 18 S 12.0 25.0 Nitrato de Mg 11 0 0 9.5 Mg - - Sulfato de Mg 13 Mg 71.0 20.0 Quelato de hierro 14 Fe Muy soluble - Sulfato de hierro 20 Fe 15.6 20.0 Quelato de zinc 14 Zn Muy soluble - Sulfato de zinc 36 Zn 96.5 20.0 Quelato de manganeso 12 Mn Muy soluble - Sulfato de manganeso 27 Mn 105.3 - Ácido bórico 18 B 6.3 30.0 Fuente: Torres (1999).
  • 27. 26 Nutri-riego de melón cantaloupe (Cucumis melo cv. Cruiser) Características de los fertilizantes: Como norma general, cualquier fertilizante para riego localizado ha de reunir las siguientes características: Exentos de cloruros, sulfatos y sodio, que incrementen el • contenido salino o alcalino del suelo. Reacción neutra o ácida, a fin de evitar precipitados. • Alto grado de solubilidad y pureza (Arciniega, 1999). • En el Cuadro 6 se anotan algunos de los fertilizantes mas frecuentemente usados en los sistemas de fertiriego. Cuadro 6. Ejemplos de fuentes de nutrientes usados en fertiriego. Producto Solubilidad (kg lt-1 ) Reacción MAP 0.37 Alcalina Urea 0.51 Neutra Sulfato potasio 0.11 Ácida N32 0.66 Neutra Ácido fosfórico 0.80 Ácida Hidróxido Potasio 0.86 Alcalina Fuente: Tapia et al (2005) En los casos de fertilizantes líquidos, se debe conocer su densidad que permita transformar las unidades de masa a volumen, además del comprobar posibles adulteraciones de fertilizante. También ha de tenerse en cuenta que estos fertilizantes, al ser soluciones saturadas, si se someten a bajas temperaturas pueden favorecer depósitos de cristales, induciendo no sólo problemas de obstrucciones sino alteraciones en la concentración de la solución restante. Por ejemplo, considerar el ácido fosfórico líquido (H3 PO4 ) al 62% con una densidad de 1.6. Si se pide aplicar 60 kg de P2 O5 , cuanto ácido es necesario aplicar. 1 L de H3 PO4 tiene 1.6 kg de peso y 62% de pentoxido de fósforo 1 L de H3 PO4 tendrá: 0.99 kg de P2 O5 . Entonces se requieren aplicar:
  • 28. 27 Nutri-riego de melón cantaloupe (Cucumis melo cv. Cruiser) ELABORACIÓN DE LOS PROGRAMAS DE RIEGO LOCALIZADO Un plan de manejo nutrimental inicia con el conocimiento del sistema de producción, debe contar con técnicas de diagnóstico, conocer la dinámica nutrimental en suelo y planta y la naturaleza de la respuesta a la aplicación de fertilizantes, entender las tecnologías del uso de fertilizantes, así como aspectos económicos de la fertilización. El primer paso en el diseño de un plan de manejo nutrimental de un cultivo es definir los rendimientos máximos posibles en la zona de interés, el segundo es conocer que proporción de la demanda es cubierta por el suelo (Etchevers, 1996). Para realizar la aplicación del fertilizante a través del sistema de riego existen dos estrategias: aplicación diaria a través de una concentración determinada que se mide mediante la conductividad eléctrica y una relación de nutrimentos de aplicación semanal de acuerdo con la demanda, suministrando el nutrimento antes de la misma (Castillo, 1998). El análisis foliar es una herramienta para evaluar directamente el estado nutrimental de las plantas y la efectividad de las prácticas de fertilización, e indirectamente la disponibilidad de nutrimentos en el suelo, análisis que usualmente se efectúan en laboratorio. Los principales criterios para la interpretación de los análisis de tejido vegetal son el nivel crítico e intervalos de concentración (Castellanos et al., 1998). En la práctica, la técnica del diagnóstico nutrimental maneja dos aproximaciones para definir los niveles de suficiencia: una que se basa en la relación entre el contenido nutrimental en el tejido vegetal
  • 29. 28 Nutri-riego de melón cantaloupe (Cucumis melo cv. Cruiser) y el crecimiento o el rendimiento, y la otra que se obtiene a través de generar datos de una población grande de análisis, con la que se obtiene un histograma de frecuencias que generalmente obedece a una distribución normal (Castellanos, 1999). En dicha distribución normal se establece arbitrariamente que los niveles a la izquierda son bajos, a la derecha altos y los del medio son normales. En ausencia de datos regionales, esta técnica da al menos una idea aproximada para interpretar los resultados, sin embargo es muy imprecisa, pues el hecho de que los niveles sean bajos no significa que estén al nivel de deficiencia ni el que sea alto que sean excesivos. Por lo contrario, la técnica que relaciona el nivel nutrimental con la condición de desarrollo del cultivo es más precisa (Castellanos, 1999). EL ANÁLISIS DE EXTRACTO CELULAR DE PECÍOLO (ECP) COMO HERRAMIENTA DE DIAGNOSTICO DEL ESTADO NUTRIMENTAL DEL CULTIVO El análisis de la planta es actualmente la herramienta mas integral para diagnosticar el estado nutrimental tanto de los cultivos anuales como perennes, en el caso de estos últimos, por lo regular se aprovecha para dar solución a los problemas nutrimentales hasta el siguiente año (Dow y Roberts, 1982). La interpretación de resultados del análisis debe de estar basado en la relación entre la concentración elemental obtenida del análisis y la materia seca actual o el rendimiento de la planta (Jones, 1985). Desde 1920 se tienen antecedentes del empleo de esta técnica y del uso del termino “análisis de savia” (Jones et al., 1991; Hochmuth, 1994), término que esta mal empleado porque la metodología aplicada desde entonces no completa la verdadera extracción de líquidos citoplasmáticos, vacuolares y savia. Por lo que savia es la solución que fluye por los vasos cribosos del xilema del tallo principal (savia bruta) y al que se trasporta por el floema (savia elaborada). Ya en la actualidad se manejan términos como extracto celular de pecíolo o jugo de la porción muestreada (Halvorson et al., 1975). Hernando y Cadahia (1973) definen al análisis del extracto celular como la extracción que se realiza a toda la planta u órgano de
  • 30. 29 Nutri-riego de melón cantaloupe (Cucumis melo cv. Cruiser) referencia con el fin de determinar elementos minerales, orgánicos y fracciones orgánicas. Así que en lo sucesivo será usado el nombre de extracto celular y en su caso extracto celular de pecíolo (ECP). Gilbert y Hardin (1927) obtuvieron valores de suficiencia para N, P y K para extracto celular en varias hortalizas. Obtención de muestras de ECP La técnica del análisis de extracto celular de pecíolo (ECP) a grandes rasgos es la siguiente: a) Muestreo y transporte al laboratorio en el caso de ser necesario, b) En caso de que sea necesario el transporte se requiere detener la actividad metabólica por medio de temperatura fría y de un inhibidor, tal como éter etílico anhidro, c) Extracción, esta se realiza a temperatura ambiente con ayuda de aditamentos que van desde un exprimidor de ajos hasta una prensa hidráulica, y d) Determinación de elementos deseados, por una gran variedad de metodologías (Hochmuth, 1994). Precauciones en el uso de la técnica de análisis de ECP El análisis de extracto celular es una técnica rápida y simple de análisis y no requiere de digestiones ni de equipo muy sofisticado; sin embargo, se debe tener en cuenta algunos aspectos tales como: elección adecuada del órgano de muestreo, tomar en cuenta la hora de toma de muestra, si el cultivo no ha recibido alguna aplicación de fertilizante, los posibles efectos que sobre la concentración del extracto celular pudiera tener la humedad del suelo y la radiación solar y además en el caso del potasio cuando esta en muy altas concentraciones en el ECP este se debe diluir con sulfatos de aluminio 0.075M al menos en cada caso (Castellanos et al., 1998). Niveles óptimos de N-NO3 publicados en la literatura Los niveles óptimos de N-NO3 obtenidos de investigaciones realizadas por algunos centros de investigación para el análisis de extracto celular para el cultivo del melón. Los valores con en el contenido de N en forma de nitrato varían de 1200-1500 mg L-1 (etapa: Guías de 15 cm de largo) de 1000–1200 mg L-1 (fase: primer botón) de 1000–1200 mg L-1 (etapa: Frutos de 3 a 5 cm de largo) de 800–1000 mg L-1 (etapa: Frutos a medio madurar) de 600 – 800
  • 31. 30 Nutri-riego de melón cantaloupe (Cucumis melo cv. Cruiser) mg L-1 (etapa: Primer corte). Lo que es para P y K no muestran reporte de medición. Se ha reportado que los niveles de nitratos en extracto celular disminuyen conforme avanza el ciclo de desarrollo del cultivo (Castellanos et al., 1998). DESCRIPCIÓN DE LA TECNOLOGÍA DE FERTIRIEGO Prácticas Culturales: Estas prácticas son las mismas que eventualmente se aplican en el cultivo sembrado de manera normal sin fertiriego: Barbecho con arado a una profundidad de al menos 30 cm 1. Cruza si el terreno lo amerita a juicio del técnico o 2. productor Rastra y cruza éstas prácticas dependerán del estado del 3. terreno Melgas, pueden construirse a 1.80 m para siembras al 4. centro de la cama, hasta 2.40 para siembra en el borde de la cama Acolchado, se prefiere utilizar acolchadora mecánica con 5. perforaciones ya prediseñadas Siembra, se sugiere sembrar en húmedo con el sistema de 6. fertiriego ya funcionando a una distancia entre plantas de 0.30 m Riegos,sepuederegarcada7días8horasopreferentemente 7. 2 horas cada dos días, en cada riego se debe aplicar fertilizantes de acuerdo a como se indica más adelante Técnica de Fertiriego: Cada componente de esta técnica, debe suministrarse con la debida oportunidadyaquecomotantoelriegocomolanutriciónalserendosis pequeñas, la planta puede estresarse si no recibe con oportunidad estos insumos. La Figura 6 muestra los diferentes componentes que son básicos para integrar un sistema de fertirrigación. El Cuadro 7 presenta la descripción de cada componente enumerado en la Figura 6 con el tipo de material empleado y sus dimensiones. El Cuadro 8 indica los materiales que complementan al sistema de producción de melón con alta tecnología, así como los costos de
  • 32. 31 Nutri-riego de melón cantaloupe (Cucumis melo cv. Cruiser) cada insumo referidos a una hectárea. La información proporcionada aquí es general, ya que equipos como el cabezal de bombeo y de filtración pueden ser utilizados en más de una hectárea sembrada. El costo total de los componentes físicos del fertiriego, acolchado, tubería, conexiones y cinta, es de $13,824.00 ha-1 . Cuadro 7. Componentes del sistema de fertiriego en melón de alto Número Descripción 1 Tubería o manguera de succión corrugada 2 Bomba centrífuga 3 HP 220 VAC 3 Válvula alivio 25 mm 4 Manómetro 0-7 glicerina 5 Medidor de volumen 38 mm 6 Filtro 120 mesch anillos 7 Válvula compuerta 50 mm 8 Válvula alivio 25 mm 9 Válvula sección 50 mm 10 Tubería distribución 50 mm (lateral) 11 Tubería conducción 50 mm (principal) 12 Cinta de riego (regante) Figura 6. Técnica del fertiriego en el Valle de Apatzingán, Mich.
  • 33. 32 Nutri-riego de melón cantaloupe (Cucumis melo cv. Cruiser) Cuadro 8. Componentes físicos del sistema de fertiriego en melóndel Valle de Apatzingán, Mich. 2006 Descripción Cantidad Costo U ($) Costo total ($/ha) Acolchado plástico calibre 120 dos colores 4 rollos 1 420.00 5,680.00 Bomba estacionaria 4 HP 3.8 LPS 1 pza 5,500.00 5,500.00 Sistema de filtración 120 mesh 1 pza 2,300.00 2,300.00 Tubería y conexiones PVC C5 100 m 15.00 1,900.00 Válvulas, conexiones y accesorios Varias 1,800.00 Cinta 8 mill 3.8 LPH 5,555 m 0.80 4,444.00 Total (sin Incluir cabezal de bombeo y filtración) 13,824.00 Programa Nutrimental: La descripción del siguiente programa esta basado para suelos de barro (vertisol pélico), los cuales son los predominantes de la Tierra Caliente de Michoacán. El programa contempla la aplicación de una fórmula de fertilización base a aplicar antes de la siembra, la cual es con la dosis, 90-100-100, de N-P2 O5 -K2 O en kg ha-1 , así como el programa de riego con cinta 2.5 LPH calibre 8 mill y regando a una tensión matricial de 30 cb como máximo (Cuadro 9). Respuesta nutrimental del cultivo en melón Para determinar el efecto de diferentes dosis nutricionales en la disponibilidad nutrimental en suelo, la nutrición de la planta y el efecto en la calidad y rendimiento de fruto, se establecieron dos experimentos al inicio de marzo de los años 2006 y 2007, con la dosificación de fertilizantes N, P y K. Las dosis fueron las siguientes: para N 0, 60, 120, 180 y 240 kg ha-1 , en P2 O5 0 y 100 y para K2 O 0 y 200 kg/ha-1 , la descripción de tratamientos se muestra en el Cuadro 10. En ambos experimentos se adicionaron 3 tratamientos con la dosis de fertilización sugerida por Tapia et al (2001), de 180-100- 200, los tratamientos adicionales consistieron en consecutivamente los tratamientos 8, 9 y 10:
  • 34. 33 Nutri-riego de melón cantaloupe (Cucumis melo cv. Cruiser) Aplicaciones foliares de activadores metabólicos orgánicos - (ácido amino butírico al 5%) en dosis de 300 g ha-1 , al inicio de la floración y al inicio de la fructificación, además se agrego el foliar inorgánico multinutriente (N, P, K, Zn, B, Mg (5-0.4-2.5-0.1-0.02-0.3) en dosis de 2 kg 100 L-1 agua cada 8 días desde los 15 días de nacido. Aplicacióndefoliarorgániconutricional(guanodemurciélago - líquido al 22%), en dosis de 2.0 L ha-1 a los 20 días de nacido, al inicio de floración y al inicio de fructificación, El programa incluye la aplicación al suelo en dosis de 3 L ha-1 al inicio de floración y al inicio de fructificación. Aplicación foliares hormonales (citocinina en concentración - de 2.3 g litro-1 más giberelina en concentración de 40 mg litro-1 ), en dosis de 0.25 litros 100 litros-1 de agua, al inicio de floración y en crecimiento de fruto, más fertilizantes foliares macro y micronutrientes similar al tratamiento 8. Cuadro 9. Programa nutrimental y de riego (N-P2 O5 -K2 O, kg ha-1 ) a aplicar en melón con fertiriego en el Valle de Apatzingán. Fase de desarrollo Días del ciclo vegetativo N P2 O5 K2 O Tiempo de riego (horas) Volumen aplicado (m3 /ha) Pre-siembra 0 90 100 100 13 274.4 Siembra a inicio flor 25 22.5 0 0 27 569.9 Inicio flor- acomodo guía 35 22.5 0 0 12 253.3 Acomodo guía-inicio fructificación 45 22.5 0 50 10 211.1 Inicio fructificación- inicio cosecha 65 22.5 0 50 30 633.2 Inicio cosecha - Fin de cosecha 90 0 0 0 33 696.6 Total 90 180 100 200 125 2,638.5 Fuente: Rico et al (2007)
  • 35. 34 Nutri-riego de melón cantaloupe (Cucumis melo cv. Cruiser) Cuadro 10. Lista de tratamientos evaluados en melón con alta tecnología de producción del Valle de Apatzingán. Número de tratamiento N P2 O5 K2 O Observaciones 1 0 100 200 2 60 100 200 3 120 100 200 4 (sugerido) 180 100 200 5 240 100 200 6 180 0 200 7 180 100 0 8 180 100 200 Ácidos orgánicos más inorgánicos minerales 9 180 100 200 Orgánicos 10 180 100 200 Hormonales más foliares inorgánicos minerales La fertilización de fondo en todos los tratamientos fue el 50% del N de acuerdo a tratamiento, el 100% del P2 O5 , y el 50% del K2 O. Las fuentes de fertilizantes aplicados fueron Urea, superfosfato de calcio triple y sulfato de potasio. Las dosis experimentales de cada tratamiento fueron aplicadas de acuerdo al programa nutrimental explicado en el Cuadro 9 en la proporción correspondiente a cada tratamiento. DISEÑO EXPERIMENTAL Los tratamientos se distribuyeron bajo diseño bloques al azar con 4 repeticiones. Cada tratamiento se sembró en tres camas de 1.80 m de ancho y cinco metros de largo. Las plantas se sembraron a 30 cm de distancia con la variedad Cruiser. La parcela útil experimental fue el surco central. Cada unidad experimental fue bloqueada con válvulas para evitar el cruzamiento de tratamientos y asegurar la aplicación específica del tratamiento nutrimental. El manejo de los tratamientos fue el mismo en todos los casos para control y prevención de enfermedades y prácticas culturales, excepto en lo referente a la nutrición y tratamientos adicionales. Variables evaluadas Las variables registradas en ambos experimentos fueron disponibilidad nutrimental NO - 3 , P y K en solución del suelo (sólo en 2007).
  • 36. 35 Nutri-riego de melón cantaloupe (Cucumis melo cv. Cruiser) análisis nutricional N- NO - 3 , P y K en extracto celular de pecíolo en inicio de floración, inicio de fructificación e inicio de cosecha. análisis foliar en base a peso seco de N, P y K en hojas en - las mismas fechas anteriores y análisis de fruto. Rendimiento de fruto por calidad, exportación, nacional y - comercial (exportación + nacional), “fruto pachanga” no fue considerado para análisis. Concentración de sólidos solubles en fruto de exportación - en el primer y tercer corte. Producción de biomasa aérea y radicular en base a peso - seco. Costos de producción de cada tratamiento. - Base estadística de la información experimental La información experimental se sometió a análisis estadístico para las diferentes variables evaluadas, para probar el efecto de las dosis nutricionales en la magnitud de las variables consideradas. Análisis de varianza para lo relacionado con: disponibilidad nutrimental en suelo - nutrición foliar y en ECP - rendimiento y calidad de fruto - producción de materia seca - Para explicar el desempeño de cada tratamiento en función de la nutrición y de la disponibilidad nutrimental se ajustaron modelos de regresión para obtener concentraciones óptimas que maximicen el rendimiento y la calidad de fruto y el estudio de las relaciones entre la disponibilidad nutrimental y la nutrición del cultivo y la concentración nutrimental in situ y la evaluada en laboratorio en base a peso seco. Respecto al análisis financiero de la información experimental, se siguió la metodología propuesta por el Centro Internacional de Mejoramiento de Maíz y Trigo (CIMMYT, 1985), para el análisis económico de experimentos agronómicos para la investigación en fincas tomando como ejemplo básico lo sugerido en Bonilla (1994). Básicamente consiste en:
  • 37. 36 Nutri-riego de melón cantaloupe (Cucumis melo cv. Cruiser) Desarrollo del 1. presupuesto parcial para el experimento. Análisis Marginal. 2. Evaluación de Costos Fijos y Costos Variables (CV). 3. Beneficios brutos y beneficios netos (BN). 4. Comparación de costos variables y beneficios netos. 5. Obtención de la tasa de retorno marginal (TRM): 6. RESULTADOS EXPERIMENTALES Efecto en variables experimentales Los análisis de varianza mostraron efecto significativo de las dosis nutrimentales ensayadas en los dos años de estudio (Cuadro 11). En el año 2007 el efecto fue en las variables de calidad de fruto, con valores de F, como rendimiento de fruto bruce (12.3**), fruto nacional (2.72*), fruto comercial (10.96**), más no en concentración de sólidos solubles (1.19 n.s.). En 2006 el efecto fue fruto bruce (3.5**) y comercial (3.2**) más no en fruto nacional y sólidos solubles. En 2007, también se tuvo efecto en la concentración de N-NO3 (3.7**), en extracto celular de peciolo (ECP) en floración y en inicio de cosecha (2.3*). No se tuvo efecto nutrimental en N-NO3 en el inicio de fructificación ni en el contenido de K en ECP. La disponibilidad de nutrimentos en solución del suelo no fue afectada para el N pero si para el pH de la solución y el contenido de K con 1.6, 2.06* y 2.0, respectivamente. Respecto a la respuesta en las características agronómicas del cultivo como longitud de guía si se detectó diferencia (2.73 *) y en la producción de materia seca foliar (2.34 *), pero no en la radicular (0.64 n.s.). El contenido nutricional total (%) también tuvo efecto debido a los tratamientos nutricionales. En N se encontró diferencia significativa (p<0.10) en el inicio de la fructificación y al inicio de la cosecha, mientras que para K sólo se tuvo efecto al inicio de la fructificación (p<0.10). Para la pulpa del fruto, se encontró efecto significativo en
  • 38. 37 Nutri-riego de melón cantaloupe (Cucumis melo cv. Cruiser) N (3.7**) pero no en K (1.6) (Cuadro 12). En este sentido Lima et al (2007), tampoco encontraron respuesta a K en este cultivo. Rendimiento y calidad de fruto El promedio de rendimiento y calidad de fruto para cada año de estudio se muestran en el Cuadro 13. El tratamiento de mayor rendimiento por calidad de exportación en 2006 fue el 10 (180- 100-200 más hormonales) con 66.6 ton ha-1 , sin embargo, fue igual estadísticamente al tratamiento 2 (60,100-200) con 46.3 ton ha-1 , de hecho en este año el único tratamiento diferente en esta variable fue el 1 (00-100-200), con 34 ton ha-1 . En 2007, las tendencias fueron similares en cuanto al desempeño de los tratamientos, siendo el de mayor rendimiento bruce otra vez el 10 y 8 (180-100-200 más ácidos orgánicos) con similares 49.5 ton ha-1 , separándose de este valor el 1 y el 2 con 33.7 ton ha-1 , y 14.7 ton ha-1 , respectivamente. En el rendimiento comercial, las tendencias fueron las mismas con respecto al 2006, pero en 2007 el mejor tratamiento fue el 8, destacando también el 10 y el 9.
  • 39. 38 Nutri-riego de melón cantaloupe (Cucumis melo cv. Cruiser) Cuadro 11. Análisis de varianza de las variables consideradas en melón con alta tecnología de producción en el Valle de Apatzingán en dos años de estudio. Variable gl t CMT CME gl e Fc Pr>F Fruto 2006 Bruce 9 321581327 93097744 3.5** 0.01 Nacional 9 15010792 11811066 1.4 Comercial 9 253233021 80236792 3.2** 0.01 Sólido solubles 9 1.4235 1.2134 1.2 Fruto 2007 Bruce 9 452844568 36708352 27 12.3** 0.001 Nacional 9 22819538 559228767 27 2.72 * 0.02 Comercial 9 441389351 40494412 27 10.9** 0.001 Sólido solubles 9 1.3722 1.1555 27 1.19 0.34 ECP 2007 Floración N-NO3 9 40119 10854 27 3.7** 0.004 K 9 43222 106629 27 0.41 0.92 Inicio fruto N-NO3 9 79469.2 136253.6 27 0.58 0.79 K 9 617777 897111 27 0.69 0.71 Inicio cosecha N-NO3 9 28946.9 12435.1 27 2.3* 0.04 K 9 3753.9 4362 27 0.86 0.57 Solución suelo pH 9 0.3144 0.1529 81 2.06* 0.04 NO3 9 720557 12978 81 1.6 0.13 K 9 24047 11995 81 2.0* 0.05 Longitud guía 9 0.2979 0.1091 27 2.73* 0.02 Materia seca Foliar 9 9.192 3.92 27 2.34* 0.04 Radicular 9 84.2 130.8 27 0.64 0.75 gl t, gl e: grados de libertad de tratamientos y error, respectivamente, CMT, CME: cuadrado medio de tratamiento y del error, respectivamente. ECP extracto celular de pecíolo. Cuadro 12. Análisis de varianza del contenido nutricional foliar (%) en melón con alta tecnología de producción en el Valle de Apatzingán en 2007. Variable gl t CMT CME gl e Fc Pr>F Inicio fruto N 9 0.19 0.1005 27 1.9 0.09 K 9 0.054 0.028 27 1.9 0.09 Inicio cosecha N 9 0.204 0.11 27 1.9 0.09 K 9 0.36 0.27 27 1.3 0.18 Pulpa N 9 0.349 0.095 27 3.7** 0.004 K 9 0.0356 0.273 27 1.6 0.13 gl t, gl e: grados de libertad de tratamientos y error, respectivamente, CMT, CME: cuadrado medio de tratamiento y del error, respectivamente.
  • 40. 39 Nutri-riego de melón cantaloupe (Cucumis melo cv. Cruiser) En los dos años de estudio, la aplicación de tratamientos adicionales, con foliares orgánicos e inorgánicos, tuvo efecto significativo con respecto a la misma dosis pero sin utilización de estos insumos, este efecto fue más pronunciado en 2007 que en 2006 y sobretodo en el rendimiento de primera calidad. Al agregarse la producción de calidad nacional, el efecto es más difuso pero se mantiene en estos tratamientos adicionales, sobretodo en 2007. El elemento nutritivo más importante para óptima producción de fruto, fue el N (Cuadro 13), en los dos años de estudio, se aprecia que el rendimiento de fruto en ambas calidades, es directamente proporcional a la aplicación de N. No obstante, en 2006 la respuesta es diferente ya que no se tuvo un efecto inhibitorio del rendimiento, ya que aunque la tasa es menor en las altas dosis, el rendimiento se incrementa hasta la última dosis (61.0 ton ha-1 ). Lo contrario ocurrió en 2007, donde el rendimiento en ambas calidades se inhiben con la dosis más alta de nitrógeno, ya que de 44.3 y 56.4 ton ha-1 , con la dosis 180-100-200, pasa a 42.6 y 51.4 ton ha-1 , con la dosis 240-100- 100 para bruce y comercial respectivamente. Estos resultados son importantes si se toma en cuenta que algunos productores pueden aplicar más de 400 kg de nitrógeno en este cultivo (Pérez et al., 2004), lo cual carece de efecto en rendimiento y calidad, pudiendo ser incluso detrimental como en este trabajo se aprecia. Cuadro 13. Rendimiento de fruto en melón en calidad exportación y comercial en diferentes dosis de fertilización. Fruto bruce ton ha-1 Fruto Comercial ton ha-1 Trat 2006 2007 2006 2007 1 00–100-200 34.0 b 14.7 d 44.2 b 26.5 d 2 60–100–200 46.3 ab 33.7 bc 53.1 ab 40.9 cd 3 120–100–200 53.2 ab 43.8 abc 63.7 ab 52.0 abc 4 180–100–200 50.8 ab 44.3 abc 57.7 ab 56.4 abc 5 240–100–200 61.0 a 42.6 abc 68.2 a 51.6 abc 6 180– 00–200 60.7 a 33.4 c 64.9 ab 46.6 bc 7 180–100– 00 55.4 ab 42.8 abc 60.9 ab 56.3 abc 8 (4) + ácidos orgânicos foliares 54.5 ab 49.6 a 61.8 ab 62.1 a 9 (4) + orgánicos 55.2 ab 48.1 a 62.6 ab 56.0 ab 10 (4) + inorgánicos 66.6 a 49.5 a 72.6 a 59.0 ab DMS (Tukey 5%) 23.4 14.7 21.8 15.4 Nota: cantidades con la misma letra en columnas, iguales (p≤0.05)
  • 41. 40 Nutri-riego de melón cantaloupe (Cucumis melo cv. Cruiser) Respecto al efecto del P y el K en rendimiento, en el primer año de estudio, no hay respuesta a ambos nutrimentos, por el contrario, cuando no se aplicaron estos elementos dados por el tratamiento 6 (100-00-200) y 7 (100-100-00), los rendimiento son más altos con 60.7 y 55.4 ton ha-1 , en calidad bruce, para respectivos tratamientos, contra 50.8 y 57.7 ton ha-1 , en el tratamiento 100-100-200, es decir, el rendimiento fue inhibido por las aplicación de P y K en 2006. En 2007 la situación fue diferente, al menos para el P y en menor grado para el K, el tratamiento 4 (180-100-200) tuvo mejor rendimiento de calidad exportación y comercial que los tratamientos sin P y K ya que de tener 44.3 y 56.4 ton/ha para ambas calidades, se redujo a 33.4 y 46.6 en 180-00-200 (sin P) y 42.8 y 56.3 ton/ha en 180-100-00 (sin K). Como se aprecia, en este cultivo el potasio aplicado al suelo o en fertiriego, aún no tiene influencia clara en el rendimiento. Estos resultados contrastan con lo obtenido por Morales et al (2007), quienes encontraron respuesta a las aplicaciones con K, pero la diferencia de es que en este caso es un suelo franco- arenoso, diferente del vertisol arcilloso del Valle de Apatzingán. Relaciones nutrimentales en melón con diferentes niveles nutricionales Esta parte del trabajo muestra como la aplicación de diferentes niveles nutrimentales en el melón con alta tecnología de producción de la Tierra Caliente de Michoacán, puede afectar la disponibilidad de nutrimentos en el suelo y las propiedades químicas en la zona radicular. Asimismo se observan los efectos de estas propiedades del suelo en la condición nutrimental de la planta, en la producción de biomasa y en el rendimiento y la calidad del fruto. Efecto en la disponibilidad nutrimental El monitoreo sistemático de la solución del suelo, permitió detectar que el pH y el contenido de K son afectados por las dosis de fertilización pero no el contenido de N-NO3 . Un posible efecto de la fertilización es la reducción significativa del pH de la solución del suelo como se aprecia en el Cuadro 14, que con las aplicaciones de fertilizantes se logra reducir la alcalinidad del suelo, lo cual provee un mejor medio para la disponibilidad de nutrientes a nivel radicular.
  • 42. 41 Nutri-riego de melón cantaloupe (Cucumis melo cv. Cruiser) Destaca también el hecho de que la disponiblidad de N-NO3 en la solución del suelo no se incremente con el aumento de la dosis de nitrógeno aplicado (Cuadro 14), como cabría esperar por el gradiente nutricional. Ese efecto si fue posible detectar con el K, ya que el tratamiento 7 (180-100-00), presenta la menor disponibilidad de potasio (57.1 ppm), sin embargo, los tratamientos 1 (00-100- 200) y 10 (180-100-200), que si contienen potasio, también tuvieron bajos niveles con 77.6 ppm y 68.0 ppm, respectivamente. Esto en el caso del tratamiento 1 puede ser explicado porque en cantidades adecuadas el N puede tener una acción sinérgica con la disponibilidad de potasio (Castellanos et al., 1998), en este caso la ausencia de N pudo tener efecto desfavorable en la disponibilidad del potasio. Cuadro 14. Características nutricionales promedio de la solución del suelo en melón bajo diferentes dosis de fertilización en el Valle de Apatzingán, 2007. Núm. Tratamiento pH NO3 K 1 00–100-200 8.08 ab 102.5 77.6 b 2 60–100–200 8.25 a 99.0 123.5 ab 3 120–100–200 8.03 ab 92.8 109.1 ab 4 180–100–200 7.78 ab 99.9 104.9 ab 5 240–100–200 7.68 ab 129.4 106.7 ab 6 180– 00–200 7.70 b 167.2 196.4 a 7 180–100– 00 7.86 ab 107.4 57.1 b 8 (4) + ácidos orgânicos foliares 7.94 ab 130.2 96.1 ab 9 (4) + orgánicos 7.84 ab 232.8 201.2 a 10 (4) + inorgánicos 7.86 ab 176.9 68.0 b DMS (Tukey 5%) 0.569 165.9 115.1 Nota: cantidades con la misma letra en columnas, iguales (p≤0.05). Relación disponibilidad nutricional y contenido nutrimental en ECP El primer efecto de la disponibilidad de N-NO3 en la solución del suelo dado por el suministro diferencial de nutrientes, fue en el contenido de N-NO3 en el extracto celular del pecíolo (ECP). Los valores mostrados en la Figura 7, revelan que hubo diferencia significativa entre tratamientos, el modelo presenta un buen ajuste a
  • 43. 42 Nutri-riego de melón cantaloupe (Cucumis melo cv. Cruiser) los datos experimentales (r2 = 0.63) y su optimización indica que con 180 ppm de N-NO3 en la solución del suelo, se obtendría la máxima concentración de N-NO3 en ECP. Por fase de desarrollo, la condición nutrimental en ECP también fue evaluada en 2006 y 2007 (Cuadro 15). La obtención de estas funciones permite obtener valores óptimos de N-NO3 en solución del suelo para cada fase de desarrollo del cultivo. Transformados debidamente los valores de NO3 a N-NO3 en solución del suelo, en la etapa de floración el nivel optimo en el suelo de N-NO3 es de 43.8 ppm de N-NO3 , en el inicio de fructificación es de 41.1 ppm y en el inicio de la cosecha es de 39.3. La aplicabilidad de estas funciones es más firme en la etapa de floración e inicio de la fructificación por sus altos coeficientes de ajuste, estadísticamente significativos (R2 = 0.73 y 0.56 respectivamente). Cabe mencionar que estos valores, son relativamente bajos como para causar problemas ambientales o de contaminación en este tipo de climas y suelos (Mora et al., 2005). Figura 7 Concentración nutrimental N-NO3 en extracto celular de pecíolo (ECP) en melón por efecto de la concentración de NO3 en solución del suelo.
  • 44. 43 Nutri-riego de melón cantaloupe (Cucumis melo cv. Cruiser) Cuadro 15. Relación entre la concentración de NO3 en la solución del suelo (x) y el contenido de N-NO3 en ECP (y), en diferentes fases de desarrollo del melón. Fase de desarrollo Función R2 Floración y = -0.0209 x2 + 8.07 x - 355.18 0.73** Inicio fruto y = -0.0236 x2 + 8.58 x - 443.51 0.56 * Inicio cosecha y = -0.0212 x2 + 7.35 x + 28.254 0.12 Total y = -0.0223 x2 + 8.04 x – 247.96 0.63* *P < 0.05, **P < 0.01 La condición nutrimental de la solución del suelo en cada tratamiento estudiado, afectó también aunque en menor grado el contenido de N-NO3 en el fruto, en la Figura 8 se observa que el efecto en la concentración de N-NO3 tuvo un coeficiente de ajuste de 0.54 mejor que el ajuste en la longitud de la guía con 0.36. La optimización de la función indica que con un valor de 181.9 ppm de N-NO3 se logra la maximización de la concentración de N-NO3 en fruto y de 218 ppm de N-NO3 producen el mismo efecto en la longitud de la guía. Figura 8. Efecto de la disponibilidad de N-NO3 en la solución del suelo, en la concentración de N-NO3 en fruto y en la longitud de la guía de melón.
  • 45. 44 Nutri-riego de melón cantaloupe (Cucumis melo cv. Cruiser) Relación contenido nutricional y calidad de fruto de melón El contenido nutrimental en ECP a su vez, afectó la producción y la calidad de fruta de manera significativa. El contenido de sólidos solubles por efecto de la condición nutrimental en ECP (N-NO3 ), tuvo un efecto lineal positivo con una tasa de 0.055 (t=2.7*, p<0.02), de incremento en el contenido de azúcar, sobre una base de 10.1. Ello indica que a mayor contenido de N-NO3 en ECP el sabor de la fruta es más azucarado (Figura 9). Figura 9. Efecto del contenido de N-NO3 del ECP en la calidad y rendimiento de fruto de melón en el Valle de Apatzingán (las barras indican el error estándar).
  • 46. 45 Nutri-riego de melón cantaloupe (Cucumis melo cv. Cruiser) El rendimiento y la calidad de fruto en sus modalidades exportación y comercial fueron afectados significativamente por el contenido de N-NO3 en ECP. Respecto a la producción de fruto de exportación, los coeficientes de regresión fueron significativos con 3.39* (p<0.011) para el componente lineal y de 3.2* (p<0.015) para el término cuadrático. En cuanto a la producción de fruto comercial también se detectó diferencia estadística pero sólo en el componente lineal con 2.01* (p<0.08), mientras que el componente cuadrático tuvo sólo 1.85 (p<0.11). La ventaja de estos modelos matemáticos es que puede maximizarse la concentración de N-NO3 para óptimo rendimiento de fruto de exportación (alta calidad) y nacional (exportación + nacional). Estos valores son de 409 ppm para la exportación y de 418 ppm para nacional. La producción de biomasa en los diferentes tratamientos tuvo efecto importante en el rendimiento de fruto (Cuadro 16). Un mayor efecto se tiene en el rendimiento de fruto de exportación (r2 = 0.61) que en la producción comercial (r2 =0.57), sin embargo, ninguno de los coeficientes de las ecuaciones fueron significativos. Cuadro 16. Relación entre la producción de biomasa y el rendimiento de fruto de melón en el Valle de Apatzingán. Función R2 y = -1867.4 x2 + 67577 x – 565767 0.61* y = -1649.6 x2 + 59228 x – 475723 0.57 *p < 0.05, **p < 0.01 Relación concentración N total foliar y rendimiento de fruto Las concentraciones de nitrógeno total (%), evaluado al inicio de la fructificación, tuvieron también efecto significativo en la expresión del rendimiento de fruto tanto de exportación como en calidad nacional (Figura 10). Claramente, se observa el efecto del contenido de nitrógeno foliar total, donde ambas relaciones son altamente significativas, r>0.90** (p<0.01), tanto para el rendimiento de fruto de
  • 47. 46 Nutri-riego de melón cantaloupe (Cucumis melo cv. Cruiser) exportación como de calidad comercial (exportación más nacional), en ambas funciones se aprecia como a medida que se incrementa el valor del contenido de N foliar total (%), también el rendimiento de fruto en ambas calidades se incrementa, hasta un valor máximo que en las dos calidades coincide de manera semejante ya que para exportación el valor que maximiza el rendimiento es 2.42 % de nitrógeno foliar mientras que para calidad comercial es de 2.41%. Estas funciones matemáticas coinciden por su forma con las encontradas para el análisis de ECP (Figura 9), incluso en la inhibición del rendimiento a mayores valores de la variable nitrógeno tanto nítrico como total. Figura 10. Relación contenido N total (%) en fructificación y rendimiento de fruto en dos calidades de melón con fertiriego y acolchado plástico. (las barras acotadas indican el error estándar). Análisis económico de los resultados en melón con fertiriego: Una de las principales características de la técnica de fertiriego es que al proporcionar bajas dosis de agua y nutrimentos, la planta satisface sus requerimientos nutricionales y de agua conforme su
  • 48. 47 Nutri-riego de melón cantaloupe (Cucumis melo cv. Cruiser) crecimiento avanza, el suelo no está saturado y las condiciones ambientales a nivel radicular son las adecuadas para que el cultivo muestre un alto potencial productivo, al tener los nutrimentos fácilmente disponibles, en solución y el agua a bajas tensiones de retención, usualmente menores de 40 cb. Los costos fijos considerados para este cultivo, se muestran en el Cuadro 17, el cual engloba todas las actividades necesarias y fijas para la producción del cultivo, sin intromisión de los insumos o actividades de cada tratamiento. En el Cuadro 18 se muestran los costos de producción inherentes al cultivo del melón con fertiriego, sin fertiriego y en fertiriego con foliares (Costos Variables). Se desglosa con precisión cuanto se gasta en cada tratamiento en los conceptos de fertilizantes, tratamientos adicionales, sistema de fertiriego, acolchado plástico y las labores manuales de cada tratamiento, así como los costos de cosecha, entendiendo como más cosecha más costo de flete y de recolección. En el Cuadro 19 se muestra el efecto de la aplicación del fertiriego en el rendimiento y la calidad de fruto en el cultivo de melón Cantaloupe, híbrido Cruiser F1 en un promedio de dos años de estudio. Como se aprecia la técnica de fertiriego paga el valor de la inversión y produce la más alta tasa de retorno, al comparar los resultados del Cuadro 16 y el Cuadro 17, se aprecia que es capaz de producir la más alta ganancia con beneficios netos de $31,521.57 (tratamiento 4), comparados con el testigo sin fertiriego que apenas produce $17,774.00, pero con costos de producción más bajos. El análisis económico incluye los costos variables intrínsicos a cada tratamiento como diferente valor en la inversión por la cantidad de fertilizante utilizado y la inversión en los costos de los tratamientos adicionales. Así el tratamiento con mayor inversión (tratamiento 10, 180-100-200 más foliares inorgánicos), requirió $65,061.33 por hectárea pero también produjo la mayor utilidad con $37,352.70 por hectárea. En general excepto el tratamiento 1 (00-100-200), todos los tratamientos producen mayor utilidad económica que el tratamiento sin fertiriego, incluso con bajas dosis nutricionales, la utilidad es alta, como el caso del tratamiento 2 (60-100-200), con $21,444.83 por hectárea.
  • 49. 48 Nutri-riego de melón cantaloupe (Cucumis melo cv. Cruiser) Cuadro 17. Costos Fijos de producción del cultivo del melón con y sin fertiriego en el Valle de Apatzingán. Ciclo Otoño-Invierno 2005-06- 07. Concepto Costo ($/ha) Barbecho y cruza 1,400 Rastreo (2 pasos) 700 Encamada 480 Desterrone 240 Riegos 1,500 Semilla híbrida 4,800 Siembra 960 Desahije 240 Alineación de guías 600 Borneo de fruta 960 Aplicaciones fitosanitarias 1,700 Pesticidas 5,000 Total C.F 18,580.00
  • 50. 49 Nutri-riego de melón cantaloupe (Cucumis melo cv. Cruiser) Tratamiento CV fertilización CV foliares CV cosecha Limpias Acolchado Sistema Fertiriego Total CV 00–100-200 1356.00 12366.44 600 3600.00 13900.00 31,822.44 60–100–200 1876.00 15656.52 600 3600.00 13900.00 35,632.52 120–100–200 2396.00 18621.15 600 3600.00 13900.00 39,117.15 180–100–200 2916.00 18526.36 600 3600.00 13900.00 39,542.36 240–100–200 3436.00 19550.73 600 3600.00 13900.00 41,086.73 180– 00–200 2916.00 18328.89 600 3600.00 13900.00 39,344.89 180–100– 00 2916.00 19277.68 600 3600.00 13900.00 40,293.68 Adicionales (4) +ácidos orgânicos foliares 2916.00 5250.00 20203.72 600 3600.00 13900.00 46,469.72 (4) + orgánicos 2916.00 1200.00 19699.63 600 3600.00 13900.00 41,915.63 (4) + inorgánicos 2916.00 4300.00 21165.63 600 3600.00 13900.00 46,481.63 Testigo sin fertiriego 180-100-200 2916.00 0.00 10850.00 2400.00 0.00 0.00 16,166.00 Cuadro 18. Costos variables (CV) ($/ha), por tratamiento nutrimental en melón con alta tecnología de producción del Valle de Apatzingán.
  • 51. 50 Nutri-riego de melón cantaloupe (Cucumis melo cv. Cruiser) Cuadro 19. Rendimiento de fruto comercial y beneficios netos en melón con fertiriego en el Valle de Apatzingán, Mich. promedio de dos años 2006-07. Nutrición Export. (ton/ha) Nal (ton/ha) Total (ton/ha) Valor producción ($/ha) Costos de producción ($/ha) Beneficios netos ($/ha) 00-100-200 24.3 10.9 39.9 59,837.60 50,402.44 9,435.16 60-100-200 40.0 6.9 50.5 75,757.35 54,212.52 21,544.83 120-100-200 48.5 9.4 60.1 90,102.35 57,697.15 32,405.20 180-100-200 47.5 9.5 59.8 89,643.68 58,122.36 31,521.32 240-100-200 51.8 8.0 63.1 94,600.29 59,666.73 34,933.57 180-00-200 47.0 8.6 59.1 88,688.18 57,924.89 30,763.29 180-100-00 49.1 9.5 62.2 93,279.11 58,873.68 34,405.43 Adicionales 180-100-200 + ácidos orgánicos 52.0 9.9 65.2 97,759.92 65,049.72 32,710.20 180-100-200 + foliares orgánicos 51.7 7.6 63.5 95,320.80 60,495.63 34,825.17 180-100-200+ foliares inorgánicos 58.1 7.7 68.3 102,414.33 65,061.63 37,352.70 Testigo sin fertiriego 180-100-200 30.0 5.0 35.0 52,500.00 34,746.00 17,754.00 Nota: precio medio rural $1.50 kg de fruto comercial, inferior al reportado por SIAP (2007), para el periodo 1999-2005 $2.20/kg
  • 52. 51 Nutri-riego de melón cantaloupe (Cucumis melo cv. Cruiser) El nutrimento con mayor impacto económico lo constituye el N, ya que entre la no aplicación y la dosis máxima, media un beneficio de $23,500.00 por hectárea y su efecto se nota incluso en la dosis más baja con un diferencial de aproximadamente $12,000.00 por hectárea. El P no tiene un efecto en la rentabilidad del cultivo, con este nutriente (180-100-200), o sin él (180-00-200), el beneficio es casi el mismo ($900.00 con su aplicación), mientras que el potasio su aplicación representa un efecto negativo ya su utilización (180-100-200) produjo $31,521.00 mientras que su no utilización (180-100-00), produjo mayor utilidad $34,405.43 por hectárea. Se requiere en este aspecto mayor investigación respecto al efecto de este elemento. La aplicación de fertilizantes adicionales, se justifica en el aspecto económico de los resultados. La adición de compuestos orgánicos e inorgánicos, aplicados vía foliar y al suelo produjo mayor beneficio económico en todos los casos, la inversión se paga y además se logra mayor rentabilidad. Los resultados indicaron que sobre la base del tratamiento sin foliares (180-100-200), la utilización de foliares produce ganancias extra por $900.00 en el tratamiento 8 (ácidos orgánicos más foliares inorgánicos), de $3,300.00 con el uso de foliares orgánicos (orgánicos) y de $5,800.00 con el tratamiento 10 (hormonales y foliares inorgánicos. Análisis de Dominancia Con la información mostrada en los Cuadros 17 y 18 se puede observar que el testigo sin fertiriego tiene los costos variables más bajos con $16,166.00 y a partir de aquí, todos los tratamientos con fertiriego tienen los costos variables más altos y con excepción del tratamiento 1, ningún tratamiento tiene menores beneficios netos que el testigo sin fertiriego, por lo que solo el tratamiento 1 (00-100- 200) es dominado (Figura 11). Claramente se aprecia que excepto el tratamiento 1, los demás tratamientos se encuentran por encima del testigo, con lo que la aplicación de alta tecnología en este cultivo con acolchado y sistema de fertiriego, justifica la inversión y supera en rentabilidad al beneficio proporcionado por el cultivo sin nuevas tecnologías.
  • 53. 52 Nutri-riego de melón cantaloupe (Cucumis melo cv. Cruiser) Tasa de Retorno Marginal En este aspecto se calcularon las relaciones mostradas en la ecuación (1), los resultados se muestran en la Figura 12, en el que se aprecia la tasa de incremento en porcentaje de los beneficios netos, sobre el incremento en los costos variables, lo cual puede ser un factor de elección de tratamiento para melón con alta tecnología y que justifica el uso de esta tecnología para incrementar las utilidades económicas, con respecto al no uso. Así se tienen TRM superiores al 60% como en los tratamientos 3, 5, 7 9 y 10. Es importante estas relaciones porque con respecto a las TMR, algunos tratamientos adicionales como el 8, pueden no justificarse ya que tratamientos con bajas dosis nutricionales (120-100-200) tienen TRM de 64%, superiores al T8 con TRM de sólo 57.7%. Figura 11. Análisis de dominancia de tratamientos nutricionales en melón con y sin fertiriego del Valle de Apatzingán.
  • 54. 53 Nutri-riego de melón cantaloupe (Cucumis melo cv. Cruiser) DISCUSIÓN GENERAL Los experimentos realizados a lo largo de los dos años de estudio, permitieron comprobar la enorme influencia de la fertilización en el cambio en rendimiento de fruto y en su calidad. No se concibe la producción de este cultivo en sistemas de alta tecnología, sin el concurso de dosificaciones de fertilizantes para el logro de fruto de calidad y altos rendimientos, lo cual es claramente contrario a lo que ocurre en otras regiones meloneras del país (Pérez et al., 2004). Aunque el uso en si del fertiriego y el acolchado plástico es una garantía de mejoramiento de las condiciones ambientales para incrementar el potencial productivo de los cultivos (Manrique, 1995, Farías y Orozco 1997), el aprovisionamiento nutrimental puede en su momento influir más en el rendimiento y la calidad. El efecto significativo de la condición nutrimental, se hizo patente en varias de las variables evaluadas, propiedades químicas de la solución del suelo, aunque extrañamente no se detectó diferencia en los contenidos de N-NO3 en los tratamientos evaluados, ya que cabría esperar que el tratamiento 1 (00-100-200), presentara los valores más bajos de este compuesto más no fue así (23.3 ppm), mientras que el tratamiento más contrastante (240-100-200), se encontraron en promedio 29.4 ppm de N-NO3 . Figura 12. Tasa de retorno marginal (TRM) para los diferentes tratamientos con alta tecnología de producción en el Valle de Apatzingán.
  • 55. 54 Nutri-riego de melón cantaloupe (Cucumis melo cv. Cruiser) El rendimiento de fruto en calidad exportación y comercial fue afectado por las variables nutricionales. Aquí los valores absolutos fueron completamente diferentes. El nitrógeno mostró un alto efecto en la calidad y el rendimiento total aún en las dosis más bajas aplicadas, al pasar con N=0 kg ha-1 de 34 ton ha-1 en 2006 y de 14.7 ton ha-1 en 2007 en fruto bruce a 46.3 y 33.7 ton ha-1 en respectivos años con el primer nivel de nitrógeno aplicado (60 kg ha-1 ). Este incremento del rendimiento, aunque a menores tasas, se mantuvo hasta la dosis 180 kg ha-1 que alcanzó su valor máximo con 44.3 ton ha-1 en 2007, mientras que en 2006 el valor máximo lo alcanzo con 240 kg ha-1 de nitrógeno con 61 ton ha-1 . Este mismo desempeño fue reportado por Pérez et al (2004) en cuanto al decremento de las tasas de respuesta a nitrógeno con valores de 58 ton ha-1 para 0 kg ha-1 de N y un valor máximo para 160 kg ha-1 de N con 70 ton ha-1 de fruto de primera. No obstante, no detectó decremento en el rendimiento, como se obtuvo en esta investigación en 2007. En este trabajo no logró obtenerse respuesta clara al fósforo y al potasio, en 2006 las aplicaciones de fósforo y potasio redujo en aproximadamente 10 y 5 toneladas la producción de fruto de primera por la aplicación de fósforo y de potasio, respectivamente (Cuadro 12), mientras que en 2007 sin fósforo se produce 10 ton ha-1 menos de fruto de alta calidad y con respecto al potasio su aplicación o no, consigue aproximadamente la misma cantidad de fruto (44 ton ha-1 ). Esto puede deberse a las altas cantidades presentes en este tipo de suelos que no permiten obtener una respuesta clara a ambos nutrimentos, que incluso su aplicación puede ser contraproducente (Castellanos et al., 2005). La concentración nutricional en extracto celular de peciolo (ECP), mostró un efecto claro en relación con el rendimiento de fruto, la disponibilidad de N-NO3 en solución del suelo, en fruto y en longitud final de la planta. Esto significa que hay relaciones directamente proporcionales entre estas variables, pero en todas es común que se tienen valores máximos, susceptibles de optimizarse como que con 40.9 ppm de N-NO3 en solución del suelo se obtendrá la máxima concentración de N-NO3 en ECP, la que a su vez con 409 ppm producirá el mayor rendimiento de fruto de primera (bruce). La relación con la concentración de sólidos solubles no fue curvilínea, sino más bien lineal y positiva. La concentración en °brix no tuvo
  • 56. 55 Nutri-riego de melón cantaloupe (Cucumis melo cv. Cruiser) efecto significativo por el manejo nutricional aplicado en ninguno de los dos años de estudio, lo cual concuerda con reportes anteriores de Morales et al (2007) El análisis financiero permitió detectar que la aplicación de productos fertilizantes en este sistema de producción es costeable y genera los más altos dividendos. Aún cuando se pueden llegar a tener los mayores costos variables en los tratamientos con mayor cantidad de insumos como el 180-100-200 con $39,542.00 y los adicionales con inversión de 42,000.00 a $44,500.00 por hectárea, comparados con el tratamiento 1 (00-100-200) que requiere sólo $31,822.00 por hectárea, las tasas de retorno marginal son mucho más altas en estos tratamiento con 59 en el 4 y con rangos de 68 a 73% en los adicionales, estos últimos superiores a todos los tratamientos, mientras que en el 1 (00-100-200) la tasa de retorno es negativa, es decir, la no utilización del nitrógeno, genera pérdidas para los productores, mientras que la no utilización de fósforo y potasio no tiene el mismo efecto ya que hay ganancias positivas entre un 56-69%. El tratamiento 3 (120-100-200) es muy competitivo en este aspecto ya que produce tasas de retorno muy altas (64%), comparables a los mejores tratamientos y con menor utilización de N y foliares, lo cual puede ser importante si se toma en cuenta el impacto ambiental y el efecto invernadero del exceso de fertilizantes (Mora et al., 2005). RECOMENDACIONES Y SUGERENCIAS Seguimiento Nutrimental en melón: El programa nutrimental en este cultivo puede efectuarse durante su ciclo de desarrollo a través de la técnica denominada extracto de savia de pecíolo (Castellanos et al., 1998). La técnica también permite el seguimiento de la disponibilidad nutrimental en la solución del suelo, sometido a diferentes tratamientos de fertilización, basados en la aplicación proporcional mostrada en el Cuadro 9 y la cantidad total mostrada en el Cuadro 10. Para fines prácticos en el caso del cultivo del melón se sugiere realizar dos muestreos uno al inicio de la floración y otro al inicio de la formación de frutos, aproximadamente entre los 30 y 45 días del
  • 57. 56 Nutri-riego de melón cantaloupe (Cucumis melo cv. Cruiser) ciclo de cultivo, respectivamente, para las condiciones del Valle de Apatzingán. En el Cuadro 20 se muestran los rangos de valores a determinar para una correcta nutrición del cultivo. Cuadro 20. Monitoreo nutrimental en extracto celular del pecíolo en melón del Valle de Apatzingán Fase de desarrollo Concentración en extracto celular de pecíolo N-NO3 (ppm) P (%) K (ppm) Inicio Floración 900-1100 0.03-0.05 2700-3100 Fructificación 250-300 0.002-0.004 2500-2900 CONCLUSIONES Se tuvo un alto efecto significativo en nutrición y calidad de 1. fruto por el N con tasas diferenciales en cada dosis de 30 al 100% y contenidos nutricionales en la misma proporción. El fertiriego en el cultivo del melón en el Valle de Apatzingán 2. incrementa de manera sustantiva el rendimiento de fruto en calidad y cantidad, por lo que los beneficios netos mantienen a este cultivo como de los más redituables de la Tierra Caliente de Michoacán. La inversión inicial en esta técnica es alta ($59,030.00) 51 3. % más que sin fertiriego, pero la ganancia neta puede llegar a ser de más de $30,000 ha-1 a un precio medio rural de $1.50 por kilo de fruto comercial con bajo nivel nutricional (120-100-200) y sin foliares. Un buen manejo nutricional combinado con el uso de 4. foliares apropiados puede en un solo ciclo, amortizar el costo de producción y obtener tasas de retorno marginal hasta del 70%. La disponibilidad de nutrimentos en suelo afectó a diversas 5. variables agronómicas del cultivo como, la concentración de nutrimentos en extracto celular de pecíolo, la longitud de guía, el rendimiento de fruto y su calidad y la producción de biomasa. El uso de foliares orgánicos o inorgánicos incrementa los 6. rendimientos de fruto comercial en al menos 10% sobre el no uso y los beneficios netos en hasta $7,000.00/ha sobre el tratamiento de no aplicación de foliares.
  • 58. 57 Nutri-riego de melón cantaloupe (Cucumis melo cv. Cruiser) REFERENCIAS Aguilar V. A. 1997. Tratado para administrar los Agronegocios. Quinta edición. Noriega U.T.E.H.A. México. p.p. 602. Arias S., F.;Alcántar R., J.J.; Tapia V., M.; Vega P.,A.1994. Validación comercial de un manejo integrado de organismos dañinos en la producción de melón en Michoacán, Mex. Rev. Mex. de Fitop. 12:155-161 Arciniega, R. J. 1999. Fertilizantes usados en fertiriego. Memoria del segundo curso Nacional de Fertigación, Culiacán, Sinaloa. 180 p. Arellano A. M. 2003. Respuesta del limonero Citrus aurantifolia (christ.), a la aplicación de N, P y K, en fertiriego por microaspersion en Apatzingán, Michoacán. UMSNH. Uruapan, Mich. 45 p. Anónimo, 1992. Fertilización Foliar para la producción de las cucurbitáceas, Guía Informática de la Bayer de México, S. A. de C. V. México. pp. 3 – 10. Arias, S. J. F. A. Vega P., J. Javier M., D. Munro O. 1987. En como producir melón en el Valle de Apatzingán CAEVA –SARH, INIFAP., Michoacán, México. Folleto para Productores 5 pp. 1–3. Arias, J. F., J.A. Vidales F.,A. Contreras M., J. Javier M., D. Munro O. 1983. Guía para la asistencia técnica agrícola, Área de influencia del campo. Agrícola Experimental Valle de Apatzingán. INIA. SARH – CIAPAC. Mich., México. 165 p. Badillo T., V.; Castellanos R., J.Z.; Sánchez G., P.; Galvis S., A.; Álvarez S., E.; Uvalle B., J.X.; González E., D.; Enríquez R., S.A. 2001. Niveles de referencia de nitrógeno en tejido vegetal de papa var. Alpha. Agrociencia. 35:615-623 Berigan, A. 1998. Claras ventajas de la adaptación de tecnologías. Productores de Hortalizas. 7(5):7-8 Bonilla, V.S. 1994. Factibilidad económica de cinco componentes tecnológicos de labranza de conservación en maíz de temporal del Valle de Apatzingán. Tesis Profesional ECA-UMSNH. 63 p. Castañer, A. M. 1993. Riego por goteo en cítricos. Mundi - prensa, Madrid, Barcelona, España. 280 p. Castellanos, R. J. Z. 1997. El seguimiento de la nutrición del cultivo en los sistemas de Fertirrigación. Informaciones Agronómicas. 1(3):5-7
  • 59. 58 Nutri-riego de melón cantaloupe (Cucumis melo cv. Cruiser) Castellanos, J. Z. 1999. El seguimiento de la nutrición del cultivo en los sistemas de Fertirrigación. Informaciones Agronómicas. Vol. 3, No. 4, Querétaro, México. pp 6-8 Castellanos, J.Z., X. Uvalle B. y A. Aguilar S. 1998. Manual de in- terpretación de análisis de suelos y agua. INCAPA. Celaya Gto.226 p. Castellanos R., J. Cueto, J. Macias, J. Salinas, L. M. Tapia V., J. Cortes, I. González, H. Mata. 2005. La fertilización de los cul- tivos de maíz, sorgo y trigo en México. Folleto Técnico 1. INI- FAP. Celaya, Gto. 44 p. Castillo J. P. 1998 Los fertilizantes y sus componentes esenciales SAGARPA- INIFAP. Publicación Técnica 7. México, D.F. 20 p. Centro Internacional de Mejoramiento de Maíz y Trigo (CIMMYT). 1985. Introducción al análisis económico de experimento en finca. Cuaderno de trabajo, borrador. Programa de Economía CIMMYT. México. pp. 64-93. Cintora O. C., 2003. Rentabilidad y paquete tecnológico del cultivo de fresa. Memoria Técnica. D.D.R. 088 Zamora, Mich. 64 p. Cotecoca, 1979. Estado de Michoacán y Colima. SARH. México. pp. 150 – 170. CNA. 1995. Aplicación de fertilizantes en el agua de riego. Comisión Nacional del Agua. México, D.F. 80 p. De Santiago T. B. Condiciones generales para el manejo de una fertilización eficiente. Productores de hortalizas. Año 8 No 4. México. Del Río G., C. 2000. Costos I. Históricos. ECAFSA. Vigésima Edi- ción. México. p.p II-3 –V-64. Dow, A. I., Y S. Roberts. 1982. Proposal. Critical nutrient ranges for crop diagnosis. Agron J. 74: 401 – 403. Etchevers, B., J. D. 1996. Los análisis de agua, suelo y planta en apoyo a la ferti–irrigación. Simposium internacional de ferti–ir- rigación memorias. Hermosillo, Sonora. FAO/UNESCO/ISRIC. 65 p. Farías L.J., M. Orozco S. 1997. Effect of polyethylene mulch colour on aphid populations, soil temperature, fruit quality, and yield of watermelon under tropical conditions. New Zealand Journal of Crop and Horticultural Science. 25:369-374 Fiskll, J. G. 1967. Effect of fertilizer placements and rates on water- melon yields. Vol. 80 proceedings of the Florida state horticul- tural society. USA. pp. 168 – 172.