SlideShare una empresa de Scribd logo
1 de 152
Descargar para leer sin conexión
CAPACITACIÓN DE MONITORES Y FACILITADORES LOCALES EN
SEGURIDAD ALIMENTARIA, PROGRAMA SINÚ. (CÓRDOBA Y SUCRE –
COLOMBIA)
AGUSTO GOMEZ BRÚ
FACULTAD DE CIENCIAS AGRICOLAS
PROGRAMA DE INGENIERIA AGRONÓMICA
MONTERÍA
2015
CAPACITACIÓN DE MONITORES Y FACILITADORES LOCALES EN
SEGURIDAD ALIMENTARIA, PROGRAMA SINÚ. (CÓRDOBA Y SUCRE –
COLOMBIA)
AGUSTO GOMEZ BRÚ
Trabajo de grado presentado como requisito parcial para optar al título de
Ingeniero Agrónomo
Director
XXXXXXXXXXXXXXx
Aquí vienen los estudios del director eje: biólogo,M.sc
Codirector
XXXXXXXX si no hay, se elimina
FACULTAD DE CIENCIAS AGRICOLAS
PROGRAMA DE INGENIERIA AGRONOMICA
MONTERÍA
2015
0
La responsabilidad ética, legal y científica de las ideas, conceptos y
resultados del proyecto, serán de los autores.
(Artículo 61 del Estatuto de Investigación y Extensión de la Universidad de
Córdoba. Acuerdo Nº 093 del 26 de Noviembre de 2002, Consejo Superior).
1
NOTA DE APROBACIÓN
La investigación titulada “CAPACITACIÓN DE MONITORES Y
FACILITADORES LOCALES EN SEGURIDAD ALIMENTARIA,
PROGRAMA SINÚ. (CÓRDOBA Y SUCRE – COLOMBIA)” ha sido
aceptada en su presente forma por el Programa de Ingeniería de la
Universidad de Córdoba, y aprobada por el Comité Evaluador del
estudiante, como requisito parcial para optar al título de Ingeniero
Agrónomo.
_______________________________
Presidente del Jurado
_______________________________
Jurado
_______________________________
Jurado
Montería
2
Algunas palabras tuyas
3
AGRADECIMIENTOS
El autor expresa sus más sinceros agradecimientos a:
4
TABLA DE CONTENIDO
CAPITULO 1. Contexto ambiental mundial y reconocimiento del proyecto huerta
escolar. ................................................................................................................ 15
Conociendo el Programa Sinú. ......................................................................... 16
Conociendo el papel de los monitores y facilitadores locales en seguridad
alimentaria. ....................................................................................................... 17
Adentrándose en la seguridad alimentaria........................................................ 18
Disponibilidad de alimentos: .......................................................................... 19
Acceso a los alimentos: ................................................................................. 19
Utilización: ..................................................................................................... 19
Estabilidad:.................................................................................................... 19
La huerta la agroecológicos y el cuidado del medio ambiente. ......................... 20
Una mirada al calentamiento global. ................................................................. 22
Los principios de la agroecología...................................................................... 25
CAPÍTULO 2. Como establecer una huerta aplicando el sistema agroecológico
............................................................................................................................. 28
Diseño y planificación de la huerta.................................................................... 30
Selección del terreno adecuado. ................................................................... 31
Medición del terreno. ..................................................................................... 31
El procedimiento para la medición del terreno es: ......................................... 32
Medición de los lados del terreno. ................................................................. 32
Medición de ángulos...................................................................................... 32
Dibujo de la figura que representa el terreno en papel milimetrado. .............. 34
Dibujo del terreno. ......................................................................................... 35
Corrección grafica de un polígono. ................................................................ 36
5
Calculo del área............................................................................................. 37
Las eras......................................................................................................... 38
¿Cuánto necesitamos de semilla?................................................................. 40
Calculo del número de semilleros y las cantidades de sustrato necesarios. .. 44
Desinfección del sustrato............................................................................... 49
Hallando la cantidad de malla, alambre de púa y postes para cercado.......... 51
Fertilización. ..................................................................................................... 53
La materia orgánica....................................................................................... 54
Algunos abonos orgánicos. ........................................................................... 54
Preparación del suelo ....................................................................................... 92
Preparación del terreno donde establecerás la cama Biointensiva. ............... 93
Elaboración de la cama doble excavada........................................................ 93
Siembra. ........................................................................................................... 97
La semilla criolla y su importancia en la agricultura campesina. .................... 97
Selección de nuestra semilla criolla. .............................................................. 99
Momento de cosecha. ................................................................................... 99
Extracción de semillas................................................................................. 100
Conservación de las semillas. ..................................................................... 101
Reproducción asexual. ................................................................................ 103
Importancia de la alogamia y autogamia en la reproducción de semillas..... 103
Características de algunas plantas.............................................................. 104
Siembra en semilleros. ................................................................................ 109
Trasplante. .................................................................................................. 111
Riego. ............................................................................................................. 113
La fotosíntesis. ............................................................................................ 113
6
Riego en semilleros. .................................................................................... 115
Riego en cama. ........................................................................................... 115
Algunas innovaciones para mejorar el riego en tu patio............................... 116
Control de arvenses (“Malezas”)..................................................................... 131
Rotación de cultivos........................................................................................ 133
Asociación de cultivos..................................................................................... 136
Control de plagas y enfermedades. ................................................................ 140
Algunas plagas y enfermedades.................................................................. 141
Algunos productos ecológicos para el control de plagas y enfermedades en
nuestros patios. ........................................................................................... 144
7
LISTA DE FIGURAS
Paginas
Figura 1. Medición del terreno, tomada de apuntes de topografía para agrónomos.
Universidad autónoma de Chapingo.
Figura 2. Medición de los ángulos. Tomada de apuntes de topografía para
agrónomos. Universidad autónoma de Chapingo.
Figura 3. Formular trigonométricas. Tomada de apuntes de topografía para
agrónomos. Universidad autónoma de Chapingo.
Figura 4. Área del terreno y área del papel.
Figura 5. Corrección grafica de un Polígono Tomada de apuntes de topografía
para agrónomos. Universidad autónoma de Chapingo.
Figura 6. Calculo del área de cada uno de los triángulos. Tomada de apuntes de
topografía para agrónomos. Universidad autónoma de Chapingo.
Figura 7. Esquema de la huerta.
Figura 8. Tomada de huerta para la soberanía alimentaria en la región amazónica.
Heraldo vallejo. 2009.
Figura 9. Estructura del semillero. Tomada de huerta orgánica biointensiva. Ciesa.
Figura 10. Estructura de semillero poco profundo. Tomada de huerta orgánica
biointensiva. Ciesa.
Figura 11. Tanque no cilíndrico al cual se le aplicaron 5 litros de agua (25% de 20
litros) para hallar la altura a la que se debe llenar el tanque con los elementos del
Sustrato, en Este esquema la línea roja.
Figura 12. Perímetro de terreno rectangular.
Figura 13. Materiales necesarios en la elaboración del compost. Tomada de
producción de hortalizas orgánicas. Centro agroecológico las Cañadas.
Figura 14. Preparación del compost. Tomada de producción de hortalizas
orgánicas. Centro agroecológico las Cañadas.
Figura 15. Como saber si nuestra composta trabaja bien. Tomada de producción
de hortalizas orgánicas. Centro agroecológico las Cañadas.
8
Paginas
Figura 16. Como almacenar el compost. Tomada de producción de hortalizas
orgánicas. Centro agroecológico las Cañadas.
Figura 17. Prueba del puño. Tomada de manual práctico de agricultura orgánica y
panes de piedra. Jairo Restrepo y Julius Hensel. 2009.
Figura 18. Preparación de abono Bokashi. Tomada de manual práctico de
agricultura orgánica y panes de piedra. Jairo Restrepo y Julius Hensel. 2009.
Figura 19. Como guardar el abono Bokashi. Tomada de manual práctico de
agricultura orgánica y panes de piedra. Jairo Restrepo y Julius Hensel. 2009.
Figura 20. Forma de abonar al momento del trasplante. Tomada de manual
práctico de agricultura orgánica y panes de piedra. Jairo Restrepo y Julius Hensel.
2009.
Figura 21. 1era re-abonada 12 días después del trasplante. Tomada de manual
práctico de agricultura orgánica y panes de piedra. Jairo Restrepo y Julius Hensel.
2009.
Figura 22. Preparación de caldo Supermagro. Tomada de manual práctico de
agricultura orgánica y panes de piedra. Jairo Restrepo y Julius Hensel. 2009.
Figura 23. Preparación de caldo Supermagro. Tomada de manual práctico de
agricultura orgánica y panes de piedra. Jairo Restrepo y Julius Hensel. 2009.
Figura 24. Preparación de caldo Supermagro. Tomada de manual práctico de
agricultura orgánica y panes de piedra. Jairo Restrepo y Julius Hensel. 2009.
Figura 25. Preparación de caldo Supermagro. Tomada de manual práctico de
agricultura orgánica y panes de piedra. Jairo Restrepo y Julius Hensel. 2009.
Figura 26. Preparación de caldo Supermagro. Tomada de manual práctico de
agricultura orgánica y panes de piedra. Jairo Restrepo y Julius Hensel. 2009.
Figura 27. Preparación de caldo Supermagro. Tomada de manual práctico de
agricultura orgánica y panes de piedra. Jairo Restrepo y Julius Hensel. 2009.
Figura 28. Preparación de caldo Supermagro. Tomada de manual práctico de
agricultura orgánica y panes de piedra. Jairo Restrepo y Julius Hensel. 2009.
9
Paginas
Figura 29. Preparación de caldo Supermagro. Tomada de manual práctico de
agricultura orgánica y panes de piedra. Jairo Restrepo y Julius Hensel. 2009.
Figura 30. Preparación de caldo Supermagro. Tomada de manual práctico de
agricultura orgánica y panes de piedra. Jairo Restrepo y Julius Hensel. 2009.
Figura 31. Preparación de caldo Supermagro. Tomada de manual práctico de
agricultura orgánica y panes de piedra. Jairo Restrepo y Julius Hensel. 2009.
Figura 32. Preparación de caldo Supermagro. Tomada de manual práctico de
agricultura orgánica y panes de piedra. Jairo Restrepo y Julius Hensel. 2009.
Figura 33. Preparación de caldo Supermagro. Tomada de manual práctico de
agricultura orgánica y panes de piedra. Jairo Restrepo y Julius Hensel. 2009.
Figura 34. Preparación de caldo Supermagro. Tomada de manual práctico de
agricultura orgánica y panes de piedra. Jairo Restrepo y Julius Hensel. 2009.
Figura 35. Preparación de caldo Supermagro. Tomada de manual práctico de
agricultura orgánica y panes de piedra. Jairo Restrepo y Julius Hensel. 2009.
Figura 36. Lugar de conservación del Supermagro. Tomada de manual práctico
de agricultura orgánica y panes de piedra. Jairo Restrepo y Julius Hensel. 2009
Figura 37. Preparación del Supermagro para aplicarlo a través de la Bomba.
Tomada de manual práctico de agricultura orgánica y panes de piedra. Jairo
Restrepo y Julius Hensel. 2009.
Figura 38. Como saber si mi Biofertilizante está bien. Tomada de manual práctico
de agricultura orgánica y panes de piedra. Jairo Restrepo y Julius Hensel. 2009.
Figura 39. Como saber si mi Biofertilizante está listo para usar. Tomada de
manual práctico de agricultura orgánica y panes de piedra. Jairo Restrepo y Julius
Hensel. 2009.
Figura 40. Adaptación de tanque para preparación de Biofertilizante. Tomada de
manual práctico de agricultura orgánica y panes de piedra. Jairo Restrepo y Julius
Hensel. 2009.
Figura 41. Adaptación de tanque para preparación de Biofertilizante. Tomada de
manual práctico de agricultura orgánica y panes de piedra. Jairo Restrepo y Julius
Hensel. 2009.
10
Paginas
Figura 42. Aplicación sobre las hojas (se recomienda en la parte de abajo de las
hojas). Tomada de manual práctico de agricultura orgánica y panes de piedra.
Jairo Restrepo y Julius Hensel. 2009.
Figura 43. Aplicación sobre el suelo. Tomada de manual práctico de agricultura
orgánica y panes de piedra. Jairo Restrepo y Julius Hensel. 2009.
Figura 44. Preparación de la cama doble-excavada. Tomada de producción de
hortalizas orgánicas. Centro agroecológico las Cañadas.
Figura 45. Preparación de la cama doble-excavada. Tomada de producción de
hortalizas orgánicas. Centro agroecológico las Cañadas.
Figura 46. Preparación de la cama doble-excavada. Tomada de producción de
hortalizas orgánicas. Centro agroecológico las Cañadas.
Figura 47. Preparación de la cama doble-excavada. Tomada de producción de
hortalizas orgánicas. Centro agroecológico las Cañadas
Figura 48. Preparación de la cama doble-excavada. Tomada de producción de
hortalizas orgánicas. Centro agroecológico las Cañadas.
Figura 49. Diferencia entre plantas sembradas en surcos y camas doble-
excavadas. Tomada de producción de hortalizas orgánicas. Centro agroecológico
las Cañadas.
Figura 50. Fruto seco con vaina en momento óptimo para colectar semilla .tomada
de http://eljudiondelagranja.blogspot.com.
Figura 51. Maíz en Madurez fisiológica. Tomada de
tomada de. www.culturaempresarialganadera.org.
Figura 52. Prueba de humedad con el método de la sal. Tomada de Conservación
de semillas material de apoyo a la guía de extensión de técnicas apropiadas para
pequeños productores. JICA.
Figura 53. Marco para siembra en tresbolillo. Tomada de huerta orgánica
biointensiva. Ciesa.
11
Paginas
Figura 54. Siembra al voleo. Tomada del huerto sustentable. John Jeavons y
Carol Cox.
Figura 55. Trasplante de semillero a cama. Tomada del huerto sustentable. John
Jeavons y Carol Cox.
Figura 56. Triangulación de las plantas (siembra en tresbolillo en la
cama).Tomada de huerta orgánica biointensiva. Ciesa.
Figura 57. Forma correcta de trasplantar hojas cotiledonales debajo del suelo.
Tomada del manual de campo del método de cultivo biointensivo para la zona
tropical. ECOBASE. 2008.
Figura 58. Forma incorrecta de trasplantar, hojas cotiledonales encima del suelo.
Tomada del manual de campo del método de cultivo biointensivo para la zona
tropical. ECOBASE. 2008.
Figura 59. La célula animal. Tomada de Coopers la célula.
Figura 60. La célula Vegetal. Tomada de Coopers la célula.
Figura 61. El frasco de Mariotte. Tomada de
http://www4.ujaen.es/~jamaroto/F21.HTML.
Figura 62. Dimensiones de tanques de agua. Tomada de
http://www.coval.com.co/pdfs/manuales/man_colempaques_tanques_plasticos.pdf.
Figura 63. La bomba de ariete. Tomada de
http://es.wikipedia.org/wiki/Bomba_de_ariete.
Figura 64. Modelo de bomba de ariete. Tomada de Estudio de Promoción y
Difusión de Buenas Prácticas "Bomba de Ariete" del Proyecto Tawan Ingnika.
Guía agropecuaria.
Figura 65. Entrada de agua a la bomba de ariete. Tomada de estudio teórico y
experimental de la bomba de ariete. Francisco Javier Acitores Martínez.
12
Páginas
Figura 66. Cierre de la válvula Check de pie por fuerza de arrastre del agua.
Tomada de estudio teórico y experimental de la bomba de ariete. Francisco Javier
Acitores Martínez.
Figura 67. Aumento de presión en la cámara de válvulas. Tomada de estudio
teórico y experimental de la bomba de ariete. Francisco Javier Acitores Martínez.
Figura 68. Apertura de la válvula Check de paso. Tomada de estudio teórico y
experimental de la bomba de ariete. Francisco Javier Acitores Martínez.
Figura 69. Transferencia de la presión de la cámara de aire al líquido. Tomada de
estudio teórico y experimental de la bomba de ariete. Francisco Javier Acitores
Martínez.
Figura 56. Triangulación de las plantas (siembra en tresbolillo en la
cama).Tomada de huerta orgánica biointensiva. Ciesa.
Figura 70. Disminución de la presión en la cámara de válvulas y apertura de la
válvula de pie por su propio peso. Tomada de estudio teórico y experimental de la
bomba de ariete. Francisco Javier Acitores Martínez.
Figura 71. Método de goteo solar. Tomada de
https://fq3astaregia.files.wordpress.com/2013/11/refuerzo_riego-solar_huerto-
escolar.pdf.
Figura 72. Método de goteo solar. Tomada de
https://fq3astaregia.files.wordpress.com/2013/11/refuerzo_riego-solar_huerto-
escolar.pdf.
Figura 73. Plan de rotación de cultivos. Tomada de
http://www.agromatica.es/rotacion-de-cultivos-ecologicos-ii/.
13
LISTA DE TABLAS
Paginas
Tabla 1. Características cultivos. Tomada del manual de campo del
método de cultivo biointensivo para la zona tropical. ECOBASE. 2008.
Tabla 2. Materiales necesarios para preparación de abono Bokashi.
Tomada de manual práctico de agricultura orgánica y panes de piedra.
Jairo Restrepo y Julius Hensel. 2009.
Tabla 3. Dosis recomendadas según especies. Tomada de manual
práctico de agricultura orgánica y panes de piedra. Jairo Restrepo y
Julius Hensel. 2009.
Tabla 4. Materiales para preparar caldo Supermagro. Tomada de
manual práctico de agricultura orgánica y panes de piedra. Jairo
Restrepo y Julius Hensel. 2009.
Tabla 5. Dosis de aplicaciones, número y momentos recomendados
según especie. Tomada de manual práctico de agricultura orgánica y
panes de piedra. Jairo Restrepo y Julius Hensel. 2009.
Tabla 6. Plantas alogamas y autogamas.
Tabla 7. Características berenjena. Tomada de manual técnico de
producción artesanal de semillas de hortalizas para la huerta familiar.
FAO.
Tabla 8. Características pimentón. Tomada de manual técnico de
producción artesanal de semillas de hortalizas para la huerta familiar.
FAO.
Tabla 9. Características tomate. Tomada de manual técnico de
producción artesanal de semillas de hortalizas para la huerta familiar.
FAO.
Tabla 10. Características melón. Tomada de manual técnico de
producción artesanal de semillas de hortalizas para la huerta familiar.
FAO.
14
Páginas
Tabla 11. Características pepino. Tomada de manual técnico de
producción artesanal de semillas de hortalizas para la huerta familiar.
FAO.
Tabla 12. Características patilla. Tomada de manual técnico de
producción artesanal de semillas de hortalizas para la huerta familiar.
FAO.
Tabla 13. Características ahuyama. Tomada de manual técnico de
producción artesanal de semillas de hortalizas para la huerta familiar.
FAO.
Tabla 14. Características habichuela. Tomada de manual técnico de
producción artesanal de semillas de hortalizas para la huerta familiar.
FAO.
Tabla 15. Perdidas de presión en mangueras. Tomada de
http://www.realflex.com.br/es/subpages/tabelas.php.
Tabla 16. Rendimiento de la bomba respecto a la relación H/h. Tomada
del ariete hidráulico. José Manuel Jiménez “Súper”.
Tabla 17. Caudal de alimentación respecto al diámetro del tubo.
Tomada del ariete hidráulico. José Manuel Jiménez “Súper”.
Tabla 18. Elementos que componen la bomba de ariete. Tomada de
Estudio de Promoción y Difusión de Buenas Prácticas "Bomba de
Ariete" del Proyecto Tawan Ingnika. Guía agropecuaria.
Tabla 19. Familias de algunas hortalizas. Tomada de manejo
agroecológico de cultivos hortícolas al aire libre. Josep Rosello i Oltra.
Tabla 20. Clasificación de algunas hortalizas por parte aprovechable.
Tomada de manejo agroecológico de cultivos hortícolas al aire libre.
Josep Rosello i Oltra.
Tabla 21. Clasificación de algunas hortalizas por profundidad radicular.
Tomada de manejo agroecológico de cultivos hortícolas al aire libre.
Josep Rosello i Oltra.
15
CAPITULO 1. Contexto ambiental mundial
y reconocimiento del proyecto huerta
escolar.
“Al principio pensé que estaba luchando para salvar
árboles del caucho, luego pensé que estaba luchando
para salvar la selva amazónica. Ahora, me doy cuenta
de que estoy luchando por la humanidad” (Chico
Mendes).
16
Conociendo el Programa Sinú.
Esta es la historia de un joven del pueblo de Cheverá, pueblo caracterizado por
una profunda inequidad, pobreza, machismo cultural, recursos naturales
grandiosos y diversos, y una inmensa felicidad a pesar de cualquier adversidad
que sufriesen. Camilo vivía en el sector de la ahuyama con su madre y hermanos,
en una típica casa de bareque y un patio con animales, mayoritariamente aves,
caninos y algunas especies vegetales.
Un día se dirigió a la institución educativa de su pueblo y se encontró con un grupo
de personas extrañas compuesto por dos señoras de aproximadamente 40 años y
un joven entre los 25 y 30. Motivado por la intriga Camilo entro a aquella reunión
que estas personas estaban realizando con niños, jóvenes y docentes, reunión
donde escucharía cosas que le cambiarían su vida.
como en toda reunión, estos extraños personajes comenzaron presentándose, las
dos señoras se presentaron como Luna y Lana y el joven como Gustavo, estos
explicaron que su objetivo era presentarles un proyecto denominado “huerta
escolar”, proyecto que hacia parte de un gran programa que se llamaba programa
Sinú, donde participan tres ONG´S (organizaciones que no hacen parte de la
estructura estatal ni se financian de este, ósea son privadas) Taller Prodesal,
Corporación Oriana y Asoafro, también explicaron aquellos personajes que su
fuente financiadora para la materialización de los objetivos del programa era Terre
des Hommes Suisse que en español traduce Tierra de Hombres Suiza. Aquel
programa tenía un gran objetivo: “contribuir con comunidades rurales de Córdoba
y Sucre (Colombia) en mejorar la seguridad alimentaria y fortalecer la ciudadanía
activa de los grupos vulnerables y / o desplazadas en los procesos políticos
democráticos y la prevención de reclutamiento de jóvenes, especialmente en
actividades ilícitas, micro tráfico o consumo de drogas” (programa Sinú). Acotaron
que la huerta era el medio para cumplir el objetivo de contribuir con la mejora de la
seguridad alimentaria y el cuidado del medio ambiente y para ello necesitaban de
la participación de niños y de jóvenes en calidad de monitores y facilitadores
locales en seguridad alimentaria.
17
después de esta reunión Camilo quedo con grandes inquietudes, ¿qué era eso
de seguridad alimentaria?, ¿qué papel desempeñaban monitores y facilitadores
locales en seguridad alimentaria? y ¿cómo a través de sembrar en un pedazo de
terreno de su escuela él podía cuidar el medio ambiente?, razón por la cual le
pregunto a aquel muchacho que se autodenominaba asesor de seguridad
alimentaria aquellas inquietudes, el joven sin ningún reparo y contento por ver el
espíritu inquieto de aquel joven rural se sentó a explicarle lo más detalladamente
posible las inquietudes que aquella reunión había sembrado en Camilo.
Conociendo el papel de los monitores y facilitadores locales en
seguridad alimentaria.
Gustavo comenzó la charla hablando sobre la importancia de los monitores y
facilitadores locales en seguridad alimentaria, este le comento a Camilo que su
papel era estratégico y consistía en direccionar, acompañar y apoyar al asesor de
seguridad alimentaria en la enseñanza a niños (as) sobre las labores técnicas de
diseño y planificación, siembra, manejo, cosecha y pos cosecha que los cultivos
de las huertas necesitaban, todo enmarcado dentro de un enfoque agroecológico;
además de tener la capacidad de relacionar estas actividades con el cuidado de
su seguridad alimentaria y medio ambiente, labor que no solo quedaría dentro de
las paredes de su colegio, sino que también debían ser multiplicadores del
mensaje de la importancia del uso de los principios agroecológicos en la seguridad
alimentaria y el cuidado del medio ambiente en su localidad en general, dicho con
otras palabras, tenían que hablar con los vecinos y cualquier productor de su
localidad sobre esta temática.
De esta parte de la charla Camilo entendió que para poder hacer lo que aquel
joven decía, primero tenía que capacitarse en agroecología y tener claro
conceptos como el de la seguridad alimentaria.
Para la finalización de este punto Gustavo le dio un listado de actividades que un
monitor debía cumplir en su institución:
18
- Realizar y acompañar al asistente técnico y a los niños y niñas en las
siguientes tareas: adecuación y mantenimiento a la huerta (trasplante, limpia,
aplicaciones de insecticidas, abonos orgánicos, aplicar riego, cuidado de
herramientas, arreglo o mantenimiento de eras)
- Mantener la motivación e interés de cada uno de las/los estudiantes de 4º y 5º
grado de primaria que participan en el desarrollo de la huerta.
- Mantener comunicación permanente con cada uno de las/los miembros del
grupo que cada uno(a) tiene asignado.
- Asignar y orientar las actividades de su grupo.
- Identificar las dificultades que puedan presentársele a cualquiera de las/los
integrantes de su grupo, relacionadas con su participación en el programa y
ayudarle a resolverlas.
- Informar oportunamente a cada uno de las/los miembros de su grupo sobre
actividades, fechas y horas de realización de cada una de las actividades de la
huerta.
- Recoger las sugerencias u opiniones de cada uno(a) de los/las participantes de
su grupo sobre el desarrollo del programa.
- Informar al docente responsable del servicio social de la Institución Educativa,
al asistente técnico y a la responsable del programa de la Corporación
ORIANA sobre cualquier anomalía o irregularidad que se presente en la
ejecución de las actividades del Programa.
- Llevar un registro de asistencia de cada estudiante a las actividades
programadas para la huerta.
- Diseñar estrategias encaminadas a mantener el interés de cada uno de los
miembros de su grupo.
Adentrándose en la seguridad alimentaria.
El segundo tema que se tocó en esa charla fue el concepto de la seguridad
alimentaria, el cual escuchaba Camilo por primera vez, Gustavo le hablo sobre
una institución que era autoridad en el tema, la FAO, y le comento que el concepto
19
expresado por estos de seguridad alimentaria era de los más utilizados y
aceptados a nivel mundial.
“Existe seguridad alimentaria cuando todas las personas tienen en todo
momento Acceso físico y económico a suficientes alimentos inocuos y
nutritivos para satisfacer sus necesidades alimenticias y sus preferencias en
cuanto a los alimentos a fin de llevar una vida activa y sana.” (Cumbre
Mundial sobre la Alimentación, 1996).
Después de expresar el concepto de la FAO sobre seguridad alimentaria Gustavo
le cito los cuatro componentes de la seguridad alimentaria que también explica la
organización anteriormente mencionada:
Disponibilidad de alimentos: La existencia de cantidades suficientes de
alimentos de calidad adecuada, suministrados a través de la producción del país o
de importaciones (comprendida la ayuda alimentaria).
Acceso a los alimentos: Acceso de las personas a los recursos adecuados
(recursos a los que se tiene derecho) para adquirir alimentos apropiados y una
alimentación nutritiva. Estos derechos se definen como el conjunto de todos los
grupos de productos sobre los cuales una persona puede tener dominio en virtud
de acuerdos jurídicos, políticos, económicos y sociales de la comunidad en que
vive (comprendidos los derechos tradicionales, como el acceso a los recursos
colectivos).
Utilización: Utilización biológica de los alimentos a través de una alimentación
adecuada, agua potable, sanidad y atención médica, para lograr un estado de
bienestar nutricional en el que se satisfagan todas las necesidades fisiológicas.
Este concepto pone de relieve la importancia de los insumos no alimentarios en la
seguridad alimentaria.
Estabilidad: Para tener seguridad alimentaria, una población, un hogar o una
persona deben tener acceso a alimentos adecuados en todo momento. No deben
correr el riesgo de quedarse sin acceso a los alimentos a consecuencia de crisis
20
repentinas (por ej., una crisis económica o climática) ni de acontecimientos cíclicos
(como la inseguridad alimentaria estacional). De esta manera, el concepto de
estabilidad se refiere tanto a la dimensión de la disponibilidad como a la del
acceso de la seguridad alimentaria.
Sorprendentemente Camilo generó una conclusión grandiosa de este punto
diciéndole a Gustavo que después de lo escuchado entendía la seguridad
alimentaria como un concepto el cual nos decía, que todo colombiano tenía
derecho a acceder a una alimentación en las cantidades y calidades adecuadas, y
no solamente esto sino que también le debían garantizar a los ciudadanos el
acceso a los factores de producción (tierra, capital, tecnología e información),
como también el acceso a agua potable y salud, para que pudiese haber un
aprovechamiento biológico de los alimentos, aunado a esto se tenía que garantizar
la estabilidad o la persistencia de todas las condiciones anteriormente descritas en
el tiempo sin importar crisis económicas o climáticas.
La huerta la agroecológicos y el cuidado del medio ambiente.
Camilo ya había comprendido la seguridad alimentaria, el papel que desempeña
un monitor y los fines del programa pero aún quedaba una gran nube en su
cabeza con respecto al tema de cómo podía contribuirse con el cuidado del medio
ambiente estableciendo una huerta escolar.
Gustavo le reitero que la huerta solo era un medio para enseñar producción bajo
un enfoque agroecológico, que era totalmente diferente al enfoque heredado de la
revolución verde, explicando que en el agroecológico a diferencia del heredado de
la revolución verde se trataba de no importar energía fósil no renovable (petróleo)
a los agrosistemas (en este caso la huerta), y por el contrario se intentaba
comprender los procesos naturales de nuestros ecosistemas para así imitarlos,
utilizando recursos locales para realizar labores de manejo de los cultivos
(compost, biopreparados, trampas, microorganismos benéficos del suelo,
alelopatía de plantas….. entre otros).
21
Gustavo enfatizo que la producción heredada de la revolución verde traía consigo
paquetes tecnológicos (semilla certificada que en algunos casos podía ser
transgénica u OMG, monocultivos, uso de maquinaria para el trabajo del suelo
,uso de agroquímico para fines de fertilización y control de plagas y enfermedades
y uso de motobombas hidráulicas para aumentar el flujo de agua a los cultivos) los
cuales requerían de una importación considerable de energía fósil no renovable
(petróleo), ya que productos utilizados bajo este modelo como Round Up (más
conocido como randa o glifosato), Paraquat (muy conocido como Gramoxone),
Lorsban, Ditane, Tordon… Entre otros, Son productos químicos sintetizados por el
hombre que tienen como base el petróleo; algunas veces no pueden ser
degradados (persistentes) por lo que quedan en los ecosistemas haciendo daño,
otras veces se descomponen convirtiéndose en moléculas mucho más dañinas
que las originales; puntualizó que estas sustancias aplicadas a través de los años
van degradando el recurso suelo y generando resistencia en algunas plagas y
enfermedades, lo cual obliga a incrementar las aplicaciones, volviéndonos
esclavos de estos productos; anotó también que algunas de estas moléculas eran
cancerígenas, teratogénicas (produce malformaciones en el feto) y hasta
mutagénicas.
Gustavo precisó en aquella charla que cuando el campo consume productos que
tienen como base el petróleo aumentan la presión sobre este recurso y estimulan
su extracción y procesamiento, lo cual son actividades que generan muchos
residuos contaminantes como el monóxido y dióxido de carbono (CO Y CO2),
entre otros compuestos, que sin lugar a dudas contribuyen al calentamiento global.
Camilo escuchando atentamente comprendió que los agroquímicos que él conocía
y que hasta había aplicado trabajando en fincas eran dañinos para las personas
que los utilizaban, para la capa de ozono, flora y fauna acuática, aérea o terrestre
que tuviese contacto con estos productos, como también para los consumidores
finales de las cosechas que le aplican estos, razón por la cual promover la
aplicación en las huertas de esos “nuevos” conceptos como el de la agroecología,
contribuía con el medio ambiente y además dotaba de alimentos inocuos y
22
nutritivos a los pobladores de su localidad, respetando uno de los componentes de
la seguridad alimentaria que había aprendido (acceso a alimentos inocuos y
nutritivos).
Como la naturaleza de los inquietos es generar inquietudes a medida que se
adentran en temas, esta nueva plática le generó nuevas inquietudes a Camilo: ¿a
qué se refería Gustavo con calentamiento global? y ¿cuáles eran concretamente
los principios que sustentaban la famosa agroecología?
Una mirada al calentamiento global.
Después de la charla con Gustavo Camilo quedo muy interesado en conocer más
a fondo las causas del calentamiento global y como a través de acciones
concretas en su localidad, más allá de la aplicación de la agroecología en todas
las huertas de su pueblo Cheverá este podía contribuir con mitigar esto.
En la charla con Gustavo, este le recomendó visitar al profesor Rodríguez un
estudioso del calentamiento global que le podía aclarar cualquier duda y Camilo
con ansias de conocimiento se dirigió a Montería a hablar con este docente para
que le despejara todas las dudas sobre el tema.
Al llegar a la universidad de Córdoba este pregunto por aquel personaje,
preguntas que lo llevaron a la oficina del docente en cuestión, al llegar a su oficina
Camilo se presentó y le comento que un joven llamado Gustavo ex-alumno de él,
lo había recomendado para que le despejara dudas sobre el calentamiento global,
este sonrió y comenzó con mucha elocuencia a hablar del tema.
El profesor Rodríguez inicio explicándole a Camilo que El cambio climático es un
fenómeno universal que nos afecta a todos y todas, el cual consistía en la
variación del clima causada directa o indirectamente por la actividad humana, este
acotó que existían teorías alternativas que proponen como la causa de este
fenómeno a procesos cosmológicos naturales, y Le mencionó a aquel joven con el
objetivo de impactarlo como era su costumbre, que En los últimos 10 años
inundaciones, sequias y huracanes habían venido sucediendo con mayor
23
frecuencia, y que esta situación estaba íntimamente relacionada con el fenómeno
del cambio climático del cual éramos responsables los seres humanos.
Cuando el profesor entro a explicar la causa científica a aquel inquieto muchacho,
le expreso que La atmosfera era la capa protectora de la tierra y que estaba
compuesta por diferentes gases, entre los que se encontraban los llamados gases
de efecto invernadero (vapor de agua, dióxido de carbono, metano, óxido de
nitrógeno, ozono y clorofluorocarbonos).
Precisando que Estos gases retenían gran parte de la energía que el suelo
terrestre emitía y la volvían a enviar a la superficie de la tierra, lo que hacía que
esta mantuviese una temperatura que permitía que se dieran las condiciones para
que haya vida en la tierra. El profesor puntualizó que este fenómeno era conocido
como el efecto invernadero, y que sin él, era imposible vivir en nuestro planeta
pues su temperatura sería muy baja.
Le aclaró a Camilo que sin embargo los hombres generábamos cada vez más
emisiones de estos gases a una velocidad impresionante, y que la desforestación,
el consumo de combustibles fósiles, la disposición de residuos de ganadería
extensiva y la industrialización sumadas a las emisiones de dióxido de carbono
(CO2) que causan los medios de transporte, estaban alterando la composición de
nuestra atmosfera.
Citó cifras de la organización meteorológica mundial (OMM), para darle a conocer
que desde 1750 la cantidad de dióxido de carbono en la atmosfera ha aumentado
38%, Y que el calor del sol se está quedando atrapado en la atmosfera, lo que
hacía que la temperatura de la tierra suba a una velocidad nunca antes vista.
Este sabio profesor conocedor de casi todo lo concerniente a cambio climático, le
expreso a aquel muchacho otro dato interesante que lo dotaba de una visión
futurista de este problema de no tomar cartas en el asunto, mencionándole que El
panel intergubernamental de cambio climático de la ONU (IPCC) había estimado
que en lo que quedaba de este siglo la temperatura aumentara entre 2 y 4.5°c, lo
cual representaba el mayor cambio climático que experimentaría el planeta en los
24
últimos 10.000 años, y que esto sería muy difícil tanto para las personas como
para los ecosistemas adaptarse.
La sabiduría de aquel docente no podía quedarse con la explicación científica y las
visiones futuras, lo cual lo llevo a hacer explicaciones de los efectos socio-
económicos de este cambio, precisándole a Camilo que El cambio climático podía
traer serias consecuencias sobre el crecimiento y desarrollo de todas las naciones
del mundo, pero serían las más pobres las que sufriesen sus efectos a pesar de
ser estas las que menos han contribuido con el calentamiento global. Anotando
también que según estudios de vulnerabilidad del sector agrícola colombiano, se
determinó que los cultivos más afectados seria el arroz, el tomate de árbol, el trigo
y papa.
También le mencionó en aquella plática que ecosistemas estratégicos estaban en
peligro, ilustrando que La disminución de área de los páramos reduciría las ofertas
de agua para aquellas ciudades y zonas agrícolas que se encontraban en áreas
de subparamos o en zonas de laderas (donde se cultiva especialmente la papa).
Este loco y sabio profesor termino aquella charla mencionando con cifras algunas
zonas y poblaciones de Colombia con vulnerabilidad al cambio climático,
mencionándole a camilo que:
 En el litoral caribe solo el 9% de las viviendas urbanas presentan alta
vulnerabilidad a las inundaciones mientras que el sector rural llega al 46%.
 En el litoral pacífico el 48% de las viviendas del sector urbano y el 87% del
sector rural son altamente vulnerables.
 El incremento del calor pone en riesgo a los más vulnerables como son los
ancianos y los niños, debido a que se encuentran en extremos de vida y
sus organismos no regulan adecuadamente la temperatura corporal y la
exposición prolongada al calor los deshidrata más rápidamente.
 El aumento del número de mosquitos en las zonas tropicales resultara en
más brotes de enfermedades relacionadas con la falta de agua potable,
como el dengue y la malaria.
25
 Las zonas más expuestas a la malaria como consecuencia del cambio
climático serian choco y Guaviare. Algunos municipios de Putumayo,
Caquetá y Amazonas, Meta, Vichada, Vaupés, Guainía y Arauca.
 En cuanto al dengue las áreas de mayor vulnerabilidad se sitúan en
Santander, Norte de Santander, Tolima, Huila, Atlántico y Valle del Cauca.
Después de escuchar el discurso elocuente de aquel extraño profesor Camilo
quedo mucho más convencido de que era urgente hacer algo en su localidad. ya
había entendido como las huertas enmarcadas dentro de un enfoque
agroecológico contribuirían con la mitigación de este problema pero quería saber
de qué otra manera más podía contribuir, lo cual lo llevo a hacerle esa pregunta al
profesor Rodríguez, el cual sin reparos contestó con su elocuencia característica,
dándole unos tips a aquel inquieto muchacho.
 Apagar un bombillo de 60 watts evita la emisión de 54 kilos de dióxido de
carbono.
 Cambia bombillos normales por bombillos ahorradores evita la emisión de
50 kilos de dióxido de carbono.
 Apagar los aparatos electrónicos, el televisor, la música y el computador
suponen un ahorro de dióxido de carbono de 87 kilos.
 Cerrar la ducha mientras se lavan los dientes evita una emisión de dióxido
de carbono de 8 kilos.
 Reutilizar una bolsa plásticas para hacer las compras en la tienda ayuda a
reducir las emisiones de dióxido de carbono en 8 kilos por año.
 Utilice papel reciclado.
 Reciclar papel, vidrio, aluminio y plástico.
 Utilizar la bicicleta para transportarse en su comunidad.
Los principios de la agroecología.
Camilo regreso a Cheverá muy feliz por los nuevos conocimientos generados en
su viaje a Montería. Sin embargo aún no sabía cuáles eran los principios que
sustentaban la agroecología y las prácticas concretas para poder establecer una
26
huerta bajo este sistema. Como suele suceder en los pobladores rurales este no
contaba con suficientes recursos para regresar a aquella fábrica de conocimientos
llamada Universidad de Córdoba. Por lo cual se le ocurrió hacer uso del internet
para indagar sobre los principios de este sistema de siembra, el cual era nuevo
para él. En su búsqueda camilo se encontró que la agricultura ecológica tenía
como principios:
1. Estructura diversificada del sistema de producción (tener múltiples especies en
tu patio asociadas estratégicamente).
2. Ver el conjunto del sistema productivo en forma integral e interdependiente
(suelo, planta, atmosfera, agua, fauna y flora circundante interactuando).
3. Fomento de la fertilidad autosostenida del suelo (prácticas de fertilización
orgánica y rotación, hacen que el suelo mantenga su fertilidad a través del tiempo
sin uso de agroquímicos).
4. Aprovechamiento, lo mejor posible, de las fuentes de generación propias de la
fertilidad de la finca (uso de residuos de cocina, malezas, partes de plantas de la
zona, residuos de cosecha… entre otras, para fertilizar los patios).
5. Nutrición indirecta de las plantas mediante la actividad biológica del suelo
(cuando fertilizamos orgánicamente, se estimula la actividad microbiana lo cual
contribuye a la correcta nutrición de las plantas).
6. Enfrentamiento de las causas y no de los síntomas en la protección vegetal,
fomentando el equilibrio y la regulación ecológica(a través de conservar la salud
del suelo y los microorganismos que en el habitan se disminuye el uso de
agroquímicos para curar síntomas de plagas y enfermedades).
7. Conservación y labranza del suelo sobre la base del mejoramiento
bioestructural y la materia orgánica (la labranza del suelo está encaminada a la
preservación de la cantidad y diversidad biológica adecuada y los contenidos
óptimos de materia orgánica).
27
8. Selección y mejoramiento de variedades vegetales en función de las
condiciones naturales (selección de semillas provenientes de plantas que se
hayan desarrollado de mejor manera en las condiciones limitantes de la zona).
9. Producción ecológica, social y económicamente estable (al mantener los
recursos suelo y agua también se mantiene en el tiempo la productividad y el
bienestar social).
28
CAPÍTULO 2. Como establecer una huerta
aplicando el sistema agroecológico.
“Cuando las generaciones futuras juzguen a las
que vinieron antes respecto a temas ambientales,
tal vez lleguen a la conclusión de que no sabían:
evitemos pasar a la historia como las
generaciones que sí sabían, pero no les
importó”(Mikhail Gorbachev).
29
Camilo ya estaba contextualizado con la situación de degradación socio-ambiental
que vivía el mundo, lo cual lo llevo a tener un gran interés en la agroecología como
herramienta para contribuir desde su localidad a la seguridad alimentaria y la
mitigación del fenómeno de calentamiento global.
Pero el tiempo de espera no iba a ser mucho ya que Este iba a contar con la
suerte de recibir dentro de aquel programa, Una capacitación técnica del
establecimiento de huertas bajo en enfoque agroecológico.
El primer taller llevado a cabo por Gustavo fue el de construir junto con niños (as)
y jóvenes vinculados al proyecto de huerta escolar el orden de lógico de los temas
que se iban a tratar. Orden que tenía que corresponder con la secuencia que se
tiene que llevar a cabo a la hora de establecer una huerta. Al cabo de un tiempo
de debate se llegó a que para realizar una huerta el orden lógico era:
1. Diseño y planificación de la huerta
2. Preparación del suelo
3. Siembra
 siembra directa en sitio definitivo
 siembra semillero-sitio definitivo
4. Cultivo
 manejo de arvenses
 fertilización
 manejo de plagas y enfermedades
 riego
 asociación
 rotación
5. Cosecha (recolección)
6. Pos cosecha (valor agregado a la cosecha, un ejemplo es el valor agregado que se
le da a la yuca al hacer enyucado).
30
Diseño y planificación de la huerta.
Establecido el orden lógico de los temas y pasos para establecer una huerta
Gustavo dio inicio a la construcción de conocimientos junto a aquellos jóvenes
rurales ávidos de saber.
Muchos habían escuchado las palabras diseño y planificación pero muy pocos
comprendían la importancia de la práctica de estas no solo a la hora de establecer
una huerta sino también en todos las actividades que se realicen en la vida.
Gustavo explico en clases que el diseño y planificación eran actividades
importantes en toda acción que se llevara a cabo en la vida ya que nos permite
actuar en los tiempos indicados como también a establecer los recursos
necesarios para que no haya despilfarro o deficiencia de estos y puso un ejemplo
preguntándole a los muchachos que pasaría si el comprara unos refrigerios para
los estudiantes presentes sin ni siquiera contarlos. A lo cual camilo respondió que
muy probablemente sobrarían o faltarían refrigerios. Gustavo aplaudió la
respuesta de camilo y anotó que precisamente eso sucedería en una huerta de no
llevar a cabo un diseño y planificación. Podríamos adquirir más o menos semillas,
fertilizantes… entre otros materiales de los que realmente necesitamos. Explicada
la importancia se dio paso a la explicación de los pasos para el diseño y
planificación de una huerta:
1. Necesitamos saber cuál es el terreno más adecuado y cuánto mide ese
terreno.
2. Necesitamos saber la orientación de las eras, su magnitud y la disposición
de las mismas en el terreno medido.
3. Necesitamos saber y conocer las especies a introducir: como se siembra,
distancia de siembra, cuanto demora en producir, el mejor suelo para estas,
las mejores condiciones climáticas para estas y las labores asociadas al
cultivo (necesidades de riego, manejo de plagas y enfermedades, si
necesita o no tutorado u otra práctica cultural y necesidades de
fertilización).
31
Selección del terreno adecuado.
Para la selección del terreno adecuado hay que tener en cuenta los siguientes
criterios:
 Lugares no muy sombreados (entre 7 y 11 horas de sol)
 Lugares con fuentes de agua cercana
 Debe de estar cerca de la casa (si es patio productivo) o cerca del colegio
(si es huerta escolar).
 Debe estar protegido de ingreso de animales y vientos fuertes.
 No debe inundarse
 En zonas donde el ingreso y salida de vehículos sea fácil para llevarlos a
los mercados (en caso que la intención sea comercial).
Medición del terreno.
La medición del terreno es un trabajo de campo que se realizaba de varias
maneras: con cinta (midiendo lados y ángulos del terreno) o con aparatos más
sofisticados como el teodolito, la estación total o GPS de alta precisión; como la
intensión de este documento es que jóvenes rurales puedan aplicar en sus patios
las técnicas aprendidas, explicaremos el método de medición con cinta métrica.
Para medir con cinta lados y ángulos de la figura del terreno donde se establece la
huerta se necesita:
 Agenda de campo
 Cinta métrica
 Lápiz
 Calculadora
 Dos operarios
 Estacas
32
El procedimiento para la medición del terreno es:
 Los operarios establecerán la distancia entre estacas que manejaran,
mientras más corta sea la distancia mayor será la precisión de la medida
sin embargo distancias muy cortas harán más tedioso el trabajo, por lo cual
es recomendable manejar distancias entre 5-10 metros.
 Los operarios determinaran los vértices (los puntos donde cambian de
dirección los lados de la figura que forma el terreno).
 Los operarios medirán los lados de la figura del terreno
 Cuando los operarios estén en un vértice, el cual es un punto donde se
encuentran dos lados de la figura, medirán el valor angular.
 Teniendo ángulos y lados los operarios irán a la oficina y establecerán en
un papel milimetrado con ayuda de la escala y el transportador el área del
terreno donde se establecerá la huerta.
Medición de los lados del terreno.
Si la distancia del terreno es mayor de los 10 metros recomendados para la
medición con cinta, se procede a establecer varios puntos alineados para realizar
la medición del lado del terreno por tramos.
Figura 1. Medición del terreno. Tomada de apuntes de topografía para agrónomos.
Universidad autónoma de Chapingo.
Si la distancia es igual o menor de los 10 metros recomendados se procede a
medir poniendo la cinta de vértice a vértice, sin necesidad de medir el terreno por
tramos.
Medición de ángulos
Cuando lleguemos a un vértice tenemos que medir el valor angular para poder
después cerrar la figura en el papel milimetrado, con la ayuda de la escala y el
transportador.
33
La medición se realiza creando un triángulo isósceles (triangulo con dos lados
iguales y uno diferente) que de acuerdo a las condiciones del terreno puede ser
hacia afuera o hacia adentro de la figura, para posteriormente usar formulas
trigonométricas y hallar el valor angular.
Figura 2. Medición de los ángulos. Tomada de apuntes de topografía para
agrónomos. Universidad autónoma de Chapingo.
Después de realizada la medición angular con la fórmula establecida en la gráfica
anterior, se procede a calibrar el resultado con las fórmulas de ángulos externos e
internos, debido a que por lo rudimentario de la técnica el valor de la sumatoria de
los ángulos internos o externos no corresponderá al valor teórico, por lo cual la
diferencia entre el valor teórico y el obtenido por los cálculos se debe calibrar
convenientemente para que estos correspondan, dividiendo la diferencia entre el
número de ángulos de la figura.
Ilustración 3. Tomada de apuntes de topografía para agrónomos. Universidad autónoma de Chapingo
Figura 3. Formulas. Tomada de apuntes de topografía para agrónomos. Universidad
autónoma de Chapingo.
Cierre angular: ∑<sint= 180 (n-2) Cierre angular: ∑<sext= 180 (n+2)
Donde∑<sint= suma de los ángulos Interiores ∑<sext= suma de los ángulos exteriores
n= número de vértices del polígono
34
Dibujo de la figura que representa el terreno en papel milimetrado.
Para poder trasladar la figura que expresa el terreno donde sembraremos al papel
es necesario hacer uso de la escala, la escala es una herramienta para la
representación del terreno en miniatura, ya que sería muy tedioso, insano con el
medio ambiente y antieconómico buscar papeles de 1ha, 2ha o 2000m2 para
dibujar nuestros terrenos.
A la hora de dibujar nuestro terreno haciendo uso de la escala se nos presentan
ciertos problemas, como por ejemplo, ¿Qué escala utilizar? Como se dijo en líneas
anteriores la escala es una herramienta que nos sirve para representar en
miniatura un terreno; Existen varias escalas: 1:25, 1:50, 1:100, 1:200………..
Entre otras, Las cuales se leen escala 1 en 50 (1:50), 1 en 100 (1:100), 1 en 200
(1:200)…………………….. Y así sucesivamente. Una escala 1:E (donde E puede
tomar valores desde 1 hasta +∞) significa que por cada centímetro en el plano
estamos representando el valor que tenga E, que como anotamos anteriormente
puede tomar valores desde 1 hasta más infinito, así que una escala de 1:100 nos
indica que por cada centímetro que tu traces en el plano estas representando 100
cm del terreno o un metro. El valor seleccionado de la E varía en función de las
magnitudes del lote como también de las magnitudes del papel en el cual
pretendas hacer el plano, y su cálculo es necesario para no subutilizar el espacio
en el papel, como también para no quedarnos cortos de papel a la hora de realizar
un plano.
Ejemplo de cómo seleccionar la escala a utilizar para trazar el plano de tu
lote: tenemos un lote rectangular de magnitudes 100m x 50m y un papel
rectangular de magnitudes 30 cm x 15 cm, ¿Cuál sería el valor de E?, para
resolver este ejercicio se deben considerar el lado más largos del área del plano y
el lado más corto del papel; se pasa a centímetros el lado más largo del área del
terreno y a través de la división se convierte a la forma 1:E
35
Entonces como dijimos anteriormente se deben considerar el lado más largo del
lote y el lado más corto del papel para establecer la escala a utilizar.
1 E
15 cm (lado más corto del papel) ÷ 15 cm = 1 10000 cm (lado más largo del área) ÷ 15 cm
= 666,6
Como podemos observar en este ejemplo la escala a utilizar es 1:666,6, sin
embargo las escalas comerciales no traen la escala 1:666,6 por lo cual nos
aproximamos a la E más cercana que sea mayor de 666,7, en las escalas
Comerciales la más cercana es la de 1:1000, lo cual significa que por cada
centímetro en el plano se representan 1000 cm del terreno o 10 metros.
Dibujo del terreno.
Teniendo los ángulos del terreno, la longitud de los lados y la escala a utilizar, con
ayuda de la regla de escalas y el transportador, cerraremos la figura siguiendo los
siguientes pasos:
 se dibuja con la escala seleccionada una de las líneas (en papel
milimetrado).
 Con base en esta y con la ayuda de un transportador, se marca el ángulo
que forma con la siguiente línea y se indica la distancia correspondiente
Figura 4. Área del terreno y área del papel.
36
 Con base en esta última línea y con la ayuda del transportador se marca el
ángulo que forma con la siguiente línea y se indica la distancia
correspondiente
 Se procede de igual manera con todas las siguientes líneas del polígono
Cabe aclarar que en este tipo de construcciones los errores se acumulan y por lo
tanto al término del dibujo de las líneas se observa que no cierra el polígono por lo
que hay que aplicar una corrección, esta corrección la hacen automáticamente
programas como el Autocad si le introducimos los datos de ángulos y lados
arrojándonos también el área, pero para fines de que los monitores y facilitadores
ganen competencias en estos temas ilustraremos las formas manuales.
Corrección grafica de un polígono.
Cuando dibujemos nuestro polígono en el papel milimetrado este no nos cerrara.
Ya que al ir dibujando el polígono línea por línea los errores se van acumulando.
Por lo cual del error total tenemos que hacer un a distribución proporcional entre
cada una de las líneas, o mejor dicho en los tramos acumulados, Esta distribución
proporcional se debe realizar también gráficamente, porque así fue la
construcción.
Figura 5. Corrección grafica de un Polígono Tomada de apuntes de topografía para
agrónomos. Universidad autónoma de Chapingo.
37
Calculo del área.
Después de cerrado el polígono debemos, tomar la figura que tenemos y partirla
en varios triángulos para posteriormente hallar el área de cada uno de estos
triángulos, y por sumatoria determinar el área total de nuestro terreno a sembrar,
cabe resaltar que las líneas que traces en el papel para dividir la figura en varios
triángulos debe de tener la misma escala que utilizaste para cerrar la figura.
A continuación un ejemplo:
Figura 6. Calculo del área de cada uno de los triángulos. Tomada de apuntes de
topografía para agrónomos. Universidad autónoma de Chapingo.
Como podemos observar la figura representa un terreno que ha sido partido en
triángulos para poder hallar el área total de la figura que representa nuestro
terreno. La fórmula que se utiliza para poder medir el área de nuestra huerta es la
fórmula de herón o la fórmula del semiperimetro, que ilustraremos a continuación.
𝐴𝑟𝑒𝑎 𝑑𝑒𝑙 𝑡𝑟𝑖𝑎𝑛𝑔𝑢𝑙𝑜 = √𝑠( 𝑠 − 𝑎)(𝑠 − 𝑏)(𝑠 − 𝑐) ; 𝑠 =
𝑎+𝑏+𝑐
2
En el caso de este ejemplo específico los cálculos necesarios para poder hallar el
área de nuestro terreno son los siguientes:
Primero se calcula el semiperimetro y área del triángulo ABE:
𝑠1 =
42,03+33,95+24,53
2
= 50,255
38
𝐴𝑟𝑒𝑎1 = √50,255 × 8,225 × 16,305 × 25,725 = 416,39𝑚2
Hacemos el mismo procedimiento con los triángulos BDE Y BCD.
Triangulo BDE:
𝑆2 =
24,84+42,03+44,12
2
= 55,495
𝐴𝑟𝑒𝑎2 = √55,495 × 30,65 × 13,465 × 11,375 = 510,45𝑚2
Triangulo BCD:
𝑆3 =
24,02 + 44,12 + 31,56
2
= 49,850
𝐴𝑟𝑒𝑎3 = √49,85 × 25,83 × 5,730 × 18,29 = 367,35𝑚2
El paso final es hacer la sumatoria de las áreas de todos los triángulos que
conforman la figura.
𝐴𝑟𝑒𝑎 𝑡𝑜𝑡𝑎𝑙 = 𝐴𝑟𝑒𝑎1 + 𝐴𝑟𝑒𝑎2 + 𝐴𝑟𝑒𝑎3 = 416,39𝑚2
+ 510,45𝑚2
+ 367,35𝑚2
= 1294,19𝑚2
Las eras.
Conociendo el área de nuestro terreno procedemos a dibujar las eras, que son los
sitios definitivos donde irán las plantas estas deben de tener un ancho que permita
labores manuales como la limpieza manual de arvenses (“Malezas”), para lo cual
se recomienda 1 metro, en nuestro caso como trabajamos con niños y el objetivo
es vincularlos a labores que los acerquen a la producción agroecológica se
pueden trabajar anchos entre 50 cm y 60 cm, el largo de esta puede ser
cualquiera; entre las eras hay que dejar espacios de al menos 50 cm para que
puedan movilizarse herramientas como la carretilla, que ayudan las labores de
campo.
39
Las eras que establezcamos además de las magnitudes anteriormente citadas
deben de tener su lado más largo siguiendo la línea del sol, con el objetivo de que
una línea no sombree las otras.
Figura 8. Tomada de huerta para la soberanía alimentaria en la región amazónica.
Heraldo vallejo. 2009.
Para saber la orientación del lado más largo de la era, levántate muy temprano y
establece en qué lado sale el sol y en qué lado se esconde, si se te hace muy
difícil la madrugada consigue una brújula y establece cual es el este y el oeste.
Ancho = 60 cm o 0,6 m Largo = 10m
Distancia entre eras = 0,7 m
Figura 7. Esquema de huerta.
40
¿Cuánto necesitamos de semilla?
Tomando como ejemplo el esquema anterior donde se dibujaron las eras,
calcularemos la cantidad de semillas necesarias para materializar nuestra huerta,
los pasos son los siguientes:
 Seleccionar las especies a establecer (semilla criolla o nativa de fácil
acceso en la zona, ampliamente usada en la gastronomía local y sembrada
tradicionalmente en la zona por su buen rendimiento).
 Calculo del área de la era
 Consultar la distancia entre plantas en una misma línea y distancia entre
líneas de plantas, como también establecer su porcentaje de germinación.
Siguiendo con el ejemplo anterior notamos que hay 8 eras de dimensiones de 10m
x 0,6m, para efectos pedagógicos vamos a seleccionar dos especies en esta
huerta divididas en un mismo número de eras, es decir para este ejemplo 4 y 4.
Las especies a seleccionar serán, una que necesita ser sembrada en semillero
antes de ser pasada a la era y otra que se siembra directamente en las eras (yuca
de siembra directa y tomate de siembra semillero-era), a continuación ilustraremos
una tabla con algunas características de distintos cultivos, la cual nos sirve como
herramienta para determinar el número de semillas necesarias.
41
Tabla 1. Características cultivos. Tomada del manual de campo del método de
cultivo biointensivo para la zona tropical. ECOBASE. 2008.
A B C D E F G
N° semillas
a sembrar
por m3
Distancia
entre
semillas en
almacigo
(cm)
N°
Semanas
en
almácigo
N°
plantas
en cama
(cm)
Distancia
entre plantas
en cama (cm)
N° meses
para
madurarse
COMPOSTA Y CALORIAS
Ajonjolí 80 2½ cm 3 sem 60 15 cm 3 – 4 ms
Arroz (blanco) 170 2½ cm 2 sem 140 10 cm 4 ms
Girasol 5 2½ cm 2 - 3 sem 3 60 cm 3 ms
Maicillo
(sorgo)
60 Al voleo 2 sem 45 20 cm 3 ms
Maíz de
Grano
11 2½ cm 1 sem 10 40 cm 3½ ms
ALTAS CALORIAS
Ajo 120 Siembra Directa 140 10 cm 4 ms
Camote 25 Siembra Directa 25 25 cm 7 - 8 ms
Papa 25 Ver procedimiento 25 25 cm 2 - 4 ms
Yuca 2 Siembra Directa 2 90 cm 8 - 12 ms
OTROS
Albahaca 90 Al voleo 3 - 4 sem 60 15 cm 1½ - 2 ms
Arveja
(gandul)
250 2½ cm 1 - 2 sem 200 8 cm 2½ ms
Ayote 10 5 cm 3 - 4 sem 10 40 cm 2½ ms
Berenjena 8 3 cm 3 - 4 sem 6 45 cm 2½ ms
Brócoli 10 4 cm 5 sem 10 40 cm 2 ms
Cebolla (regular) 170 Al voleo 7 sem 140 10 cm 3½ - 4 ms
Chile (picante) 25 2½ cm 4 - 5 sem 16 30 cm 2 - 3 ms
Chile Verde 25 2½ cm 4 - 5 sem 16 30 cm 2½ ms
Coliflor 10 4 cm 5 sem 10 40 cm 2½ ms
Ejote 80 2½ cm 1 - 2 sem 60 15 cm 2 ms
42
Espinaca 90 2½ cm 3 - 4 sem 60 15 cm 1½ ms
Frijol rojo 80 2½ cm 2½ sem 60 15 cm 3 ms
Lechuga 30 Al voleo 3 - 4 sem 25 25 cm 2 ms
Melón 10 5 cm 3 - 4 sem 10 40 cm 3 - 4 ms
Pepino 18 5 cm 2 - 3 sem 16 30 cm 2 - 2½ ms
Perejil 125 Al voleo 6 - 8 sem 85 12 cm 2½ - 3 ms
Repollo 10 – 20 4 cm 5 sem 5 - 15 30 - 45 cm 2 - 4 ms
Soya 75 2½ cm 2 sem 60 15 cm 2 - 4 ms
Tomate 5 2½ cm
4 – 6
sem
4 50 cm 2 - 3 ms
Zanahoria 400 Al voleo 3 - 4 sem 250 8 cm 2½ - 3 ms
Nos vamos a la fila donde están los datos de la Yuca y el Tomate y miramos el
dato de número de plantas por metro cuadrado en tres bolillos (las plantas forman
triángulos equiláteros) y distancia entre plantas.
Tomate: 4 plantas por metro cuadrado; distancia en tres bolillos de 50 cm.
Yuca: 2 plantas por metro cuadrado; distancia en tres bolillos de 90 cm.
Como en el ejemplo anterior tenemos 4 eras de 6 metros cuadrados hacemos una
regla de tres para calcular el número de plantas por era.
# Plantas de tomate por era: 1m2
4 plantas
6m2
X
Este procedimiento matemático se denomina regla de tres y se lee de la siguiente
manera, si en un metro cuadrado caben 4 plantas en seis metros cuadrados
cuantas cabrán. En esta operación las unidades iguales van en el mismo lado,
como podemos ver en el ejemplo anterior, en el cual el número de plantas están
en el extremo derecho de las flechas azules y los metros cuadrados en el lado
izquierdo; para realizar esta operación se multiplica en diagonal y se divide por el
número que es diagonal a la incógnita x, por lo que la operación queda así:
43
𝒙 =
𝟔𝒎 𝟐
× 𝟒 𝒑𝒍𝒂𝒏𝒕𝒂𝒔
𝟏𝒎 𝟐
Como podemos observar en esta operación se cancelan los metros cuadrados y el
resultado final nos queda en términos de plantas, lo que nos da un resultado de 24
plantas de tomate por era, pero como vamos a establecer 4 eras de tomate el
número total de plantas de tomates es igual a la multiplicación de 24 x 4, lo que
arroja un resultado de 96 plantas de tomate.
Como las semillas de las plantas de tomate tienen un porcentaje de germinación,
no podemos comprar estrictamente las 96 ya que no obtendríamos la población
deseada, suponiendo que sus semillas de tomate tengan un porcentaje de
germinación de 70% (ósea de cada 100 semillas que siembras 70 germinan y 30
no, más adelante indicaremos como medir el porcentaje de germinación de
nuestras semillas) tenemos que realizar el siguiente cálculo para obtener la
cantidad de semillas adecuada:
# De semillas adecuadas: 96 plantas 70%
X 100%
Aquí también hacemos uso de la herramienta matemática denominada regla de
tres la cual se lee de la siguiente manera: si noventa y seis plantas son el setenta
por ciento, el cien por ciento cuanto será. La resolución de esta regla de tres es la
siguiente:
𝒙 =
𝟗𝟔 𝒑𝒍𝒂𝒏𝒕𝒂𝒔 × 𝟏𝟎𝟎 %
𝟕𝟎%
Lo cual nos da un valor de 137,14 plantas (semillas), al obtener este valor
tenemos que considerar que las semillas que no germinan no son las únicas
perdidas, ya que a la hora del trasplante a las eras hay perdidas también por lo
cual hay que sumar un porcentaje más de semillas, en este ejemplo sumaremos
un 15% más, no obstante usted con su experiencia en campo debe contabilizar
cuanto es el porcentaje de plantas que se pierde en el trasplante y sumarlo para
44
las próximas siembras. Razón por la cual el número definitivo de semillas a
conseguir en este ejemplo seria:
𝒙 𝒕𝒐𝒕𝒂𝒍 𝒔𝒆𝒎𝒊𝒍𝒍𝒂𝒔 = 𝟏𝟑𝟕, 𝟏𝟒 × 𝟏, 𝟏𝟓
Es resultado final es de 157,7 plantas lo cual hay que llevarlo al número entero
más cercano, para nuestro caso 158 plantas de tomate, que son las semillas que
finalmente hay que conseguir para llevar a cabo la producción en el espacio que
tenemos predispuesto.
En el caso de las semillas de yuca, el cálculo es mucho más sencillo ya que como
es una especie que no requiere de pasar por una fase de semillero, solo hay que
realizar el cálculo para los 24 metros cuadrados que suman las 4 eras restantes
del ejemplo y sumarle un 10% con el objetivo de hacer repoblación en aquellas
estacas que no broten.
# Plantas de yuca en las 4 eras por era = 1m2
2 plantas
24m2
x
Operación que resuelve de la siguiente manera.
𝒙 =
𝟐 𝒑𝒍𝒂𝒏𝒕𝒂𝒔 × 𝟐𝟒𝒎 𝟐
𝟏 𝒎 𝟐
El resultado de esta operación es 48 plantas, pero como dijimos anteriormente, ya
que todas las estacas no brotaran y serán viables, a esta operación se le sumara
un 10%.
𝒙 𝒕𝒐𝒕𝒂𝒍 𝒔𝒆𝒎𝒊𝒍𝒍𝒂𝒔 = 𝟒𝟖 × 𝟏, 𝟏𝟎
Dándonos un resultado final de 52,8, el cual hay que llevarlo al número entero más
cercano que para este caso es 53 semillas de Yuca.
Calculo del número de semilleros y las cantidades de sustrato necesarios.
Siguiendo con el ejemplo anterior, el cálculo del número de semilleros, solo se
tiene que llevar a cabo con las plantas de tomate que hallamos en los cálculos
45
anteriores, debido a que las semillas de Yuca se establecen directamente en las
eras o camas.
Debido a que el total de semillas de tomate que calculamos fue de 158 y según la
tabla de cultivos que tenemos este texto en páginas anteriores nos dice que las
distancias de las plantas de tomate en semillero son de 2,5 en tresbolillo (las
plantas hacen triángulos equiláteros con lados de 2,5 cm), el número de plantas
que caben en un semillero de 35 cm de ancho x 60 cm de largo y 10 cm de
profundidad es:
# 𝒑𝒍𝒂𝒏𝒕𝒂𝒔 𝒆𝒏 𝒕𝒓𝒆𝒔 𝒃𝒐𝒍𝒍𝒊𝒍𝒍𝒐𝒔 𝒂 𝟐, 𝟓 𝒄𝒎 𝒆𝒏 𝒔𝒆𝒎𝒊𝒍𝒍𝒆𝒓𝒐 𝒅𝒆 𝟑𝟓𝒙𝟔𝟎𝒙𝟏𝟎 =
𝟐𝟏𝟎𝟎 𝒄𝒎 𝟐
𝟐, 𝟓 𝒄𝒎 𝒙 𝟐, 𝟓 𝒄𝒎
× 𝟏, 𝟏𝟏𝟓
Los 2100 centímetros cuadrados de la formula anterior son el resultado de la
multiplicación del largo y ancho del semillero (forma de calcular el área que este
representa, un rectángulo). Al resolver la operación anterior nos arroja que en un
semillero de las dimensiones descritas se pueden introducir 374 plantas.
Figura 9. Estructura del semillero. Tomada de huerta organica biointensiva. Ciesa.
Como el número de plantas calculadas fue de 158 plantas de tomate hacemos una
regla de tres para determinar el número de semilleros necesarios; al ver en
nuestro ejercicio que en un semillero caben más plantas que las necesitamos por
sentido común ya debemos pensar que se va a utilizar menos de un semillero.
# Semilleros 35cmx60cmx10cm = 1 semillero 374 plantas
X 158 plantas
46
Al resolver esta operación obtenemos que para sembrar 158 plantas en semilleros
de 35 cm x 60 cm x 10 cm se necesitan 0.42 semilleros, dicho en términos más
castizos, tenemos que utilizar el 42% del área de un semillero de 35x60x10 para
sembrar el número de plantas de tomate que necesitamos.
Debido a que la planta de tomate es una planta que necesita ser sembrada en dos
tipos de semilleros uno poco profundo y uno profundo, como está establecido en la
tabla de cultivos en páginas anteriores, se tiene que calcular el número de
semilleros profundos que se requieren.
Para pasar de un semillero poco profundo a otro profundo donde las distancias de
siembra en tres bolillos es de 5 cm, hay que tener en cuenta el traslape (momento
en el cual las hojas de las plantas se están tocando en el semillero).
Figura 10. Estructura de semillero poco profundo. Tomada de huerta organica
biointensiva. Ciesa.
La operación necesaria para el cálculo del número de semilleros profundos es la
siguiente:
# 𝒑𝒍𝒂𝒏𝒕𝒂𝒔 𝒂 𝟓𝒄𝒎 𝒆𝒏 𝒔𝒆𝒎𝒊𝒍𝒍𝒆𝒓𝒐𝒔 𝒅𝒆 𝟑𝟓𝒙𝟔𝟎𝒙𝟏𝟓 =
𝟏𝟖𝟎𝟎 𝒄𝒎 𝟐
𝟐𝟓 𝒄𝒎 𝟐
𝒙 𝟏, 𝟏𝟏𝟓
Lo cual nos arroja que en un semillero de 35x60x15 a una distancia de 5cm en
tresbolillo caben 80 plantas, para saber en cuantos semilleros profundos caben las
158 plantas que necesitamos se hace una regla de tres.
# De semilleros de 30x60x15 = 1 semillero 80 plantas
X 158 plantas
47
El resultado de esta operación es de 1,975, lo cual nos expresa que para sembrar
158 plantas de tomate en tres bolillos a 5 cm de distancia y en un semillero
profundo de 35x60x15 tenemos que construir 2 semilleros, de los cuales en uno
de estos utilizaremos el 97,5% de su área.
Como ya conocemos el número de semilleros ahora estableceremos cuanto
necesitamos de sustrato, la relación más utilizada es 1:1:1 es decir una parte de
suelo, una de arena y una de compost. Sin embargo si estamos ante un suelo muy
arcilloso que tiende a la compactación podemos utilizar una mezcla 1:1 una parte
de arena y una de compost; para el caso de un suelo suelto con un buen
contenido de materia orgánica (suelo oscuro) podemos utilizar una mezcla 2:1 dos
partes de suelo y una de compost.
Para este ejemplo vamos a utilizar la mezcla 1:1:1 (una de arena, una de suelo y
una de compost), partimos de los resultados obtenidos en los cálculos anteriores,
1 semillero de 35x60x10 y 2 semilleros de 30x60x15, lo primero que debemos
hacer es hallar los volúmenes de cada uno de los semilleros y sumarlos.
𝑽𝒐𝒍𝒖𝒎𝒆𝒏 𝒔𝒆𝒎𝒊𝒍𝒍𝒆𝒓𝒐 𝟑𝟓𝒙𝟔𝟎𝒙𝟏𝟎 = 𝟑𝟓 𝒄𝒎 × 𝟔𝟎 𝒄𝒎 × 𝟏𝟎 𝒄𝒎 = 𝟐𝟏. 𝟎𝟎𝟎 𝒄𝒎 𝟑
𝒗𝒐𝒍𝒖𝒎𝒆𝒏 𝒔𝒆𝒎𝒊𝒍𝒍𝒆𝒓𝒐 𝟑𝟎𝒙𝟔𝟎𝒙𝟏𝟓 = 𝟑𝟎 𝒄𝒎 × 𝟔𝟎 𝒄𝒎 × 𝟏𝟓 𝒄𝒎 × 𝟐 = 𝟓𝟒. 𝟎𝟎𝟎 𝒄𝒎 𝟑
Al sumar los dos volúmenes nos arroja un resultado de 75.000 centímetros
cúbicos de sustrato, ya que utilizamos una relación 1:1:1 (una de arena, una de
suelo y una de compost) para pasarlo a términos de fraccionarios tenemos que
sumar los unos y dividir el valor obtenido por cada uno de ellos, ósea tener una
mezcla 1:1:1 es tener una mezcla compuesta por 1/3 de arena, 1/3 de suelo y 1/3
de compost; si fuera una mezcla 2:1 (dos de suelo y una de compost) se hiciera lo
mismo, en este caso serían 2/3 de suelo y 1/3 de compost. Habiendo quedado
claro como pasar a fraccionarios la mezcla, calculamos cuanto volumen
necesitamos específicamente de suelo, arena y compost, como las proporciones
son las mismas hacemos un solo calculo:
𝒗𝒐𝒍𝒖𝒎𝒆𝒏 𝒅𝒆 𝒔𝒖𝒆𝒍𝒐, 𝒂𝒓𝒆𝒏𝒂 𝒚 𝒄𝒐𝒎𝒑𝒐𝒔𝒕 𝒏𝒆𝒄𝒆𝒔𝒂𝒓𝒊𝒐 = 𝟕𝟓. 𝟎𝟎𝟎 𝒄𝒎 𝟑
×
𝟏
𝟑
48
Después de realizado este cálculo sabemos que para rellenar los semilleros con
una mezcla 1:1:1 de arena, suelo y compost necesitamos 25.000 cm3 de cada
uno, en el caso del compost tenemos que preparar más de la cantidad hallada, ya
que en el proceso de maduración y tamizado del mismo solo se aprovecha entre
un 30% y 40% del volumen inicial, cabe aclarar que el suelo que se va a utilizar
debe desterronarse (partir los terrones de suelo y dejar agregados de menor
tamaño) y tamizarse.
Cantidad de compost final para semilleros = 25000 cm3
30%
X 100%
Por lo cual el resultado final es 83.333,3 centímetros cúbicos de compost, 25.000
de suelo y 25.000 de arena; si tenemos en nuestra casa un recipiente de volumen
conocido, por ejemplo un tanque de 20 litros, podemos pasar los centímetros
cúbicos hallados a el número de tanques necesarios de la siguiente manera,
partimos de la siguiente premisa: 1 litro = 1000 centímetros cúbicos, por lo que 20
litros equivalen a 20000 centímetros cúbicos, teniendo estas equivalencias claras
realizamos la regla de tres para saber cuántos tanques de 20 litros representan los
25.000 centímetros cúbicos de cada uno de los componentes que nuestro sustrato
requiere.
Cantidad de tanques de 20 litros necesarios = 1 tanque 20000 cm3
X 25000 cm3
El resultado final es de 1,25 baldes de arena, 1,25 baldes de suelo y 1,25 baldes
de compost; la interpretación del decimal 1,25, es que por cada compuesto del
sustrato usaremos un balde más el 25% del mismo (ósea 5 litros); debido a que la
mayoría de los baldes no son cilíndricos y su diámetro aumenta con la altura, para
saber el punto donde se encuentran los 5 litros utilizamos un recipiente con un
volumen inferior, que con varias aplicaciones del volumen de este nos lleve al
volumen que buscamos, para este ejemplo podría ser una botella de gaseosa de 1
litro que aplicada 5 veces al balde nos da nuestro valor, a la altura que nos den los
49
cinco litros marcamos y a esa misma altura rellenamos el balde con nuestros
materiales del sustrato.
Figura 11. Tanque no cilíndrico al cual se le aplicaron 5 litros de agua (25% de 20
litros) para hallar la altura a la que se debe llenar el tanque con los elementos del
Sustrato, en Este esquema la línea roja.
La mezcla tiene que ser homogénea; es necesario aclarar que los 83.333,3
centímetros cúbicos de compost se preparan ya que en este hay muchas pérdidas
por lo cual hay que preparar este volumen para poder obtener los 25000 cm3 que
se requiere para el sustrato, las dimensiones recomendadas de la pila de compost
son de 1m x 1,5 m x X (Siendo X el largo de la pila el cual tiene que ser calculado)
o 100 cm x 150 cm x X, cuando tratemos fertilización de las camas calcularemos
el número de pilas con estas dimensiones incluyendo lo que se necesita para los
semilleros.
Desinfección del sustrato.
Uno de los principios de la agroecología es la utilización de los recursos locales
para llevar a cabo las producciones agrícolas, en el departamento de córdoba la
alta radiación y temperaturas son una característica notable de nuestro territorio,
por lo cual el método de solarización se convierte en un método altamente viable
para la limpieza de nuestros sustratos, cabe resaltar que el compost bien
preparado no requiere de esto debido a que este alcanza altas temperaturas en su
50
proceso de elaboración por lo cual el suelo y la arena son los dos componentes
del sustrato 1:1:1 que se debe someter a este procedimiento.
Tomamos el volumen de sustrato de suelo y arena a utilizar en los semilleros y lo
hacemos en pilas de 100 cm de ancho x 40 cm de alto x L, siendo L el largo
necesario para generar el volumen de arena y suelo hallados, que en el ejemplo
que venimos manejando es de 50000 cm3 (25000 de suelo + 25000 de arena).
𝟏𝟎𝟎 𝒄𝒎 × 𝟒𝟎 𝒄𝒎 × 𝑳𝒂𝒓𝒈𝒐 𝒅𝒆𝒍 𝒎𝒐𝒏𝒕𝒐𝒏 = 𝟓𝟎𝟎𝟎𝟎𝒄𝒎 𝟑
𝑳𝒂𝒓𝒈𝒐 𝒅𝒆𝒍 𝑴𝒐𝒏𝒕𝒐𝒏 =
𝟓𝟎𝟎𝟎𝟎𝒄𝒎 𝟑
𝟏𝟎𝟎 𝒄𝒎 × 𝟒𝟎 𝒄𝒎
Lo cual nos arroja un largo de 12,5 centímetros, como el resultado en este
ejemplo fue pequeño podemos reducir el alto del montón; después de realizado el
montón con las magnitudes preestablecidas lo humedecemos homogéneamente y
nos aseguramos que este húmedo en toda la profundidad (altura) que tu hayas
determinado, se humedece con el objetivo de que germinen las esporas
(estructuras reproductivas de organismos como los hongos) y de aumentar la
sensibilidad térmica, después de humedecido el sustrato se cubre con polietileno
transparente de 0,03mm, el cual se pisa con suelo en los bordes y se deja por un
tiempo mínimo de 4 semanas en pleno sol, hay que aclarar que se lo mas
importante es que la altura no pase de 40cm para permitir el humedecimiento y
calentamiento del montón en profundidad.
Las características de la utilización de este método son las siguientes:
 La temperatura en la superficie alcanza 50 o
C. En los primeros 5cm,
reduciendo patógenos en más del 90%.
 Reducción de enfermedades por hongos del suelo mayor del 25%
 Reducción de población de las arvenses (malezas).
Otro método a utilizar es la aplicación de agua a 100 grados centígrados.
51
Hallando la cantidad de malla, alambre de púa y postes para cercado.
Tomando como referencia el esquema rectangular de terreno establecido en
páginas anteriores hallamos la cantidad de malla gallinera, elemento utilizado para
cercar el terreno e impedir el paso de animales (no humanos), el cálculo de
cantidad de malla, alambre de púa y postes se realiza con base al perímetro del
terreno donde vamos a establecer la huerta.
𝒑𝒆𝒓𝒊𝒎𝒆𝒕𝒓𝒐 𝒅𝒆 𝒖𝒏𝒂 𝒇𝒊𝒈𝒖𝒓𝒂 = ∑ 𝒍𝒂𝒅𝒐𝒔 𝒅𝒆 𝒍𝒂 𝒇𝒊𝒈𝒖𝒓𝒂
Como se ilustra en la formula anterior el perímetro de cualquier figura es igual a la
sumatoria (∑ ) de los lados de la figura que en nuestro caso es igual a la suma de
dos veces el ancho más dos veces el largo.
𝒑𝒆𝒓𝒊𝒎𝒆𝒕𝒓𝒐 𝒅𝒆 𝒖𝒏 𝒓𝒆𝒄𝒕𝒂𝒏𝒈𝒖𝒍𝒐 = 𝟐 𝒂𝒏𝒄𝒉𝒐 + 𝟐 𝒍𝒂𝒓𝒈𝒐
𝒑𝒆𝒓𝒊𝒎𝒆𝒕𝒓𝒐 𝒅𝒆 𝒏𝒖𝒆𝒔𝒕𝒓𝒐 𝒓𝒆𝒄𝒕𝒂𝒏𝒈𝒖𝒍𝒐 = 𝟐( 𝟓, 𝟗 𝒎) + 𝟐 ( 𝟐𝟐, 𝟏 𝒎) = 𝟓𝟔 𝒎
Realizado el cálculo hallamos que el perímetro de nuestro terreno es igual a 56
metros, lo cual son los metros de malla necesarios para esta huerta, como en una
planeación uno no puede comprar insumos estrictos para este caso sería
recomendable comprar 60 metros, los metros de alambre de púa necesarios son
igual a el perímetro hallado multiplicado por 3 debido a que para darle forma a la
Ancho: 5,9 metros; largo: 22,1 metros
Figura 12. Perímetro de terreno rectangular.
22,1 m
5,9m
52
malla se requieren 3 pases de alambre de púa (uno en la parte superior de la
malla, uno en la parte media y otro en la parte inferior), el número de pases de
alambre de púa puede ser superior a 3 o inferior a 3, dependiendo de la altura de
la malla, las mallas comerciales vienen con alturas de 1,8 metros por lo cual tres
pases da buen resultado.
𝒄𝒂𝒏𝒕𝒊𝒅𝒂𝒅 𝒅𝒆 𝒂𝒍𝒂𝒎𝒃𝒓𝒆 𝒅𝒆 𝒑ú𝒂 = 𝟓𝟔 𝒎 × 𝟑 = 𝟏𝟔𝟖 𝒎
En nuestro ejemplo la cantidad de alambre de púa a utilizar es de 168 metros, no
obstante se debe comprar un poco más como se ha hecho con los cálculos de
otros materiales. Si compras estrictamente lo calculado lo más probable es que
con los amarres que hagas a los postes este no te alcance, para nuestro caso los
168 m los llevaremos a 180 m.
Para el cálculo del número de postes necesarios se debe tener en cuenta la
distancia a la cual van a ir estos, distancia que depende de la magnitud del terreno
a cercar y el peso de la malla a utilizar, no obstante debido a que este documento
está hecho pensando en pequeñas huertas escolares y familiares, nuestra
experiencia nos ha indicado que con distancias entre los 2-3 metros se generan
buenos resultados; para realizar correctamente esta labor los postes de las
esquinas que son los que mayor carga soportan deben de ser los más robustos,
deben estar enterrados unos cuantos centímetros más en el suelo y deben
rellenarse con piedra triturada y suelo, de ser posible es recomendable aplicarle
un poco de cemento en la base.
𝑵𝒖𝒎𝒆𝒓𝒐 𝒅𝒆 𝒑𝒐𝒔𝒕𝒆𝒔 =
𝒑𝒆𝒓𝒊𝒎𝒆𝒕𝒓𝒐
𝒅𝒊𝒔𝒕𝒂𝒏𝒄𝒊𝒂 𝒆𝒏𝒕𝒓𝒆 𝒑𝒐𝒔𝒕𝒆𝒔
𝑵𝒖𝒎𝒆𝒓𝒐 𝒅𝒆 𝒑𝒐𝒔𝒕𝒆𝒔 =
𝟓𝟔 𝒎
𝟑𝒎
= 𝟏𝟗 𝒑𝒐𝒔𝒕𝒆𝒔
La altura de los postes a utilizar depende de dos variables: la altura de la malla a
utilizar y la profundidad a la que irán los postes en el suelo, en nuestra experiencia
en Severá se utilizó malla gallinera de altura de 1,8 m y los postes se enterraron a
50 centímetros (nuestro suelo tenia buenos contenidos de arcilla y limo, en un
53
suelo arenoso la profundidad debería ser superior), los 4 postes de las esquinas
se enterraron a una profundidad de 70 cm, Por lo cual se establecieron 4 postes
de 2,6 m y el resto de 2,4 m, dándonos buenos resultados.
Para nuestro ejemplo serian entonces 4 postes de 2,6 m y 15 de 2,4 m. es
importante anotar que para llevar a cabo el cercado es necesario comprar las
grapas para fijar el alambre a la malla y los postes, el calibre de estas dependerá
del grosor del poste, grapas grandes para postes gruesos y grapas pequeñas para
postes delgados.
Fertilización.
Antes de hablar de fertilización es importante aclarar conceptos sobre el suelo,
desde una perspectiva agroecológica, el suelo no puede considerarse únicamente
como un sustrato que le sirve a las plantas de anclaje y despensa de nutrientes.
Para la agroecología el suelo es un cuerpo complejo, formado por cuatro fases:
fase biológica (macro-organismos, meso-organismos y micro-organismos), fase
solida (materia orgánica e inorgánica), fase gaseosa (aire del suelo) y fase liquida
(agua del suelo con minerales disueltos); el suelo que se desea para una
producción agrícola debe tener un equilibrio en todas estas fases, teóricamente
se establece una composición de 50% de partes sólidas y un 50% de partes
porosas y, a su vez este tiene que tener 50% de aire y un 50% de agua, mientras
que en la parte sólida, el 50% debe de ser de materia orgánica. Toda estas
características se persiguen en la agroecología con el único fin de tener a los
organismos del suelo (la parte viva) en las cantidades y diversidad suficiente, ya
que la agroecología a diferencia de la agricultura de la revolución verde propone
como elemento fundamental para determinar la calidad del suelo su parte viva.
Uno de los componentes del suelo el cual amerita hacerle mención especial, por
sus aportes a la parte física, química y biológica de los mismos es la materia
orgánica.
54
La materia orgánica.
La materia orgánica de los suelos proviene de residuos animales y vegetales, esta
se descompone a través de la acción de procesos físicos, químicos y biológicos
convirtiéndose en humus (materia orgánica descompuesta que ha formado
complejos con las arcillas y que no puede ser fácilmente atacada por lo
organismos del suelo) como también en minerales, aportando especialmente
Nitrógeno, fosforo y azufre.
Esta además de aportar nutriente y materia orgánica descompuesta genera
efectos positivos en lo físico, biológico y químico:
 Aportes en lo físico: contribuye a mejorar la estructura del suelo, porosidad,
permeabilidad, retención de agua y absorción de calor, previene la erosión
y contribuye a la mejora de suelos compactados.
 Aportes en lo químico: aumenta la capacidad de retener nutrientes del
suelo, aporta nutrientes y hace al suelo más resistente a los cambios de Ph.
 Aportes en lo biológico: le da las condiciones propicias para que la
diversidad de los microorganismos se reproduzcan y lleven a cabo sus
funciones en el suelo.
Algunos abonos orgánicos.
Los abonos orgánicos son materiales provenientes de la materia circundante, viva
y no viva, que a diferencia de los abonos químicos no son sintetizados en los
laboratorios, razón por la cual representan una alternativa para salvaguardar la seguridad
alimentaria de las zonas rurales, debido a su fácil acceso, economía y su gran importancia
en la producción de alimentos inocuos (que no generan daños a la salud del ser que los
consume).
Su papel en la producción agrícola, es coadyuvar a que se den las condiciones
ideales en el suelo en lo físico y químico para que la parte viva aumente en
cantidad y diversidad, manteniendo la salud del recurso suelo a través del tiempo.
55
Para fines prácticos en este manual enseñaremos 3 abonos orgánicos bastante
utilizados y con materiales de fácil acceso, ya que el objetivo de este documento
no es la elaboración de un compendio de recetas.
 Un abono fermentado (Bokashi)
 Un abono oxigenico (compost)
 Un caldo microbial (caldo supermagro)
El compost.
El compost es un abono orgánico de fácil preparación, el cual trae múltiples
beneficios para las plantas y la salud del suelo. Para hacerlo solo se necesita
materiales verdes, materiales secos, agua, tierra y aire.
La pila de compost que realicemos debe tener un ancho y altura que no supere los
1.5 metros, el largo si puede ser el que el productor elija; cabe anotar que la tierra
preferida
Para la preparación de la composta es una tierra negra.
A continuación ilustraremos algunos materiales y los pasos para la elaboración del
compost.
Materiales secos:
 Rastrojos (maíz, frijol, caña, etc.)
 Hojas secas
 Pajilla de café o de arroz
 Pasto (zacate) seco o verde
 Bagazo de caña
 Aserrín
Materiales verdes o frescos:
 Hierbas (TODAS)
 Tallo y hojas de plátano
 Estiércol de animales
 Pulpa de café
 Desperdicios de cocina
 Cascaras de fruta
 Animales pequeño muertos
Materiales NO recomendados: Hojas de pino, aserrín de árboles resinosos,
plantas muy enfermas o plagadas, grandes cantidades de grasas y excremento
humano, de perro o de gato.
Figura 13. Materiales necesarios en la elaboración del compost. Tomada de
producción de hortalizas orgánicas. Centro agroecológico las Cañadas.
56
El estiércol de pollo y gallinas purinas no es recomendado tampoco debido a que
estos traen consigo antibióticos y hormonas.
¿Cómo se prepara el Compost?
 Trazamos un cuadro de 1,5 metros por 1,5 metros y se afloja el terreno con el
bieldo unos 30cm de hondo.
 Después se coloca sobre el terreno removido una rejilla de ramas seca y se
riega con un poco de agua.
 Encima de la capa de ramas secas se coloca una capa de más o menos 10 cm
de materiales secos y se riega con agua.
 Enseguida se pone una capa de material verde de más o menos 10 cm.
 Posteriormente se agrega una capa delgada de tierra de más o menos 1cm
(tierra negra no muy arcillosa) y se agrega agua.
 Repita las capas alternas de material seco, verde y tierra hasta alcanzar una
altura de 1 metro y riega cada capa con agua.
En temperaturas cálidas no es muy recomendable trabajar con pilas de mucha
altura, lo mejor es que se ensaye en su patio las alturas que le dan mejores
resultados.
Es importante resaltar que los materiales antes de establecerlos en las
distintas capas deben ser picados y dejarlos con un tamaño entre 15-20
centímetros esto acelerara el proceso de descomposición; Y por ningún motivo
debemos usar agua clorada.
57
Figura 14. Preparación del compost. Tomada de producción de hortalizas
orgánicas. Centro agroecológico las Cañadas.
¿Cómo sabemos si nuestro compost está trabajando bien?
Hay dos aspectos fundamentales que debemos cuidar de un compost, la humedad
y la temperatura. Temperatura: Este aspecto es fundamental para que se dé la
descomposición de los materiales. Una manera muy sencilla de evaluarla es
introduciendo un machete en el montón a más o menos 75 centímetros de
profundidad, se deja por unos minutos y cuando lo retires se toca con la mano, si
aguantas el calor está funcionando bien, si no lo aguantas es porque está muy
caliente, por lo que hay que aplicarle agua y hacerle agujeros para que ingrese
aire.
Si el machete esta frio hay que cubrirla temporalmente con un plástico negro o
aplicarle un te de estiércol (1 kilo de estiércol en un recipiente de 20 litros lleno de
agua y revolver). Humedad: si esta seca hay que regarla, ya que si no tiene
humedad no se da el calor y no trabaja. Si está demasiado mojada lo más
probable es que esta huela a putrefacción. La técnica más fácil para determinar su
correcta humedad es la prueba del puño, tomas un puñado de composta y lo
aprietas un poco si corre agua entre tus dedos está muy húmeda.
58
Figura 15. Como saber si nuestra composta trabaja bien. Tomada de producción de
hortalizas orgánicas. Centro agroecológico las Cañadas.
El compost debe de voltearse una vez al mes, en nuestro clima (cálido) este tarda
más o menos 3 meses para estar lista, pero establecer el tiempo preciso no debe
ser preocupación debido a que por un análisis del aspecto (olor, textura, color y
forma de los materiales) podemos determinar si está listo o no. Se determina si un
compost está listo cuando al tomar un puñado de este no reconocemos los
materiales que utilizamos, es suave, oscuro, húmedo y huele a tierra mojada.
Este debe de ubicarse en un lugar con sombra y que no se inunde.
Figura 16. Como almacenar el compost. Tomada de producción de hortalizas
orgánicas. Centro agroecológico las Cañadas.
Las cantidades de compost a utilizar en las eras o sitios definitivos a donde irán
las plantas son las siguientes:
 Rendimientos altos: 12 tanques de 20 litros cada 10 metros cuadrados
 Rendimientos medios: 6 tanques de 20 litros cada 10 metros cuadrados
59
 Rendimientos bajos: 3 tanques de 20 litros cada 10 metros cuadrados
A continuación calcularemos la cantidad de compost necesario haciendo uso del
ejemplo con el que venimos trabajando a lo largo del manual. Como tenemos 8
eras de 6 metros cuadrados, haremos el cálculo de cantidad necesaria para
obtener un rendimiento medio y posteriormente multiplicaremos por 8, a este
resultado le sumaremos el volumen de compost hallado para los semilleros y con
base a ese volumen total y considerando perdidas de material estableceremos el
número de pilas de compost con las dimensiones recomendadas.
# Tanques de compost, con capacidad de 20 litros = 10 m2
6 tanques de 20 litros
6 m2
X
Operación que arroja un resultado de 4 tanques de 20 litros por era de 6m2, no
obstante este no es el resultado final de las necesidades de compost ya que hay
que agregar los 83.333,3 centímetros cúbicos del compost que se prepararan para
los semilleros, pero como no lo tenemos en términos de tanques de 20 litros
hacemos la conversión.
Conversión de cm3
a tanques de 20 litros = 1 tanque de 20 litros 20000 cm3
X 83333,3 cm3
Ya que la conversión del volumen de compost a utilizar en los semilleros es de
4,16 tanques de 20 litros de compost, para poder sumar esta cifra que tiene
considerada perdidas con el volumen del compost a usar en las eras hay que
calcular las pérdidas de los 32 tanques de 20 litros hallados; como se estableció
en páginas anteriores del volumen total de compost inicial solo queda el 30%, por
lo tanto.
Compost para eras considerando pérdidas = 32 tanques de 20 litros 30%
X 100%
Lo cual nos da un resultado final de 106 tanques de 20 litros a los que hay que
sumarle los 4,16 de los semilleros para darnos un total de 110 tanques de 20
60
litros. Ahora para saber la magnitud del montón tenemos que pasar a metros
cúbicos los 110 tanques de 20 litros.
Conversión de tanques de 20 litros a m3
= 1 tanque de 20 litros 0,02m3
110 tanques x
El resultado en metros cúbicos es de 2,2, ya que los montones deben tener un ancho y
alto de 1 metros y el largo debe ser calculado, aplicamos la siguiente formula.
𝒍𝒂𝒓𝒈𝒐 𝒎𝒐𝒏𝒕𝒐𝒏 𝒄𝒐𝒎𝒑𝒐𝒔𝒕 = 𝟏, 𝟓 𝒎 × 𝟏 𝒎 𝒙 𝒍 = 𝟐, 𝟐 𝒎 𝟑
𝒍𝒂𝒓𝒈𝒐 𝒎𝒐𝒏𝒕𝒐𝒏 𝒄𝒐𝒎𝒑𝒐𝒔𝒕 =
𝟐, 𝟐𝒎 𝟑
𝟏, 𝟓𝒎 𝟐
Calculo que nos da un valor de 1,46 m, que llevaremos a 1,5 metros.
Abono Bokashi.
El abono tipo Bokashi se basa en procesos de descomposición aeróbica de los
residuos orgánicos y temperaturas controladas a través de poblaciones de
microorganismos existentes en los propios residuos, que en condiciones
favorables producen un material parcialmente estable de lenta descomposición.
Como una de las preguntas más frecuentes de los productores es la función de los
materiales que intervienen en la preparación de los distintos abonos, hablaremos
un poco de esto.
Para la preparación del Bokashi se necesita:
 Gallinaza (puede ser otro estiércol animal)
 Cascarilla de arroz
 Pulidura o salvado de arroz
 Carbón vegetal
 Melaza de caña
 tierra negra, procedente de un terreno donde nunca se haya sembrado,
tierra de bosque.
61
 Cal agrícola
 Agua
 Suelo
A continuación hablaremos un poco de las funciones de cada uno de estos
materiales:
Gallinaza o estiércoles de otros animales: aporta nutrientes al suelo como
nitrógeno, fósforo, potasio, calcio, magnesio, hierro, manganeso, zinc, cobre y
boro, entre otros elementos. También sirve como fuente de microorganismos que
contribuyen a los procesos de descomposición, no es recomendable tomar
estiércol de pollos de engorde, el estiércol más recomendado es el de gallinas
ponedoras bajo techo y con piso lo mismo con los estiércoles de caballos y vaca,
lo más recomendado son estiércoles tomados de establos que no hayan estado
expuestos al sol por mucho tiempo.
Carbón vegetal (también se puede usar restos de fogón de leña): Mejora las
características físicas del suelo, como su estructura, lo que facilita una mejor
distribución de las raíces, la aireación y la absorción de humedad y calor. Su alto
grado de porosidad permite la acción de microorganismos de la tierra, al mismo
tiempo que funciona con el efecto tipo “esponja sólida”, el cual consiste en la
retención, filtración y liberación lenta de nutrientes útiles a las plantas,
disminuyendo la pérdida y el lavado de éstos en la tierra. Por otro lado, las
partículas de carbón permiten una buena oxigenación del abono, de manera que
no existan Limitaciones en el proceso aeróbico de la fermentación. El tamaño de
las partículas de carbón influye en la calidad del abono, por lo cual se recomienda
tener partículas de 1 cm de ancho por 1,5 de largo.
Cascarilla de arroz: Este ingrediente mejora las características físicas de la tierra
y de los abonos orgánicos, facilitando la aireación, la absorción de humedad y el
filtrado de nutrientes, como también el incremento de la actividad macro y
microbiológica de la tierra, al mismo tiempo que estimula el desarrollo uniforme y
abundante del sistema radical de las plantas así como de su actividad simbiótica
62
con la microbiología de la rizosfera. Es, además, una fuente rica en silicio, lo que
favorece a los vegetales, pues los hace más resistentes a los ataques de insectos
y enfermedades.
Salvado de arroz: Este ingrediente favorece la fermentación de los abonos, la
cual se incrementa por la presencia de vitaminas complejas en la pulidura o en el
salvado de arroz. Aporta activación hormonal, nitrógeno y es muy rica en otros
nutrientes muy complejos cuando sus carbohidratos se fermentan. Los minerales,
tales como fósforo, potasio, calcio y magnesio también están presentes en este.
La melaza: es fuente de energía para los microorganismos que llevan a cabo los
procesos de fermentación, también aporta nutrientes como potasio, calcio,
fósforo, magnesio, boro, zinc, manganeso y hierro; para una mezcla homogénea
de esta en el abono es recomendable diluirla con parte del agua que se utilizara al
principio de la preparación del abono.
La tierra de bosque y la levadura: Estos ingredientes son la principal fuente de
microorganismos para la elaboración de los abonos orgánicos fermentados. Dicho
en otros términos son la semilla de la fermentación.
Suelo (tamizado): tiene la función de darle una mayor homogeneidad física al
abono y distribuir su humedad; aumenta el medio propicio para el desarrollo de la
actividad microbiológica de los abonos y consecuentemente, lograr una buena
fermentación, Reteniendo humedad y nutrientes.
Cal agrícola: Su función principal es regular la acidez que se presenta durante
todo el proceso de la fermentación, cuando se está elaborando el abono orgánico.
Agua: tiene como función homogeneizar la humedad de todos los ingredientes
que componen el abono. Propicia las condiciones ideales para el buen desarrollo
de la actividad y reproducción microbiológica, durante todo el proceso de la
fermentación.
Un exceso de agua impide que se lleve a cabo una buena descomposición del
abono por lo que se pone putrefacta y un abono muy seco podría retardar el
63
proceso de descomposición de la materia, por lo cual es necesario aplicar la
prueba del puño a la hora de aplicar el agua para establecer el punto óptimo de
humedad, la cual consiste en tomar con la mano una cantidad de la mezcla y
apretarla, de la cual no deberán salir gotas de agua entre los dedos y se deberá
formar un terrón quebradizo en la mano.
Figura 17. Prueba del puño. Tomada de manual práctico de agricultura orgánica y
panes de piedra. Jairo Restrepo y Julius Hensel. 2009.
Ilustración del proceso de preparación del montón.
Las cantidades de materiales necesarios para la elaboración del Bokashi son las
siguientes.
Tabla 2. Materiales necesarios para preparación de abono Bokashi. Tomada de
manual práctico de agricultura orgánica y panes de piedra. Jairo Restrepo y Julius
Hensel. 2009.
Ingredientes para la preparación de una muestra del abono
fermentado básico, tipo Bokashi
 2 quintales o costales de tierra cernida
 2 quintales o costales de cascarilla de arroz o café o paja picada
 2 quintales o costales de gallinaza o estiércol vacuno
 1 quintal o costal de cisco de carbón bien quebrado
 10 libras de pulidura o salvado de arroz
 10 libras de cal dolomita o cal agrícola o ceniza de fogón
 10 libras de tierra negra de floresta virgen
 1 litro de melaza o jugo de caña piloncillo
 100 gramos de levadura para pan, granulada o en barra
 Agua (de acuerdo con la prueba del puño y solamente una vez)
La huerta de_camilo
La huerta de_camilo
La huerta de_camilo
La huerta de_camilo
La huerta de_camilo
La huerta de_camilo
La huerta de_camilo
La huerta de_camilo
La huerta de_camilo
La huerta de_camilo
La huerta de_camilo
La huerta de_camilo
La huerta de_camilo
La huerta de_camilo
La huerta de_camilo
La huerta de_camilo
La huerta de_camilo
La huerta de_camilo
La huerta de_camilo
La huerta de_camilo
La huerta de_camilo
La huerta de_camilo
La huerta de_camilo
La huerta de_camilo
La huerta de_camilo
La huerta de_camilo
La huerta de_camilo
La huerta de_camilo
La huerta de_camilo
La huerta de_camilo
La huerta de_camilo
La huerta de_camilo
La huerta de_camilo
La huerta de_camilo
La huerta de_camilo
La huerta de_camilo
La huerta de_camilo
La huerta de_camilo
La huerta de_camilo
La huerta de_camilo
La huerta de_camilo
La huerta de_camilo
La huerta de_camilo
La huerta de_camilo
La huerta de_camilo
La huerta de_camilo
La huerta de_camilo
La huerta de_camilo
La huerta de_camilo
La huerta de_camilo
La huerta de_camilo
La huerta de_camilo
La huerta de_camilo
La huerta de_camilo
La huerta de_camilo
La huerta de_camilo
La huerta de_camilo
La huerta de_camilo
La huerta de_camilo
La huerta de_camilo
La huerta de_camilo
La huerta de_camilo
La huerta de_camilo
La huerta de_camilo
La huerta de_camilo
La huerta de_camilo
La huerta de_camilo
La huerta de_camilo
La huerta de_camilo
La huerta de_camilo
La huerta de_camilo
La huerta de_camilo
La huerta de_camilo
La huerta de_camilo
La huerta de_camilo
La huerta de_camilo
La huerta de_camilo
La huerta de_camilo
La huerta de_camilo
La huerta de_camilo
La huerta de_camilo
La huerta de_camilo
La huerta de_camilo
La huerta de_camilo
La huerta de_camilo
La huerta de_camilo

Más contenido relacionado

La actualidad más candente

Guia reuso aguas residuales.pdf
Guia reuso aguas residuales.pdfGuia reuso aguas residuales.pdf
Guia reuso aguas residuales.pdfBraulioAcostaNez
 
Diagnostico+de+la+infiltracion+y+permeabilidad+en+los+suelos (1)
Diagnostico+de+la+infiltracion+y+permeabilidad+en+los+suelos (1)Diagnostico+de+la+infiltracion+y+permeabilidad+en+los+suelos (1)
Diagnostico+de+la+infiltracion+y+permeabilidad+en+los+suelos (1)tolijoel
 
Manual practico-para-la-cria-ovina
Manual practico-para-la-cria-ovinaManual practico-para-la-cria-ovina
Manual practico-para-la-cria-ovinaelsareyes84
 
Guia maracuya 2011 (1)
Guia maracuya 2011 (1)Guia maracuya 2011 (1)
Guia maracuya 2011 (1)Junior Mero
 
Donal cultivo de_tilapia
Donal cultivo de_tilapiaDonal cultivo de_tilapia
Donal cultivo de_tilapiaDonal Diaz
 
Informe conservas atun
Informe conservas atunInforme conservas atun
Informe conservas atunJose Miranda
 
Nuevos retos de la ganadería extensiva pamplona
 Nuevos retos de la  ganadería extensiva pamplona Nuevos retos de la  ganadería extensiva pamplona
Nuevos retos de la ganadería extensiva pamplonaSat Án
 

La actualidad más candente (11)

Guia reuso aguas residuales.pdf
Guia reuso aguas residuales.pdfGuia reuso aguas residuales.pdf
Guia reuso aguas residuales.pdf
 
Diagnostico+de+la+infiltracion+y+permeabilidad+en+los+suelos (1)
Diagnostico+de+la+infiltracion+y+permeabilidad+en+los+suelos (1)Diagnostico+de+la+infiltracion+y+permeabilidad+en+los+suelos (1)
Diagnostico+de+la+infiltracion+y+permeabilidad+en+los+suelos (1)
 
Guia maracuya
Guia maracuyaGuia maracuya
Guia maracuya
 
Manual practico-para-la-cria-ovina
Manual practico-para-la-cria-ovinaManual practico-para-la-cria-ovina
Manual practico-para-la-cria-ovina
 
Guia maracuya 2011 (1)
Guia maracuya 2011 (1)Guia maracuya 2011 (1)
Guia maracuya 2011 (1)
 
Donal cultivo de_tilapia
Donal cultivo de_tilapiaDonal cultivo de_tilapia
Donal cultivo de_tilapia
 
Revisar buenazo
Revisar buenazoRevisar buenazo
Revisar buenazo
 
Informe conservas atun
Informe conservas atunInforme conservas atun
Informe conservas atun
 
Manual pastos-tropicales
Manual pastos-tropicalesManual pastos-tropicales
Manual pastos-tropicales
 
Nuevos retos de la ganadería extensiva pamplona
 Nuevos retos de la  ganadería extensiva pamplona Nuevos retos de la  ganadería extensiva pamplona
Nuevos retos de la ganadería extensiva pamplona
 
Mod 2
Mod 2Mod 2
Mod 2
 

Similar a La huerta de_camilo

239cartilla agricultura organica_corpoica
239cartilla agricultura organica_corpoica239cartilla agricultura organica_corpoica
239cartilla agricultura organica_corpoicafelix47
 
13-manual-mora-2020-EBOOK corredor informacion.pdf
13-manual-mora-2020-EBOOK corredor informacion.pdf13-manual-mora-2020-EBOOK corredor informacion.pdf
13-manual-mora-2020-EBOOK corredor informacion.pdfmariacristina782538
 
Agricultura Orgánica en RD Guía Técnica.pdf
Agricultura Orgánica en RD Guía Técnica.pdfAgricultura Orgánica en RD Guía Técnica.pdf
Agricultura Orgánica en RD Guía Técnica.pdfMaivaCalixte
 
pdfcoffee.com_fundamentos-de-la-microbiologia-2-pdf-free.pdf
pdfcoffee.com_fundamentos-de-la-microbiologia-2-pdf-free.pdfpdfcoffee.com_fundamentos-de-la-microbiologia-2-pdf-free.pdf
pdfcoffee.com_fundamentos-de-la-microbiologia-2-pdf-free.pdfLESLIELOPEZ669175
 
Hy-Lyne_Brown_CS_product_guide_cage_L1211-1-ES.pdf
Hy-Lyne_Brown_CS_product_guide_cage_L1211-1-ES.pdfHy-Lyne_Brown_CS_product_guide_cage_L1211-1-ES.pdf
Hy-Lyne_Brown_CS_product_guide_cage_L1211-1-ES.pdfAndresSimonFlorezVal
 
proyecto de siembra de yuca (1).pdf
proyecto de siembra de yuca (1).pdfproyecto de siembra de yuca (1).pdf
proyecto de siembra de yuca (1).pdfjosemarioayalamonsal
 
proyecto de siembra de yuca (1).pdf
proyecto de siembra de yuca (1).pdfproyecto de siembra de yuca (1).pdf
proyecto de siembra de yuca (1).pdfjosemarioayalamonsal
 
como herramientas para competir en el mercado”
como herramientas para competir en el mercado”como herramientas para competir en el mercado”
como herramientas para competir en el mercado”ExternalEvents
 
Manual de Crianza - Por Walther Soto Vargas
Manual de Crianza - Por Walther Soto VargasManual de Crianza - Por Walther Soto Vargas
Manual de Crianza - Por Walther Soto VargasWaltherSoto
 
Agricultura organica rd_cedaf
Agricultura organica rd_cedafAgricultura organica rd_cedaf
Agricultura organica rd_cedafvirjessi
 

Similar a La huerta de_camilo (20)

Guía técnica de cr
Guía técnica de crGuía técnica de cr
Guía técnica de cr
 
Producción semilla artesanal frijol
Producción semilla artesanal frijolProducción semilla artesanal frijol
Producción semilla artesanal frijol
 
239cartilla agricultura organica_corpoica
239cartilla agricultura organica_corpoica239cartilla agricultura organica_corpoica
239cartilla agricultura organica_corpoica
 
Null
NullNull
Null
 
Aguacate 2006
Aguacate 2006Aguacate 2006
Aguacate 2006
 
13-manual-mora-2020-EBOOK corredor informacion.pdf
13-manual-mora-2020-EBOOK corredor informacion.pdf13-manual-mora-2020-EBOOK corredor informacion.pdf
13-manual-mora-2020-EBOOK corredor informacion.pdf
 
Agricultura Orgánica en RD Guía Técnica.pdf
Agricultura Orgánica en RD Guía Técnica.pdfAgricultura Orgánica en RD Guía Técnica.pdf
Agricultura Orgánica en RD Guía Técnica.pdf
 
pdfcoffee.com_fundamentos-de-la-microbiologia-2-pdf-free.pdf
pdfcoffee.com_fundamentos-de-la-microbiologia-2-pdf-free.pdfpdfcoffee.com_fundamentos-de-la-microbiologia-2-pdf-free.pdf
pdfcoffee.com_fundamentos-de-la-microbiologia-2-pdf-free.pdf
 
Torres fernando capsulas
Torres fernando capsulasTorres fernando capsulas
Torres fernando capsulas
 
Agronegocios en Chile
Agronegocios en ChileAgronegocios en Chile
Agronegocios en Chile
 
Hy-Lyne_Brown_CS_product_guide_cage_L1211-1-ES.pdf
Hy-Lyne_Brown_CS_product_guide_cage_L1211-1-ES.pdfHy-Lyne_Brown_CS_product_guide_cage_L1211-1-ES.pdf
Hy-Lyne_Brown_CS_product_guide_cage_L1211-1-ES.pdf
 
37 14 huertos familiares y riego www.gftaognosticaespiritual.org
37 14 huertos familiares y riego  www.gftaognosticaespiritual.org37 14 huertos familiares y riego  www.gftaognosticaespiritual.org
37 14 huertos familiares y riego www.gftaognosticaespiritual.org
 
Ensilaje
EnsilajeEnsilaje
Ensilaje
 
proyecto de siembra de yuca (1).pdf
proyecto de siembra de yuca (1).pdfproyecto de siembra de yuca (1).pdf
proyecto de siembra de yuca (1).pdf
 
proyecto de siembra de yuca (1).pdf
proyecto de siembra de yuca (1).pdfproyecto de siembra de yuca (1).pdf
proyecto de siembra de yuca (1).pdf
 
como herramientas para competir en el mercado”
como herramientas para competir en el mercado”como herramientas para competir en el mercado”
como herramientas para competir en el mercado”
 
Norms esp v4_20090113
Norms esp v4_20090113Norms esp v4_20090113
Norms esp v4_20090113
 
Manual de Crianza - Por Walther Soto Vargas
Manual de Crianza - Por Walther Soto VargasManual de Crianza - Por Walther Soto Vargas
Manual de Crianza - Por Walther Soto Vargas
 
Tec granadilla
Tec granadillaTec granadilla
Tec granadilla
 
Agricultura organica rd_cedaf
Agricultura organica rd_cedafAgricultura organica rd_cedaf
Agricultura organica rd_cedaf
 

Último

MAYO 1 PROYECTO día de la madre el amor más grande
MAYO 1 PROYECTO día de la madre el amor más grandeMAYO 1 PROYECTO día de la madre el amor más grande
MAYO 1 PROYECTO día de la madre el amor más grandeMarjorie Burga
 
SINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptx
SINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptxSINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptx
SINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptxlclcarmen
 
Introducción:Los objetivos de Desarrollo Sostenible
Introducción:Los objetivos de Desarrollo SostenibleIntroducción:Los objetivos de Desarrollo Sostenible
Introducción:Los objetivos de Desarrollo SostenibleJonathanCovena1
 
Movimientos Precursores de La Independencia en Venezuela
Movimientos Precursores de La Independencia en VenezuelaMovimientos Precursores de La Independencia en Venezuela
Movimientos Precursores de La Independencia en Venezuelacocuyelquemao
 
GLOSAS Y PALABRAS ACTO 2 DE ABRIL 2024.docx
GLOSAS  Y PALABRAS ACTO 2 DE ABRIL 2024.docxGLOSAS  Y PALABRAS ACTO 2 DE ABRIL 2024.docx
GLOSAS Y PALABRAS ACTO 2 DE ABRIL 2024.docxAleParedes11
 
La triple Naturaleza del Hombre estudio.
La triple Naturaleza del Hombre estudio.La triple Naturaleza del Hombre estudio.
La triple Naturaleza del Hombre estudio.amayarogel
 
LINEAMIENTOS INICIO DEL AÑO LECTIVO 2024-2025.pptx
LINEAMIENTOS INICIO DEL AÑO LECTIVO 2024-2025.pptxLINEAMIENTOS INICIO DEL AÑO LECTIVO 2024-2025.pptx
LINEAMIENTOS INICIO DEL AÑO LECTIVO 2024-2025.pptxdanalikcruz2000
 
6° SEM30 WORD PLANEACIÓN PROYECTOS DARUKEL 23-24.docx
6° SEM30 WORD PLANEACIÓN PROYECTOS DARUKEL 23-24.docx6° SEM30 WORD PLANEACIÓN PROYECTOS DARUKEL 23-24.docx
6° SEM30 WORD PLANEACIÓN PROYECTOS DARUKEL 23-24.docxCeciliaGuerreroGonza1
 
Plan Año Escolar Año Escolar 2023-2024. MPPE
Plan Año Escolar Año Escolar 2023-2024. MPPEPlan Año Escolar Año Escolar 2023-2024. MPPE
Plan Año Escolar Año Escolar 2023-2024. MPPELaura Chacón
 
NARRACIONES SOBRE LA VIDA DEL GENERAL ELOY ALFARO
NARRACIONES SOBRE LA VIDA DEL GENERAL ELOY ALFARONARRACIONES SOBRE LA VIDA DEL GENERAL ELOY ALFARO
NARRACIONES SOBRE LA VIDA DEL GENERAL ELOY ALFAROJosé Luis Palma
 
RAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIA
RAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIARAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIA
RAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIACarlos Campaña Montenegro
 
el CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyz
el CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyzel CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyz
el CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyzprofefilete
 
PPT GESTIÓN ESCOLAR 2024 Comités y Compromisos.pptx
PPT GESTIÓN ESCOLAR 2024 Comités y Compromisos.pptxPPT GESTIÓN ESCOLAR 2024 Comités y Compromisos.pptx
PPT GESTIÓN ESCOLAR 2024 Comités y Compromisos.pptxOscarEduardoSanchezC
 
2024 - Expo Visibles - Visibilidad Lesbica.pdf
2024 - Expo Visibles - Visibilidad Lesbica.pdf2024 - Expo Visibles - Visibilidad Lesbica.pdf
2024 - Expo Visibles - Visibilidad Lesbica.pdfBaker Publishing Company
 
DECÁGOLO DEL GENERAL ELOY ALFARO DELGADO
DECÁGOLO DEL GENERAL ELOY ALFARO DELGADODECÁGOLO DEL GENERAL ELOY ALFARO DELGADO
DECÁGOLO DEL GENERAL ELOY ALFARO DELGADOJosé Luis Palma
 
codigos HTML para blogs y paginas web Karina
codigos HTML para blogs y paginas web Karinacodigos HTML para blogs y paginas web Karina
codigos HTML para blogs y paginas web Karinavergarakarina022
 

Último (20)

La Trampa De La Felicidad. Russ-Harris.pdf
La Trampa De La Felicidad. Russ-Harris.pdfLa Trampa De La Felicidad. Russ-Harris.pdf
La Trampa De La Felicidad. Russ-Harris.pdf
 
Unidad 4 | Teorías de las Comunicación | MCDI
Unidad 4 | Teorías de las Comunicación | MCDIUnidad 4 | Teorías de las Comunicación | MCDI
Unidad 4 | Teorías de las Comunicación | MCDI
 
MAYO 1 PROYECTO día de la madre el amor más grande
MAYO 1 PROYECTO día de la madre el amor más grandeMAYO 1 PROYECTO día de la madre el amor más grande
MAYO 1 PROYECTO día de la madre el amor más grande
 
SINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptx
SINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptxSINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptx
SINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptx
 
Introducción:Los objetivos de Desarrollo Sostenible
Introducción:Los objetivos de Desarrollo SostenibleIntroducción:Los objetivos de Desarrollo Sostenible
Introducción:Los objetivos de Desarrollo Sostenible
 
Movimientos Precursores de La Independencia en Venezuela
Movimientos Precursores de La Independencia en VenezuelaMovimientos Precursores de La Independencia en Venezuela
Movimientos Precursores de La Independencia en Venezuela
 
GLOSAS Y PALABRAS ACTO 2 DE ABRIL 2024.docx
GLOSAS  Y PALABRAS ACTO 2 DE ABRIL 2024.docxGLOSAS  Y PALABRAS ACTO 2 DE ABRIL 2024.docx
GLOSAS Y PALABRAS ACTO 2 DE ABRIL 2024.docx
 
La triple Naturaleza del Hombre estudio.
La triple Naturaleza del Hombre estudio.La triple Naturaleza del Hombre estudio.
La triple Naturaleza del Hombre estudio.
 
LINEAMIENTOS INICIO DEL AÑO LECTIVO 2024-2025.pptx
LINEAMIENTOS INICIO DEL AÑO LECTIVO 2024-2025.pptxLINEAMIENTOS INICIO DEL AÑO LECTIVO 2024-2025.pptx
LINEAMIENTOS INICIO DEL AÑO LECTIVO 2024-2025.pptx
 
6° SEM30 WORD PLANEACIÓN PROYECTOS DARUKEL 23-24.docx
6° SEM30 WORD PLANEACIÓN PROYECTOS DARUKEL 23-24.docx6° SEM30 WORD PLANEACIÓN PROYECTOS DARUKEL 23-24.docx
6° SEM30 WORD PLANEACIÓN PROYECTOS DARUKEL 23-24.docx
 
Plan Año Escolar Año Escolar 2023-2024. MPPE
Plan Año Escolar Año Escolar 2023-2024. MPPEPlan Año Escolar Año Escolar 2023-2024. MPPE
Plan Año Escolar Año Escolar 2023-2024. MPPE
 
NARRACIONES SOBRE LA VIDA DEL GENERAL ELOY ALFARO
NARRACIONES SOBRE LA VIDA DEL GENERAL ELOY ALFARONARRACIONES SOBRE LA VIDA DEL GENERAL ELOY ALFARO
NARRACIONES SOBRE LA VIDA DEL GENERAL ELOY ALFARO
 
RAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIA
RAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIARAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIA
RAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIA
 
el CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyz
el CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyzel CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyz
el CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyz
 
Razonamiento Matemático 1. Deta del año 2020
Razonamiento Matemático 1. Deta del año 2020Razonamiento Matemático 1. Deta del año 2020
Razonamiento Matemático 1. Deta del año 2020
 
PPT GESTIÓN ESCOLAR 2024 Comités y Compromisos.pptx
PPT GESTIÓN ESCOLAR 2024 Comités y Compromisos.pptxPPT GESTIÓN ESCOLAR 2024 Comités y Compromisos.pptx
PPT GESTIÓN ESCOLAR 2024 Comités y Compromisos.pptx
 
2024 - Expo Visibles - Visibilidad Lesbica.pdf
2024 - Expo Visibles - Visibilidad Lesbica.pdf2024 - Expo Visibles - Visibilidad Lesbica.pdf
2024 - Expo Visibles - Visibilidad Lesbica.pdf
 
Sesión de clase: Defendamos la verdad.pdf
Sesión de clase: Defendamos la verdad.pdfSesión de clase: Defendamos la verdad.pdf
Sesión de clase: Defendamos la verdad.pdf
 
DECÁGOLO DEL GENERAL ELOY ALFARO DELGADO
DECÁGOLO DEL GENERAL ELOY ALFARO DELGADODECÁGOLO DEL GENERAL ELOY ALFARO DELGADO
DECÁGOLO DEL GENERAL ELOY ALFARO DELGADO
 
codigos HTML para blogs y paginas web Karina
codigos HTML para blogs y paginas web Karinacodigos HTML para blogs y paginas web Karina
codigos HTML para blogs y paginas web Karina
 

La huerta de_camilo

  • 1. CAPACITACIÓN DE MONITORES Y FACILITADORES LOCALES EN SEGURIDAD ALIMENTARIA, PROGRAMA SINÚ. (CÓRDOBA Y SUCRE – COLOMBIA) AGUSTO GOMEZ BRÚ FACULTAD DE CIENCIAS AGRICOLAS PROGRAMA DE INGENIERIA AGRONÓMICA MONTERÍA 2015
  • 2. CAPACITACIÓN DE MONITORES Y FACILITADORES LOCALES EN SEGURIDAD ALIMENTARIA, PROGRAMA SINÚ. (CÓRDOBA Y SUCRE – COLOMBIA) AGUSTO GOMEZ BRÚ Trabajo de grado presentado como requisito parcial para optar al título de Ingeniero Agrónomo Director XXXXXXXXXXXXXXx Aquí vienen los estudios del director eje: biólogo,M.sc Codirector XXXXXXXX si no hay, se elimina FACULTAD DE CIENCIAS AGRICOLAS PROGRAMA DE INGENIERIA AGRONOMICA MONTERÍA 2015
  • 3. 0 La responsabilidad ética, legal y científica de las ideas, conceptos y resultados del proyecto, serán de los autores. (Artículo 61 del Estatuto de Investigación y Extensión de la Universidad de Córdoba. Acuerdo Nº 093 del 26 de Noviembre de 2002, Consejo Superior).
  • 4. 1 NOTA DE APROBACIÓN La investigación titulada “CAPACITACIÓN DE MONITORES Y FACILITADORES LOCALES EN SEGURIDAD ALIMENTARIA, PROGRAMA SINÚ. (CÓRDOBA Y SUCRE – COLOMBIA)” ha sido aceptada en su presente forma por el Programa de Ingeniería de la Universidad de Córdoba, y aprobada por el Comité Evaluador del estudiante, como requisito parcial para optar al título de Ingeniero Agrónomo. _______________________________ Presidente del Jurado _______________________________ Jurado _______________________________ Jurado Montería
  • 6. 3 AGRADECIMIENTOS El autor expresa sus más sinceros agradecimientos a:
  • 7. 4 TABLA DE CONTENIDO CAPITULO 1. Contexto ambiental mundial y reconocimiento del proyecto huerta escolar. ................................................................................................................ 15 Conociendo el Programa Sinú. ......................................................................... 16 Conociendo el papel de los monitores y facilitadores locales en seguridad alimentaria. ....................................................................................................... 17 Adentrándose en la seguridad alimentaria........................................................ 18 Disponibilidad de alimentos: .......................................................................... 19 Acceso a los alimentos: ................................................................................. 19 Utilización: ..................................................................................................... 19 Estabilidad:.................................................................................................... 19 La huerta la agroecológicos y el cuidado del medio ambiente. ......................... 20 Una mirada al calentamiento global. ................................................................. 22 Los principios de la agroecología...................................................................... 25 CAPÍTULO 2. Como establecer una huerta aplicando el sistema agroecológico ............................................................................................................................. 28 Diseño y planificación de la huerta.................................................................... 30 Selección del terreno adecuado. ................................................................... 31 Medición del terreno. ..................................................................................... 31 El procedimiento para la medición del terreno es: ......................................... 32 Medición de los lados del terreno. ................................................................. 32 Medición de ángulos...................................................................................... 32 Dibujo de la figura que representa el terreno en papel milimetrado. .............. 34 Dibujo del terreno. ......................................................................................... 35 Corrección grafica de un polígono. ................................................................ 36
  • 8. 5 Calculo del área............................................................................................. 37 Las eras......................................................................................................... 38 ¿Cuánto necesitamos de semilla?................................................................. 40 Calculo del número de semilleros y las cantidades de sustrato necesarios. .. 44 Desinfección del sustrato............................................................................... 49 Hallando la cantidad de malla, alambre de púa y postes para cercado.......... 51 Fertilización. ..................................................................................................... 53 La materia orgánica....................................................................................... 54 Algunos abonos orgánicos. ........................................................................... 54 Preparación del suelo ....................................................................................... 92 Preparación del terreno donde establecerás la cama Biointensiva. ............... 93 Elaboración de la cama doble excavada........................................................ 93 Siembra. ........................................................................................................... 97 La semilla criolla y su importancia en la agricultura campesina. .................... 97 Selección de nuestra semilla criolla. .............................................................. 99 Momento de cosecha. ................................................................................... 99 Extracción de semillas................................................................................. 100 Conservación de las semillas. ..................................................................... 101 Reproducción asexual. ................................................................................ 103 Importancia de la alogamia y autogamia en la reproducción de semillas..... 103 Características de algunas plantas.............................................................. 104 Siembra en semilleros. ................................................................................ 109 Trasplante. .................................................................................................. 111 Riego. ............................................................................................................. 113 La fotosíntesis. ............................................................................................ 113
  • 9. 6 Riego en semilleros. .................................................................................... 115 Riego en cama. ........................................................................................... 115 Algunas innovaciones para mejorar el riego en tu patio............................... 116 Control de arvenses (“Malezas”)..................................................................... 131 Rotación de cultivos........................................................................................ 133 Asociación de cultivos..................................................................................... 136 Control de plagas y enfermedades. ................................................................ 140 Algunas plagas y enfermedades.................................................................. 141 Algunos productos ecológicos para el control de plagas y enfermedades en nuestros patios. ........................................................................................... 144
  • 10. 7 LISTA DE FIGURAS Paginas Figura 1. Medición del terreno, tomada de apuntes de topografía para agrónomos. Universidad autónoma de Chapingo. Figura 2. Medición de los ángulos. Tomada de apuntes de topografía para agrónomos. Universidad autónoma de Chapingo. Figura 3. Formular trigonométricas. Tomada de apuntes de topografía para agrónomos. Universidad autónoma de Chapingo. Figura 4. Área del terreno y área del papel. Figura 5. Corrección grafica de un Polígono Tomada de apuntes de topografía para agrónomos. Universidad autónoma de Chapingo. Figura 6. Calculo del área de cada uno de los triángulos. Tomada de apuntes de topografía para agrónomos. Universidad autónoma de Chapingo. Figura 7. Esquema de la huerta. Figura 8. Tomada de huerta para la soberanía alimentaria en la región amazónica. Heraldo vallejo. 2009. Figura 9. Estructura del semillero. Tomada de huerta orgánica biointensiva. Ciesa. Figura 10. Estructura de semillero poco profundo. Tomada de huerta orgánica biointensiva. Ciesa. Figura 11. Tanque no cilíndrico al cual se le aplicaron 5 litros de agua (25% de 20 litros) para hallar la altura a la que se debe llenar el tanque con los elementos del Sustrato, en Este esquema la línea roja. Figura 12. Perímetro de terreno rectangular. Figura 13. Materiales necesarios en la elaboración del compost. Tomada de producción de hortalizas orgánicas. Centro agroecológico las Cañadas. Figura 14. Preparación del compost. Tomada de producción de hortalizas orgánicas. Centro agroecológico las Cañadas. Figura 15. Como saber si nuestra composta trabaja bien. Tomada de producción de hortalizas orgánicas. Centro agroecológico las Cañadas.
  • 11. 8 Paginas Figura 16. Como almacenar el compost. Tomada de producción de hortalizas orgánicas. Centro agroecológico las Cañadas. Figura 17. Prueba del puño. Tomada de manual práctico de agricultura orgánica y panes de piedra. Jairo Restrepo y Julius Hensel. 2009. Figura 18. Preparación de abono Bokashi. Tomada de manual práctico de agricultura orgánica y panes de piedra. Jairo Restrepo y Julius Hensel. 2009. Figura 19. Como guardar el abono Bokashi. Tomada de manual práctico de agricultura orgánica y panes de piedra. Jairo Restrepo y Julius Hensel. 2009. Figura 20. Forma de abonar al momento del trasplante. Tomada de manual práctico de agricultura orgánica y panes de piedra. Jairo Restrepo y Julius Hensel. 2009. Figura 21. 1era re-abonada 12 días después del trasplante. Tomada de manual práctico de agricultura orgánica y panes de piedra. Jairo Restrepo y Julius Hensel. 2009. Figura 22. Preparación de caldo Supermagro. Tomada de manual práctico de agricultura orgánica y panes de piedra. Jairo Restrepo y Julius Hensel. 2009. Figura 23. Preparación de caldo Supermagro. Tomada de manual práctico de agricultura orgánica y panes de piedra. Jairo Restrepo y Julius Hensel. 2009. Figura 24. Preparación de caldo Supermagro. Tomada de manual práctico de agricultura orgánica y panes de piedra. Jairo Restrepo y Julius Hensel. 2009. Figura 25. Preparación de caldo Supermagro. Tomada de manual práctico de agricultura orgánica y panes de piedra. Jairo Restrepo y Julius Hensel. 2009. Figura 26. Preparación de caldo Supermagro. Tomada de manual práctico de agricultura orgánica y panes de piedra. Jairo Restrepo y Julius Hensel. 2009. Figura 27. Preparación de caldo Supermagro. Tomada de manual práctico de agricultura orgánica y panes de piedra. Jairo Restrepo y Julius Hensel. 2009. Figura 28. Preparación de caldo Supermagro. Tomada de manual práctico de agricultura orgánica y panes de piedra. Jairo Restrepo y Julius Hensel. 2009.
  • 12. 9 Paginas Figura 29. Preparación de caldo Supermagro. Tomada de manual práctico de agricultura orgánica y panes de piedra. Jairo Restrepo y Julius Hensel. 2009. Figura 30. Preparación de caldo Supermagro. Tomada de manual práctico de agricultura orgánica y panes de piedra. Jairo Restrepo y Julius Hensel. 2009. Figura 31. Preparación de caldo Supermagro. Tomada de manual práctico de agricultura orgánica y panes de piedra. Jairo Restrepo y Julius Hensel. 2009. Figura 32. Preparación de caldo Supermagro. Tomada de manual práctico de agricultura orgánica y panes de piedra. Jairo Restrepo y Julius Hensel. 2009. Figura 33. Preparación de caldo Supermagro. Tomada de manual práctico de agricultura orgánica y panes de piedra. Jairo Restrepo y Julius Hensel. 2009. Figura 34. Preparación de caldo Supermagro. Tomada de manual práctico de agricultura orgánica y panes de piedra. Jairo Restrepo y Julius Hensel. 2009. Figura 35. Preparación de caldo Supermagro. Tomada de manual práctico de agricultura orgánica y panes de piedra. Jairo Restrepo y Julius Hensel. 2009. Figura 36. Lugar de conservación del Supermagro. Tomada de manual práctico de agricultura orgánica y panes de piedra. Jairo Restrepo y Julius Hensel. 2009 Figura 37. Preparación del Supermagro para aplicarlo a través de la Bomba. Tomada de manual práctico de agricultura orgánica y panes de piedra. Jairo Restrepo y Julius Hensel. 2009. Figura 38. Como saber si mi Biofertilizante está bien. Tomada de manual práctico de agricultura orgánica y panes de piedra. Jairo Restrepo y Julius Hensel. 2009. Figura 39. Como saber si mi Biofertilizante está listo para usar. Tomada de manual práctico de agricultura orgánica y panes de piedra. Jairo Restrepo y Julius Hensel. 2009. Figura 40. Adaptación de tanque para preparación de Biofertilizante. Tomada de manual práctico de agricultura orgánica y panes de piedra. Jairo Restrepo y Julius Hensel. 2009. Figura 41. Adaptación de tanque para preparación de Biofertilizante. Tomada de manual práctico de agricultura orgánica y panes de piedra. Jairo Restrepo y Julius Hensel. 2009.
  • 13. 10 Paginas Figura 42. Aplicación sobre las hojas (se recomienda en la parte de abajo de las hojas). Tomada de manual práctico de agricultura orgánica y panes de piedra. Jairo Restrepo y Julius Hensel. 2009. Figura 43. Aplicación sobre el suelo. Tomada de manual práctico de agricultura orgánica y panes de piedra. Jairo Restrepo y Julius Hensel. 2009. Figura 44. Preparación de la cama doble-excavada. Tomada de producción de hortalizas orgánicas. Centro agroecológico las Cañadas. Figura 45. Preparación de la cama doble-excavada. Tomada de producción de hortalizas orgánicas. Centro agroecológico las Cañadas. Figura 46. Preparación de la cama doble-excavada. Tomada de producción de hortalizas orgánicas. Centro agroecológico las Cañadas. Figura 47. Preparación de la cama doble-excavada. Tomada de producción de hortalizas orgánicas. Centro agroecológico las Cañadas Figura 48. Preparación de la cama doble-excavada. Tomada de producción de hortalizas orgánicas. Centro agroecológico las Cañadas. Figura 49. Diferencia entre plantas sembradas en surcos y camas doble- excavadas. Tomada de producción de hortalizas orgánicas. Centro agroecológico las Cañadas. Figura 50. Fruto seco con vaina en momento óptimo para colectar semilla .tomada de http://eljudiondelagranja.blogspot.com. Figura 51. Maíz en Madurez fisiológica. Tomada de tomada de. www.culturaempresarialganadera.org. Figura 52. Prueba de humedad con el método de la sal. Tomada de Conservación de semillas material de apoyo a la guía de extensión de técnicas apropiadas para pequeños productores. JICA. Figura 53. Marco para siembra en tresbolillo. Tomada de huerta orgánica biointensiva. Ciesa.
  • 14. 11 Paginas Figura 54. Siembra al voleo. Tomada del huerto sustentable. John Jeavons y Carol Cox. Figura 55. Trasplante de semillero a cama. Tomada del huerto sustentable. John Jeavons y Carol Cox. Figura 56. Triangulación de las plantas (siembra en tresbolillo en la cama).Tomada de huerta orgánica biointensiva. Ciesa. Figura 57. Forma correcta de trasplantar hojas cotiledonales debajo del suelo. Tomada del manual de campo del método de cultivo biointensivo para la zona tropical. ECOBASE. 2008. Figura 58. Forma incorrecta de trasplantar, hojas cotiledonales encima del suelo. Tomada del manual de campo del método de cultivo biointensivo para la zona tropical. ECOBASE. 2008. Figura 59. La célula animal. Tomada de Coopers la célula. Figura 60. La célula Vegetal. Tomada de Coopers la célula. Figura 61. El frasco de Mariotte. Tomada de http://www4.ujaen.es/~jamaroto/F21.HTML. Figura 62. Dimensiones de tanques de agua. Tomada de http://www.coval.com.co/pdfs/manuales/man_colempaques_tanques_plasticos.pdf. Figura 63. La bomba de ariete. Tomada de http://es.wikipedia.org/wiki/Bomba_de_ariete. Figura 64. Modelo de bomba de ariete. Tomada de Estudio de Promoción y Difusión de Buenas Prácticas "Bomba de Ariete" del Proyecto Tawan Ingnika. Guía agropecuaria. Figura 65. Entrada de agua a la bomba de ariete. Tomada de estudio teórico y experimental de la bomba de ariete. Francisco Javier Acitores Martínez.
  • 15. 12 Páginas Figura 66. Cierre de la válvula Check de pie por fuerza de arrastre del agua. Tomada de estudio teórico y experimental de la bomba de ariete. Francisco Javier Acitores Martínez. Figura 67. Aumento de presión en la cámara de válvulas. Tomada de estudio teórico y experimental de la bomba de ariete. Francisco Javier Acitores Martínez. Figura 68. Apertura de la válvula Check de paso. Tomada de estudio teórico y experimental de la bomba de ariete. Francisco Javier Acitores Martínez. Figura 69. Transferencia de la presión de la cámara de aire al líquido. Tomada de estudio teórico y experimental de la bomba de ariete. Francisco Javier Acitores Martínez. Figura 56. Triangulación de las plantas (siembra en tresbolillo en la cama).Tomada de huerta orgánica biointensiva. Ciesa. Figura 70. Disminución de la presión en la cámara de válvulas y apertura de la válvula de pie por su propio peso. Tomada de estudio teórico y experimental de la bomba de ariete. Francisco Javier Acitores Martínez. Figura 71. Método de goteo solar. Tomada de https://fq3astaregia.files.wordpress.com/2013/11/refuerzo_riego-solar_huerto- escolar.pdf. Figura 72. Método de goteo solar. Tomada de https://fq3astaregia.files.wordpress.com/2013/11/refuerzo_riego-solar_huerto- escolar.pdf. Figura 73. Plan de rotación de cultivos. Tomada de http://www.agromatica.es/rotacion-de-cultivos-ecologicos-ii/.
  • 16. 13 LISTA DE TABLAS Paginas Tabla 1. Características cultivos. Tomada del manual de campo del método de cultivo biointensivo para la zona tropical. ECOBASE. 2008. Tabla 2. Materiales necesarios para preparación de abono Bokashi. Tomada de manual práctico de agricultura orgánica y panes de piedra. Jairo Restrepo y Julius Hensel. 2009. Tabla 3. Dosis recomendadas según especies. Tomada de manual práctico de agricultura orgánica y panes de piedra. Jairo Restrepo y Julius Hensel. 2009. Tabla 4. Materiales para preparar caldo Supermagro. Tomada de manual práctico de agricultura orgánica y panes de piedra. Jairo Restrepo y Julius Hensel. 2009. Tabla 5. Dosis de aplicaciones, número y momentos recomendados según especie. Tomada de manual práctico de agricultura orgánica y panes de piedra. Jairo Restrepo y Julius Hensel. 2009. Tabla 6. Plantas alogamas y autogamas. Tabla 7. Características berenjena. Tomada de manual técnico de producción artesanal de semillas de hortalizas para la huerta familiar. FAO. Tabla 8. Características pimentón. Tomada de manual técnico de producción artesanal de semillas de hortalizas para la huerta familiar. FAO. Tabla 9. Características tomate. Tomada de manual técnico de producción artesanal de semillas de hortalizas para la huerta familiar. FAO. Tabla 10. Características melón. Tomada de manual técnico de producción artesanal de semillas de hortalizas para la huerta familiar. FAO.
  • 17. 14 Páginas Tabla 11. Características pepino. Tomada de manual técnico de producción artesanal de semillas de hortalizas para la huerta familiar. FAO. Tabla 12. Características patilla. Tomada de manual técnico de producción artesanal de semillas de hortalizas para la huerta familiar. FAO. Tabla 13. Características ahuyama. Tomada de manual técnico de producción artesanal de semillas de hortalizas para la huerta familiar. FAO. Tabla 14. Características habichuela. Tomada de manual técnico de producción artesanal de semillas de hortalizas para la huerta familiar. FAO. Tabla 15. Perdidas de presión en mangueras. Tomada de http://www.realflex.com.br/es/subpages/tabelas.php. Tabla 16. Rendimiento de la bomba respecto a la relación H/h. Tomada del ariete hidráulico. José Manuel Jiménez “Súper”. Tabla 17. Caudal de alimentación respecto al diámetro del tubo. Tomada del ariete hidráulico. José Manuel Jiménez “Súper”. Tabla 18. Elementos que componen la bomba de ariete. Tomada de Estudio de Promoción y Difusión de Buenas Prácticas "Bomba de Ariete" del Proyecto Tawan Ingnika. Guía agropecuaria. Tabla 19. Familias de algunas hortalizas. Tomada de manejo agroecológico de cultivos hortícolas al aire libre. Josep Rosello i Oltra. Tabla 20. Clasificación de algunas hortalizas por parte aprovechable. Tomada de manejo agroecológico de cultivos hortícolas al aire libre. Josep Rosello i Oltra. Tabla 21. Clasificación de algunas hortalizas por profundidad radicular. Tomada de manejo agroecológico de cultivos hortícolas al aire libre. Josep Rosello i Oltra.
  • 18. 15 CAPITULO 1. Contexto ambiental mundial y reconocimiento del proyecto huerta escolar. “Al principio pensé que estaba luchando para salvar árboles del caucho, luego pensé que estaba luchando para salvar la selva amazónica. Ahora, me doy cuenta de que estoy luchando por la humanidad” (Chico Mendes).
  • 19. 16 Conociendo el Programa Sinú. Esta es la historia de un joven del pueblo de Cheverá, pueblo caracterizado por una profunda inequidad, pobreza, machismo cultural, recursos naturales grandiosos y diversos, y una inmensa felicidad a pesar de cualquier adversidad que sufriesen. Camilo vivía en el sector de la ahuyama con su madre y hermanos, en una típica casa de bareque y un patio con animales, mayoritariamente aves, caninos y algunas especies vegetales. Un día se dirigió a la institución educativa de su pueblo y se encontró con un grupo de personas extrañas compuesto por dos señoras de aproximadamente 40 años y un joven entre los 25 y 30. Motivado por la intriga Camilo entro a aquella reunión que estas personas estaban realizando con niños, jóvenes y docentes, reunión donde escucharía cosas que le cambiarían su vida. como en toda reunión, estos extraños personajes comenzaron presentándose, las dos señoras se presentaron como Luna y Lana y el joven como Gustavo, estos explicaron que su objetivo era presentarles un proyecto denominado “huerta escolar”, proyecto que hacia parte de un gran programa que se llamaba programa Sinú, donde participan tres ONG´S (organizaciones que no hacen parte de la estructura estatal ni se financian de este, ósea son privadas) Taller Prodesal, Corporación Oriana y Asoafro, también explicaron aquellos personajes que su fuente financiadora para la materialización de los objetivos del programa era Terre des Hommes Suisse que en español traduce Tierra de Hombres Suiza. Aquel programa tenía un gran objetivo: “contribuir con comunidades rurales de Córdoba y Sucre (Colombia) en mejorar la seguridad alimentaria y fortalecer la ciudadanía activa de los grupos vulnerables y / o desplazadas en los procesos políticos democráticos y la prevención de reclutamiento de jóvenes, especialmente en actividades ilícitas, micro tráfico o consumo de drogas” (programa Sinú). Acotaron que la huerta era el medio para cumplir el objetivo de contribuir con la mejora de la seguridad alimentaria y el cuidado del medio ambiente y para ello necesitaban de la participación de niños y de jóvenes en calidad de monitores y facilitadores locales en seguridad alimentaria.
  • 20. 17 después de esta reunión Camilo quedo con grandes inquietudes, ¿qué era eso de seguridad alimentaria?, ¿qué papel desempeñaban monitores y facilitadores locales en seguridad alimentaria? y ¿cómo a través de sembrar en un pedazo de terreno de su escuela él podía cuidar el medio ambiente?, razón por la cual le pregunto a aquel muchacho que se autodenominaba asesor de seguridad alimentaria aquellas inquietudes, el joven sin ningún reparo y contento por ver el espíritu inquieto de aquel joven rural se sentó a explicarle lo más detalladamente posible las inquietudes que aquella reunión había sembrado en Camilo. Conociendo el papel de los monitores y facilitadores locales en seguridad alimentaria. Gustavo comenzó la charla hablando sobre la importancia de los monitores y facilitadores locales en seguridad alimentaria, este le comento a Camilo que su papel era estratégico y consistía en direccionar, acompañar y apoyar al asesor de seguridad alimentaria en la enseñanza a niños (as) sobre las labores técnicas de diseño y planificación, siembra, manejo, cosecha y pos cosecha que los cultivos de las huertas necesitaban, todo enmarcado dentro de un enfoque agroecológico; además de tener la capacidad de relacionar estas actividades con el cuidado de su seguridad alimentaria y medio ambiente, labor que no solo quedaría dentro de las paredes de su colegio, sino que también debían ser multiplicadores del mensaje de la importancia del uso de los principios agroecológicos en la seguridad alimentaria y el cuidado del medio ambiente en su localidad en general, dicho con otras palabras, tenían que hablar con los vecinos y cualquier productor de su localidad sobre esta temática. De esta parte de la charla Camilo entendió que para poder hacer lo que aquel joven decía, primero tenía que capacitarse en agroecología y tener claro conceptos como el de la seguridad alimentaria. Para la finalización de este punto Gustavo le dio un listado de actividades que un monitor debía cumplir en su institución:
  • 21. 18 - Realizar y acompañar al asistente técnico y a los niños y niñas en las siguientes tareas: adecuación y mantenimiento a la huerta (trasplante, limpia, aplicaciones de insecticidas, abonos orgánicos, aplicar riego, cuidado de herramientas, arreglo o mantenimiento de eras) - Mantener la motivación e interés de cada uno de las/los estudiantes de 4º y 5º grado de primaria que participan en el desarrollo de la huerta. - Mantener comunicación permanente con cada uno de las/los miembros del grupo que cada uno(a) tiene asignado. - Asignar y orientar las actividades de su grupo. - Identificar las dificultades que puedan presentársele a cualquiera de las/los integrantes de su grupo, relacionadas con su participación en el programa y ayudarle a resolverlas. - Informar oportunamente a cada uno de las/los miembros de su grupo sobre actividades, fechas y horas de realización de cada una de las actividades de la huerta. - Recoger las sugerencias u opiniones de cada uno(a) de los/las participantes de su grupo sobre el desarrollo del programa. - Informar al docente responsable del servicio social de la Institución Educativa, al asistente técnico y a la responsable del programa de la Corporación ORIANA sobre cualquier anomalía o irregularidad que se presente en la ejecución de las actividades del Programa. - Llevar un registro de asistencia de cada estudiante a las actividades programadas para la huerta. - Diseñar estrategias encaminadas a mantener el interés de cada uno de los miembros de su grupo. Adentrándose en la seguridad alimentaria. El segundo tema que se tocó en esa charla fue el concepto de la seguridad alimentaria, el cual escuchaba Camilo por primera vez, Gustavo le hablo sobre una institución que era autoridad en el tema, la FAO, y le comento que el concepto
  • 22. 19 expresado por estos de seguridad alimentaria era de los más utilizados y aceptados a nivel mundial. “Existe seguridad alimentaria cuando todas las personas tienen en todo momento Acceso físico y económico a suficientes alimentos inocuos y nutritivos para satisfacer sus necesidades alimenticias y sus preferencias en cuanto a los alimentos a fin de llevar una vida activa y sana.” (Cumbre Mundial sobre la Alimentación, 1996). Después de expresar el concepto de la FAO sobre seguridad alimentaria Gustavo le cito los cuatro componentes de la seguridad alimentaria que también explica la organización anteriormente mencionada: Disponibilidad de alimentos: La existencia de cantidades suficientes de alimentos de calidad adecuada, suministrados a través de la producción del país o de importaciones (comprendida la ayuda alimentaria). Acceso a los alimentos: Acceso de las personas a los recursos adecuados (recursos a los que se tiene derecho) para adquirir alimentos apropiados y una alimentación nutritiva. Estos derechos se definen como el conjunto de todos los grupos de productos sobre los cuales una persona puede tener dominio en virtud de acuerdos jurídicos, políticos, económicos y sociales de la comunidad en que vive (comprendidos los derechos tradicionales, como el acceso a los recursos colectivos). Utilización: Utilización biológica de los alimentos a través de una alimentación adecuada, agua potable, sanidad y atención médica, para lograr un estado de bienestar nutricional en el que se satisfagan todas las necesidades fisiológicas. Este concepto pone de relieve la importancia de los insumos no alimentarios en la seguridad alimentaria. Estabilidad: Para tener seguridad alimentaria, una población, un hogar o una persona deben tener acceso a alimentos adecuados en todo momento. No deben correr el riesgo de quedarse sin acceso a los alimentos a consecuencia de crisis
  • 23. 20 repentinas (por ej., una crisis económica o climática) ni de acontecimientos cíclicos (como la inseguridad alimentaria estacional). De esta manera, el concepto de estabilidad se refiere tanto a la dimensión de la disponibilidad como a la del acceso de la seguridad alimentaria. Sorprendentemente Camilo generó una conclusión grandiosa de este punto diciéndole a Gustavo que después de lo escuchado entendía la seguridad alimentaria como un concepto el cual nos decía, que todo colombiano tenía derecho a acceder a una alimentación en las cantidades y calidades adecuadas, y no solamente esto sino que también le debían garantizar a los ciudadanos el acceso a los factores de producción (tierra, capital, tecnología e información), como también el acceso a agua potable y salud, para que pudiese haber un aprovechamiento biológico de los alimentos, aunado a esto se tenía que garantizar la estabilidad o la persistencia de todas las condiciones anteriormente descritas en el tiempo sin importar crisis económicas o climáticas. La huerta la agroecológicos y el cuidado del medio ambiente. Camilo ya había comprendido la seguridad alimentaria, el papel que desempeña un monitor y los fines del programa pero aún quedaba una gran nube en su cabeza con respecto al tema de cómo podía contribuirse con el cuidado del medio ambiente estableciendo una huerta escolar. Gustavo le reitero que la huerta solo era un medio para enseñar producción bajo un enfoque agroecológico, que era totalmente diferente al enfoque heredado de la revolución verde, explicando que en el agroecológico a diferencia del heredado de la revolución verde se trataba de no importar energía fósil no renovable (petróleo) a los agrosistemas (en este caso la huerta), y por el contrario se intentaba comprender los procesos naturales de nuestros ecosistemas para así imitarlos, utilizando recursos locales para realizar labores de manejo de los cultivos (compost, biopreparados, trampas, microorganismos benéficos del suelo, alelopatía de plantas….. entre otros).
  • 24. 21 Gustavo enfatizo que la producción heredada de la revolución verde traía consigo paquetes tecnológicos (semilla certificada que en algunos casos podía ser transgénica u OMG, monocultivos, uso de maquinaria para el trabajo del suelo ,uso de agroquímico para fines de fertilización y control de plagas y enfermedades y uso de motobombas hidráulicas para aumentar el flujo de agua a los cultivos) los cuales requerían de una importación considerable de energía fósil no renovable (petróleo), ya que productos utilizados bajo este modelo como Round Up (más conocido como randa o glifosato), Paraquat (muy conocido como Gramoxone), Lorsban, Ditane, Tordon… Entre otros, Son productos químicos sintetizados por el hombre que tienen como base el petróleo; algunas veces no pueden ser degradados (persistentes) por lo que quedan en los ecosistemas haciendo daño, otras veces se descomponen convirtiéndose en moléculas mucho más dañinas que las originales; puntualizó que estas sustancias aplicadas a través de los años van degradando el recurso suelo y generando resistencia en algunas plagas y enfermedades, lo cual obliga a incrementar las aplicaciones, volviéndonos esclavos de estos productos; anotó también que algunas de estas moléculas eran cancerígenas, teratogénicas (produce malformaciones en el feto) y hasta mutagénicas. Gustavo precisó en aquella charla que cuando el campo consume productos que tienen como base el petróleo aumentan la presión sobre este recurso y estimulan su extracción y procesamiento, lo cual son actividades que generan muchos residuos contaminantes como el monóxido y dióxido de carbono (CO Y CO2), entre otros compuestos, que sin lugar a dudas contribuyen al calentamiento global. Camilo escuchando atentamente comprendió que los agroquímicos que él conocía y que hasta había aplicado trabajando en fincas eran dañinos para las personas que los utilizaban, para la capa de ozono, flora y fauna acuática, aérea o terrestre que tuviese contacto con estos productos, como también para los consumidores finales de las cosechas que le aplican estos, razón por la cual promover la aplicación en las huertas de esos “nuevos” conceptos como el de la agroecología, contribuía con el medio ambiente y además dotaba de alimentos inocuos y
  • 25. 22 nutritivos a los pobladores de su localidad, respetando uno de los componentes de la seguridad alimentaria que había aprendido (acceso a alimentos inocuos y nutritivos). Como la naturaleza de los inquietos es generar inquietudes a medida que se adentran en temas, esta nueva plática le generó nuevas inquietudes a Camilo: ¿a qué se refería Gustavo con calentamiento global? y ¿cuáles eran concretamente los principios que sustentaban la famosa agroecología? Una mirada al calentamiento global. Después de la charla con Gustavo Camilo quedo muy interesado en conocer más a fondo las causas del calentamiento global y como a través de acciones concretas en su localidad, más allá de la aplicación de la agroecología en todas las huertas de su pueblo Cheverá este podía contribuir con mitigar esto. En la charla con Gustavo, este le recomendó visitar al profesor Rodríguez un estudioso del calentamiento global que le podía aclarar cualquier duda y Camilo con ansias de conocimiento se dirigió a Montería a hablar con este docente para que le despejara todas las dudas sobre el tema. Al llegar a la universidad de Córdoba este pregunto por aquel personaje, preguntas que lo llevaron a la oficina del docente en cuestión, al llegar a su oficina Camilo se presentó y le comento que un joven llamado Gustavo ex-alumno de él, lo había recomendado para que le despejara dudas sobre el calentamiento global, este sonrió y comenzó con mucha elocuencia a hablar del tema. El profesor Rodríguez inicio explicándole a Camilo que El cambio climático es un fenómeno universal que nos afecta a todos y todas, el cual consistía en la variación del clima causada directa o indirectamente por la actividad humana, este acotó que existían teorías alternativas que proponen como la causa de este fenómeno a procesos cosmológicos naturales, y Le mencionó a aquel joven con el objetivo de impactarlo como era su costumbre, que En los últimos 10 años inundaciones, sequias y huracanes habían venido sucediendo con mayor
  • 26. 23 frecuencia, y que esta situación estaba íntimamente relacionada con el fenómeno del cambio climático del cual éramos responsables los seres humanos. Cuando el profesor entro a explicar la causa científica a aquel inquieto muchacho, le expreso que La atmosfera era la capa protectora de la tierra y que estaba compuesta por diferentes gases, entre los que se encontraban los llamados gases de efecto invernadero (vapor de agua, dióxido de carbono, metano, óxido de nitrógeno, ozono y clorofluorocarbonos). Precisando que Estos gases retenían gran parte de la energía que el suelo terrestre emitía y la volvían a enviar a la superficie de la tierra, lo que hacía que esta mantuviese una temperatura que permitía que se dieran las condiciones para que haya vida en la tierra. El profesor puntualizó que este fenómeno era conocido como el efecto invernadero, y que sin él, era imposible vivir en nuestro planeta pues su temperatura sería muy baja. Le aclaró a Camilo que sin embargo los hombres generábamos cada vez más emisiones de estos gases a una velocidad impresionante, y que la desforestación, el consumo de combustibles fósiles, la disposición de residuos de ganadería extensiva y la industrialización sumadas a las emisiones de dióxido de carbono (CO2) que causan los medios de transporte, estaban alterando la composición de nuestra atmosfera. Citó cifras de la organización meteorológica mundial (OMM), para darle a conocer que desde 1750 la cantidad de dióxido de carbono en la atmosfera ha aumentado 38%, Y que el calor del sol se está quedando atrapado en la atmosfera, lo que hacía que la temperatura de la tierra suba a una velocidad nunca antes vista. Este sabio profesor conocedor de casi todo lo concerniente a cambio climático, le expreso a aquel muchacho otro dato interesante que lo dotaba de una visión futurista de este problema de no tomar cartas en el asunto, mencionándole que El panel intergubernamental de cambio climático de la ONU (IPCC) había estimado que en lo que quedaba de este siglo la temperatura aumentara entre 2 y 4.5°c, lo cual representaba el mayor cambio climático que experimentaría el planeta en los
  • 27. 24 últimos 10.000 años, y que esto sería muy difícil tanto para las personas como para los ecosistemas adaptarse. La sabiduría de aquel docente no podía quedarse con la explicación científica y las visiones futuras, lo cual lo llevo a hacer explicaciones de los efectos socio- económicos de este cambio, precisándole a Camilo que El cambio climático podía traer serias consecuencias sobre el crecimiento y desarrollo de todas las naciones del mundo, pero serían las más pobres las que sufriesen sus efectos a pesar de ser estas las que menos han contribuido con el calentamiento global. Anotando también que según estudios de vulnerabilidad del sector agrícola colombiano, se determinó que los cultivos más afectados seria el arroz, el tomate de árbol, el trigo y papa. También le mencionó en aquella plática que ecosistemas estratégicos estaban en peligro, ilustrando que La disminución de área de los páramos reduciría las ofertas de agua para aquellas ciudades y zonas agrícolas que se encontraban en áreas de subparamos o en zonas de laderas (donde se cultiva especialmente la papa). Este loco y sabio profesor termino aquella charla mencionando con cifras algunas zonas y poblaciones de Colombia con vulnerabilidad al cambio climático, mencionándole a camilo que:  En el litoral caribe solo el 9% de las viviendas urbanas presentan alta vulnerabilidad a las inundaciones mientras que el sector rural llega al 46%.  En el litoral pacífico el 48% de las viviendas del sector urbano y el 87% del sector rural son altamente vulnerables.  El incremento del calor pone en riesgo a los más vulnerables como son los ancianos y los niños, debido a que se encuentran en extremos de vida y sus organismos no regulan adecuadamente la temperatura corporal y la exposición prolongada al calor los deshidrata más rápidamente.  El aumento del número de mosquitos en las zonas tropicales resultara en más brotes de enfermedades relacionadas con la falta de agua potable, como el dengue y la malaria.
  • 28. 25  Las zonas más expuestas a la malaria como consecuencia del cambio climático serian choco y Guaviare. Algunos municipios de Putumayo, Caquetá y Amazonas, Meta, Vichada, Vaupés, Guainía y Arauca.  En cuanto al dengue las áreas de mayor vulnerabilidad se sitúan en Santander, Norte de Santander, Tolima, Huila, Atlántico y Valle del Cauca. Después de escuchar el discurso elocuente de aquel extraño profesor Camilo quedo mucho más convencido de que era urgente hacer algo en su localidad. ya había entendido como las huertas enmarcadas dentro de un enfoque agroecológico contribuirían con la mitigación de este problema pero quería saber de qué otra manera más podía contribuir, lo cual lo llevo a hacerle esa pregunta al profesor Rodríguez, el cual sin reparos contestó con su elocuencia característica, dándole unos tips a aquel inquieto muchacho.  Apagar un bombillo de 60 watts evita la emisión de 54 kilos de dióxido de carbono.  Cambia bombillos normales por bombillos ahorradores evita la emisión de 50 kilos de dióxido de carbono.  Apagar los aparatos electrónicos, el televisor, la música y el computador suponen un ahorro de dióxido de carbono de 87 kilos.  Cerrar la ducha mientras se lavan los dientes evita una emisión de dióxido de carbono de 8 kilos.  Reutilizar una bolsa plásticas para hacer las compras en la tienda ayuda a reducir las emisiones de dióxido de carbono en 8 kilos por año.  Utilice papel reciclado.  Reciclar papel, vidrio, aluminio y plástico.  Utilizar la bicicleta para transportarse en su comunidad. Los principios de la agroecología. Camilo regreso a Cheverá muy feliz por los nuevos conocimientos generados en su viaje a Montería. Sin embargo aún no sabía cuáles eran los principios que sustentaban la agroecología y las prácticas concretas para poder establecer una
  • 29. 26 huerta bajo este sistema. Como suele suceder en los pobladores rurales este no contaba con suficientes recursos para regresar a aquella fábrica de conocimientos llamada Universidad de Córdoba. Por lo cual se le ocurrió hacer uso del internet para indagar sobre los principios de este sistema de siembra, el cual era nuevo para él. En su búsqueda camilo se encontró que la agricultura ecológica tenía como principios: 1. Estructura diversificada del sistema de producción (tener múltiples especies en tu patio asociadas estratégicamente). 2. Ver el conjunto del sistema productivo en forma integral e interdependiente (suelo, planta, atmosfera, agua, fauna y flora circundante interactuando). 3. Fomento de la fertilidad autosostenida del suelo (prácticas de fertilización orgánica y rotación, hacen que el suelo mantenga su fertilidad a través del tiempo sin uso de agroquímicos). 4. Aprovechamiento, lo mejor posible, de las fuentes de generación propias de la fertilidad de la finca (uso de residuos de cocina, malezas, partes de plantas de la zona, residuos de cosecha… entre otras, para fertilizar los patios). 5. Nutrición indirecta de las plantas mediante la actividad biológica del suelo (cuando fertilizamos orgánicamente, se estimula la actividad microbiana lo cual contribuye a la correcta nutrición de las plantas). 6. Enfrentamiento de las causas y no de los síntomas en la protección vegetal, fomentando el equilibrio y la regulación ecológica(a través de conservar la salud del suelo y los microorganismos que en el habitan se disminuye el uso de agroquímicos para curar síntomas de plagas y enfermedades). 7. Conservación y labranza del suelo sobre la base del mejoramiento bioestructural y la materia orgánica (la labranza del suelo está encaminada a la preservación de la cantidad y diversidad biológica adecuada y los contenidos óptimos de materia orgánica).
  • 30. 27 8. Selección y mejoramiento de variedades vegetales en función de las condiciones naturales (selección de semillas provenientes de plantas que se hayan desarrollado de mejor manera en las condiciones limitantes de la zona). 9. Producción ecológica, social y económicamente estable (al mantener los recursos suelo y agua también se mantiene en el tiempo la productividad y el bienestar social).
  • 31. 28 CAPÍTULO 2. Como establecer una huerta aplicando el sistema agroecológico. “Cuando las generaciones futuras juzguen a las que vinieron antes respecto a temas ambientales, tal vez lleguen a la conclusión de que no sabían: evitemos pasar a la historia como las generaciones que sí sabían, pero no les importó”(Mikhail Gorbachev).
  • 32. 29 Camilo ya estaba contextualizado con la situación de degradación socio-ambiental que vivía el mundo, lo cual lo llevo a tener un gran interés en la agroecología como herramienta para contribuir desde su localidad a la seguridad alimentaria y la mitigación del fenómeno de calentamiento global. Pero el tiempo de espera no iba a ser mucho ya que Este iba a contar con la suerte de recibir dentro de aquel programa, Una capacitación técnica del establecimiento de huertas bajo en enfoque agroecológico. El primer taller llevado a cabo por Gustavo fue el de construir junto con niños (as) y jóvenes vinculados al proyecto de huerta escolar el orden de lógico de los temas que se iban a tratar. Orden que tenía que corresponder con la secuencia que se tiene que llevar a cabo a la hora de establecer una huerta. Al cabo de un tiempo de debate se llegó a que para realizar una huerta el orden lógico era: 1. Diseño y planificación de la huerta 2. Preparación del suelo 3. Siembra  siembra directa en sitio definitivo  siembra semillero-sitio definitivo 4. Cultivo  manejo de arvenses  fertilización  manejo de plagas y enfermedades  riego  asociación  rotación 5. Cosecha (recolección) 6. Pos cosecha (valor agregado a la cosecha, un ejemplo es el valor agregado que se le da a la yuca al hacer enyucado).
  • 33. 30 Diseño y planificación de la huerta. Establecido el orden lógico de los temas y pasos para establecer una huerta Gustavo dio inicio a la construcción de conocimientos junto a aquellos jóvenes rurales ávidos de saber. Muchos habían escuchado las palabras diseño y planificación pero muy pocos comprendían la importancia de la práctica de estas no solo a la hora de establecer una huerta sino también en todos las actividades que se realicen en la vida. Gustavo explico en clases que el diseño y planificación eran actividades importantes en toda acción que se llevara a cabo en la vida ya que nos permite actuar en los tiempos indicados como también a establecer los recursos necesarios para que no haya despilfarro o deficiencia de estos y puso un ejemplo preguntándole a los muchachos que pasaría si el comprara unos refrigerios para los estudiantes presentes sin ni siquiera contarlos. A lo cual camilo respondió que muy probablemente sobrarían o faltarían refrigerios. Gustavo aplaudió la respuesta de camilo y anotó que precisamente eso sucedería en una huerta de no llevar a cabo un diseño y planificación. Podríamos adquirir más o menos semillas, fertilizantes… entre otros materiales de los que realmente necesitamos. Explicada la importancia se dio paso a la explicación de los pasos para el diseño y planificación de una huerta: 1. Necesitamos saber cuál es el terreno más adecuado y cuánto mide ese terreno. 2. Necesitamos saber la orientación de las eras, su magnitud y la disposición de las mismas en el terreno medido. 3. Necesitamos saber y conocer las especies a introducir: como se siembra, distancia de siembra, cuanto demora en producir, el mejor suelo para estas, las mejores condiciones climáticas para estas y las labores asociadas al cultivo (necesidades de riego, manejo de plagas y enfermedades, si necesita o no tutorado u otra práctica cultural y necesidades de fertilización).
  • 34. 31 Selección del terreno adecuado. Para la selección del terreno adecuado hay que tener en cuenta los siguientes criterios:  Lugares no muy sombreados (entre 7 y 11 horas de sol)  Lugares con fuentes de agua cercana  Debe de estar cerca de la casa (si es patio productivo) o cerca del colegio (si es huerta escolar).  Debe estar protegido de ingreso de animales y vientos fuertes.  No debe inundarse  En zonas donde el ingreso y salida de vehículos sea fácil para llevarlos a los mercados (en caso que la intención sea comercial). Medición del terreno. La medición del terreno es un trabajo de campo que se realizaba de varias maneras: con cinta (midiendo lados y ángulos del terreno) o con aparatos más sofisticados como el teodolito, la estación total o GPS de alta precisión; como la intensión de este documento es que jóvenes rurales puedan aplicar en sus patios las técnicas aprendidas, explicaremos el método de medición con cinta métrica. Para medir con cinta lados y ángulos de la figura del terreno donde se establece la huerta se necesita:  Agenda de campo  Cinta métrica  Lápiz  Calculadora  Dos operarios  Estacas
  • 35. 32 El procedimiento para la medición del terreno es:  Los operarios establecerán la distancia entre estacas que manejaran, mientras más corta sea la distancia mayor será la precisión de la medida sin embargo distancias muy cortas harán más tedioso el trabajo, por lo cual es recomendable manejar distancias entre 5-10 metros.  Los operarios determinaran los vértices (los puntos donde cambian de dirección los lados de la figura que forma el terreno).  Los operarios medirán los lados de la figura del terreno  Cuando los operarios estén en un vértice, el cual es un punto donde se encuentran dos lados de la figura, medirán el valor angular.  Teniendo ángulos y lados los operarios irán a la oficina y establecerán en un papel milimetrado con ayuda de la escala y el transportador el área del terreno donde se establecerá la huerta. Medición de los lados del terreno. Si la distancia del terreno es mayor de los 10 metros recomendados para la medición con cinta, se procede a establecer varios puntos alineados para realizar la medición del lado del terreno por tramos. Figura 1. Medición del terreno. Tomada de apuntes de topografía para agrónomos. Universidad autónoma de Chapingo. Si la distancia es igual o menor de los 10 metros recomendados se procede a medir poniendo la cinta de vértice a vértice, sin necesidad de medir el terreno por tramos. Medición de ángulos Cuando lleguemos a un vértice tenemos que medir el valor angular para poder después cerrar la figura en el papel milimetrado, con la ayuda de la escala y el transportador.
  • 36. 33 La medición se realiza creando un triángulo isósceles (triangulo con dos lados iguales y uno diferente) que de acuerdo a las condiciones del terreno puede ser hacia afuera o hacia adentro de la figura, para posteriormente usar formulas trigonométricas y hallar el valor angular. Figura 2. Medición de los ángulos. Tomada de apuntes de topografía para agrónomos. Universidad autónoma de Chapingo. Después de realizada la medición angular con la fórmula establecida en la gráfica anterior, se procede a calibrar el resultado con las fórmulas de ángulos externos e internos, debido a que por lo rudimentario de la técnica el valor de la sumatoria de los ángulos internos o externos no corresponderá al valor teórico, por lo cual la diferencia entre el valor teórico y el obtenido por los cálculos se debe calibrar convenientemente para que estos correspondan, dividiendo la diferencia entre el número de ángulos de la figura. Ilustración 3. Tomada de apuntes de topografía para agrónomos. Universidad autónoma de Chapingo Figura 3. Formulas. Tomada de apuntes de topografía para agrónomos. Universidad autónoma de Chapingo. Cierre angular: ∑<sint= 180 (n-2) Cierre angular: ∑<sext= 180 (n+2) Donde∑<sint= suma de los ángulos Interiores ∑<sext= suma de los ángulos exteriores n= número de vértices del polígono
  • 37. 34 Dibujo de la figura que representa el terreno en papel milimetrado. Para poder trasladar la figura que expresa el terreno donde sembraremos al papel es necesario hacer uso de la escala, la escala es una herramienta para la representación del terreno en miniatura, ya que sería muy tedioso, insano con el medio ambiente y antieconómico buscar papeles de 1ha, 2ha o 2000m2 para dibujar nuestros terrenos. A la hora de dibujar nuestro terreno haciendo uso de la escala se nos presentan ciertos problemas, como por ejemplo, ¿Qué escala utilizar? Como se dijo en líneas anteriores la escala es una herramienta que nos sirve para representar en miniatura un terreno; Existen varias escalas: 1:25, 1:50, 1:100, 1:200……….. Entre otras, Las cuales se leen escala 1 en 50 (1:50), 1 en 100 (1:100), 1 en 200 (1:200)…………………….. Y así sucesivamente. Una escala 1:E (donde E puede tomar valores desde 1 hasta +∞) significa que por cada centímetro en el plano estamos representando el valor que tenga E, que como anotamos anteriormente puede tomar valores desde 1 hasta más infinito, así que una escala de 1:100 nos indica que por cada centímetro que tu traces en el plano estas representando 100 cm del terreno o un metro. El valor seleccionado de la E varía en función de las magnitudes del lote como también de las magnitudes del papel en el cual pretendas hacer el plano, y su cálculo es necesario para no subutilizar el espacio en el papel, como también para no quedarnos cortos de papel a la hora de realizar un plano. Ejemplo de cómo seleccionar la escala a utilizar para trazar el plano de tu lote: tenemos un lote rectangular de magnitudes 100m x 50m y un papel rectangular de magnitudes 30 cm x 15 cm, ¿Cuál sería el valor de E?, para resolver este ejercicio se deben considerar el lado más largos del área del plano y el lado más corto del papel; se pasa a centímetros el lado más largo del área del terreno y a través de la división se convierte a la forma 1:E
  • 38. 35 Entonces como dijimos anteriormente se deben considerar el lado más largo del lote y el lado más corto del papel para establecer la escala a utilizar. 1 E 15 cm (lado más corto del papel) ÷ 15 cm = 1 10000 cm (lado más largo del área) ÷ 15 cm = 666,6 Como podemos observar en este ejemplo la escala a utilizar es 1:666,6, sin embargo las escalas comerciales no traen la escala 1:666,6 por lo cual nos aproximamos a la E más cercana que sea mayor de 666,7, en las escalas Comerciales la más cercana es la de 1:1000, lo cual significa que por cada centímetro en el plano se representan 1000 cm del terreno o 10 metros. Dibujo del terreno. Teniendo los ángulos del terreno, la longitud de los lados y la escala a utilizar, con ayuda de la regla de escalas y el transportador, cerraremos la figura siguiendo los siguientes pasos:  se dibuja con la escala seleccionada una de las líneas (en papel milimetrado).  Con base en esta y con la ayuda de un transportador, se marca el ángulo que forma con la siguiente línea y se indica la distancia correspondiente Figura 4. Área del terreno y área del papel.
  • 39. 36  Con base en esta última línea y con la ayuda del transportador se marca el ángulo que forma con la siguiente línea y se indica la distancia correspondiente  Se procede de igual manera con todas las siguientes líneas del polígono Cabe aclarar que en este tipo de construcciones los errores se acumulan y por lo tanto al término del dibujo de las líneas se observa que no cierra el polígono por lo que hay que aplicar una corrección, esta corrección la hacen automáticamente programas como el Autocad si le introducimos los datos de ángulos y lados arrojándonos también el área, pero para fines de que los monitores y facilitadores ganen competencias en estos temas ilustraremos las formas manuales. Corrección grafica de un polígono. Cuando dibujemos nuestro polígono en el papel milimetrado este no nos cerrara. Ya que al ir dibujando el polígono línea por línea los errores se van acumulando. Por lo cual del error total tenemos que hacer un a distribución proporcional entre cada una de las líneas, o mejor dicho en los tramos acumulados, Esta distribución proporcional se debe realizar también gráficamente, porque así fue la construcción. Figura 5. Corrección grafica de un Polígono Tomada de apuntes de topografía para agrónomos. Universidad autónoma de Chapingo.
  • 40. 37 Calculo del área. Después de cerrado el polígono debemos, tomar la figura que tenemos y partirla en varios triángulos para posteriormente hallar el área de cada uno de estos triángulos, y por sumatoria determinar el área total de nuestro terreno a sembrar, cabe resaltar que las líneas que traces en el papel para dividir la figura en varios triángulos debe de tener la misma escala que utilizaste para cerrar la figura. A continuación un ejemplo: Figura 6. Calculo del área de cada uno de los triángulos. Tomada de apuntes de topografía para agrónomos. Universidad autónoma de Chapingo. Como podemos observar la figura representa un terreno que ha sido partido en triángulos para poder hallar el área total de la figura que representa nuestro terreno. La fórmula que se utiliza para poder medir el área de nuestra huerta es la fórmula de herón o la fórmula del semiperimetro, que ilustraremos a continuación. 𝐴𝑟𝑒𝑎 𝑑𝑒𝑙 𝑡𝑟𝑖𝑎𝑛𝑔𝑢𝑙𝑜 = √𝑠( 𝑠 − 𝑎)(𝑠 − 𝑏)(𝑠 − 𝑐) ; 𝑠 = 𝑎+𝑏+𝑐 2 En el caso de este ejemplo específico los cálculos necesarios para poder hallar el área de nuestro terreno son los siguientes: Primero se calcula el semiperimetro y área del triángulo ABE: 𝑠1 = 42,03+33,95+24,53 2 = 50,255
  • 41. 38 𝐴𝑟𝑒𝑎1 = √50,255 × 8,225 × 16,305 × 25,725 = 416,39𝑚2 Hacemos el mismo procedimiento con los triángulos BDE Y BCD. Triangulo BDE: 𝑆2 = 24,84+42,03+44,12 2 = 55,495 𝐴𝑟𝑒𝑎2 = √55,495 × 30,65 × 13,465 × 11,375 = 510,45𝑚2 Triangulo BCD: 𝑆3 = 24,02 + 44,12 + 31,56 2 = 49,850 𝐴𝑟𝑒𝑎3 = √49,85 × 25,83 × 5,730 × 18,29 = 367,35𝑚2 El paso final es hacer la sumatoria de las áreas de todos los triángulos que conforman la figura. 𝐴𝑟𝑒𝑎 𝑡𝑜𝑡𝑎𝑙 = 𝐴𝑟𝑒𝑎1 + 𝐴𝑟𝑒𝑎2 + 𝐴𝑟𝑒𝑎3 = 416,39𝑚2 + 510,45𝑚2 + 367,35𝑚2 = 1294,19𝑚2 Las eras. Conociendo el área de nuestro terreno procedemos a dibujar las eras, que son los sitios definitivos donde irán las plantas estas deben de tener un ancho que permita labores manuales como la limpieza manual de arvenses (“Malezas”), para lo cual se recomienda 1 metro, en nuestro caso como trabajamos con niños y el objetivo es vincularlos a labores que los acerquen a la producción agroecológica se pueden trabajar anchos entre 50 cm y 60 cm, el largo de esta puede ser cualquiera; entre las eras hay que dejar espacios de al menos 50 cm para que puedan movilizarse herramientas como la carretilla, que ayudan las labores de campo.
  • 42. 39 Las eras que establezcamos además de las magnitudes anteriormente citadas deben de tener su lado más largo siguiendo la línea del sol, con el objetivo de que una línea no sombree las otras. Figura 8. Tomada de huerta para la soberanía alimentaria en la región amazónica. Heraldo vallejo. 2009. Para saber la orientación del lado más largo de la era, levántate muy temprano y establece en qué lado sale el sol y en qué lado se esconde, si se te hace muy difícil la madrugada consigue una brújula y establece cual es el este y el oeste. Ancho = 60 cm o 0,6 m Largo = 10m Distancia entre eras = 0,7 m Figura 7. Esquema de huerta.
  • 43. 40 ¿Cuánto necesitamos de semilla? Tomando como ejemplo el esquema anterior donde se dibujaron las eras, calcularemos la cantidad de semillas necesarias para materializar nuestra huerta, los pasos son los siguientes:  Seleccionar las especies a establecer (semilla criolla o nativa de fácil acceso en la zona, ampliamente usada en la gastronomía local y sembrada tradicionalmente en la zona por su buen rendimiento).  Calculo del área de la era  Consultar la distancia entre plantas en una misma línea y distancia entre líneas de plantas, como también establecer su porcentaje de germinación. Siguiendo con el ejemplo anterior notamos que hay 8 eras de dimensiones de 10m x 0,6m, para efectos pedagógicos vamos a seleccionar dos especies en esta huerta divididas en un mismo número de eras, es decir para este ejemplo 4 y 4. Las especies a seleccionar serán, una que necesita ser sembrada en semillero antes de ser pasada a la era y otra que se siembra directamente en las eras (yuca de siembra directa y tomate de siembra semillero-era), a continuación ilustraremos una tabla con algunas características de distintos cultivos, la cual nos sirve como herramienta para determinar el número de semillas necesarias.
  • 44. 41 Tabla 1. Características cultivos. Tomada del manual de campo del método de cultivo biointensivo para la zona tropical. ECOBASE. 2008. A B C D E F G N° semillas a sembrar por m3 Distancia entre semillas en almacigo (cm) N° Semanas en almácigo N° plantas en cama (cm) Distancia entre plantas en cama (cm) N° meses para madurarse COMPOSTA Y CALORIAS Ajonjolí 80 2½ cm 3 sem 60 15 cm 3 – 4 ms Arroz (blanco) 170 2½ cm 2 sem 140 10 cm 4 ms Girasol 5 2½ cm 2 - 3 sem 3 60 cm 3 ms Maicillo (sorgo) 60 Al voleo 2 sem 45 20 cm 3 ms Maíz de Grano 11 2½ cm 1 sem 10 40 cm 3½ ms ALTAS CALORIAS Ajo 120 Siembra Directa 140 10 cm 4 ms Camote 25 Siembra Directa 25 25 cm 7 - 8 ms Papa 25 Ver procedimiento 25 25 cm 2 - 4 ms Yuca 2 Siembra Directa 2 90 cm 8 - 12 ms OTROS Albahaca 90 Al voleo 3 - 4 sem 60 15 cm 1½ - 2 ms Arveja (gandul) 250 2½ cm 1 - 2 sem 200 8 cm 2½ ms Ayote 10 5 cm 3 - 4 sem 10 40 cm 2½ ms Berenjena 8 3 cm 3 - 4 sem 6 45 cm 2½ ms Brócoli 10 4 cm 5 sem 10 40 cm 2 ms Cebolla (regular) 170 Al voleo 7 sem 140 10 cm 3½ - 4 ms Chile (picante) 25 2½ cm 4 - 5 sem 16 30 cm 2 - 3 ms Chile Verde 25 2½ cm 4 - 5 sem 16 30 cm 2½ ms Coliflor 10 4 cm 5 sem 10 40 cm 2½ ms Ejote 80 2½ cm 1 - 2 sem 60 15 cm 2 ms
  • 45. 42 Espinaca 90 2½ cm 3 - 4 sem 60 15 cm 1½ ms Frijol rojo 80 2½ cm 2½ sem 60 15 cm 3 ms Lechuga 30 Al voleo 3 - 4 sem 25 25 cm 2 ms Melón 10 5 cm 3 - 4 sem 10 40 cm 3 - 4 ms Pepino 18 5 cm 2 - 3 sem 16 30 cm 2 - 2½ ms Perejil 125 Al voleo 6 - 8 sem 85 12 cm 2½ - 3 ms Repollo 10 – 20 4 cm 5 sem 5 - 15 30 - 45 cm 2 - 4 ms Soya 75 2½ cm 2 sem 60 15 cm 2 - 4 ms Tomate 5 2½ cm 4 – 6 sem 4 50 cm 2 - 3 ms Zanahoria 400 Al voleo 3 - 4 sem 250 8 cm 2½ - 3 ms Nos vamos a la fila donde están los datos de la Yuca y el Tomate y miramos el dato de número de plantas por metro cuadrado en tres bolillos (las plantas forman triángulos equiláteros) y distancia entre plantas. Tomate: 4 plantas por metro cuadrado; distancia en tres bolillos de 50 cm. Yuca: 2 plantas por metro cuadrado; distancia en tres bolillos de 90 cm. Como en el ejemplo anterior tenemos 4 eras de 6 metros cuadrados hacemos una regla de tres para calcular el número de plantas por era. # Plantas de tomate por era: 1m2 4 plantas 6m2 X Este procedimiento matemático se denomina regla de tres y se lee de la siguiente manera, si en un metro cuadrado caben 4 plantas en seis metros cuadrados cuantas cabrán. En esta operación las unidades iguales van en el mismo lado, como podemos ver en el ejemplo anterior, en el cual el número de plantas están en el extremo derecho de las flechas azules y los metros cuadrados en el lado izquierdo; para realizar esta operación se multiplica en diagonal y se divide por el número que es diagonal a la incógnita x, por lo que la operación queda así:
  • 46. 43 𝒙 = 𝟔𝒎 𝟐 × 𝟒 𝒑𝒍𝒂𝒏𝒕𝒂𝒔 𝟏𝒎 𝟐 Como podemos observar en esta operación se cancelan los metros cuadrados y el resultado final nos queda en términos de plantas, lo que nos da un resultado de 24 plantas de tomate por era, pero como vamos a establecer 4 eras de tomate el número total de plantas de tomates es igual a la multiplicación de 24 x 4, lo que arroja un resultado de 96 plantas de tomate. Como las semillas de las plantas de tomate tienen un porcentaje de germinación, no podemos comprar estrictamente las 96 ya que no obtendríamos la población deseada, suponiendo que sus semillas de tomate tengan un porcentaje de germinación de 70% (ósea de cada 100 semillas que siembras 70 germinan y 30 no, más adelante indicaremos como medir el porcentaje de germinación de nuestras semillas) tenemos que realizar el siguiente cálculo para obtener la cantidad de semillas adecuada: # De semillas adecuadas: 96 plantas 70% X 100% Aquí también hacemos uso de la herramienta matemática denominada regla de tres la cual se lee de la siguiente manera: si noventa y seis plantas son el setenta por ciento, el cien por ciento cuanto será. La resolución de esta regla de tres es la siguiente: 𝒙 = 𝟗𝟔 𝒑𝒍𝒂𝒏𝒕𝒂𝒔 × 𝟏𝟎𝟎 % 𝟕𝟎% Lo cual nos da un valor de 137,14 plantas (semillas), al obtener este valor tenemos que considerar que las semillas que no germinan no son las únicas perdidas, ya que a la hora del trasplante a las eras hay perdidas también por lo cual hay que sumar un porcentaje más de semillas, en este ejemplo sumaremos un 15% más, no obstante usted con su experiencia en campo debe contabilizar cuanto es el porcentaje de plantas que se pierde en el trasplante y sumarlo para
  • 47. 44 las próximas siembras. Razón por la cual el número definitivo de semillas a conseguir en este ejemplo seria: 𝒙 𝒕𝒐𝒕𝒂𝒍 𝒔𝒆𝒎𝒊𝒍𝒍𝒂𝒔 = 𝟏𝟑𝟕, 𝟏𝟒 × 𝟏, 𝟏𝟓 Es resultado final es de 157,7 plantas lo cual hay que llevarlo al número entero más cercano, para nuestro caso 158 plantas de tomate, que son las semillas que finalmente hay que conseguir para llevar a cabo la producción en el espacio que tenemos predispuesto. En el caso de las semillas de yuca, el cálculo es mucho más sencillo ya que como es una especie que no requiere de pasar por una fase de semillero, solo hay que realizar el cálculo para los 24 metros cuadrados que suman las 4 eras restantes del ejemplo y sumarle un 10% con el objetivo de hacer repoblación en aquellas estacas que no broten. # Plantas de yuca en las 4 eras por era = 1m2 2 plantas 24m2 x Operación que resuelve de la siguiente manera. 𝒙 = 𝟐 𝒑𝒍𝒂𝒏𝒕𝒂𝒔 × 𝟐𝟒𝒎 𝟐 𝟏 𝒎 𝟐 El resultado de esta operación es 48 plantas, pero como dijimos anteriormente, ya que todas las estacas no brotaran y serán viables, a esta operación se le sumara un 10%. 𝒙 𝒕𝒐𝒕𝒂𝒍 𝒔𝒆𝒎𝒊𝒍𝒍𝒂𝒔 = 𝟒𝟖 × 𝟏, 𝟏𝟎 Dándonos un resultado final de 52,8, el cual hay que llevarlo al número entero más cercano que para este caso es 53 semillas de Yuca. Calculo del número de semilleros y las cantidades de sustrato necesarios. Siguiendo con el ejemplo anterior, el cálculo del número de semilleros, solo se tiene que llevar a cabo con las plantas de tomate que hallamos en los cálculos
  • 48. 45 anteriores, debido a que las semillas de Yuca se establecen directamente en las eras o camas. Debido a que el total de semillas de tomate que calculamos fue de 158 y según la tabla de cultivos que tenemos este texto en páginas anteriores nos dice que las distancias de las plantas de tomate en semillero son de 2,5 en tresbolillo (las plantas hacen triángulos equiláteros con lados de 2,5 cm), el número de plantas que caben en un semillero de 35 cm de ancho x 60 cm de largo y 10 cm de profundidad es: # 𝒑𝒍𝒂𝒏𝒕𝒂𝒔 𝒆𝒏 𝒕𝒓𝒆𝒔 𝒃𝒐𝒍𝒍𝒊𝒍𝒍𝒐𝒔 𝒂 𝟐, 𝟓 𝒄𝒎 𝒆𝒏 𝒔𝒆𝒎𝒊𝒍𝒍𝒆𝒓𝒐 𝒅𝒆 𝟑𝟓𝒙𝟔𝟎𝒙𝟏𝟎 = 𝟐𝟏𝟎𝟎 𝒄𝒎 𝟐 𝟐, 𝟓 𝒄𝒎 𝒙 𝟐, 𝟓 𝒄𝒎 × 𝟏, 𝟏𝟏𝟓 Los 2100 centímetros cuadrados de la formula anterior son el resultado de la multiplicación del largo y ancho del semillero (forma de calcular el área que este representa, un rectángulo). Al resolver la operación anterior nos arroja que en un semillero de las dimensiones descritas se pueden introducir 374 plantas. Figura 9. Estructura del semillero. Tomada de huerta organica biointensiva. Ciesa. Como el número de plantas calculadas fue de 158 plantas de tomate hacemos una regla de tres para determinar el número de semilleros necesarios; al ver en nuestro ejercicio que en un semillero caben más plantas que las necesitamos por sentido común ya debemos pensar que se va a utilizar menos de un semillero. # Semilleros 35cmx60cmx10cm = 1 semillero 374 plantas X 158 plantas
  • 49. 46 Al resolver esta operación obtenemos que para sembrar 158 plantas en semilleros de 35 cm x 60 cm x 10 cm se necesitan 0.42 semilleros, dicho en términos más castizos, tenemos que utilizar el 42% del área de un semillero de 35x60x10 para sembrar el número de plantas de tomate que necesitamos. Debido a que la planta de tomate es una planta que necesita ser sembrada en dos tipos de semilleros uno poco profundo y uno profundo, como está establecido en la tabla de cultivos en páginas anteriores, se tiene que calcular el número de semilleros profundos que se requieren. Para pasar de un semillero poco profundo a otro profundo donde las distancias de siembra en tres bolillos es de 5 cm, hay que tener en cuenta el traslape (momento en el cual las hojas de las plantas se están tocando en el semillero). Figura 10. Estructura de semillero poco profundo. Tomada de huerta organica biointensiva. Ciesa. La operación necesaria para el cálculo del número de semilleros profundos es la siguiente: # 𝒑𝒍𝒂𝒏𝒕𝒂𝒔 𝒂 𝟓𝒄𝒎 𝒆𝒏 𝒔𝒆𝒎𝒊𝒍𝒍𝒆𝒓𝒐𝒔 𝒅𝒆 𝟑𝟓𝒙𝟔𝟎𝒙𝟏𝟓 = 𝟏𝟖𝟎𝟎 𝒄𝒎 𝟐 𝟐𝟓 𝒄𝒎 𝟐 𝒙 𝟏, 𝟏𝟏𝟓 Lo cual nos arroja que en un semillero de 35x60x15 a una distancia de 5cm en tresbolillo caben 80 plantas, para saber en cuantos semilleros profundos caben las 158 plantas que necesitamos se hace una regla de tres. # De semilleros de 30x60x15 = 1 semillero 80 plantas X 158 plantas
  • 50. 47 El resultado de esta operación es de 1,975, lo cual nos expresa que para sembrar 158 plantas de tomate en tres bolillos a 5 cm de distancia y en un semillero profundo de 35x60x15 tenemos que construir 2 semilleros, de los cuales en uno de estos utilizaremos el 97,5% de su área. Como ya conocemos el número de semilleros ahora estableceremos cuanto necesitamos de sustrato, la relación más utilizada es 1:1:1 es decir una parte de suelo, una de arena y una de compost. Sin embargo si estamos ante un suelo muy arcilloso que tiende a la compactación podemos utilizar una mezcla 1:1 una parte de arena y una de compost; para el caso de un suelo suelto con un buen contenido de materia orgánica (suelo oscuro) podemos utilizar una mezcla 2:1 dos partes de suelo y una de compost. Para este ejemplo vamos a utilizar la mezcla 1:1:1 (una de arena, una de suelo y una de compost), partimos de los resultados obtenidos en los cálculos anteriores, 1 semillero de 35x60x10 y 2 semilleros de 30x60x15, lo primero que debemos hacer es hallar los volúmenes de cada uno de los semilleros y sumarlos. 𝑽𝒐𝒍𝒖𝒎𝒆𝒏 𝒔𝒆𝒎𝒊𝒍𝒍𝒆𝒓𝒐 𝟑𝟓𝒙𝟔𝟎𝒙𝟏𝟎 = 𝟑𝟓 𝒄𝒎 × 𝟔𝟎 𝒄𝒎 × 𝟏𝟎 𝒄𝒎 = 𝟐𝟏. 𝟎𝟎𝟎 𝒄𝒎 𝟑 𝒗𝒐𝒍𝒖𝒎𝒆𝒏 𝒔𝒆𝒎𝒊𝒍𝒍𝒆𝒓𝒐 𝟑𝟎𝒙𝟔𝟎𝒙𝟏𝟓 = 𝟑𝟎 𝒄𝒎 × 𝟔𝟎 𝒄𝒎 × 𝟏𝟓 𝒄𝒎 × 𝟐 = 𝟓𝟒. 𝟎𝟎𝟎 𝒄𝒎 𝟑 Al sumar los dos volúmenes nos arroja un resultado de 75.000 centímetros cúbicos de sustrato, ya que utilizamos una relación 1:1:1 (una de arena, una de suelo y una de compost) para pasarlo a términos de fraccionarios tenemos que sumar los unos y dividir el valor obtenido por cada uno de ellos, ósea tener una mezcla 1:1:1 es tener una mezcla compuesta por 1/3 de arena, 1/3 de suelo y 1/3 de compost; si fuera una mezcla 2:1 (dos de suelo y una de compost) se hiciera lo mismo, en este caso serían 2/3 de suelo y 1/3 de compost. Habiendo quedado claro como pasar a fraccionarios la mezcla, calculamos cuanto volumen necesitamos específicamente de suelo, arena y compost, como las proporciones son las mismas hacemos un solo calculo: 𝒗𝒐𝒍𝒖𝒎𝒆𝒏 𝒅𝒆 𝒔𝒖𝒆𝒍𝒐, 𝒂𝒓𝒆𝒏𝒂 𝒚 𝒄𝒐𝒎𝒑𝒐𝒔𝒕 𝒏𝒆𝒄𝒆𝒔𝒂𝒓𝒊𝒐 = 𝟕𝟓. 𝟎𝟎𝟎 𝒄𝒎 𝟑 × 𝟏 𝟑
  • 51. 48 Después de realizado este cálculo sabemos que para rellenar los semilleros con una mezcla 1:1:1 de arena, suelo y compost necesitamos 25.000 cm3 de cada uno, en el caso del compost tenemos que preparar más de la cantidad hallada, ya que en el proceso de maduración y tamizado del mismo solo se aprovecha entre un 30% y 40% del volumen inicial, cabe aclarar que el suelo que se va a utilizar debe desterronarse (partir los terrones de suelo y dejar agregados de menor tamaño) y tamizarse. Cantidad de compost final para semilleros = 25000 cm3 30% X 100% Por lo cual el resultado final es 83.333,3 centímetros cúbicos de compost, 25.000 de suelo y 25.000 de arena; si tenemos en nuestra casa un recipiente de volumen conocido, por ejemplo un tanque de 20 litros, podemos pasar los centímetros cúbicos hallados a el número de tanques necesarios de la siguiente manera, partimos de la siguiente premisa: 1 litro = 1000 centímetros cúbicos, por lo que 20 litros equivalen a 20000 centímetros cúbicos, teniendo estas equivalencias claras realizamos la regla de tres para saber cuántos tanques de 20 litros representan los 25.000 centímetros cúbicos de cada uno de los componentes que nuestro sustrato requiere. Cantidad de tanques de 20 litros necesarios = 1 tanque 20000 cm3 X 25000 cm3 El resultado final es de 1,25 baldes de arena, 1,25 baldes de suelo y 1,25 baldes de compost; la interpretación del decimal 1,25, es que por cada compuesto del sustrato usaremos un balde más el 25% del mismo (ósea 5 litros); debido a que la mayoría de los baldes no son cilíndricos y su diámetro aumenta con la altura, para saber el punto donde se encuentran los 5 litros utilizamos un recipiente con un volumen inferior, que con varias aplicaciones del volumen de este nos lleve al volumen que buscamos, para este ejemplo podría ser una botella de gaseosa de 1 litro que aplicada 5 veces al balde nos da nuestro valor, a la altura que nos den los
  • 52. 49 cinco litros marcamos y a esa misma altura rellenamos el balde con nuestros materiales del sustrato. Figura 11. Tanque no cilíndrico al cual se le aplicaron 5 litros de agua (25% de 20 litros) para hallar la altura a la que se debe llenar el tanque con los elementos del Sustrato, en Este esquema la línea roja. La mezcla tiene que ser homogénea; es necesario aclarar que los 83.333,3 centímetros cúbicos de compost se preparan ya que en este hay muchas pérdidas por lo cual hay que preparar este volumen para poder obtener los 25000 cm3 que se requiere para el sustrato, las dimensiones recomendadas de la pila de compost son de 1m x 1,5 m x X (Siendo X el largo de la pila el cual tiene que ser calculado) o 100 cm x 150 cm x X, cuando tratemos fertilización de las camas calcularemos el número de pilas con estas dimensiones incluyendo lo que se necesita para los semilleros. Desinfección del sustrato. Uno de los principios de la agroecología es la utilización de los recursos locales para llevar a cabo las producciones agrícolas, en el departamento de córdoba la alta radiación y temperaturas son una característica notable de nuestro territorio, por lo cual el método de solarización se convierte en un método altamente viable para la limpieza de nuestros sustratos, cabe resaltar que el compost bien preparado no requiere de esto debido a que este alcanza altas temperaturas en su
  • 53. 50 proceso de elaboración por lo cual el suelo y la arena son los dos componentes del sustrato 1:1:1 que se debe someter a este procedimiento. Tomamos el volumen de sustrato de suelo y arena a utilizar en los semilleros y lo hacemos en pilas de 100 cm de ancho x 40 cm de alto x L, siendo L el largo necesario para generar el volumen de arena y suelo hallados, que en el ejemplo que venimos manejando es de 50000 cm3 (25000 de suelo + 25000 de arena). 𝟏𝟎𝟎 𝒄𝒎 × 𝟒𝟎 𝒄𝒎 × 𝑳𝒂𝒓𝒈𝒐 𝒅𝒆𝒍 𝒎𝒐𝒏𝒕𝒐𝒏 = 𝟓𝟎𝟎𝟎𝟎𝒄𝒎 𝟑 𝑳𝒂𝒓𝒈𝒐 𝒅𝒆𝒍 𝑴𝒐𝒏𝒕𝒐𝒏 = 𝟓𝟎𝟎𝟎𝟎𝒄𝒎 𝟑 𝟏𝟎𝟎 𝒄𝒎 × 𝟒𝟎 𝒄𝒎 Lo cual nos arroja un largo de 12,5 centímetros, como el resultado en este ejemplo fue pequeño podemos reducir el alto del montón; después de realizado el montón con las magnitudes preestablecidas lo humedecemos homogéneamente y nos aseguramos que este húmedo en toda la profundidad (altura) que tu hayas determinado, se humedece con el objetivo de que germinen las esporas (estructuras reproductivas de organismos como los hongos) y de aumentar la sensibilidad térmica, después de humedecido el sustrato se cubre con polietileno transparente de 0,03mm, el cual se pisa con suelo en los bordes y se deja por un tiempo mínimo de 4 semanas en pleno sol, hay que aclarar que se lo mas importante es que la altura no pase de 40cm para permitir el humedecimiento y calentamiento del montón en profundidad. Las características de la utilización de este método son las siguientes:  La temperatura en la superficie alcanza 50 o C. En los primeros 5cm, reduciendo patógenos en más del 90%.  Reducción de enfermedades por hongos del suelo mayor del 25%  Reducción de población de las arvenses (malezas). Otro método a utilizar es la aplicación de agua a 100 grados centígrados.
  • 54. 51 Hallando la cantidad de malla, alambre de púa y postes para cercado. Tomando como referencia el esquema rectangular de terreno establecido en páginas anteriores hallamos la cantidad de malla gallinera, elemento utilizado para cercar el terreno e impedir el paso de animales (no humanos), el cálculo de cantidad de malla, alambre de púa y postes se realiza con base al perímetro del terreno donde vamos a establecer la huerta. 𝒑𝒆𝒓𝒊𝒎𝒆𝒕𝒓𝒐 𝒅𝒆 𝒖𝒏𝒂 𝒇𝒊𝒈𝒖𝒓𝒂 = ∑ 𝒍𝒂𝒅𝒐𝒔 𝒅𝒆 𝒍𝒂 𝒇𝒊𝒈𝒖𝒓𝒂 Como se ilustra en la formula anterior el perímetro de cualquier figura es igual a la sumatoria (∑ ) de los lados de la figura que en nuestro caso es igual a la suma de dos veces el ancho más dos veces el largo. 𝒑𝒆𝒓𝒊𝒎𝒆𝒕𝒓𝒐 𝒅𝒆 𝒖𝒏 𝒓𝒆𝒄𝒕𝒂𝒏𝒈𝒖𝒍𝒐 = 𝟐 𝒂𝒏𝒄𝒉𝒐 + 𝟐 𝒍𝒂𝒓𝒈𝒐 𝒑𝒆𝒓𝒊𝒎𝒆𝒕𝒓𝒐 𝒅𝒆 𝒏𝒖𝒆𝒔𝒕𝒓𝒐 𝒓𝒆𝒄𝒕𝒂𝒏𝒈𝒖𝒍𝒐 = 𝟐( 𝟓, 𝟗 𝒎) + 𝟐 ( 𝟐𝟐, 𝟏 𝒎) = 𝟓𝟔 𝒎 Realizado el cálculo hallamos que el perímetro de nuestro terreno es igual a 56 metros, lo cual son los metros de malla necesarios para esta huerta, como en una planeación uno no puede comprar insumos estrictos para este caso sería recomendable comprar 60 metros, los metros de alambre de púa necesarios son igual a el perímetro hallado multiplicado por 3 debido a que para darle forma a la Ancho: 5,9 metros; largo: 22,1 metros Figura 12. Perímetro de terreno rectangular. 22,1 m 5,9m
  • 55. 52 malla se requieren 3 pases de alambre de púa (uno en la parte superior de la malla, uno en la parte media y otro en la parte inferior), el número de pases de alambre de púa puede ser superior a 3 o inferior a 3, dependiendo de la altura de la malla, las mallas comerciales vienen con alturas de 1,8 metros por lo cual tres pases da buen resultado. 𝒄𝒂𝒏𝒕𝒊𝒅𝒂𝒅 𝒅𝒆 𝒂𝒍𝒂𝒎𝒃𝒓𝒆 𝒅𝒆 𝒑ú𝒂 = 𝟓𝟔 𝒎 × 𝟑 = 𝟏𝟔𝟖 𝒎 En nuestro ejemplo la cantidad de alambre de púa a utilizar es de 168 metros, no obstante se debe comprar un poco más como se ha hecho con los cálculos de otros materiales. Si compras estrictamente lo calculado lo más probable es que con los amarres que hagas a los postes este no te alcance, para nuestro caso los 168 m los llevaremos a 180 m. Para el cálculo del número de postes necesarios se debe tener en cuenta la distancia a la cual van a ir estos, distancia que depende de la magnitud del terreno a cercar y el peso de la malla a utilizar, no obstante debido a que este documento está hecho pensando en pequeñas huertas escolares y familiares, nuestra experiencia nos ha indicado que con distancias entre los 2-3 metros se generan buenos resultados; para realizar correctamente esta labor los postes de las esquinas que son los que mayor carga soportan deben de ser los más robustos, deben estar enterrados unos cuantos centímetros más en el suelo y deben rellenarse con piedra triturada y suelo, de ser posible es recomendable aplicarle un poco de cemento en la base. 𝑵𝒖𝒎𝒆𝒓𝒐 𝒅𝒆 𝒑𝒐𝒔𝒕𝒆𝒔 = 𝒑𝒆𝒓𝒊𝒎𝒆𝒕𝒓𝒐 𝒅𝒊𝒔𝒕𝒂𝒏𝒄𝒊𝒂 𝒆𝒏𝒕𝒓𝒆 𝒑𝒐𝒔𝒕𝒆𝒔 𝑵𝒖𝒎𝒆𝒓𝒐 𝒅𝒆 𝒑𝒐𝒔𝒕𝒆𝒔 = 𝟓𝟔 𝒎 𝟑𝒎 = 𝟏𝟗 𝒑𝒐𝒔𝒕𝒆𝒔 La altura de los postes a utilizar depende de dos variables: la altura de la malla a utilizar y la profundidad a la que irán los postes en el suelo, en nuestra experiencia en Severá se utilizó malla gallinera de altura de 1,8 m y los postes se enterraron a 50 centímetros (nuestro suelo tenia buenos contenidos de arcilla y limo, en un
  • 56. 53 suelo arenoso la profundidad debería ser superior), los 4 postes de las esquinas se enterraron a una profundidad de 70 cm, Por lo cual se establecieron 4 postes de 2,6 m y el resto de 2,4 m, dándonos buenos resultados. Para nuestro ejemplo serian entonces 4 postes de 2,6 m y 15 de 2,4 m. es importante anotar que para llevar a cabo el cercado es necesario comprar las grapas para fijar el alambre a la malla y los postes, el calibre de estas dependerá del grosor del poste, grapas grandes para postes gruesos y grapas pequeñas para postes delgados. Fertilización. Antes de hablar de fertilización es importante aclarar conceptos sobre el suelo, desde una perspectiva agroecológica, el suelo no puede considerarse únicamente como un sustrato que le sirve a las plantas de anclaje y despensa de nutrientes. Para la agroecología el suelo es un cuerpo complejo, formado por cuatro fases: fase biológica (macro-organismos, meso-organismos y micro-organismos), fase solida (materia orgánica e inorgánica), fase gaseosa (aire del suelo) y fase liquida (agua del suelo con minerales disueltos); el suelo que se desea para una producción agrícola debe tener un equilibrio en todas estas fases, teóricamente se establece una composición de 50% de partes sólidas y un 50% de partes porosas y, a su vez este tiene que tener 50% de aire y un 50% de agua, mientras que en la parte sólida, el 50% debe de ser de materia orgánica. Toda estas características se persiguen en la agroecología con el único fin de tener a los organismos del suelo (la parte viva) en las cantidades y diversidad suficiente, ya que la agroecología a diferencia de la agricultura de la revolución verde propone como elemento fundamental para determinar la calidad del suelo su parte viva. Uno de los componentes del suelo el cual amerita hacerle mención especial, por sus aportes a la parte física, química y biológica de los mismos es la materia orgánica.
  • 57. 54 La materia orgánica. La materia orgánica de los suelos proviene de residuos animales y vegetales, esta se descompone a través de la acción de procesos físicos, químicos y biológicos convirtiéndose en humus (materia orgánica descompuesta que ha formado complejos con las arcillas y que no puede ser fácilmente atacada por lo organismos del suelo) como también en minerales, aportando especialmente Nitrógeno, fosforo y azufre. Esta además de aportar nutriente y materia orgánica descompuesta genera efectos positivos en lo físico, biológico y químico:  Aportes en lo físico: contribuye a mejorar la estructura del suelo, porosidad, permeabilidad, retención de agua y absorción de calor, previene la erosión y contribuye a la mejora de suelos compactados.  Aportes en lo químico: aumenta la capacidad de retener nutrientes del suelo, aporta nutrientes y hace al suelo más resistente a los cambios de Ph.  Aportes en lo biológico: le da las condiciones propicias para que la diversidad de los microorganismos se reproduzcan y lleven a cabo sus funciones en el suelo. Algunos abonos orgánicos. Los abonos orgánicos son materiales provenientes de la materia circundante, viva y no viva, que a diferencia de los abonos químicos no son sintetizados en los laboratorios, razón por la cual representan una alternativa para salvaguardar la seguridad alimentaria de las zonas rurales, debido a su fácil acceso, economía y su gran importancia en la producción de alimentos inocuos (que no generan daños a la salud del ser que los consume). Su papel en la producción agrícola, es coadyuvar a que se den las condiciones ideales en el suelo en lo físico y químico para que la parte viva aumente en cantidad y diversidad, manteniendo la salud del recurso suelo a través del tiempo.
  • 58. 55 Para fines prácticos en este manual enseñaremos 3 abonos orgánicos bastante utilizados y con materiales de fácil acceso, ya que el objetivo de este documento no es la elaboración de un compendio de recetas.  Un abono fermentado (Bokashi)  Un abono oxigenico (compost)  Un caldo microbial (caldo supermagro) El compost. El compost es un abono orgánico de fácil preparación, el cual trae múltiples beneficios para las plantas y la salud del suelo. Para hacerlo solo se necesita materiales verdes, materiales secos, agua, tierra y aire. La pila de compost que realicemos debe tener un ancho y altura que no supere los 1.5 metros, el largo si puede ser el que el productor elija; cabe anotar que la tierra preferida Para la preparación de la composta es una tierra negra. A continuación ilustraremos algunos materiales y los pasos para la elaboración del compost. Materiales secos:  Rastrojos (maíz, frijol, caña, etc.)  Hojas secas  Pajilla de café o de arroz  Pasto (zacate) seco o verde  Bagazo de caña  Aserrín Materiales verdes o frescos:  Hierbas (TODAS)  Tallo y hojas de plátano  Estiércol de animales  Pulpa de café  Desperdicios de cocina  Cascaras de fruta  Animales pequeño muertos Materiales NO recomendados: Hojas de pino, aserrín de árboles resinosos, plantas muy enfermas o plagadas, grandes cantidades de grasas y excremento humano, de perro o de gato. Figura 13. Materiales necesarios en la elaboración del compost. Tomada de producción de hortalizas orgánicas. Centro agroecológico las Cañadas.
  • 59. 56 El estiércol de pollo y gallinas purinas no es recomendado tampoco debido a que estos traen consigo antibióticos y hormonas. ¿Cómo se prepara el Compost?  Trazamos un cuadro de 1,5 metros por 1,5 metros y se afloja el terreno con el bieldo unos 30cm de hondo.  Después se coloca sobre el terreno removido una rejilla de ramas seca y se riega con un poco de agua.  Encima de la capa de ramas secas se coloca una capa de más o menos 10 cm de materiales secos y se riega con agua.  Enseguida se pone una capa de material verde de más o menos 10 cm.  Posteriormente se agrega una capa delgada de tierra de más o menos 1cm (tierra negra no muy arcillosa) y se agrega agua.  Repita las capas alternas de material seco, verde y tierra hasta alcanzar una altura de 1 metro y riega cada capa con agua. En temperaturas cálidas no es muy recomendable trabajar con pilas de mucha altura, lo mejor es que se ensaye en su patio las alturas que le dan mejores resultados. Es importante resaltar que los materiales antes de establecerlos en las distintas capas deben ser picados y dejarlos con un tamaño entre 15-20 centímetros esto acelerara el proceso de descomposición; Y por ningún motivo debemos usar agua clorada.
  • 60. 57 Figura 14. Preparación del compost. Tomada de producción de hortalizas orgánicas. Centro agroecológico las Cañadas. ¿Cómo sabemos si nuestro compost está trabajando bien? Hay dos aspectos fundamentales que debemos cuidar de un compost, la humedad y la temperatura. Temperatura: Este aspecto es fundamental para que se dé la descomposición de los materiales. Una manera muy sencilla de evaluarla es introduciendo un machete en el montón a más o menos 75 centímetros de profundidad, se deja por unos minutos y cuando lo retires se toca con la mano, si aguantas el calor está funcionando bien, si no lo aguantas es porque está muy caliente, por lo que hay que aplicarle agua y hacerle agujeros para que ingrese aire. Si el machete esta frio hay que cubrirla temporalmente con un plástico negro o aplicarle un te de estiércol (1 kilo de estiércol en un recipiente de 20 litros lleno de agua y revolver). Humedad: si esta seca hay que regarla, ya que si no tiene humedad no se da el calor y no trabaja. Si está demasiado mojada lo más probable es que esta huela a putrefacción. La técnica más fácil para determinar su correcta humedad es la prueba del puño, tomas un puñado de composta y lo aprietas un poco si corre agua entre tus dedos está muy húmeda.
  • 61. 58 Figura 15. Como saber si nuestra composta trabaja bien. Tomada de producción de hortalizas orgánicas. Centro agroecológico las Cañadas. El compost debe de voltearse una vez al mes, en nuestro clima (cálido) este tarda más o menos 3 meses para estar lista, pero establecer el tiempo preciso no debe ser preocupación debido a que por un análisis del aspecto (olor, textura, color y forma de los materiales) podemos determinar si está listo o no. Se determina si un compost está listo cuando al tomar un puñado de este no reconocemos los materiales que utilizamos, es suave, oscuro, húmedo y huele a tierra mojada. Este debe de ubicarse en un lugar con sombra y que no se inunde. Figura 16. Como almacenar el compost. Tomada de producción de hortalizas orgánicas. Centro agroecológico las Cañadas. Las cantidades de compost a utilizar en las eras o sitios definitivos a donde irán las plantas son las siguientes:  Rendimientos altos: 12 tanques de 20 litros cada 10 metros cuadrados  Rendimientos medios: 6 tanques de 20 litros cada 10 metros cuadrados
  • 62. 59  Rendimientos bajos: 3 tanques de 20 litros cada 10 metros cuadrados A continuación calcularemos la cantidad de compost necesario haciendo uso del ejemplo con el que venimos trabajando a lo largo del manual. Como tenemos 8 eras de 6 metros cuadrados, haremos el cálculo de cantidad necesaria para obtener un rendimiento medio y posteriormente multiplicaremos por 8, a este resultado le sumaremos el volumen de compost hallado para los semilleros y con base a ese volumen total y considerando perdidas de material estableceremos el número de pilas de compost con las dimensiones recomendadas. # Tanques de compost, con capacidad de 20 litros = 10 m2 6 tanques de 20 litros 6 m2 X Operación que arroja un resultado de 4 tanques de 20 litros por era de 6m2, no obstante este no es el resultado final de las necesidades de compost ya que hay que agregar los 83.333,3 centímetros cúbicos del compost que se prepararan para los semilleros, pero como no lo tenemos en términos de tanques de 20 litros hacemos la conversión. Conversión de cm3 a tanques de 20 litros = 1 tanque de 20 litros 20000 cm3 X 83333,3 cm3 Ya que la conversión del volumen de compost a utilizar en los semilleros es de 4,16 tanques de 20 litros de compost, para poder sumar esta cifra que tiene considerada perdidas con el volumen del compost a usar en las eras hay que calcular las pérdidas de los 32 tanques de 20 litros hallados; como se estableció en páginas anteriores del volumen total de compost inicial solo queda el 30%, por lo tanto. Compost para eras considerando pérdidas = 32 tanques de 20 litros 30% X 100% Lo cual nos da un resultado final de 106 tanques de 20 litros a los que hay que sumarle los 4,16 de los semilleros para darnos un total de 110 tanques de 20
  • 63. 60 litros. Ahora para saber la magnitud del montón tenemos que pasar a metros cúbicos los 110 tanques de 20 litros. Conversión de tanques de 20 litros a m3 = 1 tanque de 20 litros 0,02m3 110 tanques x El resultado en metros cúbicos es de 2,2, ya que los montones deben tener un ancho y alto de 1 metros y el largo debe ser calculado, aplicamos la siguiente formula. 𝒍𝒂𝒓𝒈𝒐 𝒎𝒐𝒏𝒕𝒐𝒏 𝒄𝒐𝒎𝒑𝒐𝒔𝒕 = 𝟏, 𝟓 𝒎 × 𝟏 𝒎 𝒙 𝒍 = 𝟐, 𝟐 𝒎 𝟑 𝒍𝒂𝒓𝒈𝒐 𝒎𝒐𝒏𝒕𝒐𝒏 𝒄𝒐𝒎𝒑𝒐𝒔𝒕 = 𝟐, 𝟐𝒎 𝟑 𝟏, 𝟓𝒎 𝟐 Calculo que nos da un valor de 1,46 m, que llevaremos a 1,5 metros. Abono Bokashi. El abono tipo Bokashi se basa en procesos de descomposición aeróbica de los residuos orgánicos y temperaturas controladas a través de poblaciones de microorganismos existentes en los propios residuos, que en condiciones favorables producen un material parcialmente estable de lenta descomposición. Como una de las preguntas más frecuentes de los productores es la función de los materiales que intervienen en la preparación de los distintos abonos, hablaremos un poco de esto. Para la preparación del Bokashi se necesita:  Gallinaza (puede ser otro estiércol animal)  Cascarilla de arroz  Pulidura o salvado de arroz  Carbón vegetal  Melaza de caña  tierra negra, procedente de un terreno donde nunca se haya sembrado, tierra de bosque.
  • 64. 61  Cal agrícola  Agua  Suelo A continuación hablaremos un poco de las funciones de cada uno de estos materiales: Gallinaza o estiércoles de otros animales: aporta nutrientes al suelo como nitrógeno, fósforo, potasio, calcio, magnesio, hierro, manganeso, zinc, cobre y boro, entre otros elementos. También sirve como fuente de microorganismos que contribuyen a los procesos de descomposición, no es recomendable tomar estiércol de pollos de engorde, el estiércol más recomendado es el de gallinas ponedoras bajo techo y con piso lo mismo con los estiércoles de caballos y vaca, lo más recomendado son estiércoles tomados de establos que no hayan estado expuestos al sol por mucho tiempo. Carbón vegetal (también se puede usar restos de fogón de leña): Mejora las características físicas del suelo, como su estructura, lo que facilita una mejor distribución de las raíces, la aireación y la absorción de humedad y calor. Su alto grado de porosidad permite la acción de microorganismos de la tierra, al mismo tiempo que funciona con el efecto tipo “esponja sólida”, el cual consiste en la retención, filtración y liberación lenta de nutrientes útiles a las plantas, disminuyendo la pérdida y el lavado de éstos en la tierra. Por otro lado, las partículas de carbón permiten una buena oxigenación del abono, de manera que no existan Limitaciones en el proceso aeróbico de la fermentación. El tamaño de las partículas de carbón influye en la calidad del abono, por lo cual se recomienda tener partículas de 1 cm de ancho por 1,5 de largo. Cascarilla de arroz: Este ingrediente mejora las características físicas de la tierra y de los abonos orgánicos, facilitando la aireación, la absorción de humedad y el filtrado de nutrientes, como también el incremento de la actividad macro y microbiológica de la tierra, al mismo tiempo que estimula el desarrollo uniforme y abundante del sistema radical de las plantas así como de su actividad simbiótica
  • 65. 62 con la microbiología de la rizosfera. Es, además, una fuente rica en silicio, lo que favorece a los vegetales, pues los hace más resistentes a los ataques de insectos y enfermedades. Salvado de arroz: Este ingrediente favorece la fermentación de los abonos, la cual se incrementa por la presencia de vitaminas complejas en la pulidura o en el salvado de arroz. Aporta activación hormonal, nitrógeno y es muy rica en otros nutrientes muy complejos cuando sus carbohidratos se fermentan. Los minerales, tales como fósforo, potasio, calcio y magnesio también están presentes en este. La melaza: es fuente de energía para los microorganismos que llevan a cabo los procesos de fermentación, también aporta nutrientes como potasio, calcio, fósforo, magnesio, boro, zinc, manganeso y hierro; para una mezcla homogénea de esta en el abono es recomendable diluirla con parte del agua que se utilizara al principio de la preparación del abono. La tierra de bosque y la levadura: Estos ingredientes son la principal fuente de microorganismos para la elaboración de los abonos orgánicos fermentados. Dicho en otros términos son la semilla de la fermentación. Suelo (tamizado): tiene la función de darle una mayor homogeneidad física al abono y distribuir su humedad; aumenta el medio propicio para el desarrollo de la actividad microbiológica de los abonos y consecuentemente, lograr una buena fermentación, Reteniendo humedad y nutrientes. Cal agrícola: Su función principal es regular la acidez que se presenta durante todo el proceso de la fermentación, cuando se está elaborando el abono orgánico. Agua: tiene como función homogeneizar la humedad de todos los ingredientes que componen el abono. Propicia las condiciones ideales para el buen desarrollo de la actividad y reproducción microbiológica, durante todo el proceso de la fermentación. Un exceso de agua impide que se lleve a cabo una buena descomposición del abono por lo que se pone putrefacta y un abono muy seco podría retardar el
  • 66. 63 proceso de descomposición de la materia, por lo cual es necesario aplicar la prueba del puño a la hora de aplicar el agua para establecer el punto óptimo de humedad, la cual consiste en tomar con la mano una cantidad de la mezcla y apretarla, de la cual no deberán salir gotas de agua entre los dedos y se deberá formar un terrón quebradizo en la mano. Figura 17. Prueba del puño. Tomada de manual práctico de agricultura orgánica y panes de piedra. Jairo Restrepo y Julius Hensel. 2009. Ilustración del proceso de preparación del montón. Las cantidades de materiales necesarios para la elaboración del Bokashi son las siguientes. Tabla 2. Materiales necesarios para preparación de abono Bokashi. Tomada de manual práctico de agricultura orgánica y panes de piedra. Jairo Restrepo y Julius Hensel. 2009. Ingredientes para la preparación de una muestra del abono fermentado básico, tipo Bokashi  2 quintales o costales de tierra cernida  2 quintales o costales de cascarilla de arroz o café o paja picada  2 quintales o costales de gallinaza o estiércol vacuno  1 quintal o costal de cisco de carbón bien quebrado  10 libras de pulidura o salvado de arroz  10 libras de cal dolomita o cal agrícola o ceniza de fogón  10 libras de tierra negra de floresta virgen  1 litro de melaza o jugo de caña piloncillo  100 gramos de levadura para pan, granulada o en barra  Agua (de acuerdo con la prueba del puño y solamente una vez)