SlideShare una empresa de Scribd logo
1 de 33
Clase 1
 Cuando se tienen dos o mas elementos simples de un circuito

conectados entre sí, estos forman un red eléctrica. Si esta red
contiene por lo menos una trayectoria cerrada, a través de la cual
circulan las cargas eléctricas, se tiene un circuito eléctrico.
 Una red eléctrica que contiene por lo menos un elemento activo

(una fuente de voltaje o de corriente) se llama red activa;
mientras que una red que no contiene ningún elemento activo
será red pasiva.
 Con dependencia en el tipo de elementos que contenga un

arreglo de elementos, será el nombre que reciba; por ejemplo, un
arreglo formado exclusivamente por resistores será un arreglo
resistivo (R).
 Cuando contiene resistores e inductores, será un arreglo resistivo

– inductivo (RL); será resistivo-capacitivo (RC) cuando sea una
conexión formada por resistores y capacitores ó bien será un
arregló RLC (resistivo-inductivo-capacitivo) cuando lo integren
elementos pasivos de los tres tipos que se han visto.
 Cuando contiene resistores e inductores, será un arreglo resistivo

– inductivo (RL); será resistivo-capacitivo (RC) cuando sea una
conexión formada por resistores y capacitores ó bien será un
arregló RLC (resistivo-inductivo-capacitivo) cuando lo integren
elementos pasivos de los tres tipos que se han visto.
 A continuación se verán algunos aspectos básicos en los que se

refiere a la representación y los tipos más usados en la solución
de problemas en ingeniería, en lo general, y en análisis de
circuitos en particular.
REPRESENTACIÓN ICÓNICA
 Es el tipo de representación que se utiliza para aquellas

reproducciones de seres u objetos de la vida real; pueden ser en
dos dimensiones (en un plano) o tres dimensiones.
REPRESENTACIÓN
DIAGRAMÁTICA
 Esta forma de representación, aun cuando no tiene parecido

alguno con su prototipo refleja alguna realidad del mismo.
 Diagramas esquemáticos
 Se utilizan para construir una replica de los circuitos reales y para

ayudar a localizar fallas en su funcionamiento. Es decir son una
especie de mapas que ayudan al experimentador a llevar un
seguimiento del sistema en cada una de sus partes.
DIAGRAMAS DE UN
CIRCUITO EQUIVALENTE
 Es una representación muy relacionada con la idea del modelo

de un circuito. Se obtiene al reemplazar en el diagrama
esquemático, los símbolos de cada componente, por su circuito
equivalente. El circuito equivalente se forma a partir de los cinco
elementos ideales y de los símbolos extras que designan las
condiciones ideales de un circuito.
DIAGRAMAS A BLOQUES
 Se utilizan para ayudar al experimentador y al diseñador a

describir la operación, de manera global y general de un
dispositivo, un instrumento o equipo o todo un sistema, que en su
esencia resultan complejos.
 La idea es utilizar dibujos de forma de rectangulos, llamados

bloques, para cada uno de los cuales existe una o varias vías de
entrada y una o mas vías de salida.
DIAGRAMAS A BLOQUES
 Los bloques se dibujan ordenadamente para que describan la

secuencia del proceso que representan.
REPRESENTACIÓN GRÁFICA
 Este tipo de representación, mediante segmentos de recta,

barras, sectores circulares, curvas es posible representar
magnitudes de naturaleza muy diversa como temperatura,
tiempo, presión, intensidad de corriente, potencia eléctrica. Este
tipo de representación es útil para fines de comunicación y
predicción de fenómenos o procesos.
REPRESENTACIÓN GRÁFICA
REPRESENTACIÓN
MATEMÁTICA

 Con este nombre se reconoce al conjunto de figuras, formas, o

imágenes mediante las que se representan conceptos e ideas.
Cada símbolo construye de acuerdo con alguna relación que
existe entre la propia imagen que lo constituye y el entendimiento
que el conocimiento percibe a través de ella.
 En el estudio de los circuitos eléctricos y electrónicos también se

usan los símbolos que representan a los diferentes
elementos, dispositivos, sistemas y procesos. Con base a ellos
se hacen las diversas representaciones que se han
mencionado, lo cual facilita enormemente el estudio y el
conocimiento de sistemas y circuitos complejos como los que en
la actualidad utilizan los diversos campos de la tecnología y la
ciencia.
 A continuación se presentan algunos de los símbolos mas

usados para representar los elementos y dispositivos en el área
de electrónica.
 A la

técnica que consiste en realizar experimentación y
observación sobre una representación de un objeto o sistema
real, se le conoce como simulación.

 En electrónica se utilizan principalmente dos tipos de simulación

la analógica y la digital.
 A diferencia de la simulación icónica, en el cual las realidades

físicas se reducen a modelos en todo semejantes al prototipo,
existe la simulación analógica, en la que el modelo no tiene
ningún parecido físico con su prototipo.
 En este tipo de simulación se utilizan los sistemas electrónicos

que son los encargados de llevar y traer señales eléctricas desde
el lugar donde se originan hasta algún puesto de control y
seguimiento. De hecho, el mundo real es analógico y a través de
estos sistemas, este mundo puede ser simulado en un tablero de
control o en el monitor de alguna computadora, quedando
representado por símbolos, luces colores, sonidos, cada uno con
un significado definido por los experimentadores.
 Básicamente consiste

en una serie de cálculos numéricos
realizados paso a paso y de una serie de decisiones, con
pequeños intervalos de variación, realizadas conforme a un
conjunto de reglas especificas. Esta característica la hace
adaptable a una computadora digital.
 El proceso de simulación, digital y analógica, además de hacer

posible la experimentación y mejores predicciones, presenta la
ventaja adicional de una escala de tiempos reducida; es decir,
por estos medios es posible simular años de tiempo real en horas
o minutos.
 Estos tipos de simulación, realizados en tiempos sorprendemente

cortos, sintetizan experiencias que, en condiciones normales,
requieren de años para adquirirlas. Esta cualidad de ahorro de
tiempo es una ventaja notable de la simulación.

Más contenido relacionado

Destacado (12)

Responde las preguntas que formulamos
Responde las preguntas que formulamosResponde las preguntas que formulamos
Responde las preguntas que formulamos
 
instalaciones electricas
instalaciones electricasinstalaciones electricas
instalaciones electricas
 
Circuitos paralelos 902 pc19
Circuitos paralelos 902 pc19Circuitos paralelos 902 pc19
Circuitos paralelos 902 pc19
 
Equipo 1
Equipo 1Equipo 1
Equipo 1
 
Equipo 2
Equipo 2Equipo 2
Equipo 2
 
Circuitos Serie RLC
Circuitos Serie RLCCircuitos Serie RLC
Circuitos Serie RLC
 
Circuito Paralelo
Circuito ParaleloCircuito Paralelo
Circuito Paralelo
 
Circuitos en paralelo
Circuitos en paraleloCircuitos en paralelo
Circuitos en paralelo
 
Circuitos paralelo
Circuitos paraleloCircuitos paralelo
Circuitos paralelo
 
Circuitos de C.A en estado estacionario
Circuitos de C.A en estado estacionarioCircuitos de C.A en estado estacionario
Circuitos de C.A en estado estacionario
 
Tema corriente alterna
Tema corriente alternaTema corriente alterna
Tema corriente alterna
 
CORRIENTE ALTERNA
CORRIENTE ALTERNACORRIENTE ALTERNA
CORRIENTE ALTERNA
 

Similar a Análisis de circuitos clase 1

Análisis de circuitos clase 1 Introduccion 2015
Análisis de circuitos clase 1 Introduccion 2015Análisis de circuitos clase 1 Introduccion 2015
Análisis de circuitos clase 1 Introduccion 2015Tensor
 
Análisis de circuitos clase 1
Análisis de circuitos clase 1Análisis de circuitos clase 1
Análisis de circuitos clase 1Tensor
 
Secuencia 28.doc
Secuencia 28.docSecuencia 28.doc
Secuencia 28.docSonia Ortiz
 
UNAMAD: CIRCUITOS Y MAQUINAS ELECTRICAS: 4 i@402 clase23may13
UNAMAD: CIRCUITOS Y MAQUINAS ELECTRICAS: 4 i@402 clase23may13UNAMAD: CIRCUITOS Y MAQUINAS ELECTRICAS: 4 i@402 clase23may13
UNAMAD: CIRCUITOS Y MAQUINAS ELECTRICAS: 4 i@402 clase23may13Saúl Montalván Apolaya
 
Aspectos importantes y relevantes de las lecturas unidad 2
Aspectos importantes y relevantes de las lecturas unidad 2Aspectos importantes y relevantes de las lecturas unidad 2
Aspectos importantes y relevantes de las lecturas unidad 2edwin891102
 
Presentacion de circuitos y relacion a la ingenieria de sistemas
Presentacion de circuitos y relacion a la ingenieria de sistemasPresentacion de circuitos y relacion a la ingenieria de sistemas
Presentacion de circuitos y relacion a la ingenieria de sistemasJulio Martinez Valerio
 
MODELOS MATEMÁTICOS ÁLGEBRA LINEAL. Presentación diseñada por el MTRO. JAVIER...
MODELOS MATEMÁTICOS ÁLGEBRA LINEAL. Presentación diseñada por el MTRO. JAVIER...MODELOS MATEMÁTICOS ÁLGEBRA LINEAL. Presentación diseñada por el MTRO. JAVIER...
MODELOS MATEMÁTICOS ÁLGEBRA LINEAL. Presentación diseñada por el MTRO. JAVIER...JAVIER SOLIS NOYOLA
 
Primera unidad simbología y normatividad
Primera unidad simbología y normatividadPrimera unidad simbología y normatividad
Primera unidad simbología y normatividadfernando hernandez
 
La electrónica y electricidad finall.pdf
La electrónica y electricidad finall.pdfLa electrónica y electricidad finall.pdf
La electrónica y electricidad finall.pdfDiegomauricioMedinam
 
La electrónica y electricidad finall.pdf
La electrónica y electricidad finall.pdfLa electrónica y electricidad finall.pdf
La electrónica y electricidad finall.pdfDiegomauricioMedinam
 
La electrónica y electricidad Alejandra Carrero, Gabriela Arango, Isabella M...
La electrónica y electricidad Alejandra Carrero, Gabriela Arango, Isabella M...La electrónica y electricidad Alejandra Carrero, Gabriela Arango, Isabella M...
La electrónica y electricidad Alejandra Carrero, Gabriela Arango, Isabella M...AlejandraCarrero6
 
La electrónica y electricidad finall.pdf
La electrónica y electricidad finall.pdfLa electrónica y electricidad finall.pdf
La electrónica y electricidad finall.pdfManuelaPeaFlorez
 
La electrónica y electricidad - Gabriela Arango, Ángel Cárdenas, Alejandra Ca...
La electrónica y electricidad - Gabriela Arango, Ángel Cárdenas, Alejandra Ca...La electrónica y electricidad - Gabriela Arango, Ángel Cárdenas, Alejandra Ca...
La electrónica y electricidad - Gabriela Arango, Ángel Cárdenas, Alejandra Ca...ngel943143
 
D i a_g_r_a_m_a_s_electronicos
D i a_g_r_a_m_a_s_electronicosD i a_g_r_a_m_a_s_electronicos
D i a_g_r_a_m_a_s_electronicosAlan Barillas
 
Sistema analogo electronica
Sistema analogo electronicaSistema analogo electronica
Sistema analogo electronicaHernan Serrato
 
Capitulo 1 sistemas de control AUTOMATICA
Capitulo 1 sistemas de control AUTOMATICACapitulo 1 sistemas de control AUTOMATICA
Capitulo 1 sistemas de control AUTOMATICANiina Kotomi
 
Act2_Morgado_Pérez_Jesús_Armando.pptx
Act2_Morgado_Pérez_Jesús_Armando.pptxAct2_Morgado_Pérez_Jesús_Armando.pptx
Act2_Morgado_Pérez_Jesús_Armando.pptxMPArmando
 
CUADERNILLO 1-1-AUTOMATISMO-SIMBOLOGIA-2023.docx
CUADERNILLO  1-1-AUTOMATISMO-SIMBOLOGIA-2023.docxCUADERNILLO  1-1-AUTOMATISMO-SIMBOLOGIA-2023.docx
CUADERNILLO 1-1-AUTOMATISMO-SIMBOLOGIA-2023.docxEspecialidad Indus
 
Sistemas y Procesos
Sistemas y ProcesosSistemas y Procesos
Sistemas y Procesosvfsc96
 

Similar a Análisis de circuitos clase 1 (20)

Análisis de circuitos clase 1 Introduccion 2015
Análisis de circuitos clase 1 Introduccion 2015Análisis de circuitos clase 1 Introduccion 2015
Análisis de circuitos clase 1 Introduccion 2015
 
Análisis de circuitos clase 1
Análisis de circuitos clase 1Análisis de circuitos clase 1
Análisis de circuitos clase 1
 
Circuito Eléctrico
Circuito EléctricoCircuito Eléctrico
Circuito Eléctrico
 
Secuencia 28.doc
Secuencia 28.docSecuencia 28.doc
Secuencia 28.doc
 
UNAMAD: CIRCUITOS Y MAQUINAS ELECTRICAS: 4 i@402 clase23may13
UNAMAD: CIRCUITOS Y MAQUINAS ELECTRICAS: 4 i@402 clase23may13UNAMAD: CIRCUITOS Y MAQUINAS ELECTRICAS: 4 i@402 clase23may13
UNAMAD: CIRCUITOS Y MAQUINAS ELECTRICAS: 4 i@402 clase23may13
 
Aspectos importantes y relevantes de las lecturas unidad 2
Aspectos importantes y relevantes de las lecturas unidad 2Aspectos importantes y relevantes de las lecturas unidad 2
Aspectos importantes y relevantes de las lecturas unidad 2
 
Presentacion de circuitos y relacion a la ingenieria de sistemas
Presentacion de circuitos y relacion a la ingenieria de sistemasPresentacion de circuitos y relacion a la ingenieria de sistemas
Presentacion de circuitos y relacion a la ingenieria de sistemas
 
MODELOS MATEMÁTICOS ÁLGEBRA LINEAL. Presentación diseñada por el MTRO. JAVIER...
MODELOS MATEMÁTICOS ÁLGEBRA LINEAL. Presentación diseñada por el MTRO. JAVIER...MODELOS MATEMÁTICOS ÁLGEBRA LINEAL. Presentación diseñada por el MTRO. JAVIER...
MODELOS MATEMÁTICOS ÁLGEBRA LINEAL. Presentación diseñada por el MTRO. JAVIER...
 
Primera unidad simbología y normatividad
Primera unidad simbología y normatividadPrimera unidad simbología y normatividad
Primera unidad simbología y normatividad
 
La electrónica y electricidad finall.pdf
La electrónica y electricidad finall.pdfLa electrónica y electricidad finall.pdf
La electrónica y electricidad finall.pdf
 
La electrónica y electricidad finall.pdf
La electrónica y electricidad finall.pdfLa electrónica y electricidad finall.pdf
La electrónica y electricidad finall.pdf
 
La electrónica y electricidad Alejandra Carrero, Gabriela Arango, Isabella M...
La electrónica y electricidad Alejandra Carrero, Gabriela Arango, Isabella M...La electrónica y electricidad Alejandra Carrero, Gabriela Arango, Isabella M...
La electrónica y electricidad Alejandra Carrero, Gabriela Arango, Isabella M...
 
La electrónica y electricidad finall.pdf
La electrónica y electricidad finall.pdfLa electrónica y electricidad finall.pdf
La electrónica y electricidad finall.pdf
 
La electrónica y electricidad - Gabriela Arango, Ángel Cárdenas, Alejandra Ca...
La electrónica y electricidad - Gabriela Arango, Ángel Cárdenas, Alejandra Ca...La electrónica y electricidad - Gabriela Arango, Ángel Cárdenas, Alejandra Ca...
La electrónica y electricidad - Gabriela Arango, Ángel Cárdenas, Alejandra Ca...
 
D i a_g_r_a_m_a_s_electronicos
D i a_g_r_a_m_a_s_electronicosD i a_g_r_a_m_a_s_electronicos
D i a_g_r_a_m_a_s_electronicos
 
Sistema analogo electronica
Sistema analogo electronicaSistema analogo electronica
Sistema analogo electronica
 
Capitulo 1 sistemas de control AUTOMATICA
Capitulo 1 sistemas de control AUTOMATICACapitulo 1 sistemas de control AUTOMATICA
Capitulo 1 sistemas de control AUTOMATICA
 
Act2_Morgado_Pérez_Jesús_Armando.pptx
Act2_Morgado_Pérez_Jesús_Armando.pptxAct2_Morgado_Pérez_Jesús_Armando.pptx
Act2_Morgado_Pérez_Jesús_Armando.pptx
 
CUADERNILLO 1-1-AUTOMATISMO-SIMBOLOGIA-2023.docx
CUADERNILLO  1-1-AUTOMATISMO-SIMBOLOGIA-2023.docxCUADERNILLO  1-1-AUTOMATISMO-SIMBOLOGIA-2023.docx
CUADERNILLO 1-1-AUTOMATISMO-SIMBOLOGIA-2023.docx
 
Sistemas y Procesos
Sistemas y ProcesosSistemas y Procesos
Sistemas y Procesos
 

Más de Tensor

Libertad
LibertadLibertad
LibertadTensor
 
Método de la regla falsa (o metodo de la falsa posición)
Método de la regla falsa (o metodo de la falsa posición)Método de la regla falsa (o metodo de la falsa posición)
Método de la regla falsa (o metodo de la falsa posición)Tensor
 
Metodo de la bisección
Metodo de la bisecciónMetodo de la bisección
Metodo de la bisecciónTensor
 
Transito vehicular
Transito vehicularTransito vehicular
Transito vehicularTensor
 
Teoria de colas
Teoria de colasTeoria de colas
Teoria de colasTensor
 
Practica 7 2016
Practica 7 2016Practica 7 2016
Practica 7 2016Tensor
 
Practica 6 2016
Practica 6 2016Practica 6 2016
Practica 6 2016Tensor
 
Game maker
Game makerGame maker
Game makerTensor
 
Practica 5 2016
Practica 5 2016Practica 5 2016
Practica 5 2016Tensor
 
Procesamiento de archivos
Procesamiento de archivosProcesamiento de archivos
Procesamiento de archivosTensor
 
Cadenas y funciones de cadena
Cadenas y funciones de cadenaCadenas y funciones de cadena
Cadenas y funciones de cadenaTensor
 
Simulación en promodel clase 04
Simulación en promodel clase 04Simulación en promodel clase 04
Simulación en promodel clase 04Tensor
 
Reduccion de orden
Reduccion de ordenReduccion de orden
Reduccion de ordenTensor
 
Variación+de+parametros
Variación+de+parametrosVariación+de+parametros
Variación+de+parametrosTensor
 
Coeficientes indeterminados enfoque de superposición
Coeficientes indeterminados   enfoque de superposiciónCoeficientes indeterminados   enfoque de superposición
Coeficientes indeterminados enfoque de superposiciónTensor
 
Bernoulli y ricatti
Bernoulli y ricattiBernoulli y ricatti
Bernoulli y ricattiTensor
 
Practica no. 3 tiempo de servicio
Practica no. 3 tiempo de servicioPractica no. 3 tiempo de servicio
Practica no. 3 tiempo de servicioTensor
 
Clase 14 ondas reflejadas
Clase 14 ondas reflejadasClase 14 ondas reflejadas
Clase 14 ondas reflejadasTensor
 
Ondas em
Ondas emOndas em
Ondas emTensor
 
Clase 7 ondas electromagneticas
Clase 7 ondas electromagneticasClase 7 ondas electromagneticas
Clase 7 ondas electromagneticasTensor
 

Más de Tensor (20)

Libertad
LibertadLibertad
Libertad
 
Método de la regla falsa (o metodo de la falsa posición)
Método de la regla falsa (o metodo de la falsa posición)Método de la regla falsa (o metodo de la falsa posición)
Método de la regla falsa (o metodo de la falsa posición)
 
Metodo de la bisección
Metodo de la bisecciónMetodo de la bisección
Metodo de la bisección
 
Transito vehicular
Transito vehicularTransito vehicular
Transito vehicular
 
Teoria de colas
Teoria de colasTeoria de colas
Teoria de colas
 
Practica 7 2016
Practica 7 2016Practica 7 2016
Practica 7 2016
 
Practica 6 2016
Practica 6 2016Practica 6 2016
Practica 6 2016
 
Game maker
Game makerGame maker
Game maker
 
Practica 5 2016
Practica 5 2016Practica 5 2016
Practica 5 2016
 
Procesamiento de archivos
Procesamiento de archivosProcesamiento de archivos
Procesamiento de archivos
 
Cadenas y funciones de cadena
Cadenas y funciones de cadenaCadenas y funciones de cadena
Cadenas y funciones de cadena
 
Simulación en promodel clase 04
Simulación en promodel clase 04Simulación en promodel clase 04
Simulación en promodel clase 04
 
Reduccion de orden
Reduccion de ordenReduccion de orden
Reduccion de orden
 
Variación+de+parametros
Variación+de+parametrosVariación+de+parametros
Variación+de+parametros
 
Coeficientes indeterminados enfoque de superposición
Coeficientes indeterminados   enfoque de superposiciónCoeficientes indeterminados   enfoque de superposición
Coeficientes indeterminados enfoque de superposición
 
Bernoulli y ricatti
Bernoulli y ricattiBernoulli y ricatti
Bernoulli y ricatti
 
Practica no. 3 tiempo de servicio
Practica no. 3 tiempo de servicioPractica no. 3 tiempo de servicio
Practica no. 3 tiempo de servicio
 
Clase 14 ondas reflejadas
Clase 14 ondas reflejadasClase 14 ondas reflejadas
Clase 14 ondas reflejadas
 
Ondas em
Ondas emOndas em
Ondas em
 
Clase 7 ondas electromagneticas
Clase 7 ondas electromagneticasClase 7 ondas electromagneticas
Clase 7 ondas electromagneticas
 

Análisis de circuitos clase 1

  • 2.  Cuando se tienen dos o mas elementos simples de un circuito conectados entre sí, estos forman un red eléctrica. Si esta red contiene por lo menos una trayectoria cerrada, a través de la cual circulan las cargas eléctricas, se tiene un circuito eléctrico.
  • 3.
  • 4.  Una red eléctrica que contiene por lo menos un elemento activo (una fuente de voltaje o de corriente) se llama red activa; mientras que una red que no contiene ningún elemento activo será red pasiva.  Con dependencia en el tipo de elementos que contenga un arreglo de elementos, será el nombre que reciba; por ejemplo, un arreglo formado exclusivamente por resistores será un arreglo resistivo (R).
  • 5.  Cuando contiene resistores e inductores, será un arreglo resistivo – inductivo (RL); será resistivo-capacitivo (RC) cuando sea una conexión formada por resistores y capacitores ó bien será un arregló RLC (resistivo-inductivo-capacitivo) cuando lo integren elementos pasivos de los tres tipos que se han visto.
  • 6.  Cuando contiene resistores e inductores, será un arreglo resistivo – inductivo (RL); será resistivo-capacitivo (RC) cuando sea una conexión formada por resistores y capacitores ó bien será un arregló RLC (resistivo-inductivo-capacitivo) cuando lo integren elementos pasivos de los tres tipos que se han visto.
  • 7.  A continuación se verán algunos aspectos básicos en los que se refiere a la representación y los tipos más usados en la solución de problemas en ingeniería, en lo general, y en análisis de circuitos en particular.
  • 8. REPRESENTACIÓN ICÓNICA  Es el tipo de representación que se utiliza para aquellas reproducciones de seres u objetos de la vida real; pueden ser en dos dimensiones (en un plano) o tres dimensiones.
  • 9. REPRESENTACIÓN DIAGRAMÁTICA  Esta forma de representación, aun cuando no tiene parecido alguno con su prototipo refleja alguna realidad del mismo.  Diagramas esquemáticos  Se utilizan para construir una replica de los circuitos reales y para ayudar a localizar fallas en su funcionamiento. Es decir son una especie de mapas que ayudan al experimentador a llevar un seguimiento del sistema en cada una de sus partes.
  • 10.
  • 11. DIAGRAMAS DE UN CIRCUITO EQUIVALENTE  Es una representación muy relacionada con la idea del modelo de un circuito. Se obtiene al reemplazar en el diagrama esquemático, los símbolos de cada componente, por su circuito equivalente. El circuito equivalente se forma a partir de los cinco elementos ideales y de los símbolos extras que designan las condiciones ideales de un circuito.
  • 12. DIAGRAMAS A BLOQUES  Se utilizan para ayudar al experimentador y al diseñador a describir la operación, de manera global y general de un dispositivo, un instrumento o equipo o todo un sistema, que en su esencia resultan complejos.  La idea es utilizar dibujos de forma de rectangulos, llamados bloques, para cada uno de los cuales existe una o varias vías de entrada y una o mas vías de salida.
  • 13. DIAGRAMAS A BLOQUES  Los bloques se dibujan ordenadamente para que describan la secuencia del proceso que representan.
  • 14. REPRESENTACIÓN GRÁFICA  Este tipo de representación, mediante segmentos de recta, barras, sectores circulares, curvas es posible representar magnitudes de naturaleza muy diversa como temperatura, tiempo, presión, intensidad de corriente, potencia eléctrica. Este tipo de representación es útil para fines de comunicación y predicción de fenómenos o procesos.
  • 17.  Con este nombre se reconoce al conjunto de figuras, formas, o imágenes mediante las que se representan conceptos e ideas. Cada símbolo construye de acuerdo con alguna relación que existe entre la propia imagen que lo constituye y el entendimiento que el conocimiento percibe a través de ella.
  • 18.  En el estudio de los circuitos eléctricos y electrónicos también se usan los símbolos que representan a los diferentes elementos, dispositivos, sistemas y procesos. Con base a ellos se hacen las diversas representaciones que se han mencionado, lo cual facilita enormemente el estudio y el conocimiento de sistemas y circuitos complejos como los que en la actualidad utilizan los diversos campos de la tecnología y la ciencia.
  • 19.  A continuación se presentan algunos de los símbolos mas usados para representar los elementos y dispositivos en el área de electrónica.
  • 20.
  • 21.
  • 22.
  • 23.
  • 24.
  • 25.
  • 26.
  • 27.
  • 28.
  • 29.  A la técnica que consiste en realizar experimentación y observación sobre una representación de un objeto o sistema real, se le conoce como simulación.  En electrónica se utilizan principalmente dos tipos de simulación la analógica y la digital.
  • 30.  A diferencia de la simulación icónica, en el cual las realidades físicas se reducen a modelos en todo semejantes al prototipo, existe la simulación analógica, en la que el modelo no tiene ningún parecido físico con su prototipo.
  • 31.  En este tipo de simulación se utilizan los sistemas electrónicos que son los encargados de llevar y traer señales eléctricas desde el lugar donde se originan hasta algún puesto de control y seguimiento. De hecho, el mundo real es analógico y a través de estos sistemas, este mundo puede ser simulado en un tablero de control o en el monitor de alguna computadora, quedando representado por símbolos, luces colores, sonidos, cada uno con un significado definido por los experimentadores.
  • 32.  Básicamente consiste en una serie de cálculos numéricos realizados paso a paso y de una serie de decisiones, con pequeños intervalos de variación, realizadas conforme a un conjunto de reglas especificas. Esta característica la hace adaptable a una computadora digital.
  • 33.  El proceso de simulación, digital y analógica, además de hacer posible la experimentación y mejores predicciones, presenta la ventaja adicional de una escala de tiempos reducida; es decir, por estos medios es posible simular años de tiempo real en horas o minutos.  Estos tipos de simulación, realizados en tiempos sorprendemente cortos, sintetizan experiencias que, en condiciones normales, requieren de años para adquirirlas. Esta cualidad de ahorro de tiempo es una ventaja notable de la simulación.