SlideShare una empresa de Scribd logo
1 de 40
Clase 1
20-Enero-2015
 Cuando se tienen dos o mas elementos simples de un circuito
conectados entre sí, estos forman un red eléctrica. Si esta red
contiene por lo menos una trayectoria cerrada, a través de la
cual circulan las corrientes eléctricas, se conoce como un
circuito eléctrico.
 Una red eléctrica que contiene por lo menos un elemento activo
(una fuente de voltaje o de corriente) se llama red activa;
mientras que una red que no contiene ningún elemento activo
será red pasiva.
 Con dependencia en el tipo de elementos que contenga un
arreglo de elementos, será el nombre que reciba; por ejemplo,
un arreglo formado exclusivamente por resistores será un
arreglo resistivo (R).
 Cuando contiene resistores e inductores, será un arreglo
resistivo – inductivo (RL); será resistivo-capacitivo (RC)
cuando sea una conexión formada por resistores y capacitores
ó bien será un arregló RLC (resistivo-inductivo-capacitivo)
cuando lo integren elementos pasivos de los tres tipos que se
han visto.
 Cuando contiene resistores e inductores, será un arreglo
resistivo – inductivo (RL); será resistivo-capacitivo (RC)
cuando sea una conexión formada por resistores y capacitores
ó bien será un arregló RLC (resistivo-inductivo-capacitivo)
cuando lo integren elementos pasivos de los tres tipos que se
han visto.
 A continuación se verán algunos aspectos básicos en los que se
refiere a la representación y los tipos más usados en la
solución de problemas en ingeniería, en lo general, y en
análisis de circuitos en particular.
REPRESENTACIÓN
ICÓNICA
 Es el tipo de representación que se utiliza para aquellas
reproducciones de seres u objetos de la vida real; pueden ser en
dos dimensiones (en un plano) o tres dimensiones.
REPRESENTACIÓN
DIAGRAMÁTICA
 Esta forma de representación, aun cuando no tiene parecido
alguno con su prototipo refleja alguna realidad del mismo.
 Diagramas esquemáticos
 Se utilizan para construir una replica de los circuitos reales y
para ayudar a localizar fallas en su funcionamiento. Es decir
son una especie de mapas que ayudan al experimentador a
llevar un seguimiento del sistema en cada una de sus partes.
DIAGRAMAS DE UN
CIRCUITO EQUIVALENTE
 Es una representación muy relacionada con la idea del modelo
de un circuito. Se obtiene al reemplazar en el diagrama
esquemático, los símbolos de cada componente, por su circuito
equivalente. El circuito equivalente se forma a partir de los
cinco elementos ideales y de los símbolos extras que designan
las condiciones ideales de un circuito.
DIAGRAMAS A BLOQUES
 Se utilizan para ayudar al experimentador y al diseñador a
describir la operación, de manera global y general de un
dispositivo, un instrumento o equipo o todo un sistema, que en
su esencia resultan complejos.
 La idea es utilizar dibujos de forma de rectangulos, llamados
bloques, para cada uno de los cuales existe una o varias vías de
entrada y una o mas vías de salida.
DIAGRAMAS A BLOQUES
 Los bloques se dibujan ordenadamente para que describan la
secuencia del proceso que representan.
DIAGRAMAS A BLOQUES
REPRESENTACIÓN
GRÁFICA
 Este tipo de representación, mediante segmentos de recta,
barras, sectores circulares, curvas es posible representar
magnitudes de naturaleza muy diversa como temperatura,
tiempo, presión, intensidad de corriente, potencia eléctrica.
Este tipo de representación es útil para fines de comunicación
y predicción de fenómenos o procesos.
REPRESENTACIÓN
GRÁFICA
REPRESENTACIÓN
MATEMÁTICA
 La expresión 𝑣 𝑡 = 𝐴𝑠𝑒𝑛𝜔𝑡
 Es un modelo matemático que describe la forma en que un
voltaje adquiere valores instantáneos en función del tiempo y
predice el valor de dicho voltaje cuando se conoce el valor del
tiempo en 𝑡 en segundos, la amplitud 𝐴 𝑣𝑜𝑙𝑡𝑠 y la frecuencia
𝜔
𝑟𝑎𝑑
𝑠
.
 Con este nombre se reconoce al conjunto de figuras, formas, o
imágenes mediante las que se representan conceptos e ideas.
Cada símbolo construye de acuerdo con alguna relación que
existe entre la propia imagen que lo constituye y el
entendimiento que el conocimiento percibe a través de ella.
 En el estudio de los circuitos eléctricos y electrónicos también
se usan los símbolos que representan a los diferentes
elementos, dispositivos, sistemas y procesos. Con base a ellos
se hacen las diversas representaciones que se han mencionado,
lo cual facilita enormemente el estudio y el conocimiento de
sistemas y circuitos complejos como los que en la actualidad
utilizan los diversos campos de la tecnología y la ciencia.
 A continuación se presentan algunos de los símbolos mas
usados para representar los elementos y dispositivos en el área
de electrónica.
 A la técnica que consiste en realizar experimentación y
observación sobre una representación de un objeto o sistema
real, se le conoce como simulación.
 En electrónica se utilizan principalmente dos tipos de
simulación la analógica y la digital.
 A diferencia de la simulación icónica, en el cual las realidades
físicas se reducen a modelos en todo semejantes al prototipo,
existe la simulación analógica, en la que el modelo no tiene
ningún parecido físico con su prototipo.
 En este tipo de simulación se utilizan los sistemas electrónicos
que son los encargados de llevar y traer señales eléctricas
desde el lugar donde se originan hasta algún puesto de control
y seguimiento. De hecho, el mundo real es analógico y a través
de estos sistemas, este mundo puede ser simulado en un
tablero de control o en el monitor de alguna computadora,
quedando representado por símbolos, luces colores, sonidos,
cada uno con un significado definido por los experimentadores.
 Básicamente consiste en una serie de cálculos numéricos
realizados paso a paso y de una serie de decisiones, con
pequeños intervalos de variación, realizadas conforme a un
conjunto de reglas especificas. Esta característica la hace
adaptable a una computadora digital.
 El proceso de simulación, digital y analógica, además de hacer
posible la experimentación y mejores predicciones, presenta la
ventaja adicional de una escala de tiempos reducida; es decir,
por estos medios es posible simular años de tiempo real en
horas o minutos.
 Estos tipos de simulación, realizados en tiempos
sorprendentemente cortos, sintetizan experiencias que, en
condiciones normales, requieren de años para adquirirlas. Esta
cualidad de ahorro de tiempo es una ventaja notable de la
simulación.
 Las computadoras y calculadoras son ampliamente usadas
para el análisis y diseño de circuitos.
 El software que se suele emplear para este propósito incluye el
de simulación (tal como Multisim, Proteus y PSpice) y el de
análisis numérico como Mathcad y Matlab.
 El software de simulación resuelve problemas al emular el
comportamiento de los circuitos eléctricos y electrónicos en vez
de resolver conjuntos de ecuaciones.
 Para analizar un circuito, se “construye” en la pantalla
mediante la selección de componentes (resistores, capacitores,
transistores, etc.) de una biblioteca de partes, los cuales se
colocan e interconectan para formarlo.
 Se puede cambiar el valor de los componentes, las conexiones y
las opciones de análisis de forma instantánea con un clic del
ratón.
 La mayoría de los paquetes de simulación usan una máquina
de software llamada SPICE, el acrónimo en inglés de
Programa de Simulación con Énfasis en Circuitos Integrados.
Tres de los productos más populares son Pspice, Multisim, y
Proteus las herramientas de simulación que se usan mas
comunmente. Cada una tiene sus ventajas, Multisim modela
acercándose más a una mesa de trabajo real (completa con
medidores reales) que Pspice y Proteus.
 Los valores eléctricos varían tremendamente en tamaño. Por
ejemplo, en los sistemas electrónicos los voltajes pueden variar
desde unas cuantas millonésimas de volt hasta varios miles de
volts, mientras que en sistemas de potencia son comunes los
voltajes de hasta varios cientos de miles. Para manejar este
gran intervalo, se usa la notación de potencias de diez
utilizaremos la siguiente tabla.
 Para expresar un número en la notación de potencia de diez, se
mueve el punto decimal a donde se quiera, y entonces se
multiplica el resultado por la potencia de diez requerida para
restaurar el número a su valor original. Entonces, 247 000 =
2.47 × 105. (El número 10 se llama la base y su potencia se
llama el exponente.)
 Una manera fácil de determinar el exponente es contar el
número de lugares (derecha o izquierda) que se mueve el punto
decimal. Esto es
 De manera similar, el número 0.00369 se puede expresar como
3.69 × 10−3 como se ilustra abajo.
 En el trabajo científico es común encontrar números muy
grandes y muy pequeños expresados en notación de potencias
de 10. Sin embargo, en ingeniería, ciertos elementos de estilo y
práctica estándar han hecho surgir lo que se conoce como
notación de ingeniería, en la cual es más común usar prefijos
en lugar de potencias de 10.
 Los prefijos más comunes (junto con sus símbolos) se enlistan
en la tabla siguiente. (Nota: La notación va en potencias de 10
de tres en tres.)
 Como ejemplo, mientras que una corriente de 0.0045 A
(amperes) puede expresarse como 4.5 × 10−3 𝐴 , se prefiere
expresar como 4.5 𝑚𝐴 𝑜 𝑐𝑜𝑚𝑜 4.5 𝑚𝑖𝑙𝑖𝑎𝑚𝑝𝑒𝑟𝑒𝑠 . De aquí en
adelante se usará la notación de ingeniería casi
exclusivamente.

Más contenido relacionado

La actualidad más candente

La actualidad más candente (18)

Aplicaciones de los sistemas ecuaciones a la electricidad
Aplicaciones de los sistemas ecuaciones a la electricidadAplicaciones de los sistemas ecuaciones a la electricidad
Aplicaciones de los sistemas ecuaciones a la electricidad
 
Enunciados Examenes Selectividad Electrotecnia Andalucia 2003-2013
Enunciados Examenes Selectividad Electrotecnia Andalucia 2003-2013Enunciados Examenes Selectividad Electrotecnia Andalucia 2003-2013
Enunciados Examenes Selectividad Electrotecnia Andalucia 2003-2013
 
U1 elementos
U1 elementosU1 elementos
U1 elementos
 
TRANSFORMADA DE LAPLACE PARA CIRCUITOS RLC
TRANSFORMADA  DE LAPLACE PARA CIRCUITOS RLCTRANSFORMADA  DE LAPLACE PARA CIRCUITOS RLC
TRANSFORMADA DE LAPLACE PARA CIRCUITOS RLC
 
Trabajo colaborativo1 grupo202
Trabajo colaborativo1 grupo202Trabajo colaborativo1 grupo202
Trabajo colaborativo1 grupo202
 
Informe trabajo electrónica 2 (2)
Informe trabajo electrónica 2 (2)Informe trabajo electrónica 2 (2)
Informe trabajo electrónica 2 (2)
 
1 ecuaciones de maxwell
1 ecuaciones de maxwell1 ecuaciones de maxwell
1 ecuaciones de maxwell
 
Chevrotronica Ii
Chevrotronica IiChevrotronica Ii
Chevrotronica Ii
 
Componentes simetricas
Componentes simetricasComponentes simetricas
Componentes simetricas
 
teoria de mallas
teoria de mallasteoria de mallas
teoria de mallas
 
59069331 manual-logica-y-neumatica
59069331 manual-logica-y-neumatica59069331 manual-logica-y-neumatica
59069331 manual-logica-y-neumatica
 
Flujo de Potencia
Flujo de Potencia Flujo de Potencia
Flujo de Potencia
 
DETERMINACION VELOCIDAD DE LA LUZ
DETERMINACION VELOCIDAD DE LA LUZ DETERMINACION VELOCIDAD DE LA LUZ
DETERMINACION VELOCIDAD DE LA LUZ
 
Manual
ManualManual
Manual
 
Electrónica
ElectrónicaElectrónica
Electrónica
 
Diodos
DiodosDiodos
Diodos
 
Flujo de carga
Flujo de cargaFlujo de carga
Flujo de carga
 
1er infocircuitos
1er infocircuitos1er infocircuitos
1er infocircuitos
 

Destacado

electronica Temas 1 Y 2
electronica Temas 1 Y 2electronica Temas 1 Y 2
electronica Temas 1 Y 2ariasreinel1
 
Exp cap-2-circ-electricos
Exp cap-2-circ-electricosExp cap-2-circ-electricos
Exp cap-2-circ-electricosmaria_amanta
 
Física ii (electricidad) clase 03
Física ii (electricidad)   clase 03Física ii (electricidad)   clase 03
Física ii (electricidad) clase 03qrerock
 
Ejercicios resueltos diagrama de fases
Ejercicios resueltos diagrama de fasesEjercicios resueltos diagrama de fases
Ejercicios resueltos diagrama de fasesNNEMESIXX
 
Solucionario de Análisis de Circuitos en Ingeniería 7ma edicion Hayt&Kemmerly
Solucionario de Análisis de Circuitos en Ingeniería 7ma edicion Hayt&KemmerlySolucionario de Análisis de Circuitos en Ingeniería 7ma edicion Hayt&Kemmerly
Solucionario de Análisis de Circuitos en Ingeniería 7ma edicion Hayt&KemmerlyCristian Pisco Intriago
 
Fundamentos de-electromagnetismo-para-ingenieria-david-k-cheng
Fundamentos de-electromagnetismo-para-ingenieria-david-k-chengFundamentos de-electromagnetismo-para-ingenieria-david-k-cheng
Fundamentos de-electromagnetismo-para-ingenieria-david-k-chengOmar Corazza
 
Solucionario alonso finn-172960617-fisica-vol-2- excelente
Solucionario alonso finn-172960617-fisica-vol-2- excelenteSolucionario alonso finn-172960617-fisica-vol-2- excelente
Solucionario alonso finn-172960617-fisica-vol-2- excelente.. ..
 
Problemas de p f-e
Problemas de p f-eProblemas de p f-e
Problemas de p f-ejoaquings
 
problemas-de-teoria-de-circuitos
problemas-de-teoria-de-circuitosproblemas-de-teoria-de-circuitos
problemas-de-teoria-de-circuitosdesfaiter
 
Problemas resueltos-cap-23-fisica-serway
Problemas resueltos-cap-23-fisica-serwayProblemas resueltos-cap-23-fisica-serway
Problemas resueltos-cap-23-fisica-serwayjoaquings
 
Diagrama de fases
Diagrama de fasesDiagrama de fases
Diagrama de fasesandrsn01
 
Diagrama de fases ingenieria industrial - daniel gomariz
Diagrama de fases   ingenieria industrial - daniel gomarizDiagrama de fases   ingenieria industrial - daniel gomariz
Diagrama de fases ingenieria industrial - daniel gomarizDaniel Gomariz
 
Ley de coulomb problemas resueltos-gonzalo revelo pabon
Ley de coulomb  problemas resueltos-gonzalo revelo pabonLey de coulomb  problemas resueltos-gonzalo revelo pabon
Ley de coulomb problemas resueltos-gonzalo revelo pabonGONZALO REVELO PABON . GORETTI
 
Problemas resueltos-cap-28-fisica-serway
Problemas resueltos-cap-28-fisica-serwayProblemas resueltos-cap-28-fisica-serway
Problemas resueltos-cap-28-fisica-serwayEsteban Esteb
 

Destacado (16)

electronica Temas 1 Y 2
electronica Temas 1 Y 2electronica Temas 1 Y 2
electronica Temas 1 Y 2
 
Exp cap-2-circ-electricos
Exp cap-2-circ-electricosExp cap-2-circ-electricos
Exp cap-2-circ-electricos
 
Elementos de electromagnetismo
Elementos de electromagnetismoElementos de electromagnetismo
Elementos de electromagnetismo
 
Física ii (electricidad) clase 03
Física ii (electricidad)   clase 03Física ii (electricidad)   clase 03
Física ii (electricidad) clase 03
 
Ejercicios resueltos diagrama de fases
Ejercicios resueltos diagrama de fasesEjercicios resueltos diagrama de fases
Ejercicios resueltos diagrama de fases
 
Solucionario de Análisis de Circuitos en Ingeniería 7ma edicion Hayt&Kemmerly
Solucionario de Análisis de Circuitos en Ingeniería 7ma edicion Hayt&KemmerlySolucionario de Análisis de Circuitos en Ingeniería 7ma edicion Hayt&Kemmerly
Solucionario de Análisis de Circuitos en Ingeniería 7ma edicion Hayt&Kemmerly
 
Fundamentos de-electromagnetismo-para-ingenieria-david-k-cheng
Fundamentos de-electromagnetismo-para-ingenieria-david-k-chengFundamentos de-electromagnetismo-para-ingenieria-david-k-cheng
Fundamentos de-electromagnetismo-para-ingenieria-david-k-cheng
 
Solucionario alonso finn-172960617-fisica-vol-2- excelente
Solucionario alonso finn-172960617-fisica-vol-2- excelenteSolucionario alonso finn-172960617-fisica-vol-2- excelente
Solucionario alonso finn-172960617-fisica-vol-2- excelente
 
Problemas de p f-e
Problemas de p f-eProblemas de p f-e
Problemas de p f-e
 
problemas-de-teoria-de-circuitos
problemas-de-teoria-de-circuitosproblemas-de-teoria-de-circuitos
problemas-de-teoria-de-circuitos
 
Problemas resueltos-cap-23-fisica-serway
Problemas resueltos-cap-23-fisica-serwayProblemas resueltos-cap-23-fisica-serway
Problemas resueltos-cap-23-fisica-serway
 
Diagrama de fases
Diagrama de fasesDiagrama de fases
Diagrama de fases
 
Diagrama de fases ingenieria industrial - daniel gomariz
Diagrama de fases   ingenieria industrial - daniel gomarizDiagrama de fases   ingenieria industrial - daniel gomariz
Diagrama de fases ingenieria industrial - daniel gomariz
 
Diagramas de fases ejercicios y problemas
Diagramas de fases ejercicios y problemasDiagramas de fases ejercicios y problemas
Diagramas de fases ejercicios y problemas
 
Ley de coulomb problemas resueltos-gonzalo revelo pabon
Ley de coulomb  problemas resueltos-gonzalo revelo pabonLey de coulomb  problemas resueltos-gonzalo revelo pabon
Ley de coulomb problemas resueltos-gonzalo revelo pabon
 
Problemas resueltos-cap-28-fisica-serway
Problemas resueltos-cap-28-fisica-serwayProblemas resueltos-cap-28-fisica-serway
Problemas resueltos-cap-28-fisica-serway
 

Similar a Análisis de circuitos clase 1 Introduccion 2015

Análisis de circuitos clase 1 Sep
Análisis de circuitos clase 1 SepAnálisis de circuitos clase 1 Sep
Análisis de circuitos clase 1 SepTensor
 
Parte 1 Clase 1 UVM
Parte 1 Clase 1 UVMParte 1 Clase 1 UVM
Parte 1 Clase 1 UVMTensor
 
Parte 1 Clase 1 UVM
Parte 1 Clase 1 UVMParte 1 Clase 1 UVM
Parte 1 Clase 1 UVMTensor
 
AC clase 1
AC clase 1AC clase 1
AC clase 1Tensor
 
Análisis de circuitos clase 1
Análisis de circuitos clase 1Análisis de circuitos clase 1
Análisis de circuitos clase 1Tensor
 
Análisis de circuitos clase 1
Análisis de circuitos clase 1Análisis de circuitos clase 1
Análisis de circuitos clase 1Tensor
 
Análisis de circuitos clase 1
Análisis de circuitos clase 1Análisis de circuitos clase 1
Análisis de circuitos clase 1Tensor
 
Primera unidad simbología y normatividad
Primera unidad simbología y normatividadPrimera unidad simbología y normatividad
Primera unidad simbología y normatividadfernando hernandez
 
Secuencia 28.doc
Secuencia 28.docSecuencia 28.doc
Secuencia 28.docSonia Ortiz
 
MODELOS MATEMÁTICOS ÁLGEBRA LINEAL. Presentación diseñada por el MTRO. JAVIER...
MODELOS MATEMÁTICOS ÁLGEBRA LINEAL. Presentación diseñada por el MTRO. JAVIER...MODELOS MATEMÁTICOS ÁLGEBRA LINEAL. Presentación diseñada por el MTRO. JAVIER...
MODELOS MATEMÁTICOS ÁLGEBRA LINEAL. Presentación diseñada por el MTRO. JAVIER...JAVIER SOLIS NOYOLA
 
UNAMAD: CIRCUITOS Y MAQUINAS ELECTRICAS: 4 i@402 clase23may13
UNAMAD: CIRCUITOS Y MAQUINAS ELECTRICAS: 4 i@402 clase23may13UNAMAD: CIRCUITOS Y MAQUINAS ELECTRICAS: 4 i@402 clase23may13
UNAMAD: CIRCUITOS Y MAQUINAS ELECTRICAS: 4 i@402 clase23may13Saúl Montalván Apolaya
 
Universidad nacional autónoma de méxico cibernetica
Universidad nacional autónoma de méxico ciberneticaUniversidad nacional autónoma de méxico cibernetica
Universidad nacional autónoma de méxico ciberneticaYao Sanchez Quezada
 
Aspectos importantes y relevantes de las lecturas unidad 2
Aspectos importantes y relevantes de las lecturas unidad 2Aspectos importantes y relevantes de las lecturas unidad 2
Aspectos importantes y relevantes de las lecturas unidad 2edwin891102
 
CUADERNILLO 1-1-AUTOMATISMO-SIMBOLOGIA-2023.docx
CUADERNILLO  1-1-AUTOMATISMO-SIMBOLOGIA-2023.docxCUADERNILLO  1-1-AUTOMATISMO-SIMBOLOGIA-2023.docx
CUADERNILLO 1-1-AUTOMATISMO-SIMBOLOGIA-2023.docxEspecialidad Indus
 
Modelos Matemáticos para la solución de circuitos
Modelos Matemáticos para la solución de circuitosModelos Matemáticos para la solución de circuitos
Modelos Matemáticos para la solución de circuitosFernando Marcos Marcos
 
La electrónica y electricidad finall.pdf
La electrónica y electricidad finall.pdfLa electrónica y electricidad finall.pdf
La electrónica y electricidad finall.pdfDiegomauricioMedinam
 
La electrónica y electricidad finall.pdf
La electrónica y electricidad finall.pdfLa electrónica y electricidad finall.pdf
La electrónica y electricidad finall.pdfDiegomauricioMedinam
 
La electrónica y electricidad Alejandra Carrero, Gabriela Arango, Isabella M...
La electrónica y electricidad Alejandra Carrero, Gabriela Arango, Isabella M...La electrónica y electricidad Alejandra Carrero, Gabriela Arango, Isabella M...
La electrónica y electricidad Alejandra Carrero, Gabriela Arango, Isabella M...AlejandraCarrero6
 

Similar a Análisis de circuitos clase 1 Introduccion 2015 (20)

Análisis de circuitos clase 1 Sep
Análisis de circuitos clase 1 SepAnálisis de circuitos clase 1 Sep
Análisis de circuitos clase 1 Sep
 
Parte 1 Clase 1 UVM
Parte 1 Clase 1 UVMParte 1 Clase 1 UVM
Parte 1 Clase 1 UVM
 
Parte 1 Clase 1 UVM
Parte 1 Clase 1 UVMParte 1 Clase 1 UVM
Parte 1 Clase 1 UVM
 
AC clase 1
AC clase 1AC clase 1
AC clase 1
 
Análisis de circuitos clase 1
Análisis de circuitos clase 1Análisis de circuitos clase 1
Análisis de circuitos clase 1
 
Análisis de circuitos clase 1
Análisis de circuitos clase 1Análisis de circuitos clase 1
Análisis de circuitos clase 1
 
Análisis de circuitos clase 1
Análisis de circuitos clase 1Análisis de circuitos clase 1
Análisis de circuitos clase 1
 
Primera unidad simbología y normatividad
Primera unidad simbología y normatividadPrimera unidad simbología y normatividad
Primera unidad simbología y normatividad
 
Secuencia 28.doc
Secuencia 28.docSecuencia 28.doc
Secuencia 28.doc
 
MODELOS MATEMÁTICOS ÁLGEBRA LINEAL. Presentación diseñada por el MTRO. JAVIER...
MODELOS MATEMÁTICOS ÁLGEBRA LINEAL. Presentación diseñada por el MTRO. JAVIER...MODELOS MATEMÁTICOS ÁLGEBRA LINEAL. Presentación diseñada por el MTRO. JAVIER...
MODELOS MATEMÁTICOS ÁLGEBRA LINEAL. Presentación diseñada por el MTRO. JAVIER...
 
UNAMAD: CIRCUITOS Y MAQUINAS ELECTRICAS: 4 i@402 clase23may13
UNAMAD: CIRCUITOS Y MAQUINAS ELECTRICAS: 4 i@402 clase23may13UNAMAD: CIRCUITOS Y MAQUINAS ELECTRICAS: 4 i@402 clase23may13
UNAMAD: CIRCUITOS Y MAQUINAS ELECTRICAS: 4 i@402 clase23may13
 
Circuito Eléctrico
Circuito EléctricoCircuito Eléctrico
Circuito Eléctrico
 
Universidad nacional autónoma de méxico cibernetica
Universidad nacional autónoma de méxico ciberneticaUniversidad nacional autónoma de méxico cibernetica
Universidad nacional autónoma de méxico cibernetica
 
Aspectos importantes y relevantes de las lecturas unidad 2
Aspectos importantes y relevantes de las lecturas unidad 2Aspectos importantes y relevantes de las lecturas unidad 2
Aspectos importantes y relevantes de las lecturas unidad 2
 
CUADERNILLO 1-1-AUTOMATISMO-SIMBOLOGIA-2023.docx
CUADERNILLO  1-1-AUTOMATISMO-SIMBOLOGIA-2023.docxCUADERNILLO  1-1-AUTOMATISMO-SIMBOLOGIA-2023.docx
CUADERNILLO 1-1-AUTOMATISMO-SIMBOLOGIA-2023.docx
 
Modelos Matemáticos para la solución de circuitos
Modelos Matemáticos para la solución de circuitosModelos Matemáticos para la solución de circuitos
Modelos Matemáticos para la solución de circuitos
 
Metodo matematico
Metodo matematicoMetodo matematico
Metodo matematico
 
La electrónica y electricidad finall.pdf
La electrónica y electricidad finall.pdfLa electrónica y electricidad finall.pdf
La electrónica y electricidad finall.pdf
 
La electrónica y electricidad finall.pdf
La electrónica y electricidad finall.pdfLa electrónica y electricidad finall.pdf
La electrónica y electricidad finall.pdf
 
La electrónica y electricidad Alejandra Carrero, Gabriela Arango, Isabella M...
La electrónica y electricidad Alejandra Carrero, Gabriela Arango, Isabella M...La electrónica y electricidad Alejandra Carrero, Gabriela Arango, Isabella M...
La electrónica y electricidad Alejandra Carrero, Gabriela Arango, Isabella M...
 

Más de Tensor

Libertad
LibertadLibertad
LibertadTensor
 
Método de la regla falsa (o metodo de la falsa posición)
Método de la regla falsa (o metodo de la falsa posición)Método de la regla falsa (o metodo de la falsa posición)
Método de la regla falsa (o metodo de la falsa posición)Tensor
 
Metodo de la bisección
Metodo de la bisecciónMetodo de la bisección
Metodo de la bisecciónTensor
 
Transito vehicular
Transito vehicularTransito vehicular
Transito vehicularTensor
 
Teoria de colas
Teoria de colasTeoria de colas
Teoria de colasTensor
 
Practica 7 2016
Practica 7 2016Practica 7 2016
Practica 7 2016Tensor
 
Practica 6 2016
Practica 6 2016Practica 6 2016
Practica 6 2016Tensor
 
Game maker
Game makerGame maker
Game makerTensor
 
Practica 5 2016
Practica 5 2016Practica 5 2016
Practica 5 2016Tensor
 
Procesamiento de archivos
Procesamiento de archivosProcesamiento de archivos
Procesamiento de archivosTensor
 
Cadenas y funciones de cadena
Cadenas y funciones de cadenaCadenas y funciones de cadena
Cadenas y funciones de cadenaTensor
 
Simulación en promodel clase 04
Simulación en promodel clase 04Simulación en promodel clase 04
Simulación en promodel clase 04Tensor
 
Reduccion de orden
Reduccion de ordenReduccion de orden
Reduccion de ordenTensor
 
Variación+de+parametros
Variación+de+parametrosVariación+de+parametros
Variación+de+parametrosTensor
 
Coeficientes indeterminados enfoque de superposición
Coeficientes indeterminados   enfoque de superposiciónCoeficientes indeterminados   enfoque de superposición
Coeficientes indeterminados enfoque de superposiciónTensor
 
Bernoulli y ricatti
Bernoulli y ricattiBernoulli y ricatti
Bernoulli y ricattiTensor
 
Practica no. 3 tiempo de servicio
Practica no. 3 tiempo de servicioPractica no. 3 tiempo de servicio
Practica no. 3 tiempo de servicioTensor
 
Clase 14 ondas reflejadas
Clase 14 ondas reflejadasClase 14 ondas reflejadas
Clase 14 ondas reflejadasTensor
 
Ondas em
Ondas emOndas em
Ondas emTensor
 
Clase 7 ondas electromagneticas
Clase 7 ondas electromagneticasClase 7 ondas electromagneticas
Clase 7 ondas electromagneticasTensor
 

Más de Tensor (20)

Libertad
LibertadLibertad
Libertad
 
Método de la regla falsa (o metodo de la falsa posición)
Método de la regla falsa (o metodo de la falsa posición)Método de la regla falsa (o metodo de la falsa posición)
Método de la regla falsa (o metodo de la falsa posición)
 
Metodo de la bisección
Metodo de la bisecciónMetodo de la bisección
Metodo de la bisección
 
Transito vehicular
Transito vehicularTransito vehicular
Transito vehicular
 
Teoria de colas
Teoria de colasTeoria de colas
Teoria de colas
 
Practica 7 2016
Practica 7 2016Practica 7 2016
Practica 7 2016
 
Practica 6 2016
Practica 6 2016Practica 6 2016
Practica 6 2016
 
Game maker
Game makerGame maker
Game maker
 
Practica 5 2016
Practica 5 2016Practica 5 2016
Practica 5 2016
 
Procesamiento de archivos
Procesamiento de archivosProcesamiento de archivos
Procesamiento de archivos
 
Cadenas y funciones de cadena
Cadenas y funciones de cadenaCadenas y funciones de cadena
Cadenas y funciones de cadena
 
Simulación en promodel clase 04
Simulación en promodel clase 04Simulación en promodel clase 04
Simulación en promodel clase 04
 
Reduccion de orden
Reduccion de ordenReduccion de orden
Reduccion de orden
 
Variación+de+parametros
Variación+de+parametrosVariación+de+parametros
Variación+de+parametros
 
Coeficientes indeterminados enfoque de superposición
Coeficientes indeterminados   enfoque de superposiciónCoeficientes indeterminados   enfoque de superposición
Coeficientes indeterminados enfoque de superposición
 
Bernoulli y ricatti
Bernoulli y ricattiBernoulli y ricatti
Bernoulli y ricatti
 
Practica no. 3 tiempo de servicio
Practica no. 3 tiempo de servicioPractica no. 3 tiempo de servicio
Practica no. 3 tiempo de servicio
 
Clase 14 ondas reflejadas
Clase 14 ondas reflejadasClase 14 ondas reflejadas
Clase 14 ondas reflejadas
 
Ondas em
Ondas emOndas em
Ondas em
 
Clase 7 ondas electromagneticas
Clase 7 ondas electromagneticasClase 7 ondas electromagneticas
Clase 7 ondas electromagneticas
 

Último

DECÁGOLO DEL GENERAL ELOY ALFARO DELGADO
DECÁGOLO DEL GENERAL ELOY ALFARO DELGADODECÁGOLO DEL GENERAL ELOY ALFARO DELGADO
DECÁGOLO DEL GENERAL ELOY ALFARO DELGADOJosé Luis Palma
 
TEST DE RAVEN es un test conocido para la personalidad.pdf
TEST DE RAVEN es un test conocido para la personalidad.pdfTEST DE RAVEN es un test conocido para la personalidad.pdf
TEST DE RAVEN es un test conocido para la personalidad.pdfDannyTola1
 
Procesos Didácticos en Educación Inicial .pptx
Procesos Didácticos en Educación Inicial .pptxProcesos Didácticos en Educación Inicial .pptx
Procesos Didácticos en Educación Inicial .pptxMapyMerma1
 
Uses of simple past and time expressions
Uses of simple past and time expressionsUses of simple past and time expressions
Uses of simple past and time expressionsConsueloSantana3
 
TRIPTICO-SISTEMA-MUSCULAR. PARA NIÑOS DE PRIMARIA
TRIPTICO-SISTEMA-MUSCULAR. PARA NIÑOS DE PRIMARIATRIPTICO-SISTEMA-MUSCULAR. PARA NIÑOS DE PRIMARIA
TRIPTICO-SISTEMA-MUSCULAR. PARA NIÑOS DE PRIMARIAAbelardoVelaAlbrecht1
 
Estrategias de enseñanza - aprendizaje. Seminario de Tecnologia..pptx.pdf
Estrategias de enseñanza - aprendizaje. Seminario de Tecnologia..pptx.pdfEstrategias de enseñanza - aprendizaje. Seminario de Tecnologia..pptx.pdf
Estrategias de enseñanza - aprendizaje. Seminario de Tecnologia..pptx.pdfAlfredoRamirez953210
 
VOLUMEN 1 COLECCION PRODUCCION BOVINA . SERIE SANIDAD ANIMAL
VOLUMEN 1 COLECCION PRODUCCION BOVINA . SERIE SANIDAD ANIMALVOLUMEN 1 COLECCION PRODUCCION BOVINA . SERIE SANIDAD ANIMAL
VOLUMEN 1 COLECCION PRODUCCION BOVINA . SERIE SANIDAD ANIMALEDUCCUniversidadCatl
 
Tarea 5_ Foro _Selección de herramientas digitales_Manuel.pdf
Tarea 5_ Foro _Selección de herramientas digitales_Manuel.pdfTarea 5_ Foro _Selección de herramientas digitales_Manuel.pdf
Tarea 5_ Foro _Selección de herramientas digitales_Manuel.pdfManuel Molina
 
Metabolismo 3: Anabolismo y Fotosíntesis 2024
Metabolismo 3: Anabolismo y Fotosíntesis 2024Metabolismo 3: Anabolismo y Fotosíntesis 2024
Metabolismo 3: Anabolismo y Fotosíntesis 2024IES Vicent Andres Estelles
 
c3.hu3.p1.p2.El ser humano y el sentido de su existencia.pptx
c3.hu3.p1.p2.El ser humano y el sentido de su existencia.pptxc3.hu3.p1.p2.El ser humano y el sentido de su existencia.pptx
c3.hu3.p1.p2.El ser humano y el sentido de su existencia.pptxMartín Ramírez
 
FICHA DE MONITOREO Y ACOMPAÑAMIENTO 2024 MINEDU
FICHA DE MONITOREO Y ACOMPAÑAMIENTO  2024 MINEDUFICHA DE MONITOREO Y ACOMPAÑAMIENTO  2024 MINEDU
FICHA DE MONITOREO Y ACOMPAÑAMIENTO 2024 MINEDUgustavorojas179704
 
LA ECUACIÓN DEL NÚMERO PI EN LOS JUEGOS OLÍMPICOS DE PARÍS. Por JAVIER SOLIS ...
LA ECUACIÓN DEL NÚMERO PI EN LOS JUEGOS OLÍMPICOS DE PARÍS. Por JAVIER SOLIS ...LA ECUACIÓN DEL NÚMERO PI EN LOS JUEGOS OLÍMPICOS DE PARÍS. Por JAVIER SOLIS ...
LA ECUACIÓN DEL NÚMERO PI EN LOS JUEGOS OLÍMPICOS DE PARÍS. Por JAVIER SOLIS ...JAVIER SOLIS NOYOLA
 
NARRACIONES SOBRE LA VIDA DEL GENERAL ELOY ALFARO
NARRACIONES SOBRE LA VIDA DEL GENERAL ELOY ALFARONARRACIONES SOBRE LA VIDA DEL GENERAL ELOY ALFARO
NARRACIONES SOBRE LA VIDA DEL GENERAL ELOY ALFAROJosé Luis Palma
 
Estrategia de Enseñanza y Aprendizaje.pdf
Estrategia de Enseñanza y Aprendizaje.pdfEstrategia de Enseñanza y Aprendizaje.pdf
Estrategia de Enseñanza y Aprendizaje.pdfromanmillans
 
TUTORIA II - CIRCULO DORADO UNIVERSIDAD CESAR VALLEJO
TUTORIA II - CIRCULO DORADO UNIVERSIDAD CESAR VALLEJOTUTORIA II - CIRCULO DORADO UNIVERSIDAD CESAR VALLEJO
TUTORIA II - CIRCULO DORADO UNIVERSIDAD CESAR VALLEJOweislaco
 
Día de la Madre Tierra-1.pdf día mundial
Día de la Madre Tierra-1.pdf día mundialDía de la Madre Tierra-1.pdf día mundial
Día de la Madre Tierra-1.pdf día mundialpatriciaines1993
 

Último (20)

DECÁGOLO DEL GENERAL ELOY ALFARO DELGADO
DECÁGOLO DEL GENERAL ELOY ALFARO DELGADODECÁGOLO DEL GENERAL ELOY ALFARO DELGADO
DECÁGOLO DEL GENERAL ELOY ALFARO DELGADO
 
TEST DE RAVEN es un test conocido para la personalidad.pdf
TEST DE RAVEN es un test conocido para la personalidad.pdfTEST DE RAVEN es un test conocido para la personalidad.pdf
TEST DE RAVEN es un test conocido para la personalidad.pdf
 
Procesos Didácticos en Educación Inicial .pptx
Procesos Didácticos en Educación Inicial .pptxProcesos Didácticos en Educación Inicial .pptx
Procesos Didácticos en Educación Inicial .pptx
 
Uses of simple past and time expressions
Uses of simple past and time expressionsUses of simple past and time expressions
Uses of simple past and time expressions
 
TRIPTICO-SISTEMA-MUSCULAR. PARA NIÑOS DE PRIMARIA
TRIPTICO-SISTEMA-MUSCULAR. PARA NIÑOS DE PRIMARIATRIPTICO-SISTEMA-MUSCULAR. PARA NIÑOS DE PRIMARIA
TRIPTICO-SISTEMA-MUSCULAR. PARA NIÑOS DE PRIMARIA
 
Earth Day Everyday 2024 54th anniversary
Earth Day Everyday 2024 54th anniversaryEarth Day Everyday 2024 54th anniversary
Earth Day Everyday 2024 54th anniversary
 
Unidad 3 | Teorías de la Comunicación | MCDI
Unidad 3 | Teorías de la Comunicación | MCDIUnidad 3 | Teorías de la Comunicación | MCDI
Unidad 3 | Teorías de la Comunicación | MCDI
 
Estrategias de enseñanza - aprendizaje. Seminario de Tecnologia..pptx.pdf
Estrategias de enseñanza - aprendizaje. Seminario de Tecnologia..pptx.pdfEstrategias de enseñanza - aprendizaje. Seminario de Tecnologia..pptx.pdf
Estrategias de enseñanza - aprendizaje. Seminario de Tecnologia..pptx.pdf
 
Sesión La luz brilla en la oscuridad.pdf
Sesión  La luz brilla en la oscuridad.pdfSesión  La luz brilla en la oscuridad.pdf
Sesión La luz brilla en la oscuridad.pdf
 
VOLUMEN 1 COLECCION PRODUCCION BOVINA . SERIE SANIDAD ANIMAL
VOLUMEN 1 COLECCION PRODUCCION BOVINA . SERIE SANIDAD ANIMALVOLUMEN 1 COLECCION PRODUCCION BOVINA . SERIE SANIDAD ANIMAL
VOLUMEN 1 COLECCION PRODUCCION BOVINA . SERIE SANIDAD ANIMAL
 
Tarea 5_ Foro _Selección de herramientas digitales_Manuel.pdf
Tarea 5_ Foro _Selección de herramientas digitales_Manuel.pdfTarea 5_ Foro _Selección de herramientas digitales_Manuel.pdf
Tarea 5_ Foro _Selección de herramientas digitales_Manuel.pdf
 
Metabolismo 3: Anabolismo y Fotosíntesis 2024
Metabolismo 3: Anabolismo y Fotosíntesis 2024Metabolismo 3: Anabolismo y Fotosíntesis 2024
Metabolismo 3: Anabolismo y Fotosíntesis 2024
 
c3.hu3.p1.p2.El ser humano y el sentido de su existencia.pptx
c3.hu3.p1.p2.El ser humano y el sentido de su existencia.pptxc3.hu3.p1.p2.El ser humano y el sentido de su existencia.pptx
c3.hu3.p1.p2.El ser humano y el sentido de su existencia.pptx
 
FICHA DE MONITOREO Y ACOMPAÑAMIENTO 2024 MINEDU
FICHA DE MONITOREO Y ACOMPAÑAMIENTO  2024 MINEDUFICHA DE MONITOREO Y ACOMPAÑAMIENTO  2024 MINEDU
FICHA DE MONITOREO Y ACOMPAÑAMIENTO 2024 MINEDU
 
LA ECUACIÓN DEL NÚMERO PI EN LOS JUEGOS OLÍMPICOS DE PARÍS. Por JAVIER SOLIS ...
LA ECUACIÓN DEL NÚMERO PI EN LOS JUEGOS OLÍMPICOS DE PARÍS. Por JAVIER SOLIS ...LA ECUACIÓN DEL NÚMERO PI EN LOS JUEGOS OLÍMPICOS DE PARÍS. Por JAVIER SOLIS ...
LA ECUACIÓN DEL NÚMERO PI EN LOS JUEGOS OLÍMPICOS DE PARÍS. Por JAVIER SOLIS ...
 
NARRACIONES SOBRE LA VIDA DEL GENERAL ELOY ALFARO
NARRACIONES SOBRE LA VIDA DEL GENERAL ELOY ALFARONARRACIONES SOBRE LA VIDA DEL GENERAL ELOY ALFARO
NARRACIONES SOBRE LA VIDA DEL GENERAL ELOY ALFARO
 
Repaso Pruebas CRECE PR 2024. Ciencia General
Repaso Pruebas CRECE PR 2024. Ciencia GeneralRepaso Pruebas CRECE PR 2024. Ciencia General
Repaso Pruebas CRECE PR 2024. Ciencia General
 
Estrategia de Enseñanza y Aprendizaje.pdf
Estrategia de Enseñanza y Aprendizaje.pdfEstrategia de Enseñanza y Aprendizaje.pdf
Estrategia de Enseñanza y Aprendizaje.pdf
 
TUTORIA II - CIRCULO DORADO UNIVERSIDAD CESAR VALLEJO
TUTORIA II - CIRCULO DORADO UNIVERSIDAD CESAR VALLEJOTUTORIA II - CIRCULO DORADO UNIVERSIDAD CESAR VALLEJO
TUTORIA II - CIRCULO DORADO UNIVERSIDAD CESAR VALLEJO
 
Día de la Madre Tierra-1.pdf día mundial
Día de la Madre Tierra-1.pdf día mundialDía de la Madre Tierra-1.pdf día mundial
Día de la Madre Tierra-1.pdf día mundial
 

Análisis de circuitos clase 1 Introduccion 2015

  • 2.  Cuando se tienen dos o mas elementos simples de un circuito conectados entre sí, estos forman un red eléctrica. Si esta red contiene por lo menos una trayectoria cerrada, a través de la cual circulan las corrientes eléctricas, se conoce como un circuito eléctrico.
  • 3.
  • 4.  Una red eléctrica que contiene por lo menos un elemento activo (una fuente de voltaje o de corriente) se llama red activa; mientras que una red que no contiene ningún elemento activo será red pasiva.  Con dependencia en el tipo de elementos que contenga un arreglo de elementos, será el nombre que reciba; por ejemplo, un arreglo formado exclusivamente por resistores será un arreglo resistivo (R).
  • 5.  Cuando contiene resistores e inductores, será un arreglo resistivo – inductivo (RL); será resistivo-capacitivo (RC) cuando sea una conexión formada por resistores y capacitores ó bien será un arregló RLC (resistivo-inductivo-capacitivo) cuando lo integren elementos pasivos de los tres tipos que se han visto.
  • 6.  Cuando contiene resistores e inductores, será un arreglo resistivo – inductivo (RL); será resistivo-capacitivo (RC) cuando sea una conexión formada por resistores y capacitores ó bien será un arregló RLC (resistivo-inductivo-capacitivo) cuando lo integren elementos pasivos de los tres tipos que se han visto.
  • 7.  A continuación se verán algunos aspectos básicos en los que se refiere a la representación y los tipos más usados en la solución de problemas en ingeniería, en lo general, y en análisis de circuitos en particular.
  • 8. REPRESENTACIÓN ICÓNICA  Es el tipo de representación que se utiliza para aquellas reproducciones de seres u objetos de la vida real; pueden ser en dos dimensiones (en un plano) o tres dimensiones.
  • 9. REPRESENTACIÓN DIAGRAMÁTICA  Esta forma de representación, aun cuando no tiene parecido alguno con su prototipo refleja alguna realidad del mismo.  Diagramas esquemáticos  Se utilizan para construir una replica de los circuitos reales y para ayudar a localizar fallas en su funcionamiento. Es decir son una especie de mapas que ayudan al experimentador a llevar un seguimiento del sistema en cada una de sus partes.
  • 10.
  • 11.
  • 12. DIAGRAMAS DE UN CIRCUITO EQUIVALENTE  Es una representación muy relacionada con la idea del modelo de un circuito. Se obtiene al reemplazar en el diagrama esquemático, los símbolos de cada componente, por su circuito equivalente. El circuito equivalente se forma a partir de los cinco elementos ideales y de los símbolos extras que designan las condiciones ideales de un circuito.
  • 13. DIAGRAMAS A BLOQUES  Se utilizan para ayudar al experimentador y al diseñador a describir la operación, de manera global y general de un dispositivo, un instrumento o equipo o todo un sistema, que en su esencia resultan complejos.  La idea es utilizar dibujos de forma de rectangulos, llamados bloques, para cada uno de los cuales existe una o varias vías de entrada y una o mas vías de salida.
  • 14. DIAGRAMAS A BLOQUES  Los bloques se dibujan ordenadamente para que describan la secuencia del proceso que representan.
  • 16. REPRESENTACIÓN GRÁFICA  Este tipo de representación, mediante segmentos de recta, barras, sectores circulares, curvas es posible representar magnitudes de naturaleza muy diversa como temperatura, tiempo, presión, intensidad de corriente, potencia eléctrica. Este tipo de representación es útil para fines de comunicación y predicción de fenómenos o procesos.
  • 18. REPRESENTACIÓN MATEMÁTICA  La expresión 𝑣 𝑡 = 𝐴𝑠𝑒𝑛𝜔𝑡  Es un modelo matemático que describe la forma en que un voltaje adquiere valores instantáneos en función del tiempo y predice el valor de dicho voltaje cuando se conoce el valor del tiempo en 𝑡 en segundos, la amplitud 𝐴 𝑣𝑜𝑙𝑡𝑠 y la frecuencia 𝜔 𝑟𝑎𝑑 𝑠 .
  • 19.  Con este nombre se reconoce al conjunto de figuras, formas, o imágenes mediante las que se representan conceptos e ideas. Cada símbolo construye de acuerdo con alguna relación que existe entre la propia imagen que lo constituye y el entendimiento que el conocimiento percibe a través de ella.
  • 20.  En el estudio de los circuitos eléctricos y electrónicos también se usan los símbolos que representan a los diferentes elementos, dispositivos, sistemas y procesos. Con base a ellos se hacen las diversas representaciones que se han mencionado, lo cual facilita enormemente el estudio y el conocimiento de sistemas y circuitos complejos como los que en la actualidad utilizan los diversos campos de la tecnología y la ciencia.
  • 21.  A continuación se presentan algunos de los símbolos mas usados para representar los elementos y dispositivos en el área de electrónica.
  • 22.
  • 23.  A la técnica que consiste en realizar experimentación y observación sobre una representación de un objeto o sistema real, se le conoce como simulación.  En electrónica se utilizan principalmente dos tipos de simulación la analógica y la digital.
  • 24.  A diferencia de la simulación icónica, en el cual las realidades físicas se reducen a modelos en todo semejantes al prototipo, existe la simulación analógica, en la que el modelo no tiene ningún parecido físico con su prototipo.
  • 25.  En este tipo de simulación se utilizan los sistemas electrónicos que son los encargados de llevar y traer señales eléctricas desde el lugar donde se originan hasta algún puesto de control y seguimiento. De hecho, el mundo real es analógico y a través de estos sistemas, este mundo puede ser simulado en un tablero de control o en el monitor de alguna computadora, quedando representado por símbolos, luces colores, sonidos, cada uno con un significado definido por los experimentadores.
  • 26.  Básicamente consiste en una serie de cálculos numéricos realizados paso a paso y de una serie de decisiones, con pequeños intervalos de variación, realizadas conforme a un conjunto de reglas especificas. Esta característica la hace adaptable a una computadora digital.
  • 27.  El proceso de simulación, digital y analógica, además de hacer posible la experimentación y mejores predicciones, presenta la ventaja adicional de una escala de tiempos reducida; es decir, por estos medios es posible simular años de tiempo real en horas o minutos.  Estos tipos de simulación, realizados en tiempos sorprendentemente cortos, sintetizan experiencias que, en condiciones normales, requieren de años para adquirirlas. Esta cualidad de ahorro de tiempo es una ventaja notable de la simulación.
  • 28.  Las computadoras y calculadoras son ampliamente usadas para el análisis y diseño de circuitos.  El software que se suele emplear para este propósito incluye el de simulación (tal como Multisim, Proteus y PSpice) y el de análisis numérico como Mathcad y Matlab.
  • 29.  El software de simulación resuelve problemas al emular el comportamiento de los circuitos eléctricos y electrónicos en vez de resolver conjuntos de ecuaciones.  Para analizar un circuito, se “construye” en la pantalla mediante la selección de componentes (resistores, capacitores, transistores, etc.) de una biblioteca de partes, los cuales se colocan e interconectan para formarlo.  Se puede cambiar el valor de los componentes, las conexiones y las opciones de análisis de forma instantánea con un clic del ratón.
  • 30.
  • 31.
  • 32.  La mayoría de los paquetes de simulación usan una máquina de software llamada SPICE, el acrónimo en inglés de Programa de Simulación con Énfasis en Circuitos Integrados. Tres de los productos más populares son Pspice, Multisim, y Proteus las herramientas de simulación que se usan mas comunmente. Cada una tiene sus ventajas, Multisim modela acercándose más a una mesa de trabajo real (completa con medidores reales) que Pspice y Proteus.
  • 33.  Los valores eléctricos varían tremendamente en tamaño. Por ejemplo, en los sistemas electrónicos los voltajes pueden variar desde unas cuantas millonésimas de volt hasta varios miles de volts, mientras que en sistemas de potencia son comunes los voltajes de hasta varios cientos de miles. Para manejar este gran intervalo, se usa la notación de potencias de diez utilizaremos la siguiente tabla.
  • 34.
  • 35.  Para expresar un número en la notación de potencia de diez, se mueve el punto decimal a donde se quiera, y entonces se multiplica el resultado por la potencia de diez requerida para restaurar el número a su valor original. Entonces, 247 000 = 2.47 × 105. (El número 10 se llama la base y su potencia se llama el exponente.)
  • 36.  Una manera fácil de determinar el exponente es contar el número de lugares (derecha o izquierda) que se mueve el punto decimal. Esto es
  • 37.  De manera similar, el número 0.00369 se puede expresar como 3.69 × 10−3 como se ilustra abajo.
  • 38.  En el trabajo científico es común encontrar números muy grandes y muy pequeños expresados en notación de potencias de 10. Sin embargo, en ingeniería, ciertos elementos de estilo y práctica estándar han hecho surgir lo que se conoce como notación de ingeniería, en la cual es más común usar prefijos en lugar de potencias de 10.
  • 39.  Los prefijos más comunes (junto con sus símbolos) se enlistan en la tabla siguiente. (Nota: La notación va en potencias de 10 de tres en tres.)
  • 40.  Como ejemplo, mientras que una corriente de 0.0045 A (amperes) puede expresarse como 4.5 × 10−3 𝐴 , se prefiere expresar como 4.5 𝑚𝐴 𝑜 𝑐𝑜𝑚𝑜 4.5 𝑚𝑖𝑙𝑖𝑎𝑚𝑝𝑒𝑟𝑒𝑠 . De aquí en adelante se usará la notación de ingeniería casi exclusivamente.