SlideShare una empresa de Scribd logo
1 de 138
Descargar para leer sin conexión
Introduction         Laplace-type Operators        Heat kernel   Zeta function   Regularization       Applications




                              Spectral Functions,
                       The Geometric Power of Eigenvalues,

                                              Pedro Fernando Morales

                                               Department of Mathematics
                                                    Baylor University
                                               pedro morales@baylor.edu


                                         Athens, Ohio, 10/18/2012




Pedro Fernando Morales                                                                            Math Department
Spectral Functions
Introduction         Laplace-type Operators   Heat kernel   Zeta function   Regularization       Applications




Outline

       1   Introduction




Pedro Fernando Morales                                                                       Math Department
Spectral Functions
Introduction         Laplace-type Operators   Heat kernel   Zeta function   Regularization       Applications




Outline

       1   Introduction

       2   Laplace-type Operators




Pedro Fernando Morales                                                                       Math Department
Spectral Functions
Introduction         Laplace-type Operators   Heat kernel   Zeta function   Regularization       Applications




Outline

       1   Introduction

       2   Laplace-type Operators

       3   Heat kernel




Pedro Fernando Morales                                                                       Math Department
Spectral Functions
Introduction         Laplace-type Operators   Heat kernel   Zeta function   Regularization       Applications




Outline

       1   Introduction

       2   Laplace-type Operators

       3   Heat kernel

       4   Zeta function




Pedro Fernando Morales                                                                       Math Department
Spectral Functions
Introduction         Laplace-type Operators   Heat kernel   Zeta function   Regularization       Applications




Outline

       1   Introduction

       2   Laplace-type Operators

       3   Heat kernel

       4   Zeta function

       5   Regularization




Pedro Fernando Morales                                                                       Math Department
Spectral Functions
Introduction         Laplace-type Operators   Heat kernel   Zeta function   Regularization       Applications




Outline

       1   Introduction

       2   Laplace-type Operators

       3   Heat kernel

       4   Zeta function

       5   Regularization

       6   Applications



Pedro Fernando Morales                                                                       Math Department
Spectral Functions
Introduction         Laplace-type Operators   Heat kernel   Zeta function   Regularization       Applications




Pedro Fernando Morales                                                                       Math Department
Spectral Functions
Introduction         Laplace-type Operators   Heat kernel   Zeta function   Regularization       Applications




Pedro Fernando Morales                                                                       Math Department
Spectral Functions
Introduction         Laplace-type Operators   Heat kernel   Zeta function   Regularization       Applications




Pedro Fernando Morales                                                                       Math Department
Spectral Functions
Introduction         Laplace-type Operators   Heat kernel   Zeta function   Regularization       Applications




Pedro Fernando Morales                                                                       Math Department
Spectral Functions
Introduction         Laplace-type Operators   Heat kernel   Zeta function   Regularization       Applications




Eigenvalues




Pedro Fernando Morales                                                                       Math Department
Spectral Functions
Introduction         Laplace-type Operators   Heat kernel   Zeta function   Regularization       Applications




Eigenvalues




Pedro Fernando Morales                                                                       Math Department
Spectral Functions
Introduction         Laplace-type Operators   Heat kernel   Zeta function   Regularization       Applications




Eigenvalues




Pedro Fernando Morales                                                                       Math Department
Spectral Functions
Introduction         Laplace-type Operators   Heat kernel   Zeta function   Regularization       Applications




Eigenvalues




Pedro Fernando Morales                                                                       Math Department
Spectral Functions
Introduction         Laplace-type Operators   Heat kernel   Zeta function   Regularization       Applications




Eigenvalues (a little more formal)




Pedro Fernando Morales                                                                       Math Department
Spectral Functions
Introduction         Laplace-type Operators   Heat kernel   Zeta function   Regularization       Applications




Eigenvalues (a little more formal)




           • Point spectrum of an operator




Pedro Fernando Morales                                                                       Math Department
Spectral Functions
Introduction         Laplace-type Operators   Heat kernel   Zeta function   Regularization       Applications




Eigenvalues (a little more formal)




           • Point spectrum of an operator
           • P − λI not bounded below (not injective)




Pedro Fernando Morales                                                                       Math Department
Spectral Functions
Introduction         Laplace-type Operators   Heat kernel   Zeta function   Regularization       Applications




Eigenvalues (a little more formal)




           • Point spectrum of an operator
           • P − λI not bounded below (not injective)
           • Pφ = λφ




Pedro Fernando Morales                                                                       Math Department
Spectral Functions
Introduction         Laplace-type Operators   Heat kernel   Zeta function   Regularization       Applications




Eigenvalues (a little more formal)




           • Point spectrum of an operator
           • P − λI not bounded below (not injective)
           • Pφ = λφ (eigenvalue equation)




Pedro Fernando Morales                                                                       Math Department
Spectral Functions
Introduction         Laplace-type Operators   Heat kernel   Zeta function   Regularization       Applications




Philosophical question



       What is an eigenvalue?




Pedro Fernando Morales                                                                       Math Department
Spectral Functions
Introduction         Laplace-type Operators   Heat kernel   Zeta function   Regularization       Applications




Philosophical question



       What is an eigenvalue?
           • A way to linearize a problem




Pedro Fernando Morales                                                                       Math Department
Spectral Functions
Introduction         Laplace-type Operators   Heat kernel   Zeta function   Regularization       Applications




Philosophical question



       What is an eigenvalue?
           • A way to linearize a problem
           • Measures the distortion of a system




Pedro Fernando Morales                                                                       Math Department
Spectral Functions
Introduction         Laplace-type Operators   Heat kernel   Zeta function   Regularization       Applications




Philosophical question



       What is an eigenvalue?
           • A way to linearize a problem
           • Measures the distortion of a system
           • Decomposes an object into simpler pieces




Pedro Fernando Morales                                                                       Math Department
Spectral Functions
Introduction         Laplace-type Operators   Heat kernel   Zeta function   Regularization       Applications




Philosophical question



       What is an eigenvalue?
           • A way to linearize a problem
           • Measures the distortion of a system
           • Decomposes an object into simpler pieces
           • Determines the resolution of a method




Pedro Fernando Morales                                                                       Math Department
Spectral Functions
Introduction         Laplace-type Operators   Heat kernel   Zeta function   Regularization       Applications




Other names and similar ideas




Pedro Fernando Morales                                                                       Math Department
Spectral Functions
Introduction         Laplace-type Operators   Heat kernel   Zeta function   Regularization       Applications




Other names and similar ideas




           • Fourier expansion




Pedro Fernando Morales                                                                       Math Department
Spectral Functions
Introduction         Laplace-type Operators   Heat kernel   Zeta function   Regularization       Applications




Other names and similar ideas




           • Fourier expansion
           • Characters of representations




Pedro Fernando Morales                                                                       Math Department
Spectral Functions
Introduction         Laplace-type Operators   Heat kernel   Zeta function   Regularization       Applications




Other names and similar ideas




           • Fourier expansion
           • Characters of representations
           • Decomposition into irreducibles




Pedro Fernando Morales                                                                       Math Department
Spectral Functions
Introduction         Laplace-type Operators   Heat kernel   Zeta function   Regularization       Applications




Differential Operators




Pedro Fernando Morales                                                                       Math Department
Spectral Functions
Introduction         Laplace-type Operators   Heat kernel   Zeta function   Regularization       Applications




Differential Operators


           • M a compact manifold




Pedro Fernando Morales                                                                       Math Department
Spectral Functions
Introduction         Laplace-type Operators   Heat kernel   Zeta function   Regularization       Applications




Differential Operators


           • M a compact manifold
           • E a vector bundle over M




Pedro Fernando Morales                                                                       Math Department
Spectral Functions
Introduction         Laplace-type Operators   Heat kernel   Zeta function   Regularization       Applications




Differential Operators


           • M a compact manifold
           • E a vector bundle over M
           • P : Γ(E ) → Γ(E ) a differential operator over M




Pedro Fernando Morales                                                                       Math Department
Spectral Functions
Introduction         Laplace-type Operators   Heat kernel   Zeta function   Regularization       Applications




Differential Operators


           • M a compact manifold
           • E a vector bundle over M
           • P : Γ(E ) → Γ(E ) a differential operator over M
           • With boundary conditions if ∂M = ∅




Pedro Fernando Morales                                                                       Math Department
Spectral Functions
Introduction         Laplace-type Operators   Heat kernel   Zeta function   Regularization       Applications




Differential Operators


           • M a compact manifold
           • E a vector bundle over M
           • P : Γ(E ) → Γ(E ) a differential operator over M
           • With boundary conditions if ∂M = ∅

       Eigenvalue Equation

                                                 Pφ = λφ,
       where φ ∈ Γ(E )



Pedro Fernando Morales                                                                       Math Department
Spectral Functions
Introduction         Laplace-type Operators     Heat kernel   Zeta function   Regularization       Applications




Example




                                              (Vibrating membrane)




Pedro Fernando Morales                                                                         Math Department
Spectral Functions
Introduction         Laplace-type Operators   Heat kernel   Zeta function   Regularization       Applications




Pedro Fernando Morales                                                                       Math Department
Spectral Functions
Introduction         Laplace-type Operators   Heat kernel   Zeta function   Regularization       Applications




       There is a close relation between the shape of the manifold and
       the eigenvalues (eigenfunctions) of the Laplacian




Pedro Fernando Morales                                                                       Math Department
Spectral Functions
Introduction         Laplace-type Operators   Heat kernel   Zeta function   Regularization       Applications




       There is a close relation between the shape of the manifold and
       the eigenvalues (eigenfunctions) of the Laplacian




Pedro Fernando Morales                                                                       Math Department
Spectral Functions
Introduction         Laplace-type Operators   Heat kernel   Zeta function   Regularization       Applications




Generalized Laplace equation

       M d-dimensional smooth compact Riemannian manifold




Pedro Fernando Morales                                                                       Math Department
Spectral Functions
Introduction         Laplace-type Operators   Heat kernel   Zeta function   Regularization       Applications




Generalized Laplace equation

       M d-dimensional smooth compact Riemannian manifold
       E a smooth vector bundle over M




Pedro Fernando Morales                                                                       Math Department
Spectral Functions
Introduction         Laplace-type Operators   Heat kernel   Zeta function   Regularization       Applications




Generalized Laplace equation

       M d-dimensional smooth compact Riemannian manifold
       E a smooth vector bundle over M
       V ∈ End(E )




Pedro Fernando Morales                                                                       Math Department
Spectral Functions
Introduction         Laplace-type Operators   Heat kernel   Zeta function   Regularization       Applications




Generalized Laplace equation

       M d-dimensional smooth compact Riemannian manifold
       E a smooth vector bundle over M
       V ∈ End(E )
         E a connection on E




Pedro Fernando Morales                                                                       Math Department
Spectral Functions
Introduction         Laplace-type Operators   Heat kernel   Zeta function   Regularization       Applications




Generalized Laplace equation

       M d-dimensional smooth compact Riemannian manifold
       E a smooth vector bundle over M
       V ∈ End(E )
         E a connection on E

       g metric on M




Pedro Fernando Morales                                                                       Math Department
Spectral Functions
Introduction         Laplace-type Operators   Heat kernel   Zeta function   Regularization       Applications




Generalized Laplace equation

       M d-dimensional smooth compact Riemannian manifold
       E a smooth vector bundle over M
       V ∈ End(E )
         E a connection on E

       g metric on M
       Laplace-type
       P : Γ(E ) → Γ(E ) is a Laplace-type differential operator if P can be
       written as
                               P = −g ij E E + V
                                          i  j




Pedro Fernando Morales                                                                       Math Department
Spectral Functions
Introduction         Laplace-type Operators   Heat kernel   Zeta function   Regularization       Applications




Properties Laplace-type Operators




       Symmetric




Pedro Fernando Morales                                                                       Math Department
Spectral Functions
Introduction         Laplace-type Operators   Heat kernel   Zeta function   Regularization       Applications




Properties Laplace-type Operators




       Symmetric (Self-adjoint with suitable boundary conditions)




Pedro Fernando Morales                                                                       Math Department
Spectral Functions
Introduction         Laplace-type Operators   Heat kernel   Zeta function   Regularization       Applications




Properties Laplace-type Operators




       Symmetric (Self-adjoint with suitable boundary conditions)
       Real eigenvalues




Pedro Fernando Morales                                                                       Math Department
Spectral Functions
Introduction         Laplace-type Operators   Heat kernel   Zeta function   Regularization       Applications




Properties Laplace-type Operators




       Symmetric (Self-adjoint with suitable boundary conditions)
       Real eigenvalues
       Bounded below




Pedro Fernando Morales                                                                       Math Department
Spectral Functions
Introduction         Laplace-type Operators   Heat kernel   Zeta function   Regularization       Applications




Properties Laplace-type Operators




       Symmetric (Self-adjoint with suitable boundary conditions)
       Real eigenvalues
       Bounded below
       Tend to infinity




Pedro Fernando Morales                                                                       Math Department
Spectral Functions
Introduction         Laplace-type Operators   Heat kernel   Zeta function   Regularization       Applications




       Recall:




Pedro Fernando Morales                                                                       Math Department
Spectral Functions
Introduction         Laplace-type Operators   Heat kernel   Zeta function   Regularization       Applications




       Recall:
       Heat Equation

                                                  ∆u = ut ,
       for a domain D, where u = 0 at ∂D and u|t=0 = f (x) is the initial
       heat distribution.




Pedro Fernando Morales                                                                       Math Department
Spectral Functions
Introduction         Laplace-type Operators   Heat kernel   Zeta function   Regularization       Applications




       Recall:
       Heat Equation

                                                  ∆u = ut ,
       for a domain D, where u = 0 at ∂D and u|t=0 = f (x) is the initial
       heat distribution.
       we use the heat kernel to find the heat distribution at any time:




Pedro Fernando Morales                                                                       Math Department
Spectral Functions
Introduction         Laplace-type Operators   Heat kernel   Zeta function   Regularization       Applications




       Recall:
       Heat Equation

                                                  ∆u = ut ,
       for a domain D, where u = 0 at ∂D and u|t=0 = f (x) is the initial
       heat distribution.
       we use the heat kernel to find the heat distribution at any time:

           • Kt (t, x, y ) = ∆K (t, x, y ) , for x, y ∈ D, t > 0




Pedro Fernando Morales                                                                       Math Department
Spectral Functions
Introduction         Laplace-type Operators   Heat kernel   Zeta function   Regularization       Applications




       Recall:
       Heat Equation

                                                  ∆u = ut ,
       for a domain D, where u = 0 at ∂D and u|t=0 = f (x) is the initial
       heat distribution.
       we use the heat kernel to find the heat distribution at any time:

           • Kt (t, x, y ) = ∆K (t, x, y ) , for x, y ∈ D, t > 0
           • lim K (t, x, y ) = δ(x − y )
               t→0




Pedro Fernando Morales                                                                       Math Department
Spectral Functions
Introduction         Laplace-type Operators   Heat kernel   Zeta function   Regularization       Applications




       Recall:
       Heat Equation

                                                  ∆u = ut ,
       for a domain D, where u = 0 at ∂D and u|t=0 = f (x) is the initial
       heat distribution.
       we use the heat kernel to find the heat distribution at any time:

           • Kt (t, x, y ) = ∆K (t, x, y ) , for x, y ∈ D, t > 0
           • lim K (t, x, y ) = δ(x − y )
               t→0
           • K (t, x, y ) = 0 for x or y in ∂D




Pedro Fernando Morales                                                                       Math Department
Spectral Functions
Introduction         Laplace-type Operators   Heat kernel   Zeta function   Regularization       Applications




Pedro Fernando Morales                                                                       Math Department
Spectral Functions
Introduction         Laplace-type Operators   Heat kernel        Zeta function     Regularization       Applications




       Solving the heat equation

                                   (Tf )(t, x) =            K (t, x, y )f (y )dy
                                                      D
       solves the heat equation.




Pedro Fernando Morales                                                                              Math Department
Spectral Functions
Introduction         Laplace-type Operators   Heat kernel   Zeta function   Regularization       Applications




Heat kernel for a Laplace-type operator




Pedro Fernando Morales                                                                       Math Department
Spectral Functions
Introduction         Laplace-type Operators   Heat kernel   Zeta function   Regularization       Applications




Heat kernel for a Laplace-type operator



       Likewise, for a Laplace-type operator,




Pedro Fernando Morales                                                                       Math Department
Spectral Functions
Introduction         Laplace-type Operators   Heat kernel   Zeta function   Regularization       Applications




Heat kernel for a Laplace-type operator



       Likewise, for a Laplace-type operator,
       Heat Kernel
           • (∂t − P)K (t, x, y ) = 0, C ∞ (R+ , M, M)




Pedro Fernando Morales                                                                       Math Department
Spectral Functions
Introduction         Laplace-type Operators   Heat kernel   Zeta function   Regularization       Applications




Heat kernel for a Laplace-type operator



       Likewise, for a Laplace-type operator,
       Heat Kernel
           • (∂t − P)K (t, x, y ) = 0, C ∞ (R+ , M, M)

           • lim            K (t, x, y )f (y ) = f (x), ∀f ∈ L2 (M)
               t→0 M




Pedro Fernando Morales                                                                       Math Department
Spectral Functions
Introduction         Laplace-type Operators   Heat kernel   Zeta function   Regularization       Applications




Relation with eigenvalues




Pedro Fernando Morales                                                                       Math Department
Spectral Functions
Introduction         Laplace-type Operators    Heat kernel   Zeta function   Regularization       Applications




Relation with eigenvalues



                                              K (t, x, y ) = e tP




Pedro Fernando Morales                                                                        Math Department
Spectral Functions
Introduction         Laplace-type Operators        Heat kernel   Zeta function   Regularization       Applications




Relation with eigenvalues



                                                  K (t, x, y ) = e tP


                                              =       e −tλ φλ (x)φλ (y ),
                                                  λ




Pedro Fernando Morales                                                                            Math Department
Spectral Functions
Introduction         Laplace-type Operators        Heat kernel   Zeta function   Regularization       Applications




Relation with eigenvalues



                                                  K (t, x, y ) = e tP


                                              =       e −tλ φλ (x)φλ (y ),
                                                  λ

       where λ runs over the eigenvalues of P and φλ is the
       corresponding eigenfunction.




Pedro Fernando Morales                                                                            Math Department
Spectral Functions
Introduction         Laplace-type Operators   Heat kernel   Zeta function   Regularization       Applications




Heat Kernel Asymptotic Expansion




Pedro Fernando Morales                                                                       Math Department
Spectral Functions
Introduction         Laplace-type Operators   Heat kernel   Zeta function   Regularization       Applications




Heat Kernel Asymptotic Expansion


       For small values of t,




Pedro Fernando Morales                                                                       Math Department
Spectral Functions
Introduction         Laplace-type Operators   Heat kernel    Zeta function    Regularization       Applications




Heat Kernel Asymptotic Expansion


       For small values of t,
       Asymptotic Expansion

                                Kt (t, x, x) ∼                    bk (x)t k−d/2
                                                 k=0,1/2,1,...,




Pedro Fernando Morales                                                                         Math Department
Spectral Functions
Introduction         Laplace-type Operators    Heat kernel       Zeta function   Regularization       Applications




Heat Kernel Asymptotic Expansion


       For small values of t,
       Asymptotic Expansion

                                Kt (t, x, x) ∼                     bk (x)t k−d/2
                                                  k=0,1/2,1,...,


       Heat kernel coefficients

                                              ak =           bk (x)dx
                                                       M




Pedro Fernando Morales                                                                            Math Department
Spectral Functions
Introduction         Laplace-type Operators   Heat kernel   Zeta function   Regularization       Applications




Properties




Pedro Fernando Morales                                                                       Math Department
Spectral Functions
Introduction         Laplace-type Operators   Heat kernel   Zeta function   Regularization       Applications




Properties




           • Provide geometric information about the manifold




Pedro Fernando Morales                                                                       Math Department
Spectral Functions
Introduction         Laplace-type Operators   Heat kernel   Zeta function   Regularization       Applications




Properties




           • Provide geometric information about the manifold
           • a0 is the volume of M




Pedro Fernando Morales                                                                       Math Department
Spectral Functions
Introduction         Laplace-type Operators   Heat kernel   Zeta function   Regularization       Applications




Properties




           • Provide geometric information about the manifold
           • a0 is the volume of M
           • a1/2 is the volume of the boundary ∂M




Pedro Fernando Morales                                                                       Math Department
Spectral Functions
Introduction         Laplace-type Operators   Heat kernel   Zeta function   Regularization       Applications




Properties




           • Provide geometric information about the manifold
           • a0 is the volume of M
           • a1/2 is the volume of the boundary ∂M
           • ak has curvature terms




Pedro Fernando Morales                                                                       Math Department
Spectral Functions
Introduction         Laplace-type Operators   Heat kernel   Zeta function   Regularization       Applications




Spectral Functions




Pedro Fernando Morales                                                                       Math Department
Spectral Functions
Introduction         Laplace-type Operators   Heat kernel   Zeta function   Regularization       Applications




Spectral Functions

       The heat kernel is an example of an spectral function (defined in
       terms of the spectrum of P)




Pedro Fernando Morales                                                                       Math Department
Spectral Functions
Introduction         Laplace-type Operators   Heat kernel   Zeta function   Regularization       Applications




Spectral Functions

       The heat kernel is an example of an spectral function (defined in
       terms of the spectrum of P)
       Recall: K (t) = λ e −tλ




Pedro Fernando Morales                                                                       Math Department
Spectral Functions
Introduction         Laplace-type Operators   Heat kernel   Zeta function   Regularization       Applications




Spectral Functions

       The heat kernel is an example of an spectral function (defined in
       terms of the spectrum of P)
       Recall: K (t) = λ e −tλ
       Zeta function:




Pedro Fernando Morales                                                                       Math Department
Spectral Functions
Introduction         Laplace-type Operators   Heat kernel   Zeta function   Regularization       Applications




Spectral Functions

       The heat kernel is an example of an spectral function (defined in
       terms of the spectrum of P)
       Recall: K (t) = λ e −tλ
       Zeta function:




Pedro Fernando Morales                                                                       Math Department
Spectral Functions
Introduction         Laplace-type Operators   Heat kernel   Zeta function   Regularization       Applications




Spectral Functions

       The heat kernel is an example of an spectral function (defined in
       terms of the spectrum of P)
       Recall: K (t) = λ e −tλ
       Zeta function:




Pedro Fernando Morales                                                                       Math Department
Spectral Functions
Introduction         Laplace-type Operators   Heat kernel   Zeta function   Regularization       Applications




Spectral Functions

       The heat kernel is an example of an spectral function (defined in
       terms of the spectrum of P)
       Recall: K (t) = λ e −tλ
       Zeta function:




Pedro Fernando Morales                                                                       Math Department
Spectral Functions
Introduction         Laplace-type Operators   Heat kernel   Zeta function   Regularization       Applications




Zeta function




Pedro Fernando Morales                                                                       Math Department
Spectral Functions
Introduction         Laplace-type Operators    Heat kernel       Zeta function   Regularization       Applications




Zeta function


       Zeta function
       The zeta function associated with the operator P is defined by

                                              ζP (s) =           λ−s
                                                             λ




Pedro Fernando Morales                                                                            Math Department
Spectral Functions
Introduction         Laplace-type Operators    Heat kernel       Zeta function   Regularization       Applications




Zeta function


       Zeta function
       The zeta function associated with the operator P is defined by

                                              ζP (s) =           λ−s
                                                             λ

       e.g. λn = n gives the Riemann zeta function




Pedro Fernando Morales                                                                            Math Department
Spectral Functions
Introduction         Laplace-type Operators    Heat kernel       Zeta function   Regularization       Applications




Zeta function


       Zeta function
       The zeta function associated with the operator P is defined by

                                              ζP (s) =           λ−s
                                                             λ

       e.g. λn = n gives the Riemann zeta function
       Problem:




Pedro Fernando Morales                                                                            Math Department
Spectral Functions
Introduction         Laplace-type Operators    Heat kernel       Zeta function   Regularization       Applications




Zeta function


       Zeta function
       The zeta function associated with the operator P is defined by

                                              ζP (s) =           λ−s
                                                             λ

       e.g. λn = n gives the Riemann zeta function
       Problem: only defined for (s) > d/2




Pedro Fernando Morales                                                                            Math Department
Spectral Functions
Introduction         Laplace-type Operators    Heat kernel       Zeta function   Regularization       Applications




Zeta function


       Zeta function
       The zeta function associated with the operator P is defined by

                                              ζP (s) =           λ−s
                                                             λ

       e.g. λn = n gives the Riemann zeta function
       Problem: only defined for (s) > d/2
       All the important information lies to the left of this region!




Pedro Fernando Morales                                                                            Math Department
Spectral Functions
Introduction         Laplace-type Operators   Heat kernel   Zeta function   Regularization       Applications




Regularization




Pedro Fernando Morales                                                                       Math Department
Spectral Functions
Introduction         Laplace-type Operators   Heat kernel   Zeta function   Regularization       Applications




Regularization




       Is a method of making sense of a divergent expression




Pedro Fernando Morales                                                                       Math Department
Spectral Functions
Introduction         Laplace-type Operators   Heat kernel   Zeta function   Regularization       Applications




Regularization




       Is a method of making sense of a divergent expression
       Don’t take the usual meaning of convergence




Pedro Fernando Morales                                                                       Math Department
Spectral Functions
Introduction         Laplace-type Operators   Heat kernel   Zeta function   Regularization       Applications




Regularization




       Is a method of making sense of a divergent expression
       Don’t take the usual meaning of convergence
       Rather look at the meaning of the sum




Pedro Fernando Morales                                                                       Math Department
Spectral Functions
Introduction         Laplace-type Operators   Heat kernel   Zeta function   Regularization       Applications




Pedro Fernando Morales                                                                       Math Department
Spectral Functions
Introduction         Laplace-type Operators   Heat kernel   Zeta function   Regularization       Applications




       Example

                                    1 + 2 + 4 + 8 + 16 + · · · =




Pedro Fernando Morales                                                                       Math Department
Spectral Functions
Introduction         Laplace-type Operators   Heat kernel   Zeta function   Regularization       Applications




       Example

                                    1 + 2 + 4 + 8 + 16 + · · · = − 1




Pedro Fernando Morales                                                                       Math Department
Spectral Functions
Introduction         Laplace-type Operators   Heat kernel   Zeta function   Regularization       Applications




       Example

                                    1 + 2 + 4 + 8 + 16 + · · · = − 1
        Special case of:
                                              ∞
                                                    rn
                                              n=0




Pedro Fernando Morales                                                                       Math Department
Spectral Functions
Introduction         Laplace-type Operators   Heat kernel    Zeta function   Regularization       Applications




       Example

                                    1 + 2 + 4 + 8 + 16 + · · · = − 1
        Special case of:
                                              ∞
                                                             1
                                                    rn =
                                                            1−r
                                              n=0




Pedro Fernando Morales                                                                        Math Department
Spectral Functions
Introduction         Laplace-type Operators         Heat kernel    Zeta function   Regularization       Applications




       Example

                                    1 + 2 + 4 + 8 + 16 + · · · = − 1
        Special case of:
                                                    ∞
                                                                   1
                                                         rn =
                                                                  1−r
                                                  n=0
                                              ∞
                                                    2n
                                              n=0




Pedro Fernando Morales                                                                              Math Department
Spectral Functions
Introduction         Laplace-type Operators         Heat kernel    Zeta function   Regularization       Applications




       Example

                                    1 + 2 + 4 + 8 + 16 + · · · = − 1
        Special case of:
                                                    ∞
                                                                   1
                                                         rn =
                                                                  1−r
                                                  n=0
                                              ∞
                                                              1
                                                    2n =         = −1
                                                             1−2
                                              n=0




Pedro Fernando Morales                                                                              Math Department
Spectral Functions
Introduction         Laplace-type Operators         Heat kernel    Zeta function   Regularization       Applications




       Example

                                    1 + 2 + 4 + 8 + 16 + · · · = − 1
        Special case of:
                                                    ∞
                                                                   1
                                                         rn =
                                                                  1−r
                                                  n=0
                                              ∞
                                                              1
                                                    2n =         = −1
                                                             1−2
                                              n=0

       Convergent only for |r | < 1!




Pedro Fernando Morales                                                                              Math Department
Spectral Functions
Introduction         Laplace-type Operators         Heat kernel    Zeta function   Regularization       Applications




       Example

                                    1 + 2 + 4 + 8 + 16 + · · · = − 1
        Special case of:
                                                    ∞
                                                                   1
                                                         rn =
                                                                  1−r
                                                  n=0
                                              ∞
                                                              1
                                                    2n =         = −1
                                                             1−2
                                              n=0

       Convergent only for |r | < 1!
       We just made an analytic continuation!!



Pedro Fernando Morales                                                                              Math Department
Spectral Functions
Introduction         Laplace-type Operators   Heat kernel   Zeta function   Regularization       Applications




Analytic continuation




Pedro Fernando Morales                                                                       Math Department
Spectral Functions
Introduction         Laplace-type Operators   Heat kernel   Zeta function   Regularization       Applications




Analytic continuation



       ζP (s) admits an analytic continuation to the whole complex plane,
       except for simple poles at s = d/2, (d − 1)/2, . . . , 1/2, −(2n + 1)/2
       for n a non-negative integer.




Pedro Fernando Morales                                                                       Math Department
Spectral Functions
Introduction         Laplace-type Operators     Heat kernel    Zeta function   Regularization       Applications




Analytic continuation



       ζP (s) admits an analytic continuation to the whole complex plane,
       except for simple poles at s = d/2, (d − 1)/2, . . . , 1/2, −(2n + 1)/2
       for n a non-negative integer.
       Residues
                                                              ad/2−s
                                              Res ζP (s) =
                                                               Γ(s)




Pedro Fernando Morales                                                                          Math Department
Spectral Functions
Introduction         Laplace-type Operators   Heat kernel   Zeta function   Regularization       Applications




Riemann Zeta

           • Only one pole (simple) at s = 1




Pedro Fernando Morales                                                                       Math Department
Spectral Functions
Introduction         Laplace-type Operators   Heat kernel   Zeta function   Regularization       Applications




Riemann Zeta

           • Only one pole (simple) at s = 1
           • Res ζR (1) = 1




Pedro Fernando Morales                                                                       Math Department
Spectral Functions
Introduction         Laplace-type Operators   Heat kernel   Zeta function   Regularization       Applications




Riemann Zeta

           • Only one pole (simple) at s = 1
           • Res ζR (1) = 1

       a0 = Γ(d/2)




Pedro Fernando Morales                                                                       Math Department
Spectral Functions
Introduction         Laplace-type Operators   Heat kernel   Zeta function   Regularization       Applications




Riemann Zeta

           • Only one pole (simple) at s = 1
           • Res ζR (1) = 1

       a0 = Γ(d/2)
       ak = 0 (No other residues)




Pedro Fernando Morales                                                                       Math Department
Spectral Functions
Introduction         Laplace-type Operators   Heat kernel   Zeta function   Regularization       Applications




Riemann Zeta

           • Only one pole (simple) at s = 1
           • Res ζR (1) = 1

       a0 = Γ(d/2)
       ak = 0 (No other residues)
       Volume of the boundary is zero




Pedro Fernando Morales                                                                       Math Department
Spectral Functions
Introduction         Laplace-type Operators   Heat kernel   Zeta function   Regularization       Applications




Riemann Zeta

           • Only one pole (simple) at s = 1
           • Res ζR (1) = 1

       a0 = Γ(d/2)
       ak = 0 (No other residues)
       Volume of the boundary is zero
       No curvature terms




Pedro Fernando Morales                                                                       Math Department
Spectral Functions
Introduction         Laplace-type Operators   Heat kernel   Zeta function   Regularization       Applications




Riemann Zeta

           • Only one pole (simple) at s = 1
           • Res ζR (1) = 1

       a0 = Γ(d/2)
       ak = 0 (No other residues)
       Volume of the boundary is zero
       No curvature terms




Pedro Fernando Morales                                                                       Math Department
Spectral Functions
Introduction         Laplace-type Operators   Heat kernel   Zeta function   Regularization       Applications




       Manifold:




Pedro Fernando Morales                                                                       Math Department
Spectral Functions
Introduction         Laplace-type Operators   Heat kernel   Zeta function   Regularization       Applications




       Manifold:
       d = 1,




Pedro Fernando Morales                                                                       Math Department
Spectral Functions
Introduction         Laplace-type Operators   Heat kernel   Zeta function   Regularization       Applications




       Manifold:
       d = 1,
               √
       length= π




Pedro Fernando Morales                                                                       Math Department
Spectral Functions
Introduction         Laplace-type Operators   Heat kernel   Zeta function   Regularization       Applications




       Manifold:
       d = 1,
               √
       length= π

       Operator:




Pedro Fernando Morales                                                                       Math Department
Spectral Functions
Introduction         Laplace-type Operators   Heat kernel   Zeta function   Regularization       Applications




       Manifold:
       d = 1,
               √
       length= π

       Operator:

                                                  d2
                                              −        φ = λφ
                                                  dx 2




Pedro Fernando Morales                                                                       Math Department
Spectral Functions
Introduction         Laplace-type Operators   Heat kernel   Zeta function   Regularization       Applications




       Manifold:
       d = 1,
               √
       length= π

       Operator:

                                                  d2
                                              −        φ = λφ
                                                  dx 2


       Dirichlet boundary conditions




Pedro Fernando Morales                                                                       Math Department
Spectral Functions
Introduction         Laplace-type Operators   Heat kernel   Zeta function   Regularization       Applications




       Manifold:
       d = 1,
               √
       length= π

       Operator:

                                                  d2
                                              −        φ = λφ
                                                  dx 2


       Dirichlet boundary conditions
       eigenvalues {n2 }, n ∈ N




Pedro Fernando Morales                                                                       Math Department
Spectral Functions
Introduction         Laplace-type Operators   Heat kernel   Zeta function   Regularization       Applications




       Manifold:
       d = 1,
               √
       length= π

       Operator:

                                                  d2
                                              −        φ = λφ
                                                  dx 2


       Dirichlet boundary conditions
       eigenvalues {n2 }, n ∈ N

                                              ζP (s) = ζR (2s)


Pedro Fernando Morales                                                                       Math Department
Spectral Functions
Introduction         Laplace-type Operators   Heat kernel   Zeta function   Regularization       Applications




Meromorphic structure

       Convergence problems(poles) come from the large λ behavior




Pedro Fernando Morales                                                                       Math Department
Spectral Functions
Introduction         Laplace-type Operators   Heat kernel   Zeta function   Regularization       Applications




Meromorphic structure

       Convergence problems(poles) come from the large λ behavior
       The geometric information is encoded in the asymptotic behavior
       of the eigenvalues!




Pedro Fernando Morales                                                                       Math Department
Spectral Functions
Introduction         Laplace-type Operators     Heat kernel    Zeta function   Regularization       Applications




Meromorphic structure

       Convergence problems(poles) come from the large λ behavior
       The geometric information is encoded in the asymptotic behavior
       of the eigenvalues!
       Weyl’s law
       Let N(λ) be the number of eigenvalues less than λ, then

                                                      1
                                N(λ) ∼                          Vol(M)λd/2 ,
                                              (4π)d/2 Γ(d/2)

       where d = dim(M).



Pedro Fernando Morales                                                                          Math Department
Spectral Functions
Introduction         Laplace-type Operators   Heat kernel   Zeta function   Regularization       Applications




Applications
       Zeta Regularized Trace




Pedro Fernando Morales                                                                       Math Department
Spectral Functions
Introduction         Laplace-type Operators   Heat kernel   Zeta function   Regularization       Applications




Applications
       Zeta Regularized Trace
       Functional Determinant




Pedro Fernando Morales                                                                       Math Department
Spectral Functions
Introduction         Laplace-type Operators   Heat kernel   Zeta function   Regularization       Applications




Applications
       Zeta Regularized Trace
       Functional Determinant
       Spectral dimension




Pedro Fernando Morales                                                                       Math Department
Spectral Functions
Introduction         Laplace-type Operators   Heat kernel   Zeta function   Regularization       Applications




Applications
       Zeta Regularized Trace
       Functional Determinant
       Spectral dimension
       Physics:




Pedro Fernando Morales                                                                       Math Department
Spectral Functions
Introduction         Laplace-type Operators   Heat kernel       Zeta function   Regularization       Applications




Applications
       Zeta Regularized Trace
       Functional Determinant
       Spectral dimension
       Physics:
       Casimir Energy: λn eigenvalues of the Hamiltonian,
                                                            ∞
                                              ECas =             λn
                                                        n=1




Pedro Fernando Morales                                                                           Math Department
Spectral Functions
Introduction         Laplace-type Operators   Heat kernel       Zeta function   Regularization       Applications




Applications
       Zeta Regularized Trace
       Functional Determinant
       Spectral dimension
       Physics:
       Casimir Energy: λn eigenvalues of the Hamiltonian,
                                                            ∞
                                              ECas =             λn
                                                        n=1

       One-Loop Effective Action (Functional Determinant)




Pedro Fernando Morales                                                                           Math Department
Spectral Functions
Introduction         Laplace-type Operators    Heat kernel       Zeta function   Regularization       Applications




Applications
       Zeta Regularized Trace
       Functional Determinant
       Spectral dimension
       Physics:
       Casimir Energy: λn eigenvalues of the Hamiltonian,
                                                             ∞
                                              ECas =              λn
                                                         n=1

       One-Loop Effective Action (Functional Determinant)
       Heat Kernel Coefficients:

                                          ad/2−z = Γ(z) Res ζP (z)

       for z = d/2, (d − 1)/2, . . . , 1/2, −(2n + 1)/2, n ∈ N
Pedro Fernando Morales                                                                            Math Department
Spectral Functions
Introduction         Laplace-type Operators   Heat kernel   Zeta function   Regularization       Applications




Casimir Effect


       Is a quantum field effect that arises when considering vacuum
       fluctuations




Pedro Fernando Morales                                                                       Math Department
Spectral Functions
Introduction         Laplace-type Operators   Heat kernel   Zeta function   Regularization       Applications




Why is so important?




           • Believed to explain the stability of an electron




Pedro Fernando Morales                                                                       Math Department
Spectral Functions
Introduction         Laplace-type Operators   Heat kernel   Zeta function   Regularization       Applications




Why is so important?




           • Believed to explain the stability of an electron
           • Very sensitive to the geometry of the space (Quantum and
               Comsmological implications)




Pedro Fernando Morales                                                                       Math Department
Spectral Functions
Introduction         Laplace-type Operators   Heat kernel   Zeta function   Regularization       Applications




Why is so important?




           • Believed to explain the stability of an electron
           • Very sensitive to the geometry of the space (Quantum and
               Comsmological implications)
           • Provides a better understanding of the zero-point energy




Pedro Fernando Morales                                                                       Math Department
Spectral Functions
Introduction         Laplace-type Operators   Heat kernel   Zeta function   Regularization       Applications




Conclusions




           • Eigenvalues know a lot of the geometry of a system!




Pedro Fernando Morales                                                                       Math Department
Spectral Functions
Introduction         Laplace-type Operators   Heat kernel   Zeta function   Regularization       Applications




Conclusions




           • Eigenvalues know a lot of the geometry of a system!
           • Describe the dynamics in a geometric object




Pedro Fernando Morales                                                                       Math Department
Spectral Functions
Introduction         Laplace-type Operators   Heat kernel   Zeta function   Regularization       Applications




Conclusions




           • Eigenvalues know a lot of the geometry of a system!
           • Describe the dynamics in a geometric object
           • New information appear when regularizing expressions




Pedro Fernando Morales                                                                       Math Department
Spectral Functions
Introduction         Laplace-type Operators   Heat kernel   Zeta function   Regularization       Applications




Conclusions




           • Eigenvalues know a lot of the geometry of a system!
           • Describe the dynamics in a geometric object
           • New information appear when regularizing expressions
           • Useful to describe high energy systems (quantum physics)




Pedro Fernando Morales                                                                       Math Department
Spectral Functions
Introduction         Laplace-type Operators   Heat kernel   Zeta function   Regularization       Applications




Questions?
       Thank you!




Pedro Fernando Morales                                                                       Math Department
Spectral Functions

Más contenido relacionado

Destacado

стефан и филип
стефан и филипстефан и филип
стефан и филип
2paN
 
Nmdl final presenattion marriott
Nmdl final presenattion marriottNmdl final presenattion marriott
Nmdl final presenattion marriott
meganhawthorne
 
Represii. Deportari. Foamete
Represii. Deportari. FoameteRepresii. Deportari. Foamete
Represii. Deportari. Foamete
Adela Negura
 
Catinca Agache. lansare
Catinca Agache. lansareCatinca Agache. lansare
Catinca Agache. lansare
Adela Negura
 
Human environment-interactions
Human environment-interactionsHuman environment-interactions
Human environment-interactions
Lexi34
 

Destacado (19)

Lean nella azienda ed technologia
Lean nella azienda ed technologia Lean nella azienda ed technologia
Lean nella azienda ed technologia
 
Romanian Design Week 2016
Romanian Design Week 2016Romanian Design Week 2016
Romanian Design Week 2016
 
How to redirect URL with Apache web server
How to redirect URL with Apache web serverHow to redirect URL with Apache web server
How to redirect URL with Apache web server
 
Panel lavar dientes
Panel lavar dientesPanel lavar dientes
Panel lavar dientes
 
Chad daley 1
Chad daley 1Chad daley 1
Chad daley 1
 
Present
PresentPresent
Present
 
USGBC CO Southern Branch
USGBC CO Southern BranchUSGBC CO Southern Branch
USGBC CO Southern Branch
 
L'Anthropocène et ses victimes - François Gemenne
L'Anthropocène et ses victimes  - François GemenneL'Anthropocène et ses victimes  - François Gemenne
L'Anthropocène et ses victimes - François Gemenne
 
стефан и филип
стефан и филипстефан и филип
стефан и филип
 
Nmdl final presenattion marriott
Nmdl final presenattion marriottNmdl final presenattion marriott
Nmdl final presenattion marriott
 
LEED EBOM 101
LEED EBOM 101LEED EBOM 101
LEED EBOM 101
 
Chad daley 1
Chad daley 1Chad daley 1
Chad daley 1
 
Represii. Deportari. Foamete
Represii. Deportari. FoameteRepresii. Deportari. Foamete
Represii. Deportari. Foamete
 
Maltrato infantil
Maltrato infantilMaltrato infantil
Maltrato infantil
 
Catinca Agache. lansare
Catinca Agache. lansareCatinca Agache. lansare
Catinca Agache. lansare
 
AZIMUT Azimut 46, 1997, 199.000 € For Sale Brochure. Presented By azimut-yach...
AZIMUT Azimut 46, 1997, 199.000 € For Sale Brochure. Presented By azimut-yach...AZIMUT Azimut 46, 1997, 199.000 € For Sale Brochure. Presented By azimut-yach...
AZIMUT Azimut 46, 1997, 199.000 € For Sale Brochure. Presented By azimut-yach...
 
Intro to RCM
Intro to RCMIntro to RCM
Intro to RCM
 
Human environment-interactions
Human environment-interactionsHuman environment-interactions
Human environment-interactions
 
Mrs. Rana Al-Nibari - CSR from an NGO Perspective
Mrs. Rana Al-Nibari - CSR from an NGO Perspective Mrs. Rana Al-Nibari - CSR from an NGO Perspective
Mrs. Rana Al-Nibari - CSR from an NGO Perspective
 

Más de Pedro Morales

Linealización de problemas por medio de valores propios
Linealización de problemas por medio de valores propiosLinealización de problemas por medio de valores propios
Linealización de problemas por medio de valores propios
Pedro Morales
 

Más de Pedro Morales (8)

Modelos matemáticos aplicados al COVID19
Modelos matemáticos aplicados al COVID19Modelos matemáticos aplicados al COVID19
Modelos matemáticos aplicados al COVID19
 
Zeta function for perturbed surfaces of revolution
Zeta function for perturbed surfaces of revolutionZeta function for perturbed surfaces of revolution
Zeta function for perturbed surfaces of revolution
 
Perturbaciones en el efecto Casimir
 Perturbaciones en el efecto Casimir Perturbaciones en el efecto Casimir
Perturbaciones en el efecto Casimir
 
Una forma geométrica de medir irracionalidad
Una forma geométrica de medir irracionalidadUna forma geométrica de medir irracionalidad
Una forma geométrica de medir irracionalidad
 
Series divergentes en Matemática y Física
Series divergentes en Matemática y Física Series divergentes en Matemática y Física
Series divergentes en Matemática y Física
 
Linealización de problemas por medio de valores propios
Linealización de problemas por medio de valores propiosLinealización de problemas por medio de valores propios
Linealización de problemas por medio de valores propios
 
Spectral functions and geometric invariants
Spectral functions and geometric invariantsSpectral functions and geometric invariants
Spectral functions and geometric invariants
 
Semitransparent Pistons
Semitransparent PistonsSemitransparent Pistons
Semitransparent Pistons
 

Último

Spellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please PractiseSpellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please Practise
AnaAcapella
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
QucHHunhnh
 

Último (20)

Towards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptxTowards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptx
 
Single or Multiple melodic lines structure
Single or Multiple melodic lines structureSingle or Multiple melodic lines structure
Single or Multiple melodic lines structure
 
ComPTIA Overview | Comptia Security+ Book SY0-701
ComPTIA Overview | Comptia Security+ Book SY0-701ComPTIA Overview | Comptia Security+ Book SY0-701
ComPTIA Overview | Comptia Security+ Book SY0-701
 
Spellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please PractiseSpellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please Practise
 
Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)
 
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
 
How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdf
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The Basics
 
Food safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdfFood safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdf
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdf
 
Micro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdfMicro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdf
 
Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024
 
General Principles of Intellectual Property: Concepts of Intellectual Proper...
General Principles of Intellectual Property: Concepts of Intellectual  Proper...General Principles of Intellectual Property: Concepts of Intellectual  Proper...
General Principles of Intellectual Property: Concepts of Intellectual Proper...
 
This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.
 
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
 
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17  How to Extend Models Using Mixin ClassesMixin Classes in Odoo 17  How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
 
ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.
 
Graduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - EnglishGraduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - English
 

Spectral Functions, The Geometric Power of Eigenvalues,

  • 1. Introduction Laplace-type Operators Heat kernel Zeta function Regularization Applications Spectral Functions, The Geometric Power of Eigenvalues, Pedro Fernando Morales Department of Mathematics Baylor University pedro morales@baylor.edu Athens, Ohio, 10/18/2012 Pedro Fernando Morales Math Department Spectral Functions
  • 2. Introduction Laplace-type Operators Heat kernel Zeta function Regularization Applications Outline 1 Introduction Pedro Fernando Morales Math Department Spectral Functions
  • 3. Introduction Laplace-type Operators Heat kernel Zeta function Regularization Applications Outline 1 Introduction 2 Laplace-type Operators Pedro Fernando Morales Math Department Spectral Functions
  • 4. Introduction Laplace-type Operators Heat kernel Zeta function Regularization Applications Outline 1 Introduction 2 Laplace-type Operators 3 Heat kernel Pedro Fernando Morales Math Department Spectral Functions
  • 5. Introduction Laplace-type Operators Heat kernel Zeta function Regularization Applications Outline 1 Introduction 2 Laplace-type Operators 3 Heat kernel 4 Zeta function Pedro Fernando Morales Math Department Spectral Functions
  • 6. Introduction Laplace-type Operators Heat kernel Zeta function Regularization Applications Outline 1 Introduction 2 Laplace-type Operators 3 Heat kernel 4 Zeta function 5 Regularization Pedro Fernando Morales Math Department Spectral Functions
  • 7. Introduction Laplace-type Operators Heat kernel Zeta function Regularization Applications Outline 1 Introduction 2 Laplace-type Operators 3 Heat kernel 4 Zeta function 5 Regularization 6 Applications Pedro Fernando Morales Math Department Spectral Functions
  • 8. Introduction Laplace-type Operators Heat kernel Zeta function Regularization Applications Pedro Fernando Morales Math Department Spectral Functions
  • 9. Introduction Laplace-type Operators Heat kernel Zeta function Regularization Applications Pedro Fernando Morales Math Department Spectral Functions
  • 10. Introduction Laplace-type Operators Heat kernel Zeta function Regularization Applications Pedro Fernando Morales Math Department Spectral Functions
  • 11. Introduction Laplace-type Operators Heat kernel Zeta function Regularization Applications Pedro Fernando Morales Math Department Spectral Functions
  • 12. Introduction Laplace-type Operators Heat kernel Zeta function Regularization Applications Eigenvalues Pedro Fernando Morales Math Department Spectral Functions
  • 13. Introduction Laplace-type Operators Heat kernel Zeta function Regularization Applications Eigenvalues Pedro Fernando Morales Math Department Spectral Functions
  • 14. Introduction Laplace-type Operators Heat kernel Zeta function Regularization Applications Eigenvalues Pedro Fernando Morales Math Department Spectral Functions
  • 15. Introduction Laplace-type Operators Heat kernel Zeta function Regularization Applications Eigenvalues Pedro Fernando Morales Math Department Spectral Functions
  • 16. Introduction Laplace-type Operators Heat kernel Zeta function Regularization Applications Eigenvalues (a little more formal) Pedro Fernando Morales Math Department Spectral Functions
  • 17. Introduction Laplace-type Operators Heat kernel Zeta function Regularization Applications Eigenvalues (a little more formal) • Point spectrum of an operator Pedro Fernando Morales Math Department Spectral Functions
  • 18. Introduction Laplace-type Operators Heat kernel Zeta function Regularization Applications Eigenvalues (a little more formal) • Point spectrum of an operator • P − λI not bounded below (not injective) Pedro Fernando Morales Math Department Spectral Functions
  • 19. Introduction Laplace-type Operators Heat kernel Zeta function Regularization Applications Eigenvalues (a little more formal) • Point spectrum of an operator • P − λI not bounded below (not injective) • Pφ = λφ Pedro Fernando Morales Math Department Spectral Functions
  • 20. Introduction Laplace-type Operators Heat kernel Zeta function Regularization Applications Eigenvalues (a little more formal) • Point spectrum of an operator • P − λI not bounded below (not injective) • Pφ = λφ (eigenvalue equation) Pedro Fernando Morales Math Department Spectral Functions
  • 21. Introduction Laplace-type Operators Heat kernel Zeta function Regularization Applications Philosophical question What is an eigenvalue? Pedro Fernando Morales Math Department Spectral Functions
  • 22. Introduction Laplace-type Operators Heat kernel Zeta function Regularization Applications Philosophical question What is an eigenvalue? • A way to linearize a problem Pedro Fernando Morales Math Department Spectral Functions
  • 23. Introduction Laplace-type Operators Heat kernel Zeta function Regularization Applications Philosophical question What is an eigenvalue? • A way to linearize a problem • Measures the distortion of a system Pedro Fernando Morales Math Department Spectral Functions
  • 24. Introduction Laplace-type Operators Heat kernel Zeta function Regularization Applications Philosophical question What is an eigenvalue? • A way to linearize a problem • Measures the distortion of a system • Decomposes an object into simpler pieces Pedro Fernando Morales Math Department Spectral Functions
  • 25. Introduction Laplace-type Operators Heat kernel Zeta function Regularization Applications Philosophical question What is an eigenvalue? • A way to linearize a problem • Measures the distortion of a system • Decomposes an object into simpler pieces • Determines the resolution of a method Pedro Fernando Morales Math Department Spectral Functions
  • 26. Introduction Laplace-type Operators Heat kernel Zeta function Regularization Applications Other names and similar ideas Pedro Fernando Morales Math Department Spectral Functions
  • 27. Introduction Laplace-type Operators Heat kernel Zeta function Regularization Applications Other names and similar ideas • Fourier expansion Pedro Fernando Morales Math Department Spectral Functions
  • 28. Introduction Laplace-type Operators Heat kernel Zeta function Regularization Applications Other names and similar ideas • Fourier expansion • Characters of representations Pedro Fernando Morales Math Department Spectral Functions
  • 29. Introduction Laplace-type Operators Heat kernel Zeta function Regularization Applications Other names and similar ideas • Fourier expansion • Characters of representations • Decomposition into irreducibles Pedro Fernando Morales Math Department Spectral Functions
  • 30. Introduction Laplace-type Operators Heat kernel Zeta function Regularization Applications Differential Operators Pedro Fernando Morales Math Department Spectral Functions
  • 31. Introduction Laplace-type Operators Heat kernel Zeta function Regularization Applications Differential Operators • M a compact manifold Pedro Fernando Morales Math Department Spectral Functions
  • 32. Introduction Laplace-type Operators Heat kernel Zeta function Regularization Applications Differential Operators • M a compact manifold • E a vector bundle over M Pedro Fernando Morales Math Department Spectral Functions
  • 33. Introduction Laplace-type Operators Heat kernel Zeta function Regularization Applications Differential Operators • M a compact manifold • E a vector bundle over M • P : Γ(E ) → Γ(E ) a differential operator over M Pedro Fernando Morales Math Department Spectral Functions
  • 34. Introduction Laplace-type Operators Heat kernel Zeta function Regularization Applications Differential Operators • M a compact manifold • E a vector bundle over M • P : Γ(E ) → Γ(E ) a differential operator over M • With boundary conditions if ∂M = ∅ Pedro Fernando Morales Math Department Spectral Functions
  • 35. Introduction Laplace-type Operators Heat kernel Zeta function Regularization Applications Differential Operators • M a compact manifold • E a vector bundle over M • P : Γ(E ) → Γ(E ) a differential operator over M • With boundary conditions if ∂M = ∅ Eigenvalue Equation Pφ = λφ, where φ ∈ Γ(E ) Pedro Fernando Morales Math Department Spectral Functions
  • 36. Introduction Laplace-type Operators Heat kernel Zeta function Regularization Applications Example (Vibrating membrane) Pedro Fernando Morales Math Department Spectral Functions
  • 37. Introduction Laplace-type Operators Heat kernel Zeta function Regularization Applications Pedro Fernando Morales Math Department Spectral Functions
  • 38. Introduction Laplace-type Operators Heat kernel Zeta function Regularization Applications There is a close relation between the shape of the manifold and the eigenvalues (eigenfunctions) of the Laplacian Pedro Fernando Morales Math Department Spectral Functions
  • 39. Introduction Laplace-type Operators Heat kernel Zeta function Regularization Applications There is a close relation between the shape of the manifold and the eigenvalues (eigenfunctions) of the Laplacian Pedro Fernando Morales Math Department Spectral Functions
  • 40. Introduction Laplace-type Operators Heat kernel Zeta function Regularization Applications Generalized Laplace equation M d-dimensional smooth compact Riemannian manifold Pedro Fernando Morales Math Department Spectral Functions
  • 41. Introduction Laplace-type Operators Heat kernel Zeta function Regularization Applications Generalized Laplace equation M d-dimensional smooth compact Riemannian manifold E a smooth vector bundle over M Pedro Fernando Morales Math Department Spectral Functions
  • 42. Introduction Laplace-type Operators Heat kernel Zeta function Regularization Applications Generalized Laplace equation M d-dimensional smooth compact Riemannian manifold E a smooth vector bundle over M V ∈ End(E ) Pedro Fernando Morales Math Department Spectral Functions
  • 43. Introduction Laplace-type Operators Heat kernel Zeta function Regularization Applications Generalized Laplace equation M d-dimensional smooth compact Riemannian manifold E a smooth vector bundle over M V ∈ End(E ) E a connection on E Pedro Fernando Morales Math Department Spectral Functions
  • 44. Introduction Laplace-type Operators Heat kernel Zeta function Regularization Applications Generalized Laplace equation M d-dimensional smooth compact Riemannian manifold E a smooth vector bundle over M V ∈ End(E ) E a connection on E g metric on M Pedro Fernando Morales Math Department Spectral Functions
  • 45. Introduction Laplace-type Operators Heat kernel Zeta function Regularization Applications Generalized Laplace equation M d-dimensional smooth compact Riemannian manifold E a smooth vector bundle over M V ∈ End(E ) E a connection on E g metric on M Laplace-type P : Γ(E ) → Γ(E ) is a Laplace-type differential operator if P can be written as P = −g ij E E + V i j Pedro Fernando Morales Math Department Spectral Functions
  • 46. Introduction Laplace-type Operators Heat kernel Zeta function Regularization Applications Properties Laplace-type Operators Symmetric Pedro Fernando Morales Math Department Spectral Functions
  • 47. Introduction Laplace-type Operators Heat kernel Zeta function Regularization Applications Properties Laplace-type Operators Symmetric (Self-adjoint with suitable boundary conditions) Pedro Fernando Morales Math Department Spectral Functions
  • 48. Introduction Laplace-type Operators Heat kernel Zeta function Regularization Applications Properties Laplace-type Operators Symmetric (Self-adjoint with suitable boundary conditions) Real eigenvalues Pedro Fernando Morales Math Department Spectral Functions
  • 49. Introduction Laplace-type Operators Heat kernel Zeta function Regularization Applications Properties Laplace-type Operators Symmetric (Self-adjoint with suitable boundary conditions) Real eigenvalues Bounded below Pedro Fernando Morales Math Department Spectral Functions
  • 50. Introduction Laplace-type Operators Heat kernel Zeta function Regularization Applications Properties Laplace-type Operators Symmetric (Self-adjoint with suitable boundary conditions) Real eigenvalues Bounded below Tend to infinity Pedro Fernando Morales Math Department Spectral Functions
  • 51. Introduction Laplace-type Operators Heat kernel Zeta function Regularization Applications Recall: Pedro Fernando Morales Math Department Spectral Functions
  • 52. Introduction Laplace-type Operators Heat kernel Zeta function Regularization Applications Recall: Heat Equation ∆u = ut , for a domain D, where u = 0 at ∂D and u|t=0 = f (x) is the initial heat distribution. Pedro Fernando Morales Math Department Spectral Functions
  • 53. Introduction Laplace-type Operators Heat kernel Zeta function Regularization Applications Recall: Heat Equation ∆u = ut , for a domain D, where u = 0 at ∂D and u|t=0 = f (x) is the initial heat distribution. we use the heat kernel to find the heat distribution at any time: Pedro Fernando Morales Math Department Spectral Functions
  • 54. Introduction Laplace-type Operators Heat kernel Zeta function Regularization Applications Recall: Heat Equation ∆u = ut , for a domain D, where u = 0 at ∂D and u|t=0 = f (x) is the initial heat distribution. we use the heat kernel to find the heat distribution at any time: • Kt (t, x, y ) = ∆K (t, x, y ) , for x, y ∈ D, t > 0 Pedro Fernando Morales Math Department Spectral Functions
  • 55. Introduction Laplace-type Operators Heat kernel Zeta function Regularization Applications Recall: Heat Equation ∆u = ut , for a domain D, where u = 0 at ∂D and u|t=0 = f (x) is the initial heat distribution. we use the heat kernel to find the heat distribution at any time: • Kt (t, x, y ) = ∆K (t, x, y ) , for x, y ∈ D, t > 0 • lim K (t, x, y ) = δ(x − y ) t→0 Pedro Fernando Morales Math Department Spectral Functions
  • 56. Introduction Laplace-type Operators Heat kernel Zeta function Regularization Applications Recall: Heat Equation ∆u = ut , for a domain D, where u = 0 at ∂D and u|t=0 = f (x) is the initial heat distribution. we use the heat kernel to find the heat distribution at any time: • Kt (t, x, y ) = ∆K (t, x, y ) , for x, y ∈ D, t > 0 • lim K (t, x, y ) = δ(x − y ) t→0 • K (t, x, y ) = 0 for x or y in ∂D Pedro Fernando Morales Math Department Spectral Functions
  • 57. Introduction Laplace-type Operators Heat kernel Zeta function Regularization Applications Pedro Fernando Morales Math Department Spectral Functions
  • 58. Introduction Laplace-type Operators Heat kernel Zeta function Regularization Applications Solving the heat equation (Tf )(t, x) = K (t, x, y )f (y )dy D solves the heat equation. Pedro Fernando Morales Math Department Spectral Functions
  • 59. Introduction Laplace-type Operators Heat kernel Zeta function Regularization Applications Heat kernel for a Laplace-type operator Pedro Fernando Morales Math Department Spectral Functions
  • 60. Introduction Laplace-type Operators Heat kernel Zeta function Regularization Applications Heat kernel for a Laplace-type operator Likewise, for a Laplace-type operator, Pedro Fernando Morales Math Department Spectral Functions
  • 61. Introduction Laplace-type Operators Heat kernel Zeta function Regularization Applications Heat kernel for a Laplace-type operator Likewise, for a Laplace-type operator, Heat Kernel • (∂t − P)K (t, x, y ) = 0, C ∞ (R+ , M, M) Pedro Fernando Morales Math Department Spectral Functions
  • 62. Introduction Laplace-type Operators Heat kernel Zeta function Regularization Applications Heat kernel for a Laplace-type operator Likewise, for a Laplace-type operator, Heat Kernel • (∂t − P)K (t, x, y ) = 0, C ∞ (R+ , M, M) • lim K (t, x, y )f (y ) = f (x), ∀f ∈ L2 (M) t→0 M Pedro Fernando Morales Math Department Spectral Functions
  • 63. Introduction Laplace-type Operators Heat kernel Zeta function Regularization Applications Relation with eigenvalues Pedro Fernando Morales Math Department Spectral Functions
  • 64. Introduction Laplace-type Operators Heat kernel Zeta function Regularization Applications Relation with eigenvalues K (t, x, y ) = e tP Pedro Fernando Morales Math Department Spectral Functions
  • 65. Introduction Laplace-type Operators Heat kernel Zeta function Regularization Applications Relation with eigenvalues K (t, x, y ) = e tP = e −tλ φλ (x)φλ (y ), λ Pedro Fernando Morales Math Department Spectral Functions
  • 66. Introduction Laplace-type Operators Heat kernel Zeta function Regularization Applications Relation with eigenvalues K (t, x, y ) = e tP = e −tλ φλ (x)φλ (y ), λ where λ runs over the eigenvalues of P and φλ is the corresponding eigenfunction. Pedro Fernando Morales Math Department Spectral Functions
  • 67. Introduction Laplace-type Operators Heat kernel Zeta function Regularization Applications Heat Kernel Asymptotic Expansion Pedro Fernando Morales Math Department Spectral Functions
  • 68. Introduction Laplace-type Operators Heat kernel Zeta function Regularization Applications Heat Kernel Asymptotic Expansion For small values of t, Pedro Fernando Morales Math Department Spectral Functions
  • 69. Introduction Laplace-type Operators Heat kernel Zeta function Regularization Applications Heat Kernel Asymptotic Expansion For small values of t, Asymptotic Expansion Kt (t, x, x) ∼ bk (x)t k−d/2 k=0,1/2,1,..., Pedro Fernando Morales Math Department Spectral Functions
  • 70. Introduction Laplace-type Operators Heat kernel Zeta function Regularization Applications Heat Kernel Asymptotic Expansion For small values of t, Asymptotic Expansion Kt (t, x, x) ∼ bk (x)t k−d/2 k=0,1/2,1,..., Heat kernel coefficients ak = bk (x)dx M Pedro Fernando Morales Math Department Spectral Functions
  • 71. Introduction Laplace-type Operators Heat kernel Zeta function Regularization Applications Properties Pedro Fernando Morales Math Department Spectral Functions
  • 72. Introduction Laplace-type Operators Heat kernel Zeta function Regularization Applications Properties • Provide geometric information about the manifold Pedro Fernando Morales Math Department Spectral Functions
  • 73. Introduction Laplace-type Operators Heat kernel Zeta function Regularization Applications Properties • Provide geometric information about the manifold • a0 is the volume of M Pedro Fernando Morales Math Department Spectral Functions
  • 74. Introduction Laplace-type Operators Heat kernel Zeta function Regularization Applications Properties • Provide geometric information about the manifold • a0 is the volume of M • a1/2 is the volume of the boundary ∂M Pedro Fernando Morales Math Department Spectral Functions
  • 75. Introduction Laplace-type Operators Heat kernel Zeta function Regularization Applications Properties • Provide geometric information about the manifold • a0 is the volume of M • a1/2 is the volume of the boundary ∂M • ak has curvature terms Pedro Fernando Morales Math Department Spectral Functions
  • 76. Introduction Laplace-type Operators Heat kernel Zeta function Regularization Applications Spectral Functions Pedro Fernando Morales Math Department Spectral Functions
  • 77. Introduction Laplace-type Operators Heat kernel Zeta function Regularization Applications Spectral Functions The heat kernel is an example of an spectral function (defined in terms of the spectrum of P) Pedro Fernando Morales Math Department Spectral Functions
  • 78. Introduction Laplace-type Operators Heat kernel Zeta function Regularization Applications Spectral Functions The heat kernel is an example of an spectral function (defined in terms of the spectrum of P) Recall: K (t) = λ e −tλ Pedro Fernando Morales Math Department Spectral Functions
  • 79. Introduction Laplace-type Operators Heat kernel Zeta function Regularization Applications Spectral Functions The heat kernel is an example of an spectral function (defined in terms of the spectrum of P) Recall: K (t) = λ e −tλ Zeta function: Pedro Fernando Morales Math Department Spectral Functions
  • 80. Introduction Laplace-type Operators Heat kernel Zeta function Regularization Applications Spectral Functions The heat kernel is an example of an spectral function (defined in terms of the spectrum of P) Recall: K (t) = λ e −tλ Zeta function: Pedro Fernando Morales Math Department Spectral Functions
  • 81. Introduction Laplace-type Operators Heat kernel Zeta function Regularization Applications Spectral Functions The heat kernel is an example of an spectral function (defined in terms of the spectrum of P) Recall: K (t) = λ e −tλ Zeta function: Pedro Fernando Morales Math Department Spectral Functions
  • 82. Introduction Laplace-type Operators Heat kernel Zeta function Regularization Applications Spectral Functions The heat kernel is an example of an spectral function (defined in terms of the spectrum of P) Recall: K (t) = λ e −tλ Zeta function: Pedro Fernando Morales Math Department Spectral Functions
  • 83. Introduction Laplace-type Operators Heat kernel Zeta function Regularization Applications Zeta function Pedro Fernando Morales Math Department Spectral Functions
  • 84. Introduction Laplace-type Operators Heat kernel Zeta function Regularization Applications Zeta function Zeta function The zeta function associated with the operator P is defined by ζP (s) = λ−s λ Pedro Fernando Morales Math Department Spectral Functions
  • 85. Introduction Laplace-type Operators Heat kernel Zeta function Regularization Applications Zeta function Zeta function The zeta function associated with the operator P is defined by ζP (s) = λ−s λ e.g. λn = n gives the Riemann zeta function Pedro Fernando Morales Math Department Spectral Functions
  • 86. Introduction Laplace-type Operators Heat kernel Zeta function Regularization Applications Zeta function Zeta function The zeta function associated with the operator P is defined by ζP (s) = λ−s λ e.g. λn = n gives the Riemann zeta function Problem: Pedro Fernando Morales Math Department Spectral Functions
  • 87. Introduction Laplace-type Operators Heat kernel Zeta function Regularization Applications Zeta function Zeta function The zeta function associated with the operator P is defined by ζP (s) = λ−s λ e.g. λn = n gives the Riemann zeta function Problem: only defined for (s) > d/2 Pedro Fernando Morales Math Department Spectral Functions
  • 88. Introduction Laplace-type Operators Heat kernel Zeta function Regularization Applications Zeta function Zeta function The zeta function associated with the operator P is defined by ζP (s) = λ−s λ e.g. λn = n gives the Riemann zeta function Problem: only defined for (s) > d/2 All the important information lies to the left of this region! Pedro Fernando Morales Math Department Spectral Functions
  • 89. Introduction Laplace-type Operators Heat kernel Zeta function Regularization Applications Regularization Pedro Fernando Morales Math Department Spectral Functions
  • 90. Introduction Laplace-type Operators Heat kernel Zeta function Regularization Applications Regularization Is a method of making sense of a divergent expression Pedro Fernando Morales Math Department Spectral Functions
  • 91. Introduction Laplace-type Operators Heat kernel Zeta function Regularization Applications Regularization Is a method of making sense of a divergent expression Don’t take the usual meaning of convergence Pedro Fernando Morales Math Department Spectral Functions
  • 92. Introduction Laplace-type Operators Heat kernel Zeta function Regularization Applications Regularization Is a method of making sense of a divergent expression Don’t take the usual meaning of convergence Rather look at the meaning of the sum Pedro Fernando Morales Math Department Spectral Functions
  • 93. Introduction Laplace-type Operators Heat kernel Zeta function Regularization Applications Pedro Fernando Morales Math Department Spectral Functions
  • 94. Introduction Laplace-type Operators Heat kernel Zeta function Regularization Applications Example 1 + 2 + 4 + 8 + 16 + · · · = Pedro Fernando Morales Math Department Spectral Functions
  • 95. Introduction Laplace-type Operators Heat kernel Zeta function Regularization Applications Example 1 + 2 + 4 + 8 + 16 + · · · = − 1 Pedro Fernando Morales Math Department Spectral Functions
  • 96. Introduction Laplace-type Operators Heat kernel Zeta function Regularization Applications Example 1 + 2 + 4 + 8 + 16 + · · · = − 1 Special case of: ∞ rn n=0 Pedro Fernando Morales Math Department Spectral Functions
  • 97. Introduction Laplace-type Operators Heat kernel Zeta function Regularization Applications Example 1 + 2 + 4 + 8 + 16 + · · · = − 1 Special case of: ∞ 1 rn = 1−r n=0 Pedro Fernando Morales Math Department Spectral Functions
  • 98. Introduction Laplace-type Operators Heat kernel Zeta function Regularization Applications Example 1 + 2 + 4 + 8 + 16 + · · · = − 1 Special case of: ∞ 1 rn = 1−r n=0 ∞ 2n n=0 Pedro Fernando Morales Math Department Spectral Functions
  • 99. Introduction Laplace-type Operators Heat kernel Zeta function Regularization Applications Example 1 + 2 + 4 + 8 + 16 + · · · = − 1 Special case of: ∞ 1 rn = 1−r n=0 ∞ 1 2n = = −1 1−2 n=0 Pedro Fernando Morales Math Department Spectral Functions
  • 100. Introduction Laplace-type Operators Heat kernel Zeta function Regularization Applications Example 1 + 2 + 4 + 8 + 16 + · · · = − 1 Special case of: ∞ 1 rn = 1−r n=0 ∞ 1 2n = = −1 1−2 n=0 Convergent only for |r | < 1! Pedro Fernando Morales Math Department Spectral Functions
  • 101. Introduction Laplace-type Operators Heat kernel Zeta function Regularization Applications Example 1 + 2 + 4 + 8 + 16 + · · · = − 1 Special case of: ∞ 1 rn = 1−r n=0 ∞ 1 2n = = −1 1−2 n=0 Convergent only for |r | < 1! We just made an analytic continuation!! Pedro Fernando Morales Math Department Spectral Functions
  • 102. Introduction Laplace-type Operators Heat kernel Zeta function Regularization Applications Analytic continuation Pedro Fernando Morales Math Department Spectral Functions
  • 103. Introduction Laplace-type Operators Heat kernel Zeta function Regularization Applications Analytic continuation ζP (s) admits an analytic continuation to the whole complex plane, except for simple poles at s = d/2, (d − 1)/2, . . . , 1/2, −(2n + 1)/2 for n a non-negative integer. Pedro Fernando Morales Math Department Spectral Functions
  • 104. Introduction Laplace-type Operators Heat kernel Zeta function Regularization Applications Analytic continuation ζP (s) admits an analytic continuation to the whole complex plane, except for simple poles at s = d/2, (d − 1)/2, . . . , 1/2, −(2n + 1)/2 for n a non-negative integer. Residues ad/2−s Res ζP (s) = Γ(s) Pedro Fernando Morales Math Department Spectral Functions
  • 105. Introduction Laplace-type Operators Heat kernel Zeta function Regularization Applications Riemann Zeta • Only one pole (simple) at s = 1 Pedro Fernando Morales Math Department Spectral Functions
  • 106. Introduction Laplace-type Operators Heat kernel Zeta function Regularization Applications Riemann Zeta • Only one pole (simple) at s = 1 • Res ζR (1) = 1 Pedro Fernando Morales Math Department Spectral Functions
  • 107. Introduction Laplace-type Operators Heat kernel Zeta function Regularization Applications Riemann Zeta • Only one pole (simple) at s = 1 • Res ζR (1) = 1 a0 = Γ(d/2) Pedro Fernando Morales Math Department Spectral Functions
  • 108. Introduction Laplace-type Operators Heat kernel Zeta function Regularization Applications Riemann Zeta • Only one pole (simple) at s = 1 • Res ζR (1) = 1 a0 = Γ(d/2) ak = 0 (No other residues) Pedro Fernando Morales Math Department Spectral Functions
  • 109. Introduction Laplace-type Operators Heat kernel Zeta function Regularization Applications Riemann Zeta • Only one pole (simple) at s = 1 • Res ζR (1) = 1 a0 = Γ(d/2) ak = 0 (No other residues) Volume of the boundary is zero Pedro Fernando Morales Math Department Spectral Functions
  • 110. Introduction Laplace-type Operators Heat kernel Zeta function Regularization Applications Riemann Zeta • Only one pole (simple) at s = 1 • Res ζR (1) = 1 a0 = Γ(d/2) ak = 0 (No other residues) Volume of the boundary is zero No curvature terms Pedro Fernando Morales Math Department Spectral Functions
  • 111. Introduction Laplace-type Operators Heat kernel Zeta function Regularization Applications Riemann Zeta • Only one pole (simple) at s = 1 • Res ζR (1) = 1 a0 = Γ(d/2) ak = 0 (No other residues) Volume of the boundary is zero No curvature terms Pedro Fernando Morales Math Department Spectral Functions
  • 112. Introduction Laplace-type Operators Heat kernel Zeta function Regularization Applications Manifold: Pedro Fernando Morales Math Department Spectral Functions
  • 113. Introduction Laplace-type Operators Heat kernel Zeta function Regularization Applications Manifold: d = 1, Pedro Fernando Morales Math Department Spectral Functions
  • 114. Introduction Laplace-type Operators Heat kernel Zeta function Regularization Applications Manifold: d = 1, √ length= π Pedro Fernando Morales Math Department Spectral Functions
  • 115. Introduction Laplace-type Operators Heat kernel Zeta function Regularization Applications Manifold: d = 1, √ length= π Operator: Pedro Fernando Morales Math Department Spectral Functions
  • 116. Introduction Laplace-type Operators Heat kernel Zeta function Regularization Applications Manifold: d = 1, √ length= π Operator: d2 − φ = λφ dx 2 Pedro Fernando Morales Math Department Spectral Functions
  • 117. Introduction Laplace-type Operators Heat kernel Zeta function Regularization Applications Manifold: d = 1, √ length= π Operator: d2 − φ = λφ dx 2 Dirichlet boundary conditions Pedro Fernando Morales Math Department Spectral Functions
  • 118. Introduction Laplace-type Operators Heat kernel Zeta function Regularization Applications Manifold: d = 1, √ length= π Operator: d2 − φ = λφ dx 2 Dirichlet boundary conditions eigenvalues {n2 }, n ∈ N Pedro Fernando Morales Math Department Spectral Functions
  • 119. Introduction Laplace-type Operators Heat kernel Zeta function Regularization Applications Manifold: d = 1, √ length= π Operator: d2 − φ = λφ dx 2 Dirichlet boundary conditions eigenvalues {n2 }, n ∈ N ζP (s) = ζR (2s) Pedro Fernando Morales Math Department Spectral Functions
  • 120. Introduction Laplace-type Operators Heat kernel Zeta function Regularization Applications Meromorphic structure Convergence problems(poles) come from the large λ behavior Pedro Fernando Morales Math Department Spectral Functions
  • 121. Introduction Laplace-type Operators Heat kernel Zeta function Regularization Applications Meromorphic structure Convergence problems(poles) come from the large λ behavior The geometric information is encoded in the asymptotic behavior of the eigenvalues! Pedro Fernando Morales Math Department Spectral Functions
  • 122. Introduction Laplace-type Operators Heat kernel Zeta function Regularization Applications Meromorphic structure Convergence problems(poles) come from the large λ behavior The geometric information is encoded in the asymptotic behavior of the eigenvalues! Weyl’s law Let N(λ) be the number of eigenvalues less than λ, then 1 N(λ) ∼ Vol(M)λd/2 , (4π)d/2 Γ(d/2) where d = dim(M). Pedro Fernando Morales Math Department Spectral Functions
  • 123. Introduction Laplace-type Operators Heat kernel Zeta function Regularization Applications Applications Zeta Regularized Trace Pedro Fernando Morales Math Department Spectral Functions
  • 124. Introduction Laplace-type Operators Heat kernel Zeta function Regularization Applications Applications Zeta Regularized Trace Functional Determinant Pedro Fernando Morales Math Department Spectral Functions
  • 125. Introduction Laplace-type Operators Heat kernel Zeta function Regularization Applications Applications Zeta Regularized Trace Functional Determinant Spectral dimension Pedro Fernando Morales Math Department Spectral Functions
  • 126. Introduction Laplace-type Operators Heat kernel Zeta function Regularization Applications Applications Zeta Regularized Trace Functional Determinant Spectral dimension Physics: Pedro Fernando Morales Math Department Spectral Functions
  • 127. Introduction Laplace-type Operators Heat kernel Zeta function Regularization Applications Applications Zeta Regularized Trace Functional Determinant Spectral dimension Physics: Casimir Energy: λn eigenvalues of the Hamiltonian, ∞ ECas = λn n=1 Pedro Fernando Morales Math Department Spectral Functions
  • 128. Introduction Laplace-type Operators Heat kernel Zeta function Regularization Applications Applications Zeta Regularized Trace Functional Determinant Spectral dimension Physics: Casimir Energy: λn eigenvalues of the Hamiltonian, ∞ ECas = λn n=1 One-Loop Effective Action (Functional Determinant) Pedro Fernando Morales Math Department Spectral Functions
  • 129. Introduction Laplace-type Operators Heat kernel Zeta function Regularization Applications Applications Zeta Regularized Trace Functional Determinant Spectral dimension Physics: Casimir Energy: λn eigenvalues of the Hamiltonian, ∞ ECas = λn n=1 One-Loop Effective Action (Functional Determinant) Heat Kernel Coefficients: ad/2−z = Γ(z) Res ζP (z) for z = d/2, (d − 1)/2, . . . , 1/2, −(2n + 1)/2, n ∈ N Pedro Fernando Morales Math Department Spectral Functions
  • 130. Introduction Laplace-type Operators Heat kernel Zeta function Regularization Applications Casimir Effect Is a quantum field effect that arises when considering vacuum fluctuations Pedro Fernando Morales Math Department Spectral Functions
  • 131. Introduction Laplace-type Operators Heat kernel Zeta function Regularization Applications Why is so important? • Believed to explain the stability of an electron Pedro Fernando Morales Math Department Spectral Functions
  • 132. Introduction Laplace-type Operators Heat kernel Zeta function Regularization Applications Why is so important? • Believed to explain the stability of an electron • Very sensitive to the geometry of the space (Quantum and Comsmological implications) Pedro Fernando Morales Math Department Spectral Functions
  • 133. Introduction Laplace-type Operators Heat kernel Zeta function Regularization Applications Why is so important? • Believed to explain the stability of an electron • Very sensitive to the geometry of the space (Quantum and Comsmological implications) • Provides a better understanding of the zero-point energy Pedro Fernando Morales Math Department Spectral Functions
  • 134. Introduction Laplace-type Operators Heat kernel Zeta function Regularization Applications Conclusions • Eigenvalues know a lot of the geometry of a system! Pedro Fernando Morales Math Department Spectral Functions
  • 135. Introduction Laplace-type Operators Heat kernel Zeta function Regularization Applications Conclusions • Eigenvalues know a lot of the geometry of a system! • Describe the dynamics in a geometric object Pedro Fernando Morales Math Department Spectral Functions
  • 136. Introduction Laplace-type Operators Heat kernel Zeta function Regularization Applications Conclusions • Eigenvalues know a lot of the geometry of a system! • Describe the dynamics in a geometric object • New information appear when regularizing expressions Pedro Fernando Morales Math Department Spectral Functions
  • 137. Introduction Laplace-type Operators Heat kernel Zeta function Regularization Applications Conclusions • Eigenvalues know a lot of the geometry of a system! • Describe the dynamics in a geometric object • New information appear when regularizing expressions • Useful to describe high energy systems (quantum physics) Pedro Fernando Morales Math Department Spectral Functions
  • 138. Introduction Laplace-type Operators Heat kernel Zeta function Regularization Applications Questions? Thank you! Pedro Fernando Morales Math Department Spectral Functions