SlideShare una empresa de Scribd logo
1 de 4
TRANSISTORES
El transistor, inventado en 1951, es el componente electrónico estrella, pues
inició una auténtica revolución en la electrónica que ha superado cualquier
previsión inicial.
Con el transistor vino la miniaturización de los componentes y se llegó al
descubrimiento de los circuitos integrados, en los que se colocan, en pocos
milímetros cuadrados, miles de transistores. Estos circuitos constituyen el
origen de los microprocesadores y, por lo tanto, de los ordenadores actuales.
Por otra parte, la sustitución en los montajes electrónicos de las clásicas y
antiguas válvulas de vacío por los transistores, reduce al máximo las pérdidas
de calor de los equipos.
Un transistor es un componente que tiene, básicamente, dos funciones:
- Deja pasar o corta señales eléctricas a partir de una PEQUEÑA señal de
mando.
- Funciona como un elemento AMPLIFICADOR de señales.
¿Cómo es físicamente un transistor?
Hay dos tipos básicos de transistor:
a) Transistor bipolar o BJT (Bipolar Junction Transistor)
b) Transistor de efecto de campo, FET (Field Effect Transistor) o unipolar
A) Transistor bipolar
Consta de tres cristales semiconductores
(usualmente de silicio) unidos entre sí. Según como
se coloquen los cristales hay dos tipos básicos de
transistores bipolares.
- Transistor NPN: en este caso un cristal P está
situado entre dos cristales N. Son los más
comunes.
- Transistor PNP: en este caso un cristal N está
situado entre dos cristales P
La capa de en medio es mucho más estrecha que las
otras dos.
En cada uno de estos cristales se realiza un contacto metálico, lo que da origen
a tres terminales:
• Emisor (E): Se encarga de proporcionar portadores de carga.
• Colector (C): Se encarga de recoger portadores de carga.
• Base (B): Controla el paso de corriente a través del transistor. Es el
cristal de en medio.
El conjunto se protege con una funda de plástico o metal.
Nos centraremos en el transistor NPN:
B) Polarización del transistor
Se entiende por polarización del transistor las
conexiones adecuadas que hay que realizar con
corriente continua para que pueda funcionar correctamente.
Si se conectan dos baterías al transistor como se ve en la figura, es decir, con
la unión PN de la base-emisor polarizada directamente y la unión PN de la
base-colector polarizado inversamente. Siempre que la tensión de la base-
emisor supere 0,7 V, diremos que el transistor está polarizado, es decir, que
funciona correctamente.
Este montaje se llama con emisor común.
En este caso, el hecho de que el transistor esté en funcionamiento significa que
es capaz de conducir la corriente desde el terminal colector hasta el terminal
emisor. Se cumplen dos expresiones para este caso:
La primera…
IE= IB + IC
Donde…
IE es la corriente que recorre el terminal emisor.
IC es la corriente que recorre el terminal colector.
IB es la corriente que recorre el terminal base.
Como la corriente de base resulta siempre MUY PEQUEÑA, se puede decir
que la corriente del colector y la del emisor prácticamente coinciden.
IE ≈ IC
La segunda expresión dice
IC= β·IB
Donde β es una constante que depende de cada transistor llamado ganancia
que puede valer entre 50 y 300 (algunos transistores llegan a 1000).
La ganancia de un transistor nos habla de la capacidad que tiene para
amplificar la corriente. Cuanto mayor es la ganancia de un transistor, más
puede amplificar la corriente.
Se concluye que la corriente por el colector de un transistor bipolar es
proporcional a la corriente por la base, es decir, a mayor corriente en la base,
mayor corriente en el colector.
En la práctica no se utilizan dos baterías, sino una
sola.
Según estas dos expresiones el transistor bipolar puede tener tres estados
distintos de funcionamiento:
a) Corte: En este caso la corriente de base es nula (o casi), es decir, IB = 0,
por lo tanto, IC= β·IB= β·0 = 0  IC= 0
En este caso, el transistor no conduce en absoluto. No está
funcionando. Se dice que el transistor se comporta como un interruptor
abierto.
b) Activa: En este caso el transistor conduce parcialmente siguiendo la
segunda expresión (IC= β·IB). La corriente del colector es directamente
proporcional a la corriente de la base. Ejemplo: Si β = 100, la corriente
del colector es 100 veces la corriente de la base. Por eso se dice que el
transistor amplifica la corriente.
c) Saturación: En este caso, el transistor conduce totalmente y se comporta
como un interruptor cerrado. Este estado se alcanza cuando la corriente
por la base (IB) alcanza un valor alto. En este caso la expresión (IC= β·IB)
ya no tiene sentido pues, por mucho que aumente el valor de la corriente de
base (IB), no aumenta el valor de la corriente de colector.
Veamos un cuadro resumen con las tensiones de trabajo en los diferentes
estados de funcionamiento, así como las corrientes de un transistor conectado
a una pila cuya tensión es V
Corte Activa Saturación
VCE VCE = V 0< VCE < V VCE ≈ 0
IC IC≈ IE = 0
IC= β·IB
IE ≈ IC
IE ≈ IC
IB
en cualquier caso IB
siempre es una
corriente pequeña, es
decir, IB << IC
IB≈0 IB>0 IB con máximo valor
Conducción del
transistor
No conduce (se
comporta como
un interruptor
abierto)
Conduce
parcialmente
Conduce
totalmente (se
comporta como
un interruptor
cerrado)
Donde VCE es la tensión que existe entre el colector y el emisor.
Si la corriente de base es muy alta, el transistor puede estropearse, por eso, la
base del transistor debe protegerse SIEMPRE con una resistencia de una valor
alto.
Estados de funcionamiento de un transistor

Más contenido relacionado

La actualidad más candente

La actualidad más candente (18)

3.2. Operacion del Transistor BJT
3.2. Operacion del Transistor BJT3.2. Operacion del Transistor BJT
3.2. Operacion del Transistor BJT
 
Transistor como interruptor
Transistor como interruptorTransistor como interruptor
Transistor como interruptor
 
Transistor bjt
Transistor bjtTransistor bjt
Transistor bjt
 
Transistores
TransistoresTransistores
Transistores
 
3Control
3Control3Control
3Control
 
Transistores
TransistoresTransistores
Transistores
 
transistores en conmutación electrronica de potencia
transistores en conmutación electrronica de potenciatransistores en conmutación electrronica de potencia
transistores en conmutación electrronica de potencia
 
Transistor BJT
Transistor BJTTransistor BJT
Transistor BJT
 
El transistor
El transistorEl transistor
El transistor
 
Transistores
TransistoresTransistores
Transistores
 
Transistor Bipolar BJT
Transistor Bipolar BJTTransistor Bipolar BJT
Transistor Bipolar BJT
 
El transistor de unión bipolar bjt
El transistor de unión bipolar bjtEl transistor de unión bipolar bjt
El transistor de unión bipolar bjt
 
Transistores
TransistoresTransistores
Transistores
 
TRANSISTORES DE JUNTURA, BIPOLARES UNIDAD I
TRANSISTORES DE JUNTURA, BIPOLARES UNIDAD ITRANSISTORES DE JUNTURA, BIPOLARES UNIDAD I
TRANSISTORES DE JUNTURA, BIPOLARES UNIDAD I
 
Transistores
TransistoresTransistores
Transistores
 
Electronica transistores2
Electronica transistores2Electronica transistores2
Electronica transistores2
 
El transistor
El transistorEl transistor
El transistor
 
Transitores presentacion de diapositivas
Transitores presentacion de diapositivasTransitores presentacion de diapositivas
Transitores presentacion de diapositivas
 

Similar a Transistores: componente clave de la electrónica moderna

Similar a Transistores: componente clave de la electrónica moderna (20)

Transistores
TransistoresTransistores
Transistores
 
Transistores
TransistoresTransistores
Transistores
 
Los transistores
Los transistoresLos transistores
Los transistores
 
Los transistores
Los transistoresLos transistores
Los transistores
 
USO DEL TRANSISTOR COMO SWITCH - TRANSISTOR EN CORTE Y EN SATURACION - TRANSI...
USO DEL TRANSISTOR COMO SWITCH - TRANSISTOR EN CORTE Y EN SATURACION - TRANSI...USO DEL TRANSISTOR COMO SWITCH - TRANSISTOR EN CORTE Y EN SATURACION - TRANSI...
USO DEL TRANSISTOR COMO SWITCH - TRANSISTOR EN CORTE Y EN SATURACION - TRANSI...
 
TRANSITORES
TRANSITORESTRANSITORES
TRANSITORES
 
Transistor Bipolar
Transistor BipolarTransistor Bipolar
Transistor Bipolar
 
Documento inicial bueno (1)
Documento inicial bueno (1)Documento inicial bueno (1)
Documento inicial bueno (1)
 
Documento editado
Documento editadoDocumento editado
Documento editado
 
Transistores
TransistoresTransistores
Transistores
 
Proyecto 3 lab
Proyecto 3 labProyecto 3 lab
Proyecto 3 lab
 
Mejorar documento
Mejorar documentoMejorar documento
Mejorar documento
 
ELECTRÓNICA BÁSICA
ELECTRÓNICA BÁSICAELECTRÓNICA BÁSICA
ELECTRÓNICA BÁSICA
 
Mejorar documento
Mejorar documentoMejorar documento
Mejorar documento
 
Mejorar documentoe
Mejorar documentoeMejorar documentoe
Mejorar documentoe
 
Transistores.doc
Transistores.docTransistores.doc
Transistores.doc
 
Electrónica Básica
Electrónica BásicaElectrónica Básica
Electrónica Básica
 
Mejorar word
Mejorar wordMejorar word
Mejorar word
 
Mejorar documento
Mejorar documento Mejorar documento
Mejorar documento
 
Documento inicial
Documento inicialDocumento inicial
Documento inicial
 

Último

Taller 1 Reflexión Docente Colectivo Presencial_2024 _20 de marzo.pptx
Taller 1 Reflexión Docente Colectivo Presencial_2024 _20 de marzo.pptxTaller 1 Reflexión Docente Colectivo Presencial_2024 _20 de marzo.pptx
Taller 1 Reflexión Docente Colectivo Presencial_2024 _20 de marzo.pptxLala NOmas
 
Presentación sobre las teorías atómicas química
Presentación sobre las teorías atómicas químicaPresentación sobre las teorías atómicas química
Presentación sobre las teorías atómicas químicaJuanDavidMonsalveMar
 
La infografía reglas para relaizar UNO sera
La infografía reglas para relaizar UNO seraLa infografía reglas para relaizar UNO sera
La infografía reglas para relaizar UNO seraMariaCleofeTolentino
 
Guia-Cambio-Climático-y-Adaptación-del-Modelo-de-Negocio-BR.pptx
Guia-Cambio-Climático-y-Adaptación-del-Modelo-de-Negocio-BR.pptxGuia-Cambio-Climático-y-Adaptación-del-Modelo-de-Negocio-BR.pptx
Guia-Cambio-Climático-y-Adaptación-del-Modelo-de-Negocio-BR.pptxEdgarMedina834392
 
Informe del 1er simulacro inopinado 2024.docx
Informe del 1er simulacro inopinado 2024.docxInforme del 1er simulacro inopinado 2024.docx
Informe del 1er simulacro inopinado 2024.docxCarlos Muñoz
 
CAPITULO 6 DISEÑO DE FILTROS BIOLOGICOS.pdf
CAPITULO 6 DISEÑO DE FILTROS BIOLOGICOS.pdfCAPITULO 6 DISEÑO DE FILTROS BIOLOGICOS.pdf
CAPITULO 6 DISEÑO DE FILTROS BIOLOGICOS.pdfvilcatomadiana
 
La Cuenca del Lagunas de Montebello .pdf
La Cuenca del Lagunas de Montebello .pdfLa Cuenca del Lagunas de Montebello .pdf
La Cuenca del Lagunas de Montebello .pdfSUSMAI
 
Indices bIODIVERSIDAD.pptx umb egologia aplicada
Indices bIODIVERSIDAD.pptx umb egologia aplicadaIndices bIODIVERSIDAD.pptx umb egologia aplicada
Indices bIODIVERSIDAD.pptx umb egologia aplicadaaurelionino
 
Guía de Manejo del Cultivo de Maiz Morado (Zea mays L.) (2).pdf
Guía de Manejo del Cultivo de Maiz Morado (Zea mays L.) (2).pdfGuía de Manejo del Cultivo de Maiz Morado (Zea mays L.) (2).pdf
Guía de Manejo del Cultivo de Maiz Morado (Zea mays L.) (2).pdfSandraPatriciaDiazDu
 
EVIDENCIA 2 EXPOSICIÓN (1).pptx, gestion de cadena de suministros
EVIDENCIA 2 EXPOSICIÓN (1).pptx, gestion de cadena de suministrosEVIDENCIA 2 EXPOSICIÓN (1).pptx, gestion de cadena de suministros
EVIDENCIA 2 EXPOSICIÓN (1).pptx, gestion de cadena de suministrosMarcoAntonioMamaniGa
 
Revista de volcanes de Él Salvador (1).pdf
Revista de volcanes de Él Salvador  (1).pdfRevista de volcanes de Él Salvador  (1).pdf
Revista de volcanes de Él Salvador (1).pdfaddriana1616
 
ASEO PERINEAL.pptx,.,...............................
ASEO PERINEAL.pptx,.,...............................ASEO PERINEAL.pptx,.,...............................
ASEO PERINEAL.pptx,.,...............................ANNYRUBIFRIELYMUNGUI
 
Atlas del socioecosistema Río Grande de Comitán.pptx
Atlas del socioecosistema Río Grande de Comitán.pptxAtlas del socioecosistema Río Grande de Comitán.pptx
Atlas del socioecosistema Río Grande de Comitán.pptxSUSMAI
 
Cuadro-comparativo-de-los-Modelos-Atomicos-6 (1).pptx
Cuadro-comparativo-de-los-Modelos-Atomicos-6 (1).pptxCuadro-comparativo-de-los-Modelos-Atomicos-6 (1).pptx
Cuadro-comparativo-de-los-Modelos-Atomicos-6 (1).pptxMarcoSanchez652945
 
Descripción de la obra Adrián y Fabiola.pptx
Descripción de la obra Adrián y Fabiola.pptxDescripción de la obra Adrián y Fabiola.pptx
Descripción de la obra Adrián y Fabiola.pptxSUSMAI
 
cruza dihíbrida y problemas de dominancia completa
cruza dihíbrida y problemas de dominancia completacruza dihíbrida y problemas de dominancia completa
cruza dihíbrida y problemas de dominancia completajosedavidf114
 
ATLAS DEL SOCIOECOSISTEMA: RÍO GRANDE DE COMITÁN-LAGOS DE MONTEBELLO, CHIAPAS...
ATLAS DEL SOCIOECOSISTEMA: RÍO GRANDE DE COMITÁN-LAGOS DE MONTEBELLO, CHIAPAS...ATLAS DEL SOCIOECOSISTEMA: RÍO GRANDE DE COMITÁN-LAGOS DE MONTEBELLO, CHIAPAS...
ATLAS DEL SOCIOECOSISTEMA: RÍO GRANDE DE COMITÁN-LAGOS DE MONTEBELLO, CHIAPAS...SUSMAI
 
picaduras de insectos. enfermedades transmitidas por vector
picaduras de insectos. enfermedades transmitidas por vectorpicaduras de insectos. enfermedades transmitidas por vector
picaduras de insectos. enfermedades transmitidas por vectorDamiiHernandez
 
Atlas del socioecosistema Río Grande de Monitán.pdf
Atlas del socioecosistema Río Grande de Monitán.pdfAtlas del socioecosistema Río Grande de Monitán.pdf
Atlas del socioecosistema Río Grande de Monitán.pdfSUSMAI
 
La Sostenibilidad y los ODS Normas y proyectos
La Sostenibilidad y los ODS  Normas y proyectosLa Sostenibilidad y los ODS  Normas y proyectos
La Sostenibilidad y los ODS Normas y proyectosEnrique Posada
 

Último (20)

Taller 1 Reflexión Docente Colectivo Presencial_2024 _20 de marzo.pptx
Taller 1 Reflexión Docente Colectivo Presencial_2024 _20 de marzo.pptxTaller 1 Reflexión Docente Colectivo Presencial_2024 _20 de marzo.pptx
Taller 1 Reflexión Docente Colectivo Presencial_2024 _20 de marzo.pptx
 
Presentación sobre las teorías atómicas química
Presentación sobre las teorías atómicas químicaPresentación sobre las teorías atómicas química
Presentación sobre las teorías atómicas química
 
La infografía reglas para relaizar UNO sera
La infografía reglas para relaizar UNO seraLa infografía reglas para relaizar UNO sera
La infografía reglas para relaizar UNO sera
 
Guia-Cambio-Climático-y-Adaptación-del-Modelo-de-Negocio-BR.pptx
Guia-Cambio-Climático-y-Adaptación-del-Modelo-de-Negocio-BR.pptxGuia-Cambio-Climático-y-Adaptación-del-Modelo-de-Negocio-BR.pptx
Guia-Cambio-Climático-y-Adaptación-del-Modelo-de-Negocio-BR.pptx
 
Informe del 1er simulacro inopinado 2024.docx
Informe del 1er simulacro inopinado 2024.docxInforme del 1er simulacro inopinado 2024.docx
Informe del 1er simulacro inopinado 2024.docx
 
CAPITULO 6 DISEÑO DE FILTROS BIOLOGICOS.pdf
CAPITULO 6 DISEÑO DE FILTROS BIOLOGICOS.pdfCAPITULO 6 DISEÑO DE FILTROS BIOLOGICOS.pdf
CAPITULO 6 DISEÑO DE FILTROS BIOLOGICOS.pdf
 
La Cuenca del Lagunas de Montebello .pdf
La Cuenca del Lagunas de Montebello .pdfLa Cuenca del Lagunas de Montebello .pdf
La Cuenca del Lagunas de Montebello .pdf
 
Indices bIODIVERSIDAD.pptx umb egologia aplicada
Indices bIODIVERSIDAD.pptx umb egologia aplicadaIndices bIODIVERSIDAD.pptx umb egologia aplicada
Indices bIODIVERSIDAD.pptx umb egologia aplicada
 
Guía de Manejo del Cultivo de Maiz Morado (Zea mays L.) (2).pdf
Guía de Manejo del Cultivo de Maiz Morado (Zea mays L.) (2).pdfGuía de Manejo del Cultivo de Maiz Morado (Zea mays L.) (2).pdf
Guía de Manejo del Cultivo de Maiz Morado (Zea mays L.) (2).pdf
 
EVIDENCIA 2 EXPOSICIÓN (1).pptx, gestion de cadena de suministros
EVIDENCIA 2 EXPOSICIÓN (1).pptx, gestion de cadena de suministrosEVIDENCIA 2 EXPOSICIÓN (1).pptx, gestion de cadena de suministros
EVIDENCIA 2 EXPOSICIÓN (1).pptx, gestion de cadena de suministros
 
Revista de volcanes de Él Salvador (1).pdf
Revista de volcanes de Él Salvador  (1).pdfRevista de volcanes de Él Salvador  (1).pdf
Revista de volcanes de Él Salvador (1).pdf
 
ASEO PERINEAL.pptx,.,...............................
ASEO PERINEAL.pptx,.,...............................ASEO PERINEAL.pptx,.,...............................
ASEO PERINEAL.pptx,.,...............................
 
Atlas del socioecosistema Río Grande de Comitán.pptx
Atlas del socioecosistema Río Grande de Comitán.pptxAtlas del socioecosistema Río Grande de Comitán.pptx
Atlas del socioecosistema Río Grande de Comitán.pptx
 
Cuadro-comparativo-de-los-Modelos-Atomicos-6 (1).pptx
Cuadro-comparativo-de-los-Modelos-Atomicos-6 (1).pptxCuadro-comparativo-de-los-Modelos-Atomicos-6 (1).pptx
Cuadro-comparativo-de-los-Modelos-Atomicos-6 (1).pptx
 
Descripción de la obra Adrián y Fabiola.pptx
Descripción de la obra Adrián y Fabiola.pptxDescripción de la obra Adrián y Fabiola.pptx
Descripción de la obra Adrián y Fabiola.pptx
 
cruza dihíbrida y problemas de dominancia completa
cruza dihíbrida y problemas de dominancia completacruza dihíbrida y problemas de dominancia completa
cruza dihíbrida y problemas de dominancia completa
 
ATLAS DEL SOCIOECOSISTEMA: RÍO GRANDE DE COMITÁN-LAGOS DE MONTEBELLO, CHIAPAS...
ATLAS DEL SOCIOECOSISTEMA: RÍO GRANDE DE COMITÁN-LAGOS DE MONTEBELLO, CHIAPAS...ATLAS DEL SOCIOECOSISTEMA: RÍO GRANDE DE COMITÁN-LAGOS DE MONTEBELLO, CHIAPAS...
ATLAS DEL SOCIOECOSISTEMA: RÍO GRANDE DE COMITÁN-LAGOS DE MONTEBELLO, CHIAPAS...
 
picaduras de insectos. enfermedades transmitidas por vector
picaduras de insectos. enfermedades transmitidas por vectorpicaduras de insectos. enfermedades transmitidas por vector
picaduras de insectos. enfermedades transmitidas por vector
 
Atlas del socioecosistema Río Grande de Monitán.pdf
Atlas del socioecosistema Río Grande de Monitán.pdfAtlas del socioecosistema Río Grande de Monitán.pdf
Atlas del socioecosistema Río Grande de Monitán.pdf
 
La Sostenibilidad y los ODS Normas y proyectos
La Sostenibilidad y los ODS  Normas y proyectosLa Sostenibilidad y los ODS  Normas y proyectos
La Sostenibilidad y los ODS Normas y proyectos
 

Transistores: componente clave de la electrónica moderna

  • 1. TRANSISTORES El transistor, inventado en 1951, es el componente electrónico estrella, pues inició una auténtica revolución en la electrónica que ha superado cualquier previsión inicial. Con el transistor vino la miniaturización de los componentes y se llegó al descubrimiento de los circuitos integrados, en los que se colocan, en pocos milímetros cuadrados, miles de transistores. Estos circuitos constituyen el origen de los microprocesadores y, por lo tanto, de los ordenadores actuales. Por otra parte, la sustitución en los montajes electrónicos de las clásicas y antiguas válvulas de vacío por los transistores, reduce al máximo las pérdidas de calor de los equipos. Un transistor es un componente que tiene, básicamente, dos funciones: - Deja pasar o corta señales eléctricas a partir de una PEQUEÑA señal de mando. - Funciona como un elemento AMPLIFICADOR de señales. ¿Cómo es físicamente un transistor? Hay dos tipos básicos de transistor: a) Transistor bipolar o BJT (Bipolar Junction Transistor) b) Transistor de efecto de campo, FET (Field Effect Transistor) o unipolar A) Transistor bipolar Consta de tres cristales semiconductores (usualmente de silicio) unidos entre sí. Según como se coloquen los cristales hay dos tipos básicos de transistores bipolares. - Transistor NPN: en este caso un cristal P está situado entre dos cristales N. Son los más comunes. - Transistor PNP: en este caso un cristal N está situado entre dos cristales P La capa de en medio es mucho más estrecha que las otras dos. En cada uno de estos cristales se realiza un contacto metálico, lo que da origen a tres terminales: • Emisor (E): Se encarga de proporcionar portadores de carga. • Colector (C): Se encarga de recoger portadores de carga.
  • 2. • Base (B): Controla el paso de corriente a través del transistor. Es el cristal de en medio. El conjunto se protege con una funda de plástico o metal. Nos centraremos en el transistor NPN: B) Polarización del transistor Se entiende por polarización del transistor las conexiones adecuadas que hay que realizar con corriente continua para que pueda funcionar correctamente. Si se conectan dos baterías al transistor como se ve en la figura, es decir, con la unión PN de la base-emisor polarizada directamente y la unión PN de la base-colector polarizado inversamente. Siempre que la tensión de la base- emisor supere 0,7 V, diremos que el transistor está polarizado, es decir, que funciona correctamente. Este montaje se llama con emisor común. En este caso, el hecho de que el transistor esté en funcionamiento significa que es capaz de conducir la corriente desde el terminal colector hasta el terminal emisor. Se cumplen dos expresiones para este caso: La primera…
  • 3. IE= IB + IC Donde… IE es la corriente que recorre el terminal emisor. IC es la corriente que recorre el terminal colector. IB es la corriente que recorre el terminal base. Como la corriente de base resulta siempre MUY PEQUEÑA, se puede decir que la corriente del colector y la del emisor prácticamente coinciden. IE ≈ IC La segunda expresión dice IC= β·IB Donde β es una constante que depende de cada transistor llamado ganancia que puede valer entre 50 y 300 (algunos transistores llegan a 1000). La ganancia de un transistor nos habla de la capacidad que tiene para amplificar la corriente. Cuanto mayor es la ganancia de un transistor, más puede amplificar la corriente. Se concluye que la corriente por el colector de un transistor bipolar es proporcional a la corriente por la base, es decir, a mayor corriente en la base, mayor corriente en el colector. En la práctica no se utilizan dos baterías, sino una sola. Según estas dos expresiones el transistor bipolar puede tener tres estados distintos de funcionamiento: a) Corte: En este caso la corriente de base es nula (o casi), es decir, IB = 0, por lo tanto, IC= β·IB= β·0 = 0  IC= 0 En este caso, el transistor no conduce en absoluto. No está funcionando. Se dice que el transistor se comporta como un interruptor abierto.
  • 4. b) Activa: En este caso el transistor conduce parcialmente siguiendo la segunda expresión (IC= β·IB). La corriente del colector es directamente proporcional a la corriente de la base. Ejemplo: Si β = 100, la corriente del colector es 100 veces la corriente de la base. Por eso se dice que el transistor amplifica la corriente. c) Saturación: En este caso, el transistor conduce totalmente y se comporta como un interruptor cerrado. Este estado se alcanza cuando la corriente por la base (IB) alcanza un valor alto. En este caso la expresión (IC= β·IB) ya no tiene sentido pues, por mucho que aumente el valor de la corriente de base (IB), no aumenta el valor de la corriente de colector. Veamos un cuadro resumen con las tensiones de trabajo en los diferentes estados de funcionamiento, así como las corrientes de un transistor conectado a una pila cuya tensión es V Corte Activa Saturación VCE VCE = V 0< VCE < V VCE ≈ 0 IC IC≈ IE = 0 IC= β·IB IE ≈ IC IE ≈ IC IB en cualquier caso IB siempre es una corriente pequeña, es decir, IB << IC IB≈0 IB>0 IB con máximo valor Conducción del transistor No conduce (se comporta como un interruptor abierto) Conduce parcialmente Conduce totalmente (se comporta como un interruptor cerrado) Donde VCE es la tensión que existe entre el colector y el emisor. Si la corriente de base es muy alta, el transistor puede estropearse, por eso, la base del transistor debe protegerse SIEMPRE con una resistencia de una valor alto. Estados de funcionamiento de un transistor