SlideShare una empresa de Scribd logo
XXI Simposio Peruano de Energía Solar y del Ambiente (XXI- SPES), Piura, 10 -14.11.2014
ESTUDIO COMPARATIVO DEL RENDIMIENTO TERMICO ENTRE UNA
TERMA SOLAR BÁSICA Y UN SISTEMA DE CALENTAMIENTO
INTEGRADO
Rolando Adriano Peña – radriano@inictel-uni.edu.pe
Abel Gutarra Espinoza – agutarra@uni.edu.pe
Universidad Nacional de Ingeniería, Facultad de Ciencias
Henry Javier Ccallata - hjavier@ucsp.edu.pe
Evelyn Gutierrez Oppe – egutierrez@ucsp.edu.pe
Universidad Católica San Pablo, Facultad de Ingeniería y Computación
Resumen. El presente artículo muestra los resultados del estudio comparativo de rendimiento térmico entre una Terma
solar básica (TSB) y un Sistema de Calentamiento Integrado (SCI). Dicha experiencia se realizó en el Campus de la
Universidad Católica San Pablo de Arequipa, específicamente dentro de los laboratorios del Instituto de Energía y Medio
Ambiente. La evaluación se realizó en base a tres experiencias, la primera consistió en encontrar la eficiencia global de
cada uno de los sistemas, para ello también se consideraron las pérdidas de calor durante la noche, en la segunda se siguió
el método CSTG de la norma ISO 9459-2, para evaluar el rendimiento térmico diario, finalmente la tercera prueba
consistió en encontrar la velocidad de calentamiento, ambos sistemas fueron expuestos a las mismas condiciones de
radiación, viento, etc. Finalmente se concluyó, que bajo las condiciones de estudio, la TSB tuvo mejor rendimiento térmico
que el SCI en casi todas las pruebas excepto en la velocidad de calentamiento cuando solamente incidía radiación difusa
sobre los colectores.
Palabras-clave: sistema de calentamiento integrado, rendimiento térmico, terma solar básica.
1. INTRODUCCIÓN
Actualmente la utilización de agua caliente constituye un consumo energético importante en la vida diaria. El
calentamiento de agua mediante energía solar, más allá de ser una alternativa ecológica, se ha convertido en una tecnología
económicamente atractiva y competitiva en varios países, en comparación con las tecnología convencionales que utilizan
algún tipo de combustible fósil para llegar a este fin (Holm, 2005).
En el Perú poco a poco se va incrementando la utilización de estas tecnologías. Se estima que hoy en día, existen entre
25.000 y 30.000 termas solares instaladas en Arequipa, Ayacucho, Lima, Puno y Tacna entre otros. Además, existen
alrededor de 20 fabricantes a nivel nacional que producen mensualmente alrededor de 600 m2
de colectores solares para
termas solares (Horn, 2006). La industria de termas nacional está enfocada en la producción de colectores planos
tradicionales, los cuales vienen siendo desplazados por nuevas tecnologías que presentan mayor eficiencia. Tal es el caso de
los colectores de tubo al vacío referente a las cuales al 2011 ya el 18% de las empresas comercializadoras de termas solares
en el país se dedicaban a la importación y comercialización de dichas termas (UIDT, 2011).
Por otro lado, Massipe et al. (2012) concluyen, luego de un estudio teórico de simulación en el software TRNSYS
entre la terma solar básica (TSB) y el colector solar termoacumulativo (un tipo de SCI), que este último tiene un
comportamiento térmico ligeramente superior (1-3%) al TSB; por otro lado Gotzberger & Rommel (1987) encontraron
resultados similares. Sin embargo Fasulo et al. (2001) y Sadhishkumar & Balusamy (2014), indican que el SCI a pesar de
ser económico y resistente a la corrosión tiene tendencias a sufrir pérdidas de calor, así como también, su comportamiento
no es uniforme durante todo el año, teniendo mejor desempeño en los meses de verano.
Es en este marco, la Universidad Católica San Pablo de Arequipa, mediante el Instituto de Energía y Medio Ambiente,
lleva a cabo el proyecto ―Estudio numérico y experimental de un sistema integrado de calentamiento solar de agua
compacto y económico, para aplicaciones en comunidades aisladas alto andinas‖, con el objetivo de diseñar y construir un
prototipo económico de un SCI, para ser utilizado en zonas alto andinas. Uno de los resultados dentro de dicho proyecto, es
este trabajo que compara el rendimiento térmico entre una Terma solar básica (TSB) y un Sistema de Calentamiento
Integrado (SCI) para condiciones típicas del mes de agosto en la ciudad de Arequipa-Perú.
XXI Simposio Peruano de Energía Solar y del Ambiente (XXI- SPES), Piura, 10 -14.11.2014
2. MATERIALES Y MÉTODOS
2.1 Materiales
Equipos: El aparato experimental está conformado por dos sistemas de calentamiento de agua con energía solar la
primera de manufactura peruana y el segundo construido en España instalados de acuerdo a la Fig. 1:
Figura 1- Sistemas solares dispuestos para el ensayo de rendimiento diario del sistema (a) fotografía de la Terma solar
básica (TSB); (b) esquema de montaje y flujo de agua en terma la TSB; (c) fotografía del Sistema de
Calentamiento Integrado (SCI); (d) esquema de montaje y flujo de agua en el SCI
Conformado por dos sistemas de calentamiento de agua con energía solar instalados de acuerdo a la Figura 1. La terma
con colector plano consta de un tanque de 150 L y un colector plano de 1.5 m2
de área. El sistema compacto (Barreto, 1999)
integra tanque de 150 L y colector de 1.95 m2
en un solo dispositivo, además consta de intercambiador de calor con fluido
caloportador en el interior del tanque. Dicho fluido es impulsado por una bomba, la cual utiliza energía fotovoltaica,
ubicada en la parte inferior izquierda. Ambos equipos fueron colocados orientados al norte considerando un ángulo de
inclinación de 26°.
Otros equipos y materiales: cuatro termocuplas tipo k de la marca OMEGA para medir temperaturas de entrada y
salida; un multímetro digital FLUKE 287 con medidor de termocuplas; una estación meteorológica marca DAVIS; un
reductor de presión en el rango de 1 a 10 bar para el ajuste a 3 bar para el sistema compacto; tubos de PVC para las
XXI Simposio Peruano de Energía Solar y del Ambiente (XXI- SPES), Piura, 10 -14.11.2014
instalaciones; y un cronometro y dos baldes de 20 litros para medir el flujo volumétrico. En la Fig. 2 se observan
termoculpas y multímetro usados en el ensayo.
Cabe mencionar que los datos de radiación fueron tomados de la estación meteorológica ubicada en la Universidad
Nacional San Agustín, la cual se encontraba en una superficie horizontal. A fin de corregir la medida de radiación, de
acuerdo al ángulo de inclinación, se realizaron los cálculos respectivos usando los principios de geometría solar (Duffie &
Beckman, 1980).
Figura 2- Fotografía de las termocuplas tipo k y del medidor de termocuplas fluke 287.
2.2 Métodos
Se realizaron tres tipos de pruebas, la primera consistió en encontrar la eficiencia efectiva, la segunda siguiendo el
método CSTG de la norma ISO 9459-2 y la tercera consistió en encontrar la velocidad de calentamiento.
Eficiencia Efectiva. Esta prueba se realizó con el objetivo de determinar una de las funciones básicas de la terma, la
cual es mantener el calor captado el mayor tiempo posible. Para esto el procedimiento seguido fue: llenar de agua los
sistemas mostrados en la Fig. 1, tanto la TSB como el SCI. Con el colector cubierto, se mantuvo en sistema estacionario
hasta alcanzar la diferencia de 1 K. Luego se cerró la alimentación de agua para ambas termas, se midieron las temperaturas
de entrada (Ti) y se descubrieron los colectores. Se mantuvieron descubiertos por espacio de 5 horas y media (de 9 am a
2.30 pm). Se registraron los valores de radiación durante todo el periodo de prueba. Al finalizar el tiempo de exposición, se
cubrieron nuevamente los colectores, se retiraron 15 L y se midieron las temperaturas de salida (Ta). Al día siguiente se
midieron nuevamente las temperaturas de salida (Tb). Estos valores (Ta) y (Tb) sirvieron para calcular la temperatura
promedio(Tm), estimando las pérdidas de calor, recomendado por (Valera, 2007).
Evaluación del rendimiento térmico de las termas solares. De acuerdo al procedimiento CSTG de la norma ISO 9459-2
(Norma Técnica Europea, 2006), el protocolo seguido se detalla a continuación: Se llenaron de agua los sistemas de la Fig.
1, luego se cerraron las llaves de entrada y salida de agua. Se registraron los valores de radiación, durante todo el periodo de
la prueba. Se dejó operar el sistema expuesto al sol, desde las 9 am hasta las 2.30 pm, se realizó una extracción al final del
día a un caudal constante de 600 ℓ/h mientras el agua de reposición ingresa a una temperatura tmain. Esta extracción
continuara hasta extraer un volumen de agua igual 450 litros. Cada vez que se extrajo 15 litros, se registró la temperatura
promedio de salida.
Velocidad de calentamiento. En este experimento se realizó con el objetivo de registrar cuantos °C/min conseguía
subir cada equipo (TSB y SCI). Este ensayo fue realizado el 08/08/2014, además de poder registrar la velocidad de
calentamiento se contó con una ventaja de la naturaleza, ya que durante el ensayo hubo periodos de nubes, los cuales
sirvieron para identificar la capacidad de absorción de la radiación difusa. El procedimiento consistió en llenar ambos
tanques de agua a la misma temperatura de entrada, luego se descubrió el colector y se inició con la toma de datos. El
experimento inicio 9.30 am y terminó a las 2.00 pm, se colectaron 15 L de agua a cada 15 minutos, considerando el mismo
flujo de agua para ambas termas.
3. RESULTADOS Y DISCUSION
XXI Simposio Peruano de Energía Solar y del Ambiente (XXI- SPES), Piura, 10 -14.11.2014
3.1 Eficiencia efectiva
El cálculo de eficiencia global fue realizado de acuerdo a las ecuaciones (1), (2) y (3):
(1)
(2)
(3)
Donde eff = eficiencia efectiva,  = densidad del agua, V = volumen, cpm = calor específico promedio, Icol =
Potencia Incidente en el colector, A = Área del colector.
Los datos de radiación tomados en una superficie horizontal fueron corregidos de acuerdo a la Ec. (4) (NTP 399.404,
2006; Duffie & Beckman, 1980).
(4)
Donde col = ángulo de incidencia, Gh = radiación global, Dh = radiación difusa,  = ángulo de inclinación,  =
reflectancia del suelo. El primer sumando de la Ec. (4) corresponde a la radiación directa, el segundo corresponde a la
radiación difusa y el tercero a la radiación reflejada incidente sobre el colector. Los datos fueron tratados e integrados para
cada hora, los cuales se muestran en la Fig. 3, radiación y hora solar.
Figura 3- Datos de radiación directa, difusa y reflejada para los días 04 al 06 de agosto.
Se observa que la mayor radiación aprovechable es la radiación directa, seguida de la difusa y la reflejada. Los tres
días presentaron un comportamiento semejante, razón por la cual pueden ser comparables. Los datos recogidos de las
termas y los valores de eficiencia calculados se encuentran en la Tabla 1.
XXI Simposio Peruano de Energía Solar y del Ambiente (XXI- SPES), Piura, 10 -14.11.2014
Tabla 1. Comparativo de eficiencia efectiva entre la TSB y el SCI.
Se observa que la eficiencia efectiva es mayor en la terma con colector plano en todos los días. El primer día presentó
un valor más elevado, esto se debe a que en ese día los ensayos comenzaron media hora antes del horario especificado y a
que accidentalmente el sistema integrado fue cubierto una hora antes de finalizar el experimento. En los días 05 y 06 de
agosto sin embargo, se mantuvo el mismo tiempo de exposición, puede observarse que en ambos casos la diferencia en
eficiencia se encuentre alrededor del 18.5%. Cabe resaltar que los valores de eficiencia son elevados, esto tal vez se debe a
las condiciones de operación, las cuales consideraron el periodo de mayor radiación.
Una de los factores que puede haber ocasionado esta diferencia es la capacidad de mantener el calor, tal como se
observa en la Fig. 4.
Figura 4- Caída de temperatura desde las 2.30 pm hasta las 8 am del dia siguiente.
Esto probablemente se deba a la geometría del tanque colector, mientras en uno es cilíndrico el otro es rectangular,
teniendo mayor área de exposición el SCI y por tanto mayores pérdidas de calor. Los resultados encontrados concuerdan
con las apreciaciones de Fasulo et al. (2001) y Sadhishkumar & Balusamy (2014).
3.2 Desempeño térmico
Con las medidas de temperatura de entrada del agua (tmain), temperatura promedio de salida (tdi(Vi)), densidad del agua
extraída (w). Se puede calcular la cantidad de calor extraído (Qi) en el delta de volumen (DVi), según la Ec. 5.
[ ] (5)
Se calculó la energía calorífica útil (Qutil) mediante la suma de los Qi. A partir de los datos de radiación obtenidos de
la estación meteorológica (Fig. 5) y con ayuda de la geometría solar, se calculó la energía calorífica disponible (Qdisp).
Finalmente se calculó la eficiencia diaria de cada sistema, como muestra la tab. 2.
0
2
4
6
8
10
04-ago 05-ago 06-ago
DT(°C)
04-ago 05-ago 06-ago
SCI 6,6 6,3 8,7
TSB 4,2 3,9 3,2
FECHA TIPO DE
TERMA
Ta (°C) Tb
(°C)
Tm
(°C)
Ti
(°C)
Qutil
(J)
Qdisponible
(J)
eff
(%)
04-ago SCI 40.0 33.4 36.7 11.7 15635812.5 26588108.9 58.60
TSB 46.4 42.2 44.3 11.3 20628927.0 26059082.0 88.56
05-ago SCI 42.9 36.6 39.8 11.4 17722123.7 27749657.6 63.55
TSB 41.5 37.6 39.6 11.2 17722123.7 24049703.3 82.62
06-ago SCI 43.3 34.6 38.9 11.6 17097004.7 27752486.2 61.30
TSB 40.9 37.7 39.3 11.8 17190772.5 24052154.7 80.13
XXI Simposio Peruano de Energía Solar y del Ambiente (XXI- SPES), Piura, 10 -14.11.2014
Figura 5- Radiación solar del día 7 de agosto en la ciudad de Arequipa medido por una
estación meteorológica.
Tabla 2. Comparativo del rendimiento térmico diario entre la TSB y el SCI.
I (W/m2) 14281277.3
Qdisponible SCI 27848490.8
Qdisponible TSB 21421916
Qutil SCI 19272699.7
Qutil TSB 17608071.1
SCI (%) 69
TSB (%) 82
La diferencia con la prueba anterior es que no se dejó de un día para otro. En este caso hay una diferencia de 13
unidades en el desempeño térmico, razón por la cual tal vez esta sea la real diferencia en un día de trabajo de la terma solar,
sin embargo debido al área del depósito se den mayores pérdidas durante la caída de temperatura en la noche.
3.3 Velocidad de calentamiento
Los resultados obtenidos utilizando el procedimiento descrito anteriormente fueron graficados y se obtuvo el
comportamiento de la Fig. 6.
Figura 6. Velocidad de calentamiento de la TSB y del SCI.
0
200
400
600
800
1000
4:48 7:12 9:36 12:00 14:24 16:48 19:12
Rad(W/m2)
Tiempo (hh:mm)
XXI Simposio Peruano de Energía Solar y del Ambiente (XXI- SPES), Piura, 10 -14.11.2014
En la Fig. 6 se observa que, antes de las 10 am la velocidad de calentamiento era mejor para la terma solar básica. Sin
embargo, a partir de las 10 am la velocidad de calentamiento es más alta para el sistema de calentamiento integrado. Por
otro lado, los datos de radiación registrados en ese día y corregidos de acuerdo al ángulo de inclinación usado se muestran
en la Fig. 7.
Figura 7. Radiación directa, difusa y reflejada del 08/08/2014.
Tal como se observa en la Fig. 7, hay momentos en que cae la radiación directa, y aumenta la difusa, esta observación
nos lleva a concluir que el SCI tiene la capacidad de absorver la radiación difusa, lo cual se deba probablemente a la
superficie rugosa del colector.
CONCLUSIONES
La TSB evaluada se mostró más eficiente que el SCI para 2 de 3 días de ensayo, probablemente una de las razones sea que
el acumulador del SCI tiene mayor área de exposición al exterior que la TSB razón por la que hay mayor pérdida de calor.
Otra de ellas es el periodo de ejecución del ensayo. El rendimiento diario de la TSB es 13% superior al rendimiento del SCI.
El SCI responde mejor térmicamente respecto a la TSB en condiciones de baja radiación directa.
Agradecimientos
Al FINCyT por el financiamiento de la investigación a través del proyecto PIBAP 150-IB-2013
Al IEM – UCSP (Instituto de Energía y Medio Ambiente) por la sesión del laboratorio donde se realizaron las pruebas,
y por el equipo técnico que apoyó.
A TERMOINOX por el apoyo en la sesión de la TSB.
REFERENCIAS
Barreto, M. ,1999. Colector compacto para energía solar, España. nº 2 120 290. Sta.Cruz de Tenerife, Tenerife. Oficina
Española de Patentes y Marcas.
Duffie J.; Beckman W; 1980. Solar Engineering of Thermal Processes. John Wiley &Sons, inc. New York.
Fasulo A.; Follari J.; Barral J. 2001. Comparison Between A Simple Solar Collector Accumulator† And A Conventional
Accumulator. Solar Energy v. 71, No. 6, pp. 389–401, 2001
Gotzberger, A. & Rommel, M. ,1987, Prospects for Integrated Storage Collector Systems in Central Europe,Solar Energy,
Vol. 39, No. 3, pp. 211-219.
Holm D, 2005. Un Futuro Para el Mundo en Desarrollo Basada en las Fuentes Renovables de Energía.White Paper – ISES
(Internacional Solar EnergySociety).
0
500000
1000000
1500000
2000000
2500000
9 10 11 12 13 14 15
RADIACIÓN(J/m2)
TIEMPO (hora)
DIRECTA
DIFUSA
REFLEJADA
XXI Simposio Peruano de Energía Solar y del Ambiente (XXI- SPES), Piura, 10 -14.11.2014
Horn M., 2006. El estado actual del uso de la energía solar en el Perú. perúeconómico, Lima, Vol XXIX.
Massipe, J.; Quispe, M.; Ruiz, J. & Aparicio, I., 2012. Estudio comparativo térmico del colector solar termoacumulativo en
el Perú,XIX simposio peruano de energía solar y del ambiente.
Norma Técnica Europea, noviembre 2006, Sistemas solares térmicos y sus componentes, versión española, Editada e
impresa por AENOR, EN 12976-2.
Norma Técnica Peruana NTP 399.404, 2006. Sistemas de calentamiento de agua con energía solar. Fundamentos para su
dimensionamiento eficiente. INDECOPI, Lima, Perú.
ORKLI, Junio 2012, panel solar con depósito integrado solar OKSOL15O.
Sadhishkumar S.; Balusamy T., 2014. Performance improvement in solar water heating systems—A review Renewable and
Sustainable Energy Reviews, v.37, p.191–198
UIDT-Unidad de Investigación y Desarrollo Termoinox, 2011. Perspectivas para uma indústria solar térmica en el Perú.
Valera A., 2007, Energía Solar II, Asamblea Nacional de Rectores, Lima Perú.
FORMAT INSTRUCTIONS FOR PAPERS SUBMITTED TO THE CONFERENCE
Abstract. This paper presents the results of the comparative study of thermal performance between a simple solar collector
accumulator (TSB) and an integral collector storage unit (SCI). Those experiments were conducted on the campus of the
Catholic University San Pablo de Arequipa, specifically within the laboratories of the Institute of Energy and Environment.
The evaluation was performed on three experiences, the first was to find the effective efficiency of each of the systems, the
heat loss was also considered during the night, in the second experience used the CSTG method ISO 9459-2, to evaluate the
thermal performance daily, finally the third test was to find the heating rate, both systems were exposed to the same
conditions of radiation, wind, etc. It was finally concluded that under the conditions of study, the TSB has a better thermal
performance than the SCI in almost all tests except the heating rate when only diffuse radiation falling on the collector.
Key words: Integral collector storage, thermal performance, simple solar collector.

Más contenido relacionado

Destacado

24. haro velasteguí arquimedes xavier
24. haro velasteguí arquimedes xavier24. haro velasteguí arquimedes xavier
24. haro velasteguí arquimedes xavier
ASOCIACION PERUANA DE ENERGIA SOLAR Y DEL AMBIENTE
 
Camayo lapa ponencia apes cerificador de cera de abejas
Camayo lapa   ponencia apes cerificador de cera de abejasCamayo lapa   ponencia apes cerificador de cera de abejas
Camayo lapa ponencia apes cerificador de cera de abejas
ASOCIACION PERUANA DE ENERGIA SOLAR Y DEL AMBIENTE
 
Rio de Janeiro - Corcovado
Rio de Janeiro - CorcovadoRio de Janeiro - Corcovado
Rio de Janeiro - CorcovadoLuiz Dias
 
Life and legacy
Life and legacyLife and legacy
Life and legacy
Marito Lala
 
Copia de trabajo 3
Copia de trabajo 3Copia de trabajo 3
Copia de trabajo 3
Javier Mejia Monsalve
 
Penyelarasan rencana
Penyelarasan rencanaPenyelarasan rencana
Manajemen kepemimpinan organisasi akn
Manajemen kepemimpinan organisasi  aknManajemen kepemimpinan organisasi  akn
Manajemen kepemimpinan organisasi akn
Hamdi Se-Abad
 
фотосинтез
фотосинтезфотосинтез
фотосинтез
Vasya Demkiv
 
But It’s My Home‽
But It’s My Home‽But It’s My Home‽
But It’s My Home‽
Martin Spindler
 

Destacado (20)

24. haro velasteguí arquimedes xavier
24. haro velasteguí arquimedes xavier24. haro velasteguí arquimedes xavier
24. haro velasteguí arquimedes xavier
 
Camayo lapa ponencia apes cerificador de cera de abejas
Camayo lapa   ponencia apes cerificador de cera de abejasCamayo lapa   ponencia apes cerificador de cera de abejas
Camayo lapa ponencia apes cerificador de cera de abejas
 
La madrid modelacion matematica de
La madrid   modelacion matematica deLa madrid   modelacion matematica de
La madrid modelacion matematica de
 
Xxi spe as proyecto sol
Xxi spe as proyecto solXxi spe as proyecto sol
Xxi spe as proyecto sol
 
3. janampa quispe kleber
3. janampa quispe kleber3. janampa quispe kleber
3. janampa quispe kleber
 
Rio de Janeiro - Corcovado
Rio de Janeiro - CorcovadoRio de Janeiro - Corcovado
Rio de Janeiro - Corcovado
 
:)
:):)
:)
 
Life and legacy
Life and legacyLife and legacy
Life and legacy
 
Copia de trabajo 3
Copia de trabajo 3Copia de trabajo 3
Copia de trabajo 3
 
2. cahuana victor
2. cahuana victor2. cahuana victor
2. cahuana victor
 
Penyelarasan rencana
Penyelarasan rencanaPenyelarasan rencana
Penyelarasan rencana
 
Manajemen kepemimpinan organisasi akn
Manajemen kepemimpinan organisasi  aknManajemen kepemimpinan organisasi  akn
Manajemen kepemimpinan organisasi akn
 
Res
ResRes
Res
 
26. sánchez m. ulises
26. sánchez m. ulises26. sánchez m. ulises
26. sánchez m. ulises
 
31. salazar julio fr
31. salazar julio   fr31. salazar julio   fr
31. salazar julio fr
 
Is project management a discipline
Is project management a disciplineIs project management a discipline
Is project management a discipline
 
27. rivasplata cabanillas cesar
27. rivasplata cabanillas cesar27. rivasplata cabanillas cesar
27. rivasplata cabanillas cesar
 
фотосинтез
фотосинтезфотосинтез
фотосинтез
 
But It’s My Home‽
But It’s My Home‽But It’s My Home‽
But It’s My Home‽
 
30. ossco fernando fr
30. ossco fernando   fr30. ossco fernando   fr
30. ossco fernando fr
 

Similar a 10. peña rolando adriano

calculo calentadores solares.pdf
calculo calentadores solares.pdfcalculo calentadores solares.pdf
calculo calentadores solares.pdf
ssuserf54641
 
Análisis energético de un sistema híbrido de producción de frío
Análisis energético de un sistema híbrido de producción de fríoAnálisis energético de un sistema híbrido de producción de frío
Análisis energético de un sistema híbrido de producción de fríoyamile diaz torres
 
INFORME6_DETERMINACIÓN DE LA CONSTANTE DE UN CALORÍMETRO.pdf
INFORME6_DETERMINACIÓN DE LA CONSTANTE DE UN CALORÍMETRO.pdfINFORME6_DETERMINACIÓN DE LA CONSTANTE DE UN CALORÍMETRO.pdf
INFORME6_DETERMINACIÓN DE LA CONSTANTE DE UN CALORÍMETRO.pdf
Jhenifer Guilcapi
 
Intercambiadores de calor - Laboratorio In Silico
Intercambiadores de calor - Laboratorio In SilicoIntercambiadores de calor - Laboratorio In Silico
Intercambiadores de calor - Laboratorio In Silico
Juan Pablo Ramírez-Galvis
 
Almacenamiento subterraneo de energía termica
Almacenamiento subterraneo de energía termicaAlmacenamiento subterraneo de energía termica
Almacenamiento subterraneo de energía termica
Juan Manuel Cardenas Velez
 
489 2119-1-pb uu
489 2119-1-pb uu489 2119-1-pb uu
489 2119-1-pb uu
tanny nina maynicta
 
Practica 4. Calorimetro potx.potx
Practica 4. Calorimetro potx.potxPractica 4. Calorimetro potx.potx
Practica 4. Calorimetro potx.potx
MichelleNavarroArce
 
Ejemplo trabajo colaborativo_2 TERMO
Ejemplo trabajo colaborativo_2 TERMOEjemplo trabajo colaborativo_2 TERMO
Ejemplo trabajo colaborativo_2 TERMO
Enrique Lara Quintero
 
Hibrido Fv Termico
Hibrido Fv TermicoHibrido Fv Termico
Hibrido Fv Termico
Roberto Valer
 
Informe 5 - Física II
Informe 5 - Física IIInforme 5 - Física II
Informe 5 - Física II
Andy Juan Sarango Veliz
 
calorimetria adiabatica aplicaciones tipos
calorimetria adiabatica aplicaciones tiposcalorimetria adiabatica aplicaciones tipos
calorimetria adiabatica aplicaciones tipos
RafaelaYanez
 
Transferencia de calor
Transferencia de calorTransferencia de calor
Transferencia de calor
FernandoMoguel6
 

Similar a 10. peña rolando adriano (20)

calculo calentadores solares.pdf
calculo calentadores solares.pdfcalculo calentadores solares.pdf
calculo calentadores solares.pdf
 
Simposio de energia solar pibap 150
Simposio de energia solar pibap 150Simposio de energia solar pibap 150
Simposio de energia solar pibap 150
 
13. alatrista corrales arturo
13. alatrista corrales  arturo13. alatrista corrales  arturo
13. alatrista corrales arturo
 
Análisis energético de un sistema híbrido de producción de frío
Análisis energético de un sistema híbrido de producción de fríoAnálisis energético de un sistema híbrido de producción de frío
Análisis energético de un sistema híbrido de producción de frío
 
Espinoza paredes rafael
Espinoza paredes rafaelEspinoza paredes rafael
Espinoza paredes rafael
 
Espinoza paredes rafael
Espinoza paredes rafaelEspinoza paredes rafael
Espinoza paredes rafael
 
Kleber janampa ponencia piura 2014
Kleber janampa   ponencia piura 2014Kleber janampa   ponencia piura 2014
Kleber janampa ponencia piura 2014
 
Manual termofinal2008
Manual termofinal2008Manual termofinal2008
Manual termofinal2008
 
INFORME6_DETERMINACIÓN DE LA CONSTANTE DE UN CALORÍMETRO.pdf
INFORME6_DETERMINACIÓN DE LA CONSTANTE DE UN CALORÍMETRO.pdfINFORME6_DETERMINACIÓN DE LA CONSTANTE DE UN CALORÍMETRO.pdf
INFORME6_DETERMINACIÓN DE LA CONSTANTE DE UN CALORÍMETRO.pdf
 
Intercambiadores de calor - Laboratorio In Silico
Intercambiadores de calor - Laboratorio In SilicoIntercambiadores de calor - Laboratorio In Silico
Intercambiadores de calor - Laboratorio In Silico
 
Alatrista balance termico de un
Alatrista   balance termico de unAlatrista   balance termico de un
Alatrista balance termico de un
 
Almacenamiento subterraneo de energía termica
Almacenamiento subterraneo de energía termicaAlmacenamiento subterraneo de energía termica
Almacenamiento subterraneo de energía termica
 
489 2119-1-pb uu
489 2119-1-pb uu489 2119-1-pb uu
489 2119-1-pb uu
 
Practica 4. Calorimetro potx.potx
Practica 4. Calorimetro potx.potxPractica 4. Calorimetro potx.potx
Practica 4. Calorimetro potx.potx
 
Ejemplo trabajo colaborativo_2 TERMO
Ejemplo trabajo colaborativo_2 TERMOEjemplo trabajo colaborativo_2 TERMO
Ejemplo trabajo colaborativo_2 TERMO
 
Hibrido Fv Termico
Hibrido Fv TermicoHibrido Fv Termico
Hibrido Fv Termico
 
Informe 5 - Física II
Informe 5 - Física IIInforme 5 - Física II
Informe 5 - Física II
 
calorimetria adiabatica aplicaciones tipos
calorimetria adiabatica aplicaciones tiposcalorimetria adiabatica aplicaciones tipos
calorimetria adiabatica aplicaciones tipos
 
La madrid ppt ipv xxi spes 2014
La madrid   ppt ipv xxi spes 2014La madrid   ppt ipv xxi spes 2014
La madrid ppt ipv xxi spes 2014
 
Transferencia de calor
Transferencia de calorTransferencia de calor
Transferencia de calor
 

Más de ASOCIACION PERUANA DE ENERGIA SOLAR Y DEL AMBIENTE

Spes piura 2014 el auge del bombeo de agua solar rev1 pdf
Spes piura 2014   el auge del bombeo de agua solar rev1 pdfSpes piura 2014   el auge del bombeo de agua solar rev1 pdf
Spes piura 2014 el auge del bombeo de agua solar rev1 pdf
ASOCIACION PERUANA DE ENERGIA SOLAR Y DEL AMBIENTE
 
Working piuradisenogenimanespermanentes
Working piuradisenogenimanespermanentesWorking piuradisenogenimanespermanentes
Working piuradisenogenimanespermanentes
ASOCIACION PERUANA DE ENERGIA SOLAR Y DEL AMBIENTE
 
Curso de eólica.evento nacional en piura (1)
Curso de eólica.evento nacional en piura (1)Curso de eólica.evento nacional en piura (1)
Curso de eólica.evento nacional en piura (1)
ASOCIACION PERUANA DE ENERGIA SOLAR Y DEL AMBIENTE
 
Spes. proyectos emblematicos de la uja en sfcr
Spes. proyectos emblematicos de la uja en sfcrSpes. proyectos emblematicos de la uja en sfcr
Spes. proyectos emblematicos de la uja en sfcr
ASOCIACION PERUANA DE ENERGIA SOLAR Y DEL AMBIENTE
 
Spes. def. dimensionado de un sfcr. gfv e inversor
Spes. def. dimensionado de un sfcr. gfv e inversorSpes. def. dimensionado de un sfcr. gfv e inversor
Spes. def. dimensionado de un sfcr. gfv e inversor
ASOCIACION PERUANA DE ENERGIA SOLAR Y DEL AMBIENTE
 
Spes. def. diagrama de bloques de un sfcr 05 11-14
Spes. def. diagrama de bloques de un sfcr  05 11-14Spes. def. diagrama de bloques de un sfcr  05 11-14
Spes. def. diagrama de bloques de un sfcr 05 11-14
ASOCIACION PERUANA DE ENERGIA SOLAR Y DEL AMBIENTE
 
Spes. def. cableado, seg. y protecciones.
Spes. def. cableado, seg. y protecciones.Spes. def. cableado, seg. y protecciones.
Spes. def. cableado, seg. y protecciones.
ASOCIACION PERUANA DE ENERGIA SOLAR Y DEL AMBIENTE
 
Spes. def. balance energético de un sfcr
Spes. def. balance energético de un sfcrSpes. def. balance energético de un sfcr
Spes. def. balance energético de un sfcr
ASOCIACION PERUANA DE ENERGIA SOLAR Y DEL AMBIENTE
 
Aporte del uso de la energia solar al desarrollo de arequipa en el siglo xxi
Aporte del uso de la energia solar al desarrollo de arequipa en el siglo xxiAporte del uso de la energia solar al desarrollo de arequipa en el siglo xxi
Aporte del uso de la energia solar al desarrollo de arequipa en el siglo xxi
ASOCIACION PERUANA DE ENERGIA SOLAR Y DEL AMBIENTE
 

Más de ASOCIACION PERUANA DE ENERGIA SOLAR Y DEL AMBIENTE (20)

Presentación xxi spes
Presentación xxi spesPresentación xxi spes
Presentación xxi spes
 
Spes piura 2014 el auge del bombeo de agua solar rev1 pdf
Spes piura 2014   el auge del bombeo de agua solar rev1 pdfSpes piura 2014   el auge del bombeo de agua solar rev1 pdf
Spes piura 2014 el auge del bombeo de agua solar rev1 pdf
 
Working piuradisenogenimanespermanentes
Working piuradisenogenimanespermanentesWorking piuradisenogenimanespermanentes
Working piuradisenogenimanespermanentes
 
Curso de eólica.evento nacional en piura (1)
Curso de eólica.evento nacional en piura (1)Curso de eólica.evento nacional en piura (1)
Curso de eólica.evento nacional en piura (1)
 
Clases xxi spes
Clases xxi spesClases xxi spes
Clases xxi spes
 
Spes. proyectos emblematicos de la uja en sfcr
Spes. proyectos emblematicos de la uja en sfcrSpes. proyectos emblematicos de la uja en sfcr
Spes. proyectos emblematicos de la uja en sfcr
 
Spes. presentación e introducción
Spes. presentación e introducciónSpes. presentación e introducción
Spes. presentación e introducción
 
Spes. def. dimensionado de un sfcr. gfv e inversor
Spes. def. dimensionado de un sfcr. gfv e inversorSpes. def. dimensionado de un sfcr. gfv e inversor
Spes. def. dimensionado de un sfcr. gfv e inversor
 
Spes. def. diagrama de bloques de un sfcr 05 11-14
Spes. def. diagrama de bloques de un sfcr  05 11-14Spes. def. diagrama de bloques de un sfcr  05 11-14
Spes. def. diagrama de bloques de un sfcr 05 11-14
 
Spes. def. cableado, seg. y protecciones.
Spes. def. cableado, seg. y protecciones.Spes. def. cableado, seg. y protecciones.
Spes. def. cableado, seg. y protecciones.
 
Spes. def. balance energético de un sfcr
Spes. def. balance energético de un sfcrSpes. def. balance energético de un sfcr
Spes. def. balance energético de un sfcr
 
Mppt slides
Mppt slidesMppt slides
Mppt slides
 
Juan de la casa. plenaria de piura
Juan de la casa. plenaria de piuraJuan de la casa. plenaria de piura
Juan de la casa. plenaria de piura
 
Conferencia efi ener
Conferencia efi enerConferencia efi ener
Conferencia efi ener
 
Conferencia cer uja
Conferencia cer ujaConferencia cer uja
Conferencia cer uja
 
Conferencia xxi spes
Conferencia xxi spesConferencia xxi spes
Conferencia xxi spes
 
Aporte del uso de la energia solar al desarrollo de arequipa en el siglo xxi
Aporte del uso de la energia solar al desarrollo de arequipa en el siglo xxiAporte del uso de la energia solar al desarrollo de arequipa en el siglo xxi
Aporte del uso de la energia solar al desarrollo de arequipa en el siglo xxi
 
Piura solar.10.11.14
Piura solar.10.11.14Piura solar.10.11.14
Piura solar.10.11.14
 
Ppt mecheros apes 2014
Ppt mecheros apes 2014Ppt mecheros apes 2014
Ppt mecheros apes 2014
 
24.rojas.apes.2014.presentación fer
24.rojas.apes.2014.presentación fer24.rojas.apes.2014.presentación fer
24.rojas.apes.2014.presentación fer
 

Último

Bash Script Programacion en la consola.pptx
Bash Script Programacion en la consola.pptxBash Script Programacion en la consola.pptx
Bash Script Programacion en la consola.pptx
SantosCatalinoOrozco
 
Dialnet-EnsenanzaDeLaModelacionMedianteEcuacionesDiferenci-9304821.pdf
Dialnet-EnsenanzaDeLaModelacionMedianteEcuacionesDiferenci-9304821.pdfDialnet-EnsenanzaDeLaModelacionMedianteEcuacionesDiferenci-9304821.pdf
Dialnet-EnsenanzaDeLaModelacionMedianteEcuacionesDiferenci-9304821.pdf
fernanroq11702
 
Ejercicios-de-Divisibilidad-para-Primero-de-Primaria (3).doc
Ejercicios-de-Divisibilidad-para-Primero-de-Primaria (3).docEjercicios-de-Divisibilidad-para-Primero-de-Primaria (3).doc
Ejercicios-de-Divisibilidad-para-Primero-de-Primaria (3).doc
LuisEnriqueCarboneDe
 
Infografia de operaciones basicas de la construccion.pdf
Infografia de operaciones basicas de la construccion.pdfInfografia de operaciones basicas de la construccion.pdf
Infografia de operaciones basicas de la construccion.pdf
DanielMelndez19
 
CENTROIDES DE ÁREAS Y LÍNEAS_SISTEMAS ESTRUCTURALES III.pptx
CENTROIDES DE ÁREAS Y LÍNEAS_SISTEMAS ESTRUCTURALES III.pptxCENTROIDES DE ÁREAS Y LÍNEAS_SISTEMAS ESTRUCTURALES III.pptx
CENTROIDES DE ÁREAS Y LÍNEAS_SISTEMAS ESTRUCTURALES III.pptx
SoyJulia1
 
PROCEDIMIENTO Y PLAN DE RESCATE PARA TRABAJOS EN ALTURAS (Recuperado automáti...
PROCEDIMIENTO Y PLAN DE RESCATE PARA TRABAJOS EN ALTURAS (Recuperado automáti...PROCEDIMIENTO Y PLAN DE RESCATE PARA TRABAJOS EN ALTURAS (Recuperado automáti...
PROCEDIMIENTO Y PLAN DE RESCATE PARA TRABAJOS EN ALTURAS (Recuperado automáti...
CarlitosWay20
 
Flujo vehicular en análisis de trafico vial
Flujo vehicular en análisis de trafico vialFlujo vehicular en análisis de trafico vial
Flujo vehicular en análisis de trafico vial
SamuelMendozaS
 
armadura_vigas.pptx.....................
armadura_vigas.pptx.....................armadura_vigas.pptx.....................
armadura_vigas.pptx.....................
Acletti Ammina
 
Material magnetismo.pdf material del electromagnetismo con fórmulas
Material magnetismo.pdf material del electromagnetismo con fórmulasMaterial magnetismo.pdf material del electromagnetismo con fórmulas
Material magnetismo.pdf material del electromagnetismo con fórmulas
michiotes33
 
Sesiones 3 y 4 Estructuras Ingenieria.pdf
Sesiones 3 y 4 Estructuras Ingenieria.pdfSesiones 3 y 4 Estructuras Ingenieria.pdf
Sesiones 3 y 4 Estructuras Ingenieria.pdf
DeyvisPalomino2
 
Caso Prático de Análise de Vibrações em Ventilador de Extração
Caso Prático de Análise de Vibrações em Ventilador de ExtraçãoCaso Prático de Análise de Vibrações em Ventilador de Extração
Caso Prático de Análise de Vibrações em Ventilador de Extração
CarlosAroeira1
 
Becas de UOC _ Caja Ingenieros 2024-25.pdf
Becas de UOC _ Caja Ingenieros 2024-25.pdfBecas de UOC _ Caja Ingenieros 2024-25.pdf
Becas de UOC _ Caja Ingenieros 2024-25.pdf
UOC Estudios de Informática, Multimedia y Telecomunicación
 
A3QUIROZ,MANUEL- Operaciones Basicas- Construccion
A3QUIROZ,MANUEL- Operaciones Basicas- ConstruccionA3QUIROZ,MANUEL- Operaciones Basicas- Construccion
A3QUIROZ,MANUEL- Operaciones Basicas- Construccion
manuelalejandro238
 
164822219-Clase-4-Estructuras-3.pdf losas
164822219-Clase-4-Estructuras-3.pdf losas164822219-Clase-4-Estructuras-3.pdf losas
164822219-Clase-4-Estructuras-3.pdf losas
jcbarriopedro69
 
choro ciclo de vida anatomía y fisiología
choro ciclo de vida anatomía y fisiologíachoro ciclo de vida anatomía y fisiología
choro ciclo de vida anatomía y fisiología
elvis2000x
 
Taller de Robots Velocistas2 esquema....
Taller de Robots Velocistas2 esquema....Taller de Robots Velocistas2 esquema....
Taller de Robots Velocistas2 esquema....
lawjose243
 
PLAN DE TRABAJO DE REFUERZO ESCOLAR 2024.pdf
PLAN DE TRABAJO DE REFUERZO ESCOLAR 2024.pdfPLAN DE TRABAJO DE REFUERZO ESCOLAR 2024.pdf
PLAN DE TRABAJO DE REFUERZO ESCOLAR 2024.pdf
MariaCortezRuiz
 
Criterios de la primera y segunda derivada
Criterios de la primera y segunda derivadaCriterios de la primera y segunda derivada
Criterios de la primera y segunda derivada
YoverOlivares
 
SESION 1 - SESION INTRODUCTORIA - INTRODUCCIÓN A LA PERFORACIÓN Y VOLADURA DE...
SESION 1 - SESION INTRODUCTORIA - INTRODUCCIÓN A LA PERFORACIÓN Y VOLADURA DE...SESION 1 - SESION INTRODUCTORIA - INTRODUCCIÓN A LA PERFORACIÓN Y VOLADURA DE...
SESION 1 - SESION INTRODUCTORIA - INTRODUCCIÓN A LA PERFORACIÓN Y VOLADURA DE...
JhonatanOQuionesChoq
 
INFORME DE DE CONTROL N° 009-2024-OCI5344-SCC LEBERTADOR SAN MARTIN OYON.pdf
INFORME DE DE CONTROL N° 009-2024-OCI5344-SCC LEBERTADOR SAN MARTIN OYON.pdfINFORME DE DE CONTROL N° 009-2024-OCI5344-SCC LEBERTADOR SAN MARTIN OYON.pdf
INFORME DE DE CONTROL N° 009-2024-OCI5344-SCC LEBERTADOR SAN MARTIN OYON.pdf
GROVER MORENO
 

Último (20)

Bash Script Programacion en la consola.pptx
Bash Script Programacion en la consola.pptxBash Script Programacion en la consola.pptx
Bash Script Programacion en la consola.pptx
 
Dialnet-EnsenanzaDeLaModelacionMedianteEcuacionesDiferenci-9304821.pdf
Dialnet-EnsenanzaDeLaModelacionMedianteEcuacionesDiferenci-9304821.pdfDialnet-EnsenanzaDeLaModelacionMedianteEcuacionesDiferenci-9304821.pdf
Dialnet-EnsenanzaDeLaModelacionMedianteEcuacionesDiferenci-9304821.pdf
 
Ejercicios-de-Divisibilidad-para-Primero-de-Primaria (3).doc
Ejercicios-de-Divisibilidad-para-Primero-de-Primaria (3).docEjercicios-de-Divisibilidad-para-Primero-de-Primaria (3).doc
Ejercicios-de-Divisibilidad-para-Primero-de-Primaria (3).doc
 
Infografia de operaciones basicas de la construccion.pdf
Infografia de operaciones basicas de la construccion.pdfInfografia de operaciones basicas de la construccion.pdf
Infografia de operaciones basicas de la construccion.pdf
 
CENTROIDES DE ÁREAS Y LÍNEAS_SISTEMAS ESTRUCTURALES III.pptx
CENTROIDES DE ÁREAS Y LÍNEAS_SISTEMAS ESTRUCTURALES III.pptxCENTROIDES DE ÁREAS Y LÍNEAS_SISTEMAS ESTRUCTURALES III.pptx
CENTROIDES DE ÁREAS Y LÍNEAS_SISTEMAS ESTRUCTURALES III.pptx
 
PROCEDIMIENTO Y PLAN DE RESCATE PARA TRABAJOS EN ALTURAS (Recuperado automáti...
PROCEDIMIENTO Y PLAN DE RESCATE PARA TRABAJOS EN ALTURAS (Recuperado automáti...PROCEDIMIENTO Y PLAN DE RESCATE PARA TRABAJOS EN ALTURAS (Recuperado automáti...
PROCEDIMIENTO Y PLAN DE RESCATE PARA TRABAJOS EN ALTURAS (Recuperado automáti...
 
Flujo vehicular en análisis de trafico vial
Flujo vehicular en análisis de trafico vialFlujo vehicular en análisis de trafico vial
Flujo vehicular en análisis de trafico vial
 
armadura_vigas.pptx.....................
armadura_vigas.pptx.....................armadura_vigas.pptx.....................
armadura_vigas.pptx.....................
 
Material magnetismo.pdf material del electromagnetismo con fórmulas
Material magnetismo.pdf material del electromagnetismo con fórmulasMaterial magnetismo.pdf material del electromagnetismo con fórmulas
Material magnetismo.pdf material del electromagnetismo con fórmulas
 
Sesiones 3 y 4 Estructuras Ingenieria.pdf
Sesiones 3 y 4 Estructuras Ingenieria.pdfSesiones 3 y 4 Estructuras Ingenieria.pdf
Sesiones 3 y 4 Estructuras Ingenieria.pdf
 
Caso Prático de Análise de Vibrações em Ventilador de Extração
Caso Prático de Análise de Vibrações em Ventilador de ExtraçãoCaso Prático de Análise de Vibrações em Ventilador de Extração
Caso Prático de Análise de Vibrações em Ventilador de Extração
 
Becas de UOC _ Caja Ingenieros 2024-25.pdf
Becas de UOC _ Caja Ingenieros 2024-25.pdfBecas de UOC _ Caja Ingenieros 2024-25.pdf
Becas de UOC _ Caja Ingenieros 2024-25.pdf
 
A3QUIROZ,MANUEL- Operaciones Basicas- Construccion
A3QUIROZ,MANUEL- Operaciones Basicas- ConstruccionA3QUIROZ,MANUEL- Operaciones Basicas- Construccion
A3QUIROZ,MANUEL- Operaciones Basicas- Construccion
 
164822219-Clase-4-Estructuras-3.pdf losas
164822219-Clase-4-Estructuras-3.pdf losas164822219-Clase-4-Estructuras-3.pdf losas
164822219-Clase-4-Estructuras-3.pdf losas
 
choro ciclo de vida anatomía y fisiología
choro ciclo de vida anatomía y fisiologíachoro ciclo de vida anatomía y fisiología
choro ciclo de vida anatomía y fisiología
 
Taller de Robots Velocistas2 esquema....
Taller de Robots Velocistas2 esquema....Taller de Robots Velocistas2 esquema....
Taller de Robots Velocistas2 esquema....
 
PLAN DE TRABAJO DE REFUERZO ESCOLAR 2024.pdf
PLAN DE TRABAJO DE REFUERZO ESCOLAR 2024.pdfPLAN DE TRABAJO DE REFUERZO ESCOLAR 2024.pdf
PLAN DE TRABAJO DE REFUERZO ESCOLAR 2024.pdf
 
Criterios de la primera y segunda derivada
Criterios de la primera y segunda derivadaCriterios de la primera y segunda derivada
Criterios de la primera y segunda derivada
 
SESION 1 - SESION INTRODUCTORIA - INTRODUCCIÓN A LA PERFORACIÓN Y VOLADURA DE...
SESION 1 - SESION INTRODUCTORIA - INTRODUCCIÓN A LA PERFORACIÓN Y VOLADURA DE...SESION 1 - SESION INTRODUCTORIA - INTRODUCCIÓN A LA PERFORACIÓN Y VOLADURA DE...
SESION 1 - SESION INTRODUCTORIA - INTRODUCCIÓN A LA PERFORACIÓN Y VOLADURA DE...
 
INFORME DE DE CONTROL N° 009-2024-OCI5344-SCC LEBERTADOR SAN MARTIN OYON.pdf
INFORME DE DE CONTROL N° 009-2024-OCI5344-SCC LEBERTADOR SAN MARTIN OYON.pdfINFORME DE DE CONTROL N° 009-2024-OCI5344-SCC LEBERTADOR SAN MARTIN OYON.pdf
INFORME DE DE CONTROL N° 009-2024-OCI5344-SCC LEBERTADOR SAN MARTIN OYON.pdf
 

10. peña rolando adriano

  • 1. XXI Simposio Peruano de Energía Solar y del Ambiente (XXI- SPES), Piura, 10 -14.11.2014 ESTUDIO COMPARATIVO DEL RENDIMIENTO TERMICO ENTRE UNA TERMA SOLAR BÁSICA Y UN SISTEMA DE CALENTAMIENTO INTEGRADO Rolando Adriano Peña – radriano@inictel-uni.edu.pe Abel Gutarra Espinoza – agutarra@uni.edu.pe Universidad Nacional de Ingeniería, Facultad de Ciencias Henry Javier Ccallata - hjavier@ucsp.edu.pe Evelyn Gutierrez Oppe – egutierrez@ucsp.edu.pe Universidad Católica San Pablo, Facultad de Ingeniería y Computación Resumen. El presente artículo muestra los resultados del estudio comparativo de rendimiento térmico entre una Terma solar básica (TSB) y un Sistema de Calentamiento Integrado (SCI). Dicha experiencia se realizó en el Campus de la Universidad Católica San Pablo de Arequipa, específicamente dentro de los laboratorios del Instituto de Energía y Medio Ambiente. La evaluación se realizó en base a tres experiencias, la primera consistió en encontrar la eficiencia global de cada uno de los sistemas, para ello también se consideraron las pérdidas de calor durante la noche, en la segunda se siguió el método CSTG de la norma ISO 9459-2, para evaluar el rendimiento térmico diario, finalmente la tercera prueba consistió en encontrar la velocidad de calentamiento, ambos sistemas fueron expuestos a las mismas condiciones de radiación, viento, etc. Finalmente se concluyó, que bajo las condiciones de estudio, la TSB tuvo mejor rendimiento térmico que el SCI en casi todas las pruebas excepto en la velocidad de calentamiento cuando solamente incidía radiación difusa sobre los colectores. Palabras-clave: sistema de calentamiento integrado, rendimiento térmico, terma solar básica. 1. INTRODUCCIÓN Actualmente la utilización de agua caliente constituye un consumo energético importante en la vida diaria. El calentamiento de agua mediante energía solar, más allá de ser una alternativa ecológica, se ha convertido en una tecnología económicamente atractiva y competitiva en varios países, en comparación con las tecnología convencionales que utilizan algún tipo de combustible fósil para llegar a este fin (Holm, 2005). En el Perú poco a poco se va incrementando la utilización de estas tecnologías. Se estima que hoy en día, existen entre 25.000 y 30.000 termas solares instaladas en Arequipa, Ayacucho, Lima, Puno y Tacna entre otros. Además, existen alrededor de 20 fabricantes a nivel nacional que producen mensualmente alrededor de 600 m2 de colectores solares para termas solares (Horn, 2006). La industria de termas nacional está enfocada en la producción de colectores planos tradicionales, los cuales vienen siendo desplazados por nuevas tecnologías que presentan mayor eficiencia. Tal es el caso de los colectores de tubo al vacío referente a las cuales al 2011 ya el 18% de las empresas comercializadoras de termas solares en el país se dedicaban a la importación y comercialización de dichas termas (UIDT, 2011). Por otro lado, Massipe et al. (2012) concluyen, luego de un estudio teórico de simulación en el software TRNSYS entre la terma solar básica (TSB) y el colector solar termoacumulativo (un tipo de SCI), que este último tiene un comportamiento térmico ligeramente superior (1-3%) al TSB; por otro lado Gotzberger & Rommel (1987) encontraron resultados similares. Sin embargo Fasulo et al. (2001) y Sadhishkumar & Balusamy (2014), indican que el SCI a pesar de ser económico y resistente a la corrosión tiene tendencias a sufrir pérdidas de calor, así como también, su comportamiento no es uniforme durante todo el año, teniendo mejor desempeño en los meses de verano. Es en este marco, la Universidad Católica San Pablo de Arequipa, mediante el Instituto de Energía y Medio Ambiente, lleva a cabo el proyecto ―Estudio numérico y experimental de un sistema integrado de calentamiento solar de agua compacto y económico, para aplicaciones en comunidades aisladas alto andinas‖, con el objetivo de diseñar y construir un prototipo económico de un SCI, para ser utilizado en zonas alto andinas. Uno de los resultados dentro de dicho proyecto, es este trabajo que compara el rendimiento térmico entre una Terma solar básica (TSB) y un Sistema de Calentamiento Integrado (SCI) para condiciones típicas del mes de agosto en la ciudad de Arequipa-Perú.
  • 2. XXI Simposio Peruano de Energía Solar y del Ambiente (XXI- SPES), Piura, 10 -14.11.2014 2. MATERIALES Y MÉTODOS 2.1 Materiales Equipos: El aparato experimental está conformado por dos sistemas de calentamiento de agua con energía solar la primera de manufactura peruana y el segundo construido en España instalados de acuerdo a la Fig. 1: Figura 1- Sistemas solares dispuestos para el ensayo de rendimiento diario del sistema (a) fotografía de la Terma solar básica (TSB); (b) esquema de montaje y flujo de agua en terma la TSB; (c) fotografía del Sistema de Calentamiento Integrado (SCI); (d) esquema de montaje y flujo de agua en el SCI Conformado por dos sistemas de calentamiento de agua con energía solar instalados de acuerdo a la Figura 1. La terma con colector plano consta de un tanque de 150 L y un colector plano de 1.5 m2 de área. El sistema compacto (Barreto, 1999) integra tanque de 150 L y colector de 1.95 m2 en un solo dispositivo, además consta de intercambiador de calor con fluido caloportador en el interior del tanque. Dicho fluido es impulsado por una bomba, la cual utiliza energía fotovoltaica, ubicada en la parte inferior izquierda. Ambos equipos fueron colocados orientados al norte considerando un ángulo de inclinación de 26°. Otros equipos y materiales: cuatro termocuplas tipo k de la marca OMEGA para medir temperaturas de entrada y salida; un multímetro digital FLUKE 287 con medidor de termocuplas; una estación meteorológica marca DAVIS; un reductor de presión en el rango de 1 a 10 bar para el ajuste a 3 bar para el sistema compacto; tubos de PVC para las
  • 3. XXI Simposio Peruano de Energía Solar y del Ambiente (XXI- SPES), Piura, 10 -14.11.2014 instalaciones; y un cronometro y dos baldes de 20 litros para medir el flujo volumétrico. En la Fig. 2 se observan termoculpas y multímetro usados en el ensayo. Cabe mencionar que los datos de radiación fueron tomados de la estación meteorológica ubicada en la Universidad Nacional San Agustín, la cual se encontraba en una superficie horizontal. A fin de corregir la medida de radiación, de acuerdo al ángulo de inclinación, se realizaron los cálculos respectivos usando los principios de geometría solar (Duffie & Beckman, 1980). Figura 2- Fotografía de las termocuplas tipo k y del medidor de termocuplas fluke 287. 2.2 Métodos Se realizaron tres tipos de pruebas, la primera consistió en encontrar la eficiencia efectiva, la segunda siguiendo el método CSTG de la norma ISO 9459-2 y la tercera consistió en encontrar la velocidad de calentamiento. Eficiencia Efectiva. Esta prueba se realizó con el objetivo de determinar una de las funciones básicas de la terma, la cual es mantener el calor captado el mayor tiempo posible. Para esto el procedimiento seguido fue: llenar de agua los sistemas mostrados en la Fig. 1, tanto la TSB como el SCI. Con el colector cubierto, se mantuvo en sistema estacionario hasta alcanzar la diferencia de 1 K. Luego se cerró la alimentación de agua para ambas termas, se midieron las temperaturas de entrada (Ti) y se descubrieron los colectores. Se mantuvieron descubiertos por espacio de 5 horas y media (de 9 am a 2.30 pm). Se registraron los valores de radiación durante todo el periodo de prueba. Al finalizar el tiempo de exposición, se cubrieron nuevamente los colectores, se retiraron 15 L y se midieron las temperaturas de salida (Ta). Al día siguiente se midieron nuevamente las temperaturas de salida (Tb). Estos valores (Ta) y (Tb) sirvieron para calcular la temperatura promedio(Tm), estimando las pérdidas de calor, recomendado por (Valera, 2007). Evaluación del rendimiento térmico de las termas solares. De acuerdo al procedimiento CSTG de la norma ISO 9459-2 (Norma Técnica Europea, 2006), el protocolo seguido se detalla a continuación: Se llenaron de agua los sistemas de la Fig. 1, luego se cerraron las llaves de entrada y salida de agua. Se registraron los valores de radiación, durante todo el periodo de la prueba. Se dejó operar el sistema expuesto al sol, desde las 9 am hasta las 2.30 pm, se realizó una extracción al final del día a un caudal constante de 600 ℓ/h mientras el agua de reposición ingresa a una temperatura tmain. Esta extracción continuara hasta extraer un volumen de agua igual 450 litros. Cada vez que se extrajo 15 litros, se registró la temperatura promedio de salida. Velocidad de calentamiento. En este experimento se realizó con el objetivo de registrar cuantos °C/min conseguía subir cada equipo (TSB y SCI). Este ensayo fue realizado el 08/08/2014, además de poder registrar la velocidad de calentamiento se contó con una ventaja de la naturaleza, ya que durante el ensayo hubo periodos de nubes, los cuales sirvieron para identificar la capacidad de absorción de la radiación difusa. El procedimiento consistió en llenar ambos tanques de agua a la misma temperatura de entrada, luego se descubrió el colector y se inició con la toma de datos. El experimento inicio 9.30 am y terminó a las 2.00 pm, se colectaron 15 L de agua a cada 15 minutos, considerando el mismo flujo de agua para ambas termas. 3. RESULTADOS Y DISCUSION
  • 4. XXI Simposio Peruano de Energía Solar y del Ambiente (XXI- SPES), Piura, 10 -14.11.2014 3.1 Eficiencia efectiva El cálculo de eficiencia global fue realizado de acuerdo a las ecuaciones (1), (2) y (3): (1) (2) (3) Donde eff = eficiencia efectiva,  = densidad del agua, V = volumen, cpm = calor específico promedio, Icol = Potencia Incidente en el colector, A = Área del colector. Los datos de radiación tomados en una superficie horizontal fueron corregidos de acuerdo a la Ec. (4) (NTP 399.404, 2006; Duffie & Beckman, 1980). (4) Donde col = ángulo de incidencia, Gh = radiación global, Dh = radiación difusa,  = ángulo de inclinación,  = reflectancia del suelo. El primer sumando de la Ec. (4) corresponde a la radiación directa, el segundo corresponde a la radiación difusa y el tercero a la radiación reflejada incidente sobre el colector. Los datos fueron tratados e integrados para cada hora, los cuales se muestran en la Fig. 3, radiación y hora solar. Figura 3- Datos de radiación directa, difusa y reflejada para los días 04 al 06 de agosto. Se observa que la mayor radiación aprovechable es la radiación directa, seguida de la difusa y la reflejada. Los tres días presentaron un comportamiento semejante, razón por la cual pueden ser comparables. Los datos recogidos de las termas y los valores de eficiencia calculados se encuentran en la Tabla 1.
  • 5. XXI Simposio Peruano de Energía Solar y del Ambiente (XXI- SPES), Piura, 10 -14.11.2014 Tabla 1. Comparativo de eficiencia efectiva entre la TSB y el SCI. Se observa que la eficiencia efectiva es mayor en la terma con colector plano en todos los días. El primer día presentó un valor más elevado, esto se debe a que en ese día los ensayos comenzaron media hora antes del horario especificado y a que accidentalmente el sistema integrado fue cubierto una hora antes de finalizar el experimento. En los días 05 y 06 de agosto sin embargo, se mantuvo el mismo tiempo de exposición, puede observarse que en ambos casos la diferencia en eficiencia se encuentre alrededor del 18.5%. Cabe resaltar que los valores de eficiencia son elevados, esto tal vez se debe a las condiciones de operación, las cuales consideraron el periodo de mayor radiación. Una de los factores que puede haber ocasionado esta diferencia es la capacidad de mantener el calor, tal como se observa en la Fig. 4. Figura 4- Caída de temperatura desde las 2.30 pm hasta las 8 am del dia siguiente. Esto probablemente se deba a la geometría del tanque colector, mientras en uno es cilíndrico el otro es rectangular, teniendo mayor área de exposición el SCI y por tanto mayores pérdidas de calor. Los resultados encontrados concuerdan con las apreciaciones de Fasulo et al. (2001) y Sadhishkumar & Balusamy (2014). 3.2 Desempeño térmico Con las medidas de temperatura de entrada del agua (tmain), temperatura promedio de salida (tdi(Vi)), densidad del agua extraída (w). Se puede calcular la cantidad de calor extraído (Qi) en el delta de volumen (DVi), según la Ec. 5. [ ] (5) Se calculó la energía calorífica útil (Qutil) mediante la suma de los Qi. A partir de los datos de radiación obtenidos de la estación meteorológica (Fig. 5) y con ayuda de la geometría solar, se calculó la energía calorífica disponible (Qdisp). Finalmente se calculó la eficiencia diaria de cada sistema, como muestra la tab. 2. 0 2 4 6 8 10 04-ago 05-ago 06-ago DT(°C) 04-ago 05-ago 06-ago SCI 6,6 6,3 8,7 TSB 4,2 3,9 3,2 FECHA TIPO DE TERMA Ta (°C) Tb (°C) Tm (°C) Ti (°C) Qutil (J) Qdisponible (J) eff (%) 04-ago SCI 40.0 33.4 36.7 11.7 15635812.5 26588108.9 58.60 TSB 46.4 42.2 44.3 11.3 20628927.0 26059082.0 88.56 05-ago SCI 42.9 36.6 39.8 11.4 17722123.7 27749657.6 63.55 TSB 41.5 37.6 39.6 11.2 17722123.7 24049703.3 82.62 06-ago SCI 43.3 34.6 38.9 11.6 17097004.7 27752486.2 61.30 TSB 40.9 37.7 39.3 11.8 17190772.5 24052154.7 80.13
  • 6. XXI Simposio Peruano de Energía Solar y del Ambiente (XXI- SPES), Piura, 10 -14.11.2014 Figura 5- Radiación solar del día 7 de agosto en la ciudad de Arequipa medido por una estación meteorológica. Tabla 2. Comparativo del rendimiento térmico diario entre la TSB y el SCI. I (W/m2) 14281277.3 Qdisponible SCI 27848490.8 Qdisponible TSB 21421916 Qutil SCI 19272699.7 Qutil TSB 17608071.1 SCI (%) 69 TSB (%) 82 La diferencia con la prueba anterior es que no se dejó de un día para otro. En este caso hay una diferencia de 13 unidades en el desempeño térmico, razón por la cual tal vez esta sea la real diferencia en un día de trabajo de la terma solar, sin embargo debido al área del depósito se den mayores pérdidas durante la caída de temperatura en la noche. 3.3 Velocidad de calentamiento Los resultados obtenidos utilizando el procedimiento descrito anteriormente fueron graficados y se obtuvo el comportamiento de la Fig. 6. Figura 6. Velocidad de calentamiento de la TSB y del SCI. 0 200 400 600 800 1000 4:48 7:12 9:36 12:00 14:24 16:48 19:12 Rad(W/m2) Tiempo (hh:mm)
  • 7. XXI Simposio Peruano de Energía Solar y del Ambiente (XXI- SPES), Piura, 10 -14.11.2014 En la Fig. 6 se observa que, antes de las 10 am la velocidad de calentamiento era mejor para la terma solar básica. Sin embargo, a partir de las 10 am la velocidad de calentamiento es más alta para el sistema de calentamiento integrado. Por otro lado, los datos de radiación registrados en ese día y corregidos de acuerdo al ángulo de inclinación usado se muestran en la Fig. 7. Figura 7. Radiación directa, difusa y reflejada del 08/08/2014. Tal como se observa en la Fig. 7, hay momentos en que cae la radiación directa, y aumenta la difusa, esta observación nos lleva a concluir que el SCI tiene la capacidad de absorver la radiación difusa, lo cual se deba probablemente a la superficie rugosa del colector. CONCLUSIONES La TSB evaluada se mostró más eficiente que el SCI para 2 de 3 días de ensayo, probablemente una de las razones sea que el acumulador del SCI tiene mayor área de exposición al exterior que la TSB razón por la que hay mayor pérdida de calor. Otra de ellas es el periodo de ejecución del ensayo. El rendimiento diario de la TSB es 13% superior al rendimiento del SCI. El SCI responde mejor térmicamente respecto a la TSB en condiciones de baja radiación directa. Agradecimientos Al FINCyT por el financiamiento de la investigación a través del proyecto PIBAP 150-IB-2013 Al IEM – UCSP (Instituto de Energía y Medio Ambiente) por la sesión del laboratorio donde se realizaron las pruebas, y por el equipo técnico que apoyó. A TERMOINOX por el apoyo en la sesión de la TSB. REFERENCIAS Barreto, M. ,1999. Colector compacto para energía solar, España. nº 2 120 290. Sta.Cruz de Tenerife, Tenerife. Oficina Española de Patentes y Marcas. Duffie J.; Beckman W; 1980. Solar Engineering of Thermal Processes. John Wiley &Sons, inc. New York. Fasulo A.; Follari J.; Barral J. 2001. Comparison Between A Simple Solar Collector Accumulator† And A Conventional Accumulator. Solar Energy v. 71, No. 6, pp. 389–401, 2001 Gotzberger, A. & Rommel, M. ,1987, Prospects for Integrated Storage Collector Systems in Central Europe,Solar Energy, Vol. 39, No. 3, pp. 211-219. Holm D, 2005. Un Futuro Para el Mundo en Desarrollo Basada en las Fuentes Renovables de Energía.White Paper – ISES (Internacional Solar EnergySociety). 0 500000 1000000 1500000 2000000 2500000 9 10 11 12 13 14 15 RADIACIÓN(J/m2) TIEMPO (hora) DIRECTA DIFUSA REFLEJADA
  • 8. XXI Simposio Peruano de Energía Solar y del Ambiente (XXI- SPES), Piura, 10 -14.11.2014 Horn M., 2006. El estado actual del uso de la energía solar en el Perú. perúeconómico, Lima, Vol XXIX. Massipe, J.; Quispe, M.; Ruiz, J. & Aparicio, I., 2012. Estudio comparativo térmico del colector solar termoacumulativo en el Perú,XIX simposio peruano de energía solar y del ambiente. Norma Técnica Europea, noviembre 2006, Sistemas solares térmicos y sus componentes, versión española, Editada e impresa por AENOR, EN 12976-2. Norma Técnica Peruana NTP 399.404, 2006. Sistemas de calentamiento de agua con energía solar. Fundamentos para su dimensionamiento eficiente. INDECOPI, Lima, Perú. ORKLI, Junio 2012, panel solar con depósito integrado solar OKSOL15O. Sadhishkumar S.; Balusamy T., 2014. Performance improvement in solar water heating systems—A review Renewable and Sustainable Energy Reviews, v.37, p.191–198 UIDT-Unidad de Investigación y Desarrollo Termoinox, 2011. Perspectivas para uma indústria solar térmica en el Perú. Valera A., 2007, Energía Solar II, Asamblea Nacional de Rectores, Lima Perú. FORMAT INSTRUCTIONS FOR PAPERS SUBMITTED TO THE CONFERENCE Abstract. This paper presents the results of the comparative study of thermal performance between a simple solar collector accumulator (TSB) and an integral collector storage unit (SCI). Those experiments were conducted on the campus of the Catholic University San Pablo de Arequipa, specifically within the laboratories of the Institute of Energy and Environment. The evaluation was performed on three experiences, the first was to find the effective efficiency of each of the systems, the heat loss was also considered during the night, in the second experience used the CSTG method ISO 9459-2, to evaluate the thermal performance daily, finally the third test was to find the heating rate, both systems were exposed to the same conditions of radiation, wind, etc. It was finally concluded that under the conditions of study, the TSB has a better thermal performance than the SCI in almost all tests except the heating rate when only diffuse radiation falling on the collector. Key words: Integral collector storage, thermal performance, simple solar collector.