Geometría 
Bernardo Alarcón Navarro 
Profesor de Computación 
Adaptado por: Imanol y Rubén
Triángulos 
Un triángulo, en geometría, es un polígono de tres lados; está 
determinado por tres segmentos de recta que se denominan lados, 
o tres puntos no alineados que se llaman vértices. 
Ejemplo 
A 
B 
C 
b a 
c 
α 
γ 
β 
Sean: 
a b c, los lados del triangulo. 
A B C, los vértices del triangulo. 
α β γ, los ángulos interiores del triangulo.
Ejemplos cotidianos Triángulos:
Clasificación de los Triángulos 
Los Triángulos se pueden clasificarse según sus lados y según sus 
ángulos. A saber: 
Según sus lados: 
Triángulo equilátero: si sus tres lados tienen la misma longitud (los 
tres ángulos internos miden 60 grados ó pi 
Triángulo isósceles: si tiene dos lados de la misma longitud. Los 
ángulos que se opone a estos lados tienen la misma medida. 
Triángulo escaleno: si todos sus lados tienen longitudes diferentes. 
En un triángulo escaleno no hay ángulos con la misma medida.
Clasificación de los Triángulos 
Según sus ángulos: 
Triángulo rectángulo: si tiene un ángulo interior recto (90°). A los 
dos lados que conforman el ángulo recto se les denomina catetos y 
al otro lado hipotenusa. 
Triángulo obtusángulo: si uno de sus ángulos es obtuso (mayor de 
90°). 
Triángulo acutángulo: cuando sus tres ángulos son menores a 90°.
Clasificación de los Triángulos según sus 
Lados y según sus Ángulos 
En la tabla de la izquierda 
puedes observar una especial 
clasificación de triángulos 
según sus ángulos y lados. 
Así tendremos: 
Triángulo acutángulo que 
puede ser equilátero, isósceles 
o escaleno. 
Triángulo rectángulo que 
puede ser isósceles o 
escaleno. 
Triángulo obtusángulo que 
puede ser isósceles o 
escaleno. 
Para mayores antecedentes 
revisa la siguiente diapositiva.
Clasificación de los Triángulos según sus 
Lados y según sus Ángulos 
Triángulo acutángulo equilátero: sus tres ángulos son menores a 90° y sus tres lados son 
de igual medida. 
Triángulo acutángulo isósceles: con todos los ángulos agudos, siendo dos iguales, y el otro 
distinto, este triángulo es simétrico respecto de su altura diferente. 
Triángulo acutángulo escaleno: con todos sus ángulos agudos y todos diferentes, no tiene 
ejes de simetría. 
Triángulo rectángulo isósceles: con un ángulo recto y dos agudos iguales (de 45 cada 
uno), dos lados son iguales y el otro diferente, naturalmente los lados iguales son los 
catetos, y el diferente es la hipotenusa, es simétrico respecto a la altura que pasa por el 
ángulo recto hasta la hipotenusa. 
Triángulo rectángulo escaleno: tiene un ángulo recto y todos sus lados y ángulos son 
diferentes. 
Triángulo obtusángulo isósceles: tiene un ángulo obtuso, y dos lados iguales que son los 
que parten del ángulo obtuso, el otro lado es mayor que estos dos. 
Triángulo obtusángulo escaleno: tiene un ángulo obtuso y todos sus lados son diferentes.
Polígonos 
Un polígono es una figura geométrica plana limitada por al menos tres 
segmentos rectos consecutivos no alineados, llamados lados. 
También podemos decir que los polígonos son figuras cerradas, formadas 
por varios segmentos de líneas, a las que llamamos lados. 
Ejemplos
Elementos de los Polígonos 
Los elementos de un polígono son: Lados, Vértices, Ángulos, 
Diagonales. Veamos algunos ejemplos: 
•Los lados son segmentos que forman el polígono. 
•Los vértices son cada uno de los puntos en que se forman los lados. 
•Los ángulos del polígono son los ángulos que forman los lados. 
•Las diagonales son los segmentos que unen dos vértices no consecutivos.
Clasificación y denominación de los 
Polígonos según el número de lados 
Nº de 
Lados 
Nombre Figura 
3 
Triangulo 
4 
Cuadrilátero 
5 
Pentágono 
6 
Hexágono 
Nº de 
Lados 
Nombre Figura 
7 
Heptágono 
8 
Octágono 
9 
Eneágono
Clasificación y denominación de los 
Polígonos según el número de lados 
Nº de 
Lados 
Nombre Figura 
10 Decágono 
11 Endecánogo 
12 Dodecágono 
13 Tridecánogo 
Nº de 
Lados 
Nombre Figura 
14 Tetradecánogo 
15 Pentadecánogo 
20 Isodecágono
Ángulos de un Polígono 
Recordemos que uno de los elementos del polígono son los ángulos que forman la 
unión de dos segmentos. La característica de estos ángulos es que pueden ser 
Internos o Externos, según sea su ubicación. 
Ejemplo 
A 
B 
C 
q 
E D 
g 
w 
r 
m 
b 
e d 
f 
a 
Vértice 
Medida del 
ángulo interior 
w 
Medida del 
ángulo externo 
En este polígono de 
cinco lados, 
podemos reconocer 
los ángulo interiores 
por el arco de color 
amarillo y los 
ángulos exteriores 
por el arco de color 
blanco.
Ángulos Adyacentes Suplementarios 
En cada vértice es posible encontrar un ángulo interior y un ángulo 
exterior. 
La suma de un ángulo interior con un ángulo exterior dará 
exactamente 180º, por lo tanto estos dos ángulos forman un ángulo 
suplementario. 
Ejemplo 
α + β = 180º 
Ángulo 
Interior 
Ángulo 
Exterior 
Ambos ángulos 
forman un 
ángulo 
extendido o de 
180º
Polígonos de Cuatro Lados: Cuadriláteros 
Un cuadrilátero es un polígono que tiene cuatro lados. Los 
cuadriláteros tienen distintas formas pero todos ellos tienen cuatro 
lados, cuatro vértices y dos diagonales. En todos los cuadriláteros la 
suma de los ángulos interiores es igual a 360º. 
Ejemplos
Los Cuadriláteros se clasifican según sus 
lados en: 
Paralelogramos Trapecios Trapezoides 
Estos son cuadriláteros que 
tienen dos pares de lados 
opuestos paralelos. 
Ejemplos de ellos tenemos: 
Un trapecio es un 
cuadrilátero que tiene dos 
lados paralelos y los otros 
dos no paralelos. 
Ejemplos de ellos 
tenemos: 
Un trapezoide es un polígono 
cuadrilátero cerrado en el que 
ninguno de sus cuatro lados es 
paralelo a otro. Ejemplos de 
ellos tenemos: 
El trapezoide no es un 
paralelogramo, pero cumple 
con las propiedades básicas 
de estos polígonos, la suma 
de sus ángulos internos es 
de 360º.
Cuadrado 
Es un paralelogramo de cuatro lados paralelos 
entre sus opuestos. 
Sus lados son de igual longitud y forman cuatro 
ángulos rectos, es decir de 90º. 
Rectángulos 
Es un paralelogramo de cuatro lados paralelos entre 
sus opuestos que forman cuatro ángulos rectos, es 
decir de 90º. 
Los lados opuestos tienen la misma longitud entre 
sus opuestos.
Rombo 
El rombo es un cuadrilátero paralelogramo. Sus 
cuatro lados son de igual longitud y son paralelos 
entre sus opuestos. 
Romboide 
El romboide es un paralelogramo de cuatro lados 
cuyos opuestos son de igual longitud. Los ángulos 
formados por estos lados no son rectos, por lo 
tanto no es un rectángulo. Cada par de lados 
opuestos son de diferente longitud.

Geometria

  • 1.
    Geometría Bernardo AlarcónNavarro Profesor de Computación Adaptado por: Imanol y Rubén
  • 2.
    Triángulos Un triángulo,en geometría, es un polígono de tres lados; está determinado por tres segmentos de recta que se denominan lados, o tres puntos no alineados que se llaman vértices. Ejemplo A B C b a c α γ β Sean: a b c, los lados del triangulo. A B C, los vértices del triangulo. α β γ, los ángulos interiores del triangulo.
  • 3.
  • 4.
    Clasificación de losTriángulos Los Triángulos se pueden clasificarse según sus lados y según sus ángulos. A saber: Según sus lados: Triángulo equilátero: si sus tres lados tienen la misma longitud (los tres ángulos internos miden 60 grados ó pi Triángulo isósceles: si tiene dos lados de la misma longitud. Los ángulos que se opone a estos lados tienen la misma medida. Triángulo escaleno: si todos sus lados tienen longitudes diferentes. En un triángulo escaleno no hay ángulos con la misma medida.
  • 5.
    Clasificación de losTriángulos Según sus ángulos: Triángulo rectángulo: si tiene un ángulo interior recto (90°). A los dos lados que conforman el ángulo recto se les denomina catetos y al otro lado hipotenusa. Triángulo obtusángulo: si uno de sus ángulos es obtuso (mayor de 90°). Triángulo acutángulo: cuando sus tres ángulos son menores a 90°.
  • 6.
    Clasificación de losTriángulos según sus Lados y según sus Ángulos En la tabla de la izquierda puedes observar una especial clasificación de triángulos según sus ángulos y lados. Así tendremos: Triángulo acutángulo que puede ser equilátero, isósceles o escaleno. Triángulo rectángulo que puede ser isósceles o escaleno. Triángulo obtusángulo que puede ser isósceles o escaleno. Para mayores antecedentes revisa la siguiente diapositiva.
  • 7.
    Clasificación de losTriángulos según sus Lados y según sus Ángulos Triángulo acutángulo equilátero: sus tres ángulos son menores a 90° y sus tres lados son de igual medida. Triángulo acutángulo isósceles: con todos los ángulos agudos, siendo dos iguales, y el otro distinto, este triángulo es simétrico respecto de su altura diferente. Triángulo acutángulo escaleno: con todos sus ángulos agudos y todos diferentes, no tiene ejes de simetría. Triángulo rectángulo isósceles: con un ángulo recto y dos agudos iguales (de 45 cada uno), dos lados son iguales y el otro diferente, naturalmente los lados iguales son los catetos, y el diferente es la hipotenusa, es simétrico respecto a la altura que pasa por el ángulo recto hasta la hipotenusa. Triángulo rectángulo escaleno: tiene un ángulo recto y todos sus lados y ángulos son diferentes. Triángulo obtusángulo isósceles: tiene un ángulo obtuso, y dos lados iguales que son los que parten del ángulo obtuso, el otro lado es mayor que estos dos. Triángulo obtusángulo escaleno: tiene un ángulo obtuso y todos sus lados son diferentes.
  • 8.
    Polígonos Un polígonoes una figura geométrica plana limitada por al menos tres segmentos rectos consecutivos no alineados, llamados lados. También podemos decir que los polígonos son figuras cerradas, formadas por varios segmentos de líneas, a las que llamamos lados. Ejemplos
  • 9.
    Elementos de losPolígonos Los elementos de un polígono son: Lados, Vértices, Ángulos, Diagonales. Veamos algunos ejemplos: •Los lados son segmentos que forman el polígono. •Los vértices son cada uno de los puntos en que se forman los lados. •Los ángulos del polígono son los ángulos que forman los lados. •Las diagonales son los segmentos que unen dos vértices no consecutivos.
  • 10.
    Clasificación y denominaciónde los Polígonos según el número de lados Nº de Lados Nombre Figura 3 Triangulo 4 Cuadrilátero 5 Pentágono 6 Hexágono Nº de Lados Nombre Figura 7 Heptágono 8 Octágono 9 Eneágono
  • 11.
    Clasificación y denominaciónde los Polígonos según el número de lados Nº de Lados Nombre Figura 10 Decágono 11 Endecánogo 12 Dodecágono 13 Tridecánogo Nº de Lados Nombre Figura 14 Tetradecánogo 15 Pentadecánogo 20 Isodecágono
  • 12.
    Ángulos de unPolígono Recordemos que uno de los elementos del polígono son los ángulos que forman la unión de dos segmentos. La característica de estos ángulos es que pueden ser Internos o Externos, según sea su ubicación. Ejemplo A B C q E D g w r m b e d f a Vértice Medida del ángulo interior w Medida del ángulo externo En este polígono de cinco lados, podemos reconocer los ángulo interiores por el arco de color amarillo y los ángulos exteriores por el arco de color blanco.
  • 13.
    Ángulos Adyacentes Suplementarios En cada vértice es posible encontrar un ángulo interior y un ángulo exterior. La suma de un ángulo interior con un ángulo exterior dará exactamente 180º, por lo tanto estos dos ángulos forman un ángulo suplementario. Ejemplo α + β = 180º Ángulo Interior Ángulo Exterior Ambos ángulos forman un ángulo extendido o de 180º
  • 14.
    Polígonos de CuatroLados: Cuadriláteros Un cuadrilátero es un polígono que tiene cuatro lados. Los cuadriláteros tienen distintas formas pero todos ellos tienen cuatro lados, cuatro vértices y dos diagonales. En todos los cuadriláteros la suma de los ángulos interiores es igual a 360º. Ejemplos
  • 15.
    Los Cuadriláteros seclasifican según sus lados en: Paralelogramos Trapecios Trapezoides Estos son cuadriláteros que tienen dos pares de lados opuestos paralelos. Ejemplos de ellos tenemos: Un trapecio es un cuadrilátero que tiene dos lados paralelos y los otros dos no paralelos. Ejemplos de ellos tenemos: Un trapezoide es un polígono cuadrilátero cerrado en el que ninguno de sus cuatro lados es paralelo a otro. Ejemplos de ellos tenemos: El trapezoide no es un paralelogramo, pero cumple con las propiedades básicas de estos polígonos, la suma de sus ángulos internos es de 360º.
  • 16.
    Cuadrado Es unparalelogramo de cuatro lados paralelos entre sus opuestos. Sus lados son de igual longitud y forman cuatro ángulos rectos, es decir de 90º. Rectángulos Es un paralelogramo de cuatro lados paralelos entre sus opuestos que forman cuatro ángulos rectos, es decir de 90º. Los lados opuestos tienen la misma longitud entre sus opuestos.
  • 17.
    Rombo El romboes un cuadrilátero paralelogramo. Sus cuatro lados son de igual longitud y son paralelos entre sus opuestos. Romboide El romboide es un paralelogramo de cuatro lados cuyos opuestos son de igual longitud. Los ángulos formados por estos lados no son rectos, por lo tanto no es un rectángulo. Cada par de lados opuestos son de diferente longitud.