Probabilidad
y estadística
Aplicaciones
a la ingeniería
y las ciencias
Eduardo Gutiérrez González
Profesor de matemáticas de la UPIICSA–IPN
Sección de Estudios de Posgrado e Investigación
Olga Vladimirovna Panteleeva
Profesora de matemáticas de la UACH
Área de matemáticas
PRIMERA EDICIÓN
MÉXICO, 2014
Dirección editorial: Javier Enrique Callejas
Coordinadora editorial: Estela Delfín Ramírez
Supervisor de preprensa: Gerardo Briones González
Diseño de portada: Juan Bernardo Rosado Solís/Signx
Imágenes: Adrian Zamorategui Berber
Fotografías: © Thinkstockphoto
Revisión Técnica:
Alex Polo Velázquez
Universidad Autónoma Metropolitana-Azcapotzalco
Probabilidad y estadística. Aplicaciones a la ingeniería y las ciencias
Derechos reservados:
© 2014, Eduardo Gutiérrez Gónzalez/ Olga Vladimirovna Panteleeva
© 2014, Grupo Editorial Patria, S.A. de C.V.
Renacimiento 180, Colonia San Juan Tlihuaca
Azcapotzalco, México D. F.
Miembro de la Cámara Nacional de la Industrial Editorial Mexicana
Registro Núm. 43
ISBN: 978-607-438-766-7
Queda prohibida la reproducción o transmisión total o parcial del contenido de la presenta obra en cuales-
quiera formas, sean electrónicas o mecánicas, sin el consentimiento previo y por escrito del editor.
Impreso en México
Printed in Mexico
Primera edición: 2014
info editorialpatria.com.mx
www.editorialpatria.com.mx
Eduardo Gutiérrez González
Doctor en Ciencias (f ísico-matemáticas), realizó estudios de licenciatura, maestría y doctorado en la Universidad Estatal de San
Petersburgo, Federación Rusa en análisis matemático de 1984-1994. Doctor en Ciencias (estadística), realizó estudios de maestría de
2002-2004 y doctorado de 2005-2009 en el Colegio de Posgraduados-México en el programa en Estadística. Maestro en ingeniería,
realizó estudios de maestría en el Posgrado de Ingeniería de la UNAM-México, en Ingeniería de Sistemas en el campo disciplinario
de Investigación de Operaciones de 2004-2006. Actualmente académico de tiempo completo en la Sección de Estudios de Posgrado
e Investigación deUPIICSA-IPN,becario por la DEDICT-COFAA y E.D.D.
Olga Vladimirovna Panteleeva
Maestra en Ciencias Físico-Matemáticas (matemáticas aplicadas), realizó estudios de licenciatura y maestría en la Universidad Es -
tatal de San Petersburgo, Federación Rusa, en Matemáticas aplicadas y procesos de control de 1986-1992. Doctora en Ciencias (esta-
dística), realizó estudios de maestría de 2005-2007 y doctorado de 2008-2012 en el Colegio de Posgraduados-México en el programa
en Estadística. Actualmente académica de tiempo completo en la Universidad Autónoma de Chapingo en el área de matemáticas.
Agradecimientos
Cuando se termina una obra existen infinidad de compañeros y colegas a los que se les debe en cierta forma la conclusión de e sta y
sin hacer a un lado a nadie, agradecemos infinitamente a todos nuestros compañeros de trabajo, tanto de las Academias de Matemá-
ticas como de Investigación de Operaciones y de la Sección de Graduados de UPIICSA -IPN, así como a los compañeros del Programa
en Estadística del colegio de Posgraduados campus montecillo, donde adquirimos grandes conocimientos sobre la probabilidad y la
estadística que han hecho posible la escritura de este texto. Muy en particular agradecemos a los compañeros del grupo Gitam (Gru-
po de Investigación y Trabajos Académicos de Matemáticas, de las academias de matemáticas de UPIICSA -IPN, fundado en 2013) a
través de la línea 2 de investigación sobre probabilidad y estadística por las aportaciones obtenidas durante el Seminario de Probabi-
lidad y Estadística (2013--), así como a los integrantes del Diplomado en Formación Docente en Probabilidad y Estadística con vigen-
cia 2013-2015. Por último, agradecemos a todos los revisores de la editorial cuyas contribuciones han sido inmejorables para que el
texto tenga una mejor presentación y calidad en su desarrollo.
Eduardo Gutiérrez y Olga Vladimirovna
Palabras de los autores
En términos generales el libro está divido en tres partes. En la
primera trabajamos con los fenómenos probabilísticos; en la se-
gunda con la estadística tanto descriptiva como inferencial y
en la tercera los modelos de regresión lineales. Con estas tres
partes, el libro se perfecciona con un avance completo de los con-
ceptos básicos que tienen mayor aplicación en problemas prác-
ticos de las diferentes esferas de la ingeniería.
La primera parte del libro inicia con la explicación de las
diferentes corrientes que existen en la asignación de probabili-
dades a un suceso. Durante los primeros tres capítulos se realiza
una construcción matemática de la teoría de las probabilidades,
apoyada con los espacios muestrales, el álgebra de eventos, téc-
nicas de conteo, probabilidad condicional y eventos indepen-
dientes.
En los capítulos 4 al 8 se introduce al estudio de las funcio-
nes al cálculo de probabilidades, por medio del concepto de
variables aleatorias. Es decir, de manera más formal se inicia el
uso de funciones, tanto discretas como continuas, en el de-
sarrollo de la teoría de las probabilidades. El paso que se da en
estos capítulos es uno de los más trascendentales en el desarrollo
de la obra, debido a la introducción a las funciones en el es-
tudio de las probabilidades, formaliza la creación de una ver-
dadera ciencia matemática de las probabilidades. El capítulo 8
tiene una relevancia teórica que forma el vínculo para pasar de
la probabilidad a la estadística. En este capítulo se revisan las
transformaciones de las variables aleatorias por medio de los
métodos más comunes como: la función de distribución acumu-
lada,la función generatriz de momento y la técnica de los ja-
cobianos. Con estas técnicas se sustenta la demostración de la
mayoría de fórmulas que utilizamos en la segunda parte del tex-
to sobrela estadísticainferencial.
La segunda parte del libro la dedicamos al estudio dela
estadística; se inicia en los capítulos 9 y 10 con la parte descrip-
tiva. En el capítulo 9 revisamos la estadística descriptiva para da-
tos no agrupados, donde analizamos las diferentes medidas, tanto
centrales como de desviación. Dentro de las medidas centrales
estudiamos la media, mediana, moda, media geométrica, me-
dia ponderada, media armónica y cuantiles. En las medidas de
desviación analizamos el rango, la varianza y la desviación es-
tándar. Revisamos los coeficientes de variación y covarianza, y
los parámetros de forma para un conjunto de datos; al final se
revisan algunas aplicaciones delos datos no agrupados a in-
versiones. En el capítulo 10 realizamos un trabajo bastante
completo sobre la estadística descriptiva para datos agrupados.
Estudiamos las clases de frecuencias y sus medidas centrales
(antes mencionadas) y cuantiles. Agregamos un apartado para
las gráficas de las clases de frecuencia, con las que se analizan
las distribuciones de los datos; simetría, sesgo y curtosis. Por úl-
timo, revisamos la técnica gráfica Q-Q, para realizar una prue-
ba de bondad de ajuste.
El estudio sobre las distribuciones muestrales lo iniciamos
en el capítulo 11 donde se explica a detalle sobre las distribucio-
nes muestrales de la media y diferencia de medias para varia-
bles normales. Ampliamos las distribuciones muestrales para
la suma y el promedio de las distribuciones más comunes estu-
diadas en la teoría de las probabilidades. Es decir, en el caso dis-
creto, hablamos sobre las distribuciones Bernoulli, binomial,
geométrica, Poisson, etc., mientras que en el caso continuo nos
referimos a la familia exponencial, beta, Pareto, etc. Continua-
mos el capítulo con una breveintroducción sobrelas estadís-
ticas de orden. Al final, hacemos una revisión detallada del
Teorema Central del Límite en sus diferentes presentaciones,
media,suma y distribuciones específicas.
En el capítulo 12 se habla de manera breve sobre los estima-
dores puntuales y sus propiedades más importantes: suficiencia,
insesgamiento, eficiencia relativa y varianza mínima. Veremos
algunas propiedades asintóticas deseables de una sucesión de
estimadores. Después, revisamos con mucho detalle los inter-
valos de confianza. Iniciamos con los conceptos básicos sobre
las propiedades de un buen intervalo de confianza, con estos
conceptos revisamos a detalle la parte metodológica de los
intervalos de confianza para los parámetros de poblaciones
normales o aproximadamente normales, para una población
y comparación de estas. Al final con intervalos de confianza
para proporciones y diferencia de proporciones en muestras
grandes.
En el capítulo 13 hacemos una revisión similar a la del capí-
tulo 12, pero ahora utilizamos las pruebas de hipótesis. Se inicia
con la descripción de los conceptos básicos sobre pruebas de
hipótesis y su metodología. Primero revisamos qué es una hipó-
tesis estadística y cuáles son los errores que cometemos al lle-
var a cabo una prueba. Asimismo, tratamos a detalle la potencia
de la prueba. Hacemos un resumen de los casos más comunes
en las pruebas de hipótesis: simple contra simple, simple contra
Prefacio
compuesta y compuesta contra compuesta, donde tratamos so-
bre la prueba uniformemente más potente. Al final, revisamos a
detalle la parte metodológica de las pruebas de hipótesis para
los parámetros de poblaciones normales o aproximadamente
normales y poblaciones tipo Bernoulli.
En la tercera parte del texto en un solo capítulo hacemos
una revisión detallada de los modelos de regresión tanto sim-
ples como múltiples. En el primer caso explicamos cómo llevar
• Toma de decisiones
• Evaluación de proyectos
• Entre muchas otras
Unas palabras del estilo
y forma de escritura
Prefacio v
a cabo un análisis sobre la regresión, desde la construcción de
un diagrama de dispersión, hasta los intervalos de confianza y
pruebas de hipótesis de los parámetros de regresión. Durante el
desarrollo de los resultados de una regresión vemos cómo en-
contrar e interpretar su ecuación, cómo obtener predicciones
y cómo calcular intervalos de confianza para estas. Con la
regresión múltiple ampliamos los modelos a regresiones curvi-
líneas, casos con errores multiplicativos y problemas de Cobb-
Douglas. Además de explicar a detalle los diferentes problemas
que se pueden presentar con las observaciones de una muestra
como puede ser la multicolinealidad, datos aberrantes, trans-
formaciones Box-Cox para variables de respuesta no normales,
etcétera.
Sin importar los avances que tengamos en computación y
en la teoría dela estadística en los textos metodológicos so-
bre aplicaciones de la estadística inferencial se conserva el viejo
esquema del uso exclusivo de la distribución normal para las
fórmulas y métodos que se acostumbra usar en los intervalos de
confianza y prueba de hipótesis. Por otro lado, los textos que
hablan sobre las bases teóricas para diferentes tipos de distri-
buciones resultan ser demasiado teóricos de manera que a un
lector sin formación matemática se le dificulta comprender el
desarrollo del libro.
En la presente obra damos un enfoque teórico y metodoló-
gico. Así, el lector que solo tenga interés en la parte metodológi-
ca de la estadística descriptiva e inferencial podrá avanzar en su
estudio sin problemas. De manera paralela a la metodología
damos un desarrollo teórico de la probabilidad, así como de la
estadística descriptiva e inferencial. De esta manera los lectores
más avanzados podrán comprender las bases teóricas para la
creación de otros estimadores puntuales de los parámetros de
poblaciones diferentes a la normal. Es decir, con estas bases los
lectores más avanzados estarán en posibilidad de construir in-
tervalos de confianza y llevar a cabo pruebas de hipótesis para
parámetros de poblaciones diferentes a la normal.
Otra aportación de transcendencia de la presente obra con
respecto a otras reside en que la parte de probabilidad la mayo-
ría de los autores se refieren a esta como un simple escalón para
el desarrollo de la estadística. En este texto mostramos parte de
su importancia, además de resaltar las aplicaciones actuales
de la teoría de las probabilidades, en diferentes áreas de las cien-
cias,por ejemplo:
• Administración
• Ingeniería
• Informática
• Simulación de sistemas
• Control de calidad
El estilo de escritura del libro es muy sencillo,muestra con-
ceptos que son la base para los desarrollos teóricos. Cada tema
tratado en el libro está reforzado por una gran cantidad de
ejemplos y ejercicios prácticos, en cada sección abarcan di-
ferentes formas de ver un problema (en total se tienen más de
1 600 ejercicios que incluyen más de 2 800 incisos). Las solu-
ciones y sugerencias a la mayoría de los problemas están en
el CD-ROM y fueron hechas en Excel-Microsoft bajo la con-
sideración de todos los dígitos, por estas razones las solucio-
nes que obtenga el lector pueden variar ligeramente respecto a
las mostradas en el CD-ROM, pero estas variaciones deben ser
mínimas.
El libro está escrito de la siguiente forma: Cada sección se
escribe con el número del capítulo al que pertenece, seguida de
un punto y el número correspondiente a la sección dada; se ini-
cia con la sección uno en cada capítulo. Ejemplo 4.3, significa la
sección 3 del capítulo 4. En el caso de las subsecciones, se utiliza
una tipografía diferente para diferenciarlos.
Bases teóricas requeridas
Para la comprensión de los temas se requiere solo conoci-
mientos básicos de los cursos de cálculo diferencial e integral.
En algunos temas tal vez no sea necesario el manejo de las
demostraciones, pero en los ejemplos y ejercicios correspon-
dientes sí.
Objetivos del texto
El objetivo de este libro es presentar, a los futuros profesionistas,
herramientas cuantitativas que puedan aplicar en los problemas
que les corresponda resolver dentro de su ámbito laboral, y así
llegar a una mejor toma de decisiones. Al final del texto espe-
ramos queel lector sea capaz de:
• Describir las diferentes corrientes de la probabilidad de
eventos.
• Definir el concepto de variable aleatoria.
• Nombrar los tipos de modelos discretos y continuos más
comunes.
• Identificarel tipo de modelo al quepertenece el experi-
mento.
• Ejemplificar las diferentes corrientes de probabilidad y los
modelos más comunes de probabilidad.
• Resolver problemas para el cálculo de probabilidades.
• Aplicar los diferentes modelos en su área de trabajo.
• Proponer e investigar experimentos aleatorios para crear
modelos probabilísticos.
vi Prefacio
• Describir las diferentes técnicas de la estadística descripti-
va, para llevar a cabo un estudio detallado del comporta-
miento de los datos.
• Definir los conceptos de parámetros y estadísticos.
• Nombrar las diferentes técnicas que se pueden utilizar
para realizar inferencias.
• Identificar en un problema dado, cuándo un dato se refie-
re a un parámetro y cuándo a un estadístico.
• Ejemplificar las diferentes técnicas para estimar un pará-
metro, tanto puntual como por intervalos.
• Aplicar las inferencias a su área laboral.
• Experimentar desde el punto de vista de la estadística in-
ferencial.
• Proponer e investigar experimentos donde se tengan dis-
tribuciones muestrales para hacer inferencias con respecto
a sus parámetros.
• Aplicar la regresión lineal para determinar relaciones en-
tre variables y poder lograr hacer predicciones en situacio-
nes de su área laboral.
A g r a d e c i m i e n t o s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
Prefacio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
CAPÍTULO 1 Bases de la probabilidad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Modelos determinísticos y probabilísticos . . . . . . . . . . . . . . . . . . . . 3
1.2 Interpretaciones de la probabilidad . . . . . . . . . . . . . . . . . . . . . . . . . 8
Corriente frecuentista . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Corriente clásica (a priori ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Corriente subjetivista . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Corriente bayesiana (a posteriori ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3 Álgebra de e v e n t o s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Conceptos fundamentales de eventos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Relaciones fundamentales entre eventos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Diagramas de V e n n - E u l e r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Operaciones fundamentales entre e v e n t o s . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Particiones de eventos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Generalización de la unión e intersección de e v e n t o s . . . . . . . . . . . . . . . . . . . . 18
Leyes del álgebra de e v e n t o s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.4 Axiomatización de la p r o b a b ili d a d . . . . . . . . . . . . . . . . . . . . . . . . . . 21
CAPÍTULO 2 Técnicas de conteo y probabilidad . . . . . . . . . . . . . . . . . . . . . . . 31
2.1 Regla de la mu lt i p l i c a ci ó n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.2 Diagrama de árbol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.3 Arreglos con y sin r e p e t i c i ó n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Arreglos con repetición (reemplazo) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Arreglos sin repetición: p e r m u t a c i o n e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Permutaciones con elementos indistinguibles . . . . . . . . . . . . . . . . . . . . . . . . . 37
Permutaciones c i r c u l a r e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Contenido
viii Contenido
k
2.4 Combinaciones ........................................................................................39
Propiedades en el cálculo de Cn.....................................................................40
Combinatorias multinomiales .......................................................................41
2.5 Regla de la suma.....................................................................................42
2.6 Aplicación de las técnicas de conteo a la probabilidad..........................46
Probabilidad condicional ..........................................................59
3.1 Probabilidad condicional.......................................................................60
Comprobación de los axiomas de Kolmogórov para P (A B )..................................................61
Tabla de probabilidad conjunta ...................................................................................................62
3.2 Regla de la multiplicación de probabilidades......................................65
Generalización de la regla de multiplicación de probabilidades .....................................66
Empleo de los diagramas de árbol en la probabilidad condicional ................................67
3.3 Teorema de Bayes ...................................................................................70
3.4 Eventos independientes........................................................................78
Elecciones sin reemplazo en poblaciones grandes ............................................................81
Generalización de eventos independientes ....................................................81
Eventos independientes aplicados a circuitos ................................................83
Variables aleatorias discretas.....................................................95
4.1 Variables aleatorias................................................................................96
Generalización de la asignación de probabilidades a los valores de la variable . 98
4.2 Variables aleatorias discretas .............................................................99
Distribución de probabilidad .........................................................................99
4.3 Función de una variable aleatoria discreta........................................103
4.4 Valor esperado de una vad...................................................................105
Propiedades del valor esperado de una vad .................................................106
4.5 Variancia de una vad............................................................................108
Propiedades de la variancia de una vad .......................................................109
4.6 Generadores de números aleatorios discretos .....................................114
Modelos discretos de probabilidad ..........................................123
5.1 Modelo uniforme discreto ...................................................................124
Cálculo de probabilidades ..........................................................................125
CAPÍTULO 3
CAPÍTULO 4
CAPÍTULO 5
Contenido ix
5.2 Modelos de Bernoulli y binomial . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
Notación de la función de distribución acumulada . . . . . . . . . . . . . . . . . . . . . . 129
Cálculo de probabilidades de los modelos binomiales y uso
de tablas binomiales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
Modelos “aproximadamente binomiales” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
5.3 Modelo g e o m é t r i c o . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
Cálculo de probabilidades de un modelo geométrico . . . . . . . . . . . . . . . . . . . . 137
5.4 Modelo de Pascal o binomial negativa . . . . . . . . . . . . . . . . . . . . . . 139
5.5 Modelo hipergeométrico . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
Aproximación hipergeométrica por binomial. . . . . . . . . . . . . . . . . . . . . . . . . . . 146
5.6 Modelo de Poisson . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
Cálculo de probabilidades de modelos de Poisson y uso de tablas . . . . . . . . . . 150
Aproximación de la binomial por Poisson . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
CAPÍTULO 6 Variables aleatorias continuas . . . . . . . . . . . . . . . . . . . . . . . . . . 165
6.1 Variables aleatorias continuas. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
Función de densidad de probabilidad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
Función acumulada de una variable aleatoria continua . . . . . . . . . . . . . . . . . . 169
Propiedades de una función de distribución acumulada . . . . . . . . . . . . . . . . . . 169
Cálculo de probabilidades mediante la función de distribución acumulada . . . . 172
6.2 Valor esperado y variancia de una variable aleatoria continua . . . . 174
Propiedades del valor esperado de una vac . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
Variancia de una variable aleatoria continua. . . . . . . . . . . . . . . . . . . . . . . . . . . 174
Propiedades de la variancia de una vac . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
6.3 Desigualdad de Ch e b ysh e v . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
6.4 Generadores de números aleatorios con la función
de distribución acumulada, caso continuo . . . . . . . . . . . . . . . . . . . 179
CAPÍTULO 7 Modelos continuos de probabilidad . . . . . . . . . . . . . . . . . . . . . . 189
7.1 Modelo uniforme continuo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
7.2 Modelo triangular . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
7.3 Modelo exponencial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
Relación entre las distribuciones exponencial y de Poisson . . . . . . . . . . . . . . . 200
7.4 Modelo normal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
Cálculo de probabilidades . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
x Contenido
Propiedades de la distribución normal estándar ...........................................205
Uso de tablas de la función acumulada ........................................................205
Uso de tablas porcentuales ........................................................................208
7.5 Aproximación de la binomial por la normal........................................211
7.6 Modelos de probabilidad tipo gamma ................................................213
Propiedades de la función gamma .............................................................214
7.7 Modelos de probabilidad tipo Erlang ..................................................217
7.8 Modelos de probabilidad tipo Weibull ........................................................217
7.9 Modelos lognormal ...............................................................................220
7.10 Modelos de probabilidad tipo beta......................................................222
7.11 Distribución ji cuadrada.......................................................................226
Uso de tablas de la distribución ji cuadrada ..................................................226
7.12 Distribución t-Student..........................................................................228
Uso de tablas de la distribución t-Student.....................................................228
7.13 Distribución F..........................................................................................230
Uso de tablas de la distribución F...............................................................230
Variables aleatorias conjuntas y transformaciones ...........................241
8.1 Multivariables discretas.......................................................................242
Distribución de probabilidad conjunta discreta..............................................242
Función de distribución acumulada............................................................243
Función de probabilidad marginal ..............................................................245
Función de probabilidad condicional..........................................................246
Variables aleatorias independientes .............................................................246
Valor esperado ............................................................................................248
Covariancia..................................................................................................249
Distribución multinomial..............................................................................254
8.2 Multivariables continuas......................................................................255
8.3 Transformación de variables con la función de distribución
acumulada...............................................................................................265
Caso discreto...............................................................................................265
Caso continuo .............................................................................................266
8.4 Funciones generadoras de momentos ..............................................267
Momentos....................................................................................................267
Función generatriz de momentos...............................................................269
Función generatriz de momentos y variables independientes ......................................272
CAPÍTULO 8
Contenido xi
n
8.5 Técnica de jacobianos para transformar variables aleatorias.................273
Transformaciones uno a uno .....................................................................274
Transformaciones que no son uno a uno .....................................................279
8.6 Transformaciones y relaciones entre normales χ2
, t y F.........................281
CAPÍTULO 9 Estadística descriptiva para datos no agrupados . . . . . . . . . . . . 287
9.1 Estadística . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289
9.2 Población y muestra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289
Probabilidad contra estadística . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290
Caracteres y variables estadísticas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290
Escalas de medición de una variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291
Escalas de medidas cuantitativas o métricas . . . . . . . . . . . . . . . . . . . . . . . . . . 292
9.3 Técnicas de mu e s t r e o . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294
Muestreo aleatorio simple . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294
Muestreo estratificado . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295
Muestreo sistemático con iniciación aleatoria . . . . . . . . . . . . . . . . . . . . . . . . . 296
Muestreo por c o n g l o m e r a d o s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296
Tamaño de la muestra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296
Uso de tablas de números aleatorios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299
9.4 Parámetros y e st a d í s t i co s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300
9.5 Medidas centrales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300
La media . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300
La mediana . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302
La moda . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303
Otros valores medios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304
9.6 Cuantiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307
9.7 Medidas de dispersión . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310
Rango . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310
Variancia y desviación estándar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310
Desviación media. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312
Rangos intercuantiles o intercuantílicos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313
Coeficiente de variación y covarianza . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314
9.8 Parámetros de forma en la distribución de la muestra . . . . . . . . . . 318
9.9 Aplicación de las medidas para datos no agrupados a inversiones . 323
Estadística descriptiva para datos agrupados.......................................333
10.1 Clases de frecuencia ...........................................................................334
Cálculo de las frecuencias acumuladas .......................................................335
CAPÍTULO 10
xii Contenido
Distribución de frecuencias para variables cualitativas ...................................................336
Distribución de frecuencias para variables cuantitativas.................................................336
10.2 Medidas centrales en clases de frecuencia...........................................341
Media por clases de frecuencia ..................................................................341
Moda en clases de frecuencia ....................................................................342
10.3 Cuantiles ..................................................................................................342
Cálculo de los cuantiles ..............................................................................343
Clasificación de los cuantiles......................................................................344
10.4 Medidas de dispersión en clases de frecuencias .................................345
10.5 Gráficos ....................................................................................................347
Gráfico de barras.........................................................................................348
Gráficos lineales, polígonos de frecuencias .............................................................................352
Diagrama de tallo y hoja (stem-leaf )..........................................................354
Diagrama circular o de pastel.....................................................................356
Desviación cuartil y cajas de dispersión .......................................................357
10.6 Asimetría y curtosis ..............................................................................360
10.7 Aplicación de las gráficas a pruebas de bondad de ajuste..................362
Técnica gráfica Q-Q para una prueba de ajuste de distribuciones ...................................362
Ejemplo de la técnica gráfica Q-Q para una prueba de normalidad............................362
Técnica analítica Q-Q, para una prueba de normalidad.......................................................365
CAPÍTULO 11 Distribuciones muestrales y teorema central del límite . . . . . . . 377
11.1 Muestra aleatoria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 378
11.2 Estadísticas imp o r t a n t e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381
Media y varianza de la media muestral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383
Media y varianza de una diferencia de medias . . . . . . . . . . . . . . . . . . . . . . . . . 385
Media y varianza de la varianza m u e s t r a l . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 385
Media y varianza de una combinación lineal . . . . . . . . . . . . . . . . . . . . . . . . . . 385
11.3 Distribuciones muestrales asociadas a la normal . . . . . . . . . . . . . . 386
Sumas, promedios y combinaciones lineales de variables aleatorias
normales con la misma media y varianza. . . . . . . . . . . . . . . . . . . . . . . . . . . 386
Cálculo del tamaño de la muestra en distribuciones normales . . . . . . . . . . . . . 388
Fórmulas para el tamaño mínimo de muestra en distribuciones normales . . . . 390
Diferencia de medias de distribuciones n o r m a l e s . . . . . . . . . . . . . . . . . . . . . . . 392
Cálculo del tamaño de la muestra para diferencia de medias . . . . . . . . . . . . . . 393
11.4 Distribuciones de Bernoulli . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395
Distribución de la suma de variables de Bernoulli (Binomial) . . . . . . . . . . . . . . 395
Media y varianza de una p r o p o r c i ó n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395
Contenido xiii
Media y varianza de una diferencia de proporciones ....................................................396
Distribución muestral de la suma y media de otras distribuciones ...........................397
11.5 Introducción a las estadísticas de orden.........................................398
11.6 Teorema central del límite media y suma muestral...........................400
Teorema central del límite para la media de variables .................................................400
Teorema central del límite suma de variables .................................................................402
11.7 Teorema central del límite para diferencia de medias ......................404
11.8 Teorema central del límite para proporciones....................................407
Teorema central del límite para diferencia de proporciones .......................................407
Cálculo del tamaño mínimo de muestra para proporciones
muestras grandes ................................................................................408
11.9 Teorema central del límite para distribuciones específicas ..............411
Teorema central del límite para distribuciones discretas .............................................413
Distribuciones a las que no se puede aplicar el teorema central del límite ...........414
11.10 Ley de los grandes números...........................................................414
Desigualdades de Markov y Chebyshev....................................................415
Convergencias en probabilidad y distribución............................................415
Demostración del teorema central del límite ..............................................416
Estimación puntual y por intervalos de confianza .............................423
12.1 Conceptos básicos sobre estimadores puntuales................................425
Espacio paramétrico...................................................................................425
Valores de los estimadores puntuales..........................................................427
Estimadores insesgados............................................................................428
Estimadores insesgados de distribuciones específicas...................................................431
12.2 Estadísticas suficientes ......................................................................433
Propiedad de invarianza.............................................................................434
Búsqueda de estimadores insesgados.........................................................436
Estimadores insesgados con menor varianza ..............................................436
12.3 Error cuadrado medio..........................................................................437
12.4 Propiedades asintóticas deseables de los estimadores......................440
12.5 Conceptos básicos de los intervalos de confianza...............................442
12.6 Intervalos de confianza para los parámetros de una
población normal...................................................................................443
Intervalos de confianza para la media de poblaciones normales
o aproxi madamente normales cuando se conoce s .......................................443
Intervalos de confianza para medias de poblaciones normales
o aproxi madamente normales cuando se desconoce s..................................443
CAPÍTULO 12
xiv Contenido
Ejemplos variados para la estimación de la media..............................................................445
Intervalos de confianza para la varianza de poblaciones normales...............................448
Ejemplos variados para varianzas..............................................................................................449
12.7 Intervalos de confianza para comparar dos poblaciones
normales....................................................................................................452
Resultados posibles de las comparaciones entre dos medias.........................................453
Intervalos de confianza para la diferencia de medias, poblaciones
aproximadamente normales cuando se conocen s1 y s2............................................453
Intervalos de confianza para la diferencia de medias de poblaciones
normales cuando se desconocen s y s , pero se sabe que s2 = s2........................454
1 2 1 2
Intervalos de confianza para la diferencia de medias de poblaciones
normales cuando se desconocen s y s , pero se sabe s2 ≠ s2.................................455
1 2 1 2
Intervalos de confianza para la diferencia de medias de poblaciones
aproximadamente normales, se desconocen s1 y s2 muestras grandes................456
Intervalos de confianza para la diferencia de medias de observaciones
pareadas con diferencias normales.....................................................................................458
Ejemplos variados para la estimación de diferencia de medias......................................460
Intervalos de confianza para la razón entre varianzas
de poblaciones normales.........................................................................................................464
12.8 Intervalos de confianza para proporciones .............................................470
Intervalos de confianza para proporciones muestras grandes.........................................470
Ejemplos variados para proporciones.......................................................................................471
Intervalo de confianza de diferencia de proporciones muestras grandes....................473
Metodología para pruebas de hipótesis sobre los parámetros
de una distribución normal..........................................................................485
13.1 Conceptos básicos sobre pruebas de hipótesis......................................486
Regiones de rechazo y no rechazo............................................................................................487
Tipos de errores en una prueba de hipótesis.........................................................................488
Función de potencia y tamaño de la prueba..........................................................................491
Elección de la hipótesis nula y alterna.....................................................................................494
Cálculo de las probabilidades para los dos tipos de errores............................................494
Conceptos básicos sobre los tipos de pruebas de hipótesis.............................................498
13.2 Pruebas de hipótesis para los parámetros de una
distribución normal.....................................................................................499
Pruebas de hipótesis para la media de poblaciones aproximadamente
normales cuando se conoce s.....................................................................499
Pruebas de hipótesis para la media de poblaciones aproximadamente
normales cuando se desconoce s.................................................................505
Pruebas para la varianza de poblaciones normales............................................................508
CAPÍTULO 13
Contenido xv
13.3 Pruebas de hipótesis para comparar dos poblaciones
normales....................................................................................................513
Pruebas de hipótesis para la diferencia de medias sobre poblaciones
aproximadamente normales cuando se conocen s2 y s2 ...........................................514
1 2
Pruebas de hipótesis para la diferencia de medias sobre poblaciones
aproximadamente normales cuando se desconocen s2 y s2
1 2
pero s2 =s2............................................................................................ 517
1 2
Pruebas de hipótesis para la diferencia de medias sobre poblaciones
aproximadamente normales cuando se desconocen s2 y s2
1 2
pero s2 ≠s2 ........................................................................................... 520
1 2
Pruebas de hipótesis para la diferencia de medias de observaciones
pareadas con diferencias normales.....................................................................................523
Pruebas de hipótesis para la razón entre varianzas de poblaciones
normales................................................................................................... 527
13.4 Pruebas para poblaciones tipo Bernoulli, proporciones ........................ 533
Descarga el capítulo
Regresión lineal simple y múltiple (véase en el CD-ROM)
14.1 Regresión lineal simple
Diagrama de dispersión
Supuestos de la variable dependiente en el análisis de regresión
14.2 Método de mínimos cuadrados para optimizar el error
Supuestos del error en un modelo lineal
14.3 Error estándar de estimación y propiedades de los estimadores
14.4 Prueba de hipótesis para el parámetro de la pendiente
14.5 Coeficientes de correlación y determinación
Coeficiente de correlación lineal
Coeficiente de determinación
14.6 Intervalos de confianza para la predicción y estimación
14.7 Regresión lineal múltiple
Planteamiento general del modelo de regresión lineal múltiple
Generalización de resultados de la regresión lineal y prueba F
Uso de Excel de Microsoft para la regresión lineal múltiple
Solución de un modelo de regresión lineal múltiple
Análisis de residuales en la regresión lineal múltiple
Problem as en la regresión lineal múltiple
Regresión curvilínea
Modelos de regresión con variables de respuesta transformadas
CAPÍTULO 14
Objetivos generales Objetivos específicos
Bases de la
probabilidad
• Demostrar que en la actualidad los fenómenos aleatorios que
ocurren en la industria, las ciencias sociales, los estudios de
mercado y los juegos de azar deben ser estudiados mediante
modelos aleatorios.
• Explicar que la probabilidad, aunque se utiliza con base en
diferentes corrientes, constituye un área de la ciencia que
está bien estructurada y tiene una justificación matemática
consistente, razón por lo que es estudiada más allá de los
problemas de juegos de azar.
• Explicar qué es un modelo probabilístico.
• Describir y enumerar los espacios muestrales de
experimentos probabilísticos.
• Ejemplificar los eventos de un experimento probabilístico.
• Describir las cuatro principales corrientes de la probabilidad.
• Definir las operaciones fundamentales del álgebra de eventos.
• Resolver problemas de operaciones entre eventos mediante
sus definiciones y diagramas de Venn.
• Calcular probabilidades de eventos con base en los
principales teoremas de la probabilidad axiomática.
1
2 CAPÍTULO 1 BAses de LA Pr OBABiLid Ad
Desde su aparición en la faz de la Tierra, el ser humano siempre ha estado en contacto con situaciones aleatorias, ya sean de experien-
cias natural es o de juegos que él mismo crea, en las cuales prevalece la incertidumbre. Por ejemplo, en las tumbas egipcias s e han
encontrado restos de dados cúbicos que datan del año 2000 a.C. con marcas idénti cas a las de los dados actuales; más aún, hay indi-
cios de que cerca del año 3500 a.C. los egipcios practicaban juegos de azar con objetos de hueso.
Porestas razones,elestudio de la incertidumbre siempre ha tenido un interés particularpara la humanidad, desde conocerel
clima, el resultado del lanzamiento de una moneda o un dado, hasta situaciones modernas, como la cantidad de artículos defect uosos
en un lote de tamaño n, cambios de voltaje en un circuito eléctrico, curso del valor del dólar en un día determinado y los movimien-
tos en la bolsa de valores para conocer cuáles acciones tienen mayor o menor riesgo en su inversión, entre otras.
Así, desde su aparición, los juegos con incertidumbre han dejado un gran reto a diferentes matemáticos para calcular las prob a-
bilidades de éxito que tiene un jugador en un juego de azar. De manera que, haciendo un poco de historia, resulta que la crea -
ción de la probabilidad s e atribuye a los matemáticos franceses del siglo Xvii Blaise P ascal (1623-1662) y Pierre de F ermat (1601-1665)
cuando lograron obtener probabilidades exactas para cierto tipo de problemas relacionados con el juego de los dados; por ejemplo,
la solución al problema propuesto por el noble francés Antoine Gombauld (1607 -1684), qui en preguntó a P ascal, “¿cuál es la proba-
bilidad de que ocurran dos seises al menos una vez al lanzarun parde dados 24veces?” Aunque algunos matemáticos anteriores,
como Gerolamo C ardano (1501 -1576) y Galileo Galilei (1564-1642), en el siglo Xvi, ya habí an realizado i mport antes contribuciones
a su desarrollo calculando algunas combinaciones numéricas para ciertos problemas relacionados con los dados. Uno d e los proble-
mas clásicos con los que dio inicio el cálculo de probabilidades consiste en saber cuántos dados hay que lanzar para que la p robabi-
lidad de que salga algún 6 supere 50%. En la actualidad, en México hay una gran cantidad de juegos de azar para los cuales se
requi ere efectuar ciertos cálculos de probabilidades; por ejemplo, lotería, juegos de quinielas deportivas, juegos de quiniel as numéri-
cas,entre muchos otros.
La historia nos muestra que la teoría de la probabilidad dio sus pri meros paso s en el siglo Xvi con Gerol amo Cardano y Galileo
Galilei; posteriormente, en el siglo Xvii, con Blaise P ascal, Pierre de F ermat, Jean y Jacques B ernoulli (1654-1705) y De Moivre (1667-
1754); en el siglo Xviii, con Daniel Bernoulli (1700-1782), Kart Friedrich Gauss (1777-1855) y Siméon Denis P oisson (1781-1840); en
el siglo XX, con A. Markov, Chebyschev y Liapunov, entre otros. Pero, sin duda, qui en sentó las bases t eóricas para formalizar el de -
sarrollo de la teoría de las probabilidades fue el matemático ruso Kol mogórov, en 1933, al introducir la teoría de la medida en el cálcu-
lo de probabilidades.
Durante todo este texto se habla de probabilidad, pero, ¿qué se entiende por esta ciencia?
Probabilidad es la rama de las matemáticas que se ocupa de medir o det erminar cuantitativamente la posibilidad de que ocurra
un determinado suceso.
Así, en el desarrollo del texto, principalmente en los pri meros capítulos, se analiza cómo, en general, la probabilidad e stá basada
en el estudio de la Teoría combinatoria, ampliándose al cálculo, gracias al uso de las funciones.
Hoy día, l a teoría de la probabilidad es una herramienta important e en la mayoría de las áreas de ingeniería, ciencias y admi nis-
tración. De manera que realizar un estudio adecuado de la probabilidad es fundamental para el éxito de muchas compañías, en
particular las de seguros, ya que estas evalúan las probabilidades de los sucesos que les interesan (p. ej., accidentes de autos, in unda-
ciones, epidemi as, etc.) mediant e una minuciosa recopilación de datos (experi encias) que permiten inferir dichas probabilidad es con
suficiente aproxi mación como para poder asignar las cuotas o costos de manera que la aseguradora no sufra pérdidas. Ad emás de las
compañías de seguros, la probabilidad tiene diversas aplicaciones en otras áreas como medicina, meteorología, mercadotecnia, pre-
dicciones de terremotos, comportamiento humano, finanzas, etcétera.
En el presente capítulo trat amos los fundamentos teóricos en los que se basa la construcción de l a T eoría de las probabilidades.
Portanto,el capítulo inicia con el tratamiento de los modelos y su importancia en elestudio de los diferentes fenómenos; de igual
forma se hace énfasis en los modelos matemáticos, los cuales se clasifican en:
• Determinísticos.
• Probabilísticos.
Después,definimos los experimentos aleatorios y determinísticos. Por su parte,elestudio de las bases de la probabilidad co-
mienza con una discusión acerca de las diferentes corrientes para la asignación de probabilidades a un suceso, como:
• Corriente frecuentista.
• Corriente clásica.
• Corriente subjetiva.
• Corriente bayesiana.
Enseguida, se aborda la construcción matemática de la Teorí a de l as probabilidades, introduciendo los axiomas de Kolmogórov,
con los que prácticamente iniciamos un estudio formal de las probabilidades como una ciencia.
Introducción
1.1 Modelos determinísticos y probabilísticos 3
a x + a x + a x +e = x
1.1 Modelos determinísticos y probabilísticos
Ejemplos 1.1 Modelos determinísticos
Es important e resaltar que la axiomatización de la Teoría de las probabilidades s e conserva hasta el final de l a presente obra. P ara
el desarrollo de esta se introduce una sección referente a la teoría de conjuntos a la que llamamos álgebra de eventos, la cual, junto con
los axiomas de Kolmogórov, constituyen la base científica del desarrollo de la probabilidad.
El capítulo continúa con la formulación y demostración de diferentes t eoremas y finaliza con una breve explicación de la apli ca-
ción de estos en el cálculo de probabilidades. Para terminar, revisamos algunas funciones en Excel para el cálculo de probabilidades.
Uno de los objetivos del estudio de las ciencias es desarrollar estructuras conceptuales que permitan comprender los fenómeno s que
ocurren en la naturaleza para poderpredecir los efectos que de ellos se deriven. De la experiencia científica,se deduce fácilmente
que para poder estudiar un fenómeno es necesaria su imitación o reproducción en una cantidad suficiente, a fin de que su inve stiga-
ción sea lo más precisa posible. Esta necesidad es lo q ue da origen a los modelos. Ahora bien, ¿qué entendemos por modelo y qué lo
origina?
Por modelo, entenderemos la representación o reproducción de los fenómenos.
Los modelos pueden ser de diferentes tipos, pero para los obj etivos de este texto, son de interés los modelos matemáticos. Ve a-
mos a continuación la definición de modelo matemático que se utiliza durante todo eltexto.
Un modelo matemático es unarepresentación simbólicade un fenómeno cualquiera, realizada con elfin de estudiarlo mejor, dichas
representaciones puedeser fenómenos f ísicos, económicos, sociales, etcétera.
Los modelos matemáticos pueden cl asificarse en determinísticos y probabilísticos, y para poderlos diferenciar es necesario cono-
cer su definición y algunos ejemplos. Primero, presentamos la definición de modelos determinísticos.
Cuando se realiza el modelo matemático de un fenómeno y en este se pueden manejar los factores que intervienen en su estudio con el
propósito depredecir sus resultados, sellamará modelo determinístico.
A continuación se presentan algunos ejemplos de modelos determinísticos.
1. El lanzamiento de una moneda con ambos lados iguales (p. ej., águilas). Al plantear este modelo es posible determinar que siem-
pre es posible predecir el resultado (suponiendo que la moneda no puede quedar en posi ción vertical), puesto que solo hay una
opción: águila.
2. Cuando tenemos una inversión c a una tasa r, podemos calcular su Valor Presente Neto, VP N (c). El modelo es determinístico,
puesto que tiene una inversión fija c a una tasa fija r; portanto,es posible predecir el resultado que ocurrirá al cabo de n años
mediante el uso de la siguiente fórmula:
VPN(c)=
c
.
(1+ r )n
Por ejemplo, si vamos a recibir c = 150 000 pesos dentro de cuatro años, pero queremos saber cuánto vale hoy, VP N(c), debemos
descontar los intereses que s e generan desde hoy hasta dentro de cuatro años. Si el interés anual es de 8% en operaciones a cuatro
años,entonces eldía de hoy debemos invertir:
VPN(c)=
150 000
=110 254.50 .
(1+ 0.08)4
Entonces, si iniciamos la inversión con 110 254.50 al cabo de cuatro años tendremos 150 000 pesos.
3. Sea una economía en equilibrio determinada por el modelo económico de entradas y salidas de Wassiley Leontief, aplicado a
tres empresas distintas.
a11x1 + a12 x2 + a13 x3 + e1 = x1
a21x1 + a22 x2 + a23 x3 + e2 = x2
31 1 32 2 33 3 3 3
Donde: xi representa la producción de la empresa i; ei representa la demanda externa sobre la empresa i; y aij representa el núme-
ro de unidades de producto de la empresa i necesarias para producir una unidad de producto de la industria j. Conociendo la
4 CAPÍTULO 1 BAses de LA Pr OBABiLid Ad
i
V-Voltaje
R-Resistencia
Ejemplos 1.2 Modelos probabilísticos
demanda externa porempresa y la demanda interna entre empresas,con este modelo es posi-
ble predecir la producción de cada empresa.
4. El modelo de una compañía donde se elaboran dos productos al pasar en forma consecutiva, a
través de una línea de producción, por tres máquinas distintas. En este caso, el tiempo por
máquina asignado a los dos productos está limitado por una cantidad determinada de horas
pordía; el tiempo de producción y la ganancia por artículo de cada producto se pueden esta-
blecer de manera que al combinar los productos podemos obtener una ganancia óptima.
En el modelo anterior se puede notar que estamos controlando los diferentes parámetros
que intervienen. Por tanto,alestablecerel modelo matemático correspondiente y los valores
para los factores es posible predecir su resultado.
5. Se puede diseñar un modelo que muestre la influencia de la fuerza de fricción sobre un cuerpo
que se mueve en una superficie. Con este modelo se puede concluir que en superficies más
ásperas se tiene mayor fuerza de rozamiento.
El modelo anterior es determinístico, ya que en este se manejan superficies y se puede pre-
decir el resultado. Por ejemplo, la distancia a la que se puede detener el móvil; esto es,si se
mueve el cuerpo con una fuerza inicial y cambiamos las asperezas podremos establecer una
fórmula matemática que indique (como resultado de un cálculo numérico) la distancia en la
que se detendrá elmóvil.
6. La caída de voltaje en una resistencia de un circuito eléctrico se puede observar en la figura 1.1.
Figura 1.1 Circuito eléctrico con una resistencia.
Por los cursos de f ísica sabemos que la Ley de Ohm indica que la caída de vol -
taje en este circuito eléctrico con una resistencia está dada por V = Ri, donde, R
representa l a resistencia, medida en ohms; i la corriente medida en amperes, y V el
voltaje medido en volts.
Elotro tipo de modelos que revisamos ocurre cuando no podemos controlar
los factores que intervienen en dichos modelos. A partir de lo cual surge la defini -
ción de modelo probabilístico o estocástico.
Los modelos probabilísticos o modelos estocásticos son aquellos modelos ma-
temáticos de los fenómenos en los cuales no se pueden controlar los factores que
intervienen en su estudio, además de que dichos factores ocurren de tal manera
que no es posible predecir sus resultados.
Los modelos probabilísticos son de gran interés en el texto; por tanto, para
una mejor comprensión de estos se presentan los siguientes ejemplos.
1. Los modelos clásicos probabilísticos s e refieren a los juegos de azar, como el lanzamiento de una moneda equilibrada o l egal (es de-
cir, que no está cargada a ningún lado), para determinar el resultado que va a ocurrir. En el lanzami ento de un dado no carga do
(esto es, que un lado del dado no pesa más que los otros) no es posible predecir qué número quedará en la parte de arriba del dado.
Wassiley Leontief nació el 5
de agosto de 1906, en San
Petersburgo, y murió el 5 de
febrero de 1999, en Nueva York.
Inició sus estudios superiores en
la universidad de San Petersburgo
y terminó el doctorado en la
universidad de Humboldt, Berlín
en 1928. En 1931 emigró de
forma definitiva a Estados
Unidos de América. El modelo de
entradas y salidas fue presentado
por primera vez en el artículo de
Leontief Quantitative Input and
Ouput Relations in the Economic
System of the United States,
Review of Economic Statistics
18 (1936), pp. 105-125. Una
versión actualizada del modelo
aparece en el libro de Leontief,
Input-Output Analysis, Nueva
York, Oxford University Press,
1966. Leontief ganó el premio
Nobel de Economía en 1973
por su desarrollo del análisis de
insumo y producción de
entradas y salidas.
En general, sabemos que cualquier modelo físico es
una aproxim ación de la realidad; no obstante, este
no la puede representar en forma exacta, esto
se debe a que en cada fenómeno intervienen
infinidad de factores y no es posible involucrarlos a
todos en el modelo. Por esta razón, salvo que se diga
otra cosa, en el texto se consideran los modelos
conocidos sobre diferentes fenómenos físicos como
determinísticos. Por ejemplo, en el circuito anterior,
la caída real de voltaje está influenciada por los
factores: humedad, calentamiento del alambre
conductor, temperatura, etcétera, que para fines
prácticos se pueden considerar despreciables. De
manera similar, en el modelo del movimiento de un
cuerpo sobre una superficie con fricción, se
considera que las otras fuerzas que intervienen son
despreciables.
1.1 Modelos determinísticos y probabilísticos 5
Ejemplos 1.3 Experimentos aleatorios
2. En el lanzamiento de una moneda equilibrada 10 veces para obtener cinco águilas, el modelo es de tipo probabilístico, puesto
que no podemos predecir el resultado que va a ocurrir en el siguiente lanzamiento.
3. Las cartas o fichas que le tocarán a una persona al inicio de una partida de un juego de cartas o domino, respectivamente.
4. En el ej emplo 2 de la lista 1.1 de ejemplos, la tasa anual de inversión para un año determinado en realidad está condicionada a
situaciones de incertidumbre del país; por consiguiente, bajo estas condiciones no podemos predecir el VP N para un año deter -
minado sino conocemos con anterioridad la tasa r.
5. En una línea de producción, al realizar el control de calidad de los artículos se detecta cierta cantidad de productos defectuosos;
no es posible determinar la cantidad o porcentaje de estos en la línea.
6. Si deseamos conocer los ingresos por acción para una compañía de teléfonos, estos se pueden estimar mediante el P IB (Produc -
to Interno Bruto) que se mide en millones de pesos. Entonces, establ ecemos, medi ante una ecuación, un modelo para su estima -
ción, pero no podemos sabercon exactitud sus resultados.
7. El conocimiento del curso de una acción referent e a una empresa en la bolsa de valores es uno de los principales problemas qu e
todo accionista quisiera saber cómo predecir. Este es un problema financiero muy complejo que depende de muchos factores,
incluyendo los políticos, por lo que no se puede controlar el curso de la acción ya que esta se encuentra envuelta en mucha in -
certidumbre; portanto,solo es posible indicarun rango de valores posibles en elque se tengan evidencias que podrán encon-
trarse en el curso de la bolsa para dicha acción. En el caso del dól ar podrí amos tener evidenci as de que al dí a siguiente su costo
estará entre 12.40 y 12.80 pesos, pero en realidad no conocemos cuál será su cotización exacta, puesto que est e estará influi do
porfactores que pueden tenermucha incertidumbre, como situaciones políticas.
8. Si deseamos conocer el lugar de caída de un satélite que se salió de su órbita y se dirige a la Tierra no podemos predecir el lugar
donde caerá,puesto que no es posible controlarsu movimiento; portanto,solo es posible indicar una región en donde se cree
que caerá, con un valor numérico que represente la aseveración.
9. La posición de un electrón en un momento dado, la cual no es posible establecer, pues, de los cursos de f ísica sabem os que un
electrón no tiene una posición fija, ya que cambia constantemente, sin reglas en su movi miento. En tal caso, solo podemos est a-
blecer un área en la que supongamos con un cierto valor numérico la posibilidad de que el electrón se encuentre ahí.
10. Si en el circuito eléctrico del ejemplo 6 de la lista 1.1 de ejemplos consideramos los demás factores que intervienen en el c ircui-
to y medimos los voltajes con un voltímetro de alta calidad, podremos apreciar que al tomar diferentes mediciones existen
cambios pequeños en estas. En estas condiciones, podremos considerar a la caída de voltaje V = Ri como un modelo probabi-
lístico.
Al reproducir cualquier fenómeno, ya sea de manera determinística o probabilística, estamos experimentando, por lo que es
necesario aclarar lo siguiente: ¿qué entenderemos porexperimento al utilizar un modelo matemático de tipo probabilístico (cabe
aclarar que hasta este momento no se ha dado la definición de probabilidad)? Así, para ir aclarando los conceptos, a continua ción se
presenta la definición formal de experimento aleatorio.
Llamaremos experim ento aleatorio al proceso de obtención de una observación en que se cumple alguna de las siguientes condiciones:
a) Todos los resultados posibles son conocidos.
b) Antes de realizar el experimento el resultado es desconocido.
c) Es posible repetir el experimento en condiciones ideales.
Ahora, con el propósito de acl arar mejor la definición de experimentos aleatorios, en los siguient es ejemplos ilustramos algu nos
procesos aleatorios que muestran este tipo de experimentos.
1. Lanzamiento de tres monedas hasta obtener dos águilas.
2. Lanzamiento de una moneda tres veces hasta obtener dos águilas. ¿Existe alguna diferencia con el inciso anterior?
3. Lanzamiento de una moneda tres veces y la realización del conteo referente a la cantidad de soles que aparecen en estos lanza-
mientos.
4. Lanzamiento de un dado, observando la cara superior que resulte.
5. Lanzamiento de dos dados y la realización del conteo de la suma que resulta en sus caras superiores.
6. Un inspectorde control de calidad analiza lotes de 60 artículos cada uno.El proceso de controlde calidad consiste en elegir
cinco artículos sin reemplazo y determinar sison buenos o defectuosos.
7. Sea un lote de 60 artículos que tiene 10 defectuosos. Entonces, se define el proceso de seleccionar los artículos sin reemplazo y
anotarlos resultados hasta obtenerelúltimo defectuoso.
6 CAPÍTULO 1 BAses de LA Pr OBABiLid Ad
Ejemplos 1.4 Experimentos determinísticos
Ejemplos 1.5 Espacios muestrales
8. Observar las cantidades máxima y mínima de personas que llegan a la estación Potrero del metro en la Ciudad de México, cada
día, en intervalos de cinco minutos.
9. Medir cada 10 minutos la caída de voltaje en un circuito eléctrico con una sola resistencia.
Además de los experimentos aleatorios, también tenemos los deter-
minísticos, de los cuales enseguida se present a su definición y se muestran
algunos ejemplos para su mejor comprensión.
1. En un modelo de valor presente neto de una serie de flujos de efectivo Vi de una inversión c, a una tasa fija r, podemos calcular
su VPN(c) al cabo de n años,el cual se calcula de la siguiente forma:
VPN(c)=−inversión(c)+ ∑ Vi
.
i=1 (1+ r )i
2. El tiempo de caída libre de un objeto. Si se conoce la altura y no existen fuerzas externas, el tiempo de caída se puede predecir
por medio de la expresión obtenida en el curso de f ísica: h =−
1
gt
2
, donde h es la altura, g la aceleración de la gravedad y t el
2
tiempo de caída.
3. La mezcla de sustancias químicas para la obtención de algún compuesto.
Después de realizar un experimento, por lo general se registran sus resultados para obtener
las conclusiones correspondientes al fenómeno en estudio, por lo que surge la necesidad de intro -
ducir un nuevo concepto referente al conjunto de todos los resultados del experi mento. El concep -
to de espacio muestralse emplea en la sección 1.3, junto con sus propiedades de conjuntos; por
ahora es suficiente introducir su definición.
Al conjunto de todos los resultados posibles de un experimento probabilístico lo llamaremos espa-
cio muestral del experimento y lo denotaremos por S. A su vez, a los elementos de un espacio
muestral los llamaremos puntos muestrales.
Los espacios muestrales forman una part e primordial en el desarrollo de la teoría de las pro -
babilidades, por lo que es indispensable mostrar algunos ejemplos de estos. Aunque de aquí en
adelante se hablará de estos en los capítulos subsecuentes.
1. El experimento sobre el lanzamiento de una moneda se realiza tres veces y se anotan sus posibles resultados.
El espacio muestral está representado por a, en el caso de águila, y por s, en el caso de cara o sol. Por tanto:
S ={sss, ssa, sas, ass, saa, asa, aas, aaa} .
2. El experimento sobre el lanzamiento de una moneda se realiza tres veces y se anota la cantidad de águilas que aparecen. De es te
modo, 0 representa la ausencia de águilas, 1 representa la presencia de un águila, etcétera. De este modo,el espacio muestral
sería:
S ={0, 1, 2, 3} .
Compare los resultados de los ejemplos 1 y 2, ¿qué puede concluir?
3. Se realiza el experimento sobre el lanzamiento de dos dados y se anota la suma de las caras superiores que resultan. En este caso,
el espacio muestral estará formado por:
S ={ 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} .
Al proceso por el cual se describen los fenómenos cuyos
resultados pueden predecirse, lo llamaremos experimento
determinístico.
Entendemos por conjunto a una
colección de objetos bien definida
mediante alguna o algunas
propiedades en común. En tanto,
por objeto comprendemos no
solo cosas físicas (como discos,
computadoras, entre otras), sino
también cosas abstractas, como
los números o las letras. A los
objetos que forman el conjunto,
los llamamos elementos del
conjunto.
n
1.1 Modelos determinísticos y probabilísticos 7
Ejemplos 1.6 Eventos simples
4. Se realiza el experimento de lanzamiento de dos dados, de los cuales s e toma l a diferencia del valor mayor menos el valor menor
que resulta en sus caras superiores.En este caso,elespacio muestralresultante es:
S ={0, 1, 2, 3, 4, 5}.
5. Se realiza el experi mento de lanzamiento de un dado dos veces, de las cuales se toma l a diferencia del valor del primer resul tado
menos el valor del segundo resultado de las caras superiores. El espacio muestral resultante es:
S ={−5, −4 , −3, −2 , −1, 0, 1, 2 , 3, 4 , 5}
6. Suponga que se tiene un lote de tres refrigeradores de tamaño 3 (dos de estos están en buen estado y uno está defectuoso). En-
tonces,se realiza elexperimento de extraerdos refrigeradores del lote,sin que haya un reemplazo. Denotando al refrigerador
bueno porb y al defectuoso pord,determine el espacio muestral.
a) Si en el parelegido se consideran diferencias solo entre los dos buenos,no importa el orden. Cuando se trata de conjuntos
sabemos que no importa el orden en que se coloquen sus elementos. Entonces, denotando a los artículos buenos por b1 y b2 ,
respectivamente, se tiene:
S ={{b1 , b2 }, {b1 , d}, {b2 , d}}
b) Si en el par el egido se consideran diferencias entre los dos buenos y el orden de extracción, para distinguir el orden de ext rac-
ción de los refrigeradores, los pares elegidos se escriben juntos sin separarlos, indicando que el de la izquierda se extrae antes
que el de la derecha:
S ={b1b2 , b2b1, b1d , db1 , b2d , db2 }.
c) Solo es de interés si el refrigerador es bueno o defectuoso, no importa el orden:
S ={{b, b}, {b, d}}.
d) En el par elegido los dos buenos son indistinguibles, pero sí importa el orden de extracción:
S ={bb, bd , db}.
Después de tratar con los espacios muestrales, entonces nos preguntamos: ¿qué pasa si solo consideramos una parte de estos?
Para poder dar una respuesta a la pregunta es necesario definir qué es un evento y qué es un evento simple.
Dado un experimento aleatorio y su espacio muestralS, sellama evento aun conjunto deresultados posibles de S. Podemos notar que
un evento no es más que un subconjunto de un espacio muestral.
A continuación definimos los eventos que contienen uno y solo un elemento del espacio muestral, y que serán utilizados de
forma implícita en la siguiente sección cuando hablemos sobre la corriente clásica de probabilidad.
Al evento que consta de un solo elemento le llamaremos evento simple.
Obtenga el evento indicado en los espacios muestrales de los ejemplos anteriores.
1. Se lanza una moneda tres veces y se anotan los resultados posibles. Sea el evento E: “Aparece una sola águila”. Representando
águila pora y solpors, el evento será:
E ={ssa, sas, ass} .
2. El lanzamiento de una moneda tres veces y el conteo de la cantidad de águilas que aparecen. Sea el evento E : “aparece un águila”,
E ={1}.
3. El lanzamiento de un dado y la cara superior que resulta.Sea E el evento que denota:“el número de la cara que resulta no es
mayor a 4”.
E ={1, 2, 3, 4}
8 CAPÍTULO 1 BAses de LA Pr OBABiLid Ad
Ejercicios 1.1
4. El lanzamiento de dos dados de los cuales se cuenta la suma que resulta en sus caras superiores. Sea el evento E: “la suma de las
caras resultantes es mayorque 4”.
E ={5, 6, 7, 8, 9, 10, 11,12} .
No obstante lo tratado hasta aquí, aún no hemos visto cómo asignar probabilidades a los eventos ni cómo definir a esta. La res-
puesta está en la siguiente sección.
1. Suponga que se lanzan tres monedas no cargadas y s e obser-
va la cantidad de águilas que quedan hacia arriba.
a) Establezca los elementos del espacio muestral de este ex -
perimento.
b) Sea A el evento: “obt ención de al menos un águila”. Escri-
ba los elementos de A.
2. Suponga que se lanzan tres monedas no cargadas y s e obser-
van las combinaciones posibles de resultados que pueden
ocurrir con las tres monedas.
a) Establezca los puntos muestrales de este experimento.
b) Sea A el evento “Observar al menos un águila”. Obtenga
los puntos muestrales de A.
3. Un aparato electrónico contiene cuatro sistemas electróni-
cos. Al azar s e seleccionan dos de estos cuatro sistemas para
someterlos a pruebas rigurosas y clasificarlos como defec-
tuosos o no defectuosos. Si dos de los cuatro sistemas en
realidad son defectuosos, encuentre el espacio muestral del
experimento suponiendo que:
a) No se diferencia entre uno y otro bueno, ni entre uno y
otro defectuoso, ni importa el orden entre bueno y defec-
tuoso,solo importa cuántos buenos y cuántos defectuo-
sos hay.
b) Sí existe diferencia entre uno y otro bueno, y entre uno y
otro defectuoso; sin embargo,no importa el orden entre
bueno y defectuoso, solo importa cuántos buenos y
cuántos defectuosos hay.
c) No se diferencia entre uno y otro bueno, ni entre uno y
otro defectuoso,pero síimporta el orden entre defectuo-
so y bueno.
d) Sí existe diferencia entre uno y otro bueno, y entre uno y
otro defectuoso; además, sí importa el orden entre defec-
tuoso y bueno.
4. Una agencia comercial compra papelerí a a uno de tres ven -
dedores V1 , V2 , V3 . El pedido s e ordena en dos días sucesivos
(sin repetir vendedor), un pedido por día, tal que V1V3, lo
que significa que el vendedorV1 recibe el pedido el primer
día y el vendedor V3 lo recibe el segundo día. Establ ezca los
puntos muestrales de este experimento.
5. En un experimento que consiste en lanzar un dado no car-
gado una vez,al salir un número par entonces se lanza una
moneda no cargada. En cambio, si el lanzamiento del dado
no resulta par, entonces se lanza el dado por última vez.
Describa el espacio muestral para este experimento.
6. El administrador de una red logística de autobuses tiene que
tomar la decisión de cómo distribuir dos de tres autobuses
para viajar a otra ciudad. Represente con a1 , a2 y a3 a los tres
autobuses y describa el espacio muestral del experimento:
“Seleccionar dos autobuses para viajar a la otra ciudad”.
7. El administrador de una red logística de autobuses debe to-
mar la decisión de cómo ordenar la distribución de dos de
tres autobuses con elfin de que viajen a otra ciudad en dos
días sucesivos (sin repetir un autobús). R epresente con a1 , a2
y a3 los tres autobuses. Ordene los viajes de tal forma que
a1 a3 , lo que significa que el autobús a1 viaja a la otra ciudad
el primer día y el autobús a3 el segundo día.
a) Establezca los puntos muestrales de este experimento.
b) ¿Qué diferencia observó con la respuesta del problema
anterior?
En la actualidad, la palabra probabilidad es empleada con demasiada frecuencia por las personas; por ejemplo, en expresiones como:
“Es p robab le que hoy estudie estadística”; “El equipo mexicano de fútbol está jugando mal , y es muy probable que en su siguiente
partido pierda”; “El cielo está bastante despejado; por tanto, no hay muchas posibilidades de que llueva”; entre otras. Como se pue-
de notar en las expresiones anteriores, las palabras relacionadas con la p robab ilidad tienen la característica de basarse en sucesos
que pueden serverdaderos, además de que a causa de los hechos observados (resultados preliminares,tiempo,etcétera),se puede
hablar de la posibilidad de su ocurrencia.
A pesar de los esfuerzos realizados por muchos matemáticos para asignar de forma única la probabilidad a un suceso, todo
ha sido en vano, pues desde los inicios de su estudio hasta nuestros días no existe una forma única de asignación de probabil idades.
Solo contamos con diferentes corrientes de probabilidad, las cuales se aplican para asignar un valor numérico a la posibilidad de la
1.2 Interpretaciones de la probabilidad
La frecuencia relativa de un
suceso es igual al cociente de
la cantidad de veces que ocurre
el suceso entre el total de veces
que se repite el experimento.
1.2 Interpretaciones de la probabilidad 9
ocurrencia de algún suceso probabilístico.1 De hecho, el verdadero significado de la probabilidad aún se considera conflictivo; por
tanto, en lugar de iniciar el siguiente texto con una definición formal de probabilidad, pri mero trataremos sus cuatro corrie ntes más
comunes.
Corriente frecuentista
En la corriente frecuentista —tal vez una de las más empleadas— se asigna un valor de probabilidad a un evento E, a partir del cual se
considera que ocurrirá. La definición o interpretación de la probabilidad está basada,como su nombre lo indica, en la frecuencia
relativa con la cual se obtendría E, si el experimento se repite una gran cantidad de veces, en con-
diciones similares (no idénticas, puesto que en este caso el proceso no sería aleatorio).
Un ejemplo de la frecuencia relativa de un suceso es un experimento en el que se lanza una
moneda tres veces y se cuenta la cantidad de sol es que aparecen. Así, sea el evento E: “obtención
de dos soles en los tres lanzamientos”; la pregunta es: ¿cuál es la probabilidad de que ocurra el
evento E?
Para responder a la pregunta desde el punto de vista frecuentista, se debe realizar el experimento una gran cantidad de ve -
ces. Supóngase que el experimento se repite 1 000 veces en condiciones similares y como resultado se obtienen 400 casos con dos
soles; en tal situación, se diría que la probabilidad de que ocurra E, será:
400
= 0.4. Ahora bien, si el experimento se repite 100 000
1 000 38 000
veces, de las cuales 38 000 resultan con dos soles, diríamos que la probabilidad de que ocurra E es:
100 000
= 0.38, de esta forma po-
dríamos repetir nuestro experimento tantas veces como se quiera y obteneruna frecuencia relativa para la probabilidad del evento
E. Entonces, surge la siguiente pregunta: ¿por qué diferentes resultados para un mismo evento? La respuesta está en la interpretación
de qué entendemos por: “repetir el experimento una gran cantidad de veces”,¿qué se entiende poruna gran cantidad de veces?,y
¿cuál sería dicha cantidad de repeticiones? Dichas condiciones son muy vagas para servir de base en una definición científica de
probabilidad. Aunado a lo anterior, no es posible repetir una gran cantidad de veces muchos de los fenómenos, por ejemplo:
a) Para calcular la probabilidad de que el lanzamiento de un cohete resulte exitoso, evidentemente no es posible realizar una gran
cantidad de lanzamientos de cohetes; por tanto, la probabilidad se obtiene en forma frecuentista del éxito de un lanzamiento.
b) ¿Cómo calcular la probabilidad de que Manuel viva 70 años? ¿Cuáles serían las repeticiones?
c) Para cal cular la probabilidad de que Juan P érez se case este año, tampoco podemos realizar una gran cantidad de repeticiones
del experimento; por tanto, s e indica el valor numérico que represente desde el punto de vista de la frecuencia relativa que Juan
Pérez se case o no este año.
Corriente clásica (a priori)
En la corriente clásica se consideran espacios muestrales uniformes, es decir, se asignan probabilidades a eventos con base en resul-
tados equiprobables (igualmente verosímiles). Esto es, los clasistas asignan la misma probabilidad a cada punto del espacio muestral
1
(es decir:
n
, donde n es la cantidad de elementos del espacio muestral); posteriormente, para obtener la probabilidad de la ocurrencia
de un evento E, se suma la cantidad de elementos de E y se multiplica por la probabilidad de un elemento del espacio muestral
1
.
°n
Cabe apuntar que de lo anterior se deduce que la probabilidad de los puntos muestrales se establece a priori; es decir, antes de cual-
quier experimento.
Resolviendo el ejemplo anterior en la forma clásica tendremos, lo siguiente:
Se lanza una moneda equilibrada tres veces y se anotan los resultados posibles que aparecen; sea el evento E: “obtención de dos soles
en los tres lanzamientos”, la pregunta es: ¿cuál es la probabilidad de que ocurra el evento E?
Para responder a la pregunta, primero obtenemos el espacio muestral desde el punto de vista clásico; de este modo, representan -
do águila pora y solpors, tendremos:
S ={sss, ssa, sas, ass, saa, asa, aas, aaa}.
En estos casos, ssa representa que los primeros dos lanzamientos resultaron soles y el tercer lanzamiento águila. Considerando
que cada punto del espacio muestral es equiprobable con probabilidad de ocurrencia
1
, tendremos que la probabilidad del evento E
8
(resulten dos soles en los tres lanzamientos) se resuelve al conocer la cantidad de elementos del evento:
1
Existe una gran cantidad de sucesos en los que cada una de sus alternativas tiene varias soluciones, pero sin que se tenga la posibilidad de una asignación numérica
de probabilidad, en tal casose dice que el suceso ocurre bajoincertidumbre.
10 CAPÍTULO 1 BAses de LA Pr OBABiLid Ad
E ={ssa, sas, ass}.
En este caso, como E contiene tres elementos tenemos que la probabilidad de que ocurra el evento E es:
Probabilidad de E = 3×
1
= 0.375.
8
Algunas de las dificultades por las cuales atraviesa esta interpretación de probabilidad son:
• En primer lugar, al hablar de resultados equiprobables (que tienen la misma probabilidad) estamos empleando el concepto que
estamos definiendo.
• En segundo lugar, cuando los resultados no son equiprobables (en este caso el ejemplo 3 de la sección 1.5, sobre el lanzamiento
de los dos dados, donde se anota la suma de los números resultantes S ={2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}, sus elementos no son
equiprobables. ¡Calcúlelos!).
• En tercer lugar no se indica un método para realizar el cálculo de las probabilidades.
• En otros casos como los siguientes, la probabilidad clásica no da respuesta:
a) Para calcul ar la probabilidad de que el lanzami ento de un cohete resulte exitoso, no podemos asignar probabilidades igual es
a los resultados del experimento; por tanto, es necesario un método diferente para el cálculo de probabilidades.
b) Para calcular la probabilidad de que una persona se case este año, no podemos hablar de resultados equiprobables para
determinar el valor numérico que represente la probabilidad de que dicha persona se case este año,considerando a todos
los años equiprobables.
Corriente subjetivista
En la corriente subj etivista (interpretación de la probabilidad que es muy empleada en el estudio del análisis de d ecisiones ) se asig-
nan probabilidades a eventos basándose en el conoci miento o experiencia que cada persona tiene sobre el experimento; por tant o, la
probabilidad asignada está sujeta al conoci miento que el científico tenga con respecto al fenómeno estudiado. De este modo, para un
mismo experi mento las probabilidades asignadas por diferentes personas pueden ser distintas. En el ejemplo anterior del lanza mien-
to de la moneda tres veces, donde se realiza el conteo de la cantidad de soles que aparecen, el evento E se definió como l a obtención
de dos sol es en los tres lanzamientos. La pregunta es: ¿cuál es la probabilidad de que ocurra el evento E? P ara responder a la pregun-
ta anterior, desde el punto de vista subjetivista, la respuesta dependerá del conocimiento que se tenga del lanzamiento de la moneda.
Porejemplo, si el individuo que lanza la moneda puede tenercierta habilidad en el lanzamiento,dará una probabilidad mayor a la
verosimilitud del evento E; por el contrario, si el sujeto no tiene tal habilidad, la probabilidad será pequeña.
La probabilidad subjetiva se suele asignar cuando se tiene poco o nada de conocimiento previo sobre el evento. Es decir, cuan do
los eventos se presentan solo una vez o un número muy reducido de veces. P or ej emplo, si en una empresa se está programando l a
logística de distribución de material final, la asignación de probabilidad de que los recorridos se realicen con éxito al no tener infor-
mación de datos históricos,se puede asignarde forma subjetiva.
La interpretación subjetiva de l a probabilidad tiene diferentes dificultades, y una de las principales es la dependencia en e l juicio
de cada persona al asignarla, además de que tal juicio debe estar complet amente fuera de contradicciones, lo que es sumamente di-
f ícil por depender de la persona que la asigna. Como se hizo mención antes, a un mismo experimento se le pueden asignar dife rentes
probabilidades de éxito,dependiendo delcientífico que lo está realizando,aun en el caso de que dos o más científicos trabajen en
conjunto. Finalmente, podemos mencionar que en la asignación de probabilidades subjetivas se emplea, en muchos casos, el cono ci-
miento frecuentista que se tenga delexperimento.
La asignación subjetiva de probabilidades fue introducida en 1926 por Frank Ramsey en su libro T he Foundation of Mathematics
and other Logical Essays. P osteriormente, B ernard Koopman, Richard Good y Leonardo S avage fueron perfeccionando esta manera
de asignarprobabilidades.
Corriente bayesiana (a posteriori)
En la corriente bayesiana se asignan probabilidades a los eventos después del experimento. Es decir, la asignación de probabi lidades
está basada en el conoci miento de la ocurrencia de eventos que estén en dependencia con el evento de estudio. Por ejemplo, si que-
remos asignar una probabilidad al evento de que el día 3 de septiembre llueva y tenemos la siguiente información:
a) Los días 1 y 2 de septiembre no llovió.
b) Los días 1 y 2 de septiembre llegó un huracán a 400 kilómetros de distancia y llovió ambos días.
Es obvio suponerque la asignación de probabilidades en ambos casos es muy diferente,ya
que tenemos información que hace cambiar nuestra asignación de probabilidades. En tal situación
decimos que la información obtenida influyó en la asignación de probabilidades. Otro ej emplo, es el
caso anterior cuando se lanza una moneda equilibrada tres veces y se cuenta la cantidad de soles
Las probabilidades de este tipo
se estudian en el capítulo 3,
Probabilidad condicional.
1.3 Álgebra de eventos 11
Ejercicios 1.2
que aparecen, el evento E: “obtención de dos sol es en los tres lanza-
mientos”; la pregunta es: ¿cuál es la probabilidad de que ocurra el
evento E?, si se sabe que el primer lanzamiento resultó sol.
Esta corriente de probabilidad es la base motora de la teoría
de decisiones, puesto que cualquier toma de decisiones está influi -
da portodo tipo de información que se pueda tenersobre un fenó-
meno en estudio. El uso de esta corriente es posible en la parte de
decisiones llamada árboles de decisión.
1. ¿En qué se basa la definición frecuentista para calcular la
probabilidad de un evento?
2. ¿Cómo se considera el espacio muestral en la corriente clá-
sica de probabilidad?
3. ¿Cómo es la asignación de probabilidades en los eventos de
la corriente subjetiva?
4. ¿Por qué a la corrient e bayesiana s e le conoce también con el
nombre de a posteriori?
5. ¿Cuáles son las dificultades por l as que atravi esa la interpre-
tación clásica para l a asignación de probabilidades a los dife-
rentes eventos?
6. Si quiere abrir un negocio en cierta localidad y desea esti-
mar una probabilidad de éxito, qué tipo de corri ente de pro-
babilidad aplicaría en cada una de las situaciones indicadas
considerando lo siguiente:
a) Cuenta con una gran cantidad de datos históricos sobre
éxitos y fracasos en la apertura de negocios del mismo
ramo que el de usted en localidades semejantes.
b) No tiene datos que le muestren algún histórico sobre las
probabilidades de éxito de su negocio.
7. ¿Cómo asignaría probabilidades a los siguientes eventos?
a) La probabilidad de que salga una carta roja al seleccionar
una carta de una baraja de 52.
b) La probabilidad de que salga un 2 o una carta negra al
seleccionaruna carta de una baraja de 52.
c) La probabilidad de que salga un 7 o un 8 al seleccionar
una carta de una baraja de las 52 cartas que contiene el
mazo.
d) La probabilidad de que en 2018 Marcelo Ebrard gane las
elecciones para presidente .
e) La probabilidad de que 10 de los siguientes 80 usuarios
del metro en la estación Universidad sean estudiantes.
f) La probabilidad de que el siguiente edificio más alto que
se construye en China se caiga en 40 años.
8. En los siguientes ejemplos, ¿qué tipo de corriente se pudo
haber utilizado para la probabilidad asignada?
a) La probabilidad de que Víctor llegue temprano al trabajo
es de 0.65.
b) La probabilidad de que Raquel decida casarse este año es
de 0.90.
c) La probabilidad de que Morelia gane el siguiente partido,
si ha ganado los cuatro últimos juegos, es de 0.79.
En la sección 1.1 se definieron los conceptos de espacio muestral y evento, entendiendo por este último un subconjunto del es pacio
muestral, entonces es posible utilizar los resultados obtenidos en la teoría de conjuntos p ara los esp acios mu estrales y los even tos
para construir un álgebra de eventos.
Conceptos fundamentales de eventos
El espacio muestral fue denotado por S, los eventos con letras mayúsculas, A, B, C, etcétera, mientras que los resultados del experi-
mento que cumplen las condiciones del evento se representan con letras minúsculas a, b, etcétera. Si el resultado a pertenece al
evento A, lo simbolizamos a ∈ A ; en caso contrario, por a ∉ A . Los eventos también s e represent an con llaves, dentro de las que se
escriben sus elementos (¡sin repetirlos!), o las propiedades que dichos elementos cumplen, por ejemplo:
A ={x |x es el lado que queda arriba al lanzar un dado} evento por comprensión.
A={1, 2, 3, 4, 5, 6} evento por extensión.
Los eventos que revisamos en el texto se pueden clasificar en dos grandes grupos. El primero de ellos se define y ejemplifica a
continuación.
1.3 Álgebra de eventos
Después de revisar las corrientes de probabilidad y ver que no tenemos
una forma universal de asignación de probabilidades para un evento,
concluimos que no es posible construir una teoría matemática formal
de las probabilidades. Por tanto, es necesario estructurar a la
probabilidad sobre una base axiomática que le dé el formalismo que
el álgebra, la geometría y las otras áreas de las matemáticas tienen,
lo cual se logra haciendo uso de la teoría de conjuntos aplicada a los
eventos, formando lo que denominaremos álgebra de eventos.
12 CAPÍTULO 1 BAses de LA Pr OBABiLid Ad
Ejemplos 1.7 Eventos finitos
Ejemplos 1.8 Evento vacío
Ejemplos 1.9 Eventos numerables
Si al contar los elementos de un evento, el proceso de conteo termina en el tiempo, es decir, resulta una cantidad determinada, entonces
dicho evento se llama finito.
1. A: Número par resultado del lanzamiento de un dado: A ={2, 4, 6}.
2. A: Al menos se observan cuatro soles en seis lanzamientos de una moneda: A ={4, 5, 6}.
A continuación, definimos y mostramos dos ejemplos de eventos que no pueden ocurrir.
El evento que no contiene ningún elemento, esto es, en el que no existe algún resultado del experimento que cumpla las condiciones del
evento, se llama evento vacío. El evento vacío suele denotarsepor ∅ o { }.
1. A: “Lanzamiento de un par de dados y que la suma de los números de sus lados sea mayor a 13”. Es decir, A ={ }, el evento A no
tiene ningún elemento, puesto que la máxima suma de los números de las caras en el lanzamiento de dos dados es 12.
2. En una supervisión para el control de calidad se inspecciona un lote con 30 artículos, entre los cuales hay dos defectuosos. Sea
el evento A: “Extraer cuatro artículos al mismo tiempo que contenga tres defectuosos”. C omo el lote tiene únicamente dos defec-
tuosos, entonces no existen eventos que contengan tres defectuosos; por tanto, A =° .
Ant es de definir al otro gran grupo de eventos en que se pueden clasificar todos estos, aparte
de los eventos finitos, veamos una definición de eventos que no necesariamente son finitos, pero
que sípodemos establecerun proceso de conteo entre sus elementos.
Se dice que un evento A es numerable o contable si entre sus elementos y el conjunto de los números
naturales, , o algún subconjunto de este existe una correspondencia en la que a cada elemento del
evento A le corresponde uno y solo un elemento de (o de algún subconjunto de ), además a cada
elemento de (o de algún subconjunto de ), le corresponde un elemento de A.
A continuación se muestran tres ejemplos de eventos numerables.
Los siguientes incisos son casos particulares de eventos numerables.
1. El conjunto A ={x | x es una vocal}. Este evento es numerable, ya que podemos ponerlo en correspondencia con el subconjun-
to de los números naturales {1, 2, 3, 4, 5} de la siguiente manera:
a 1; e 2; i 3; o 4; u 5
2. El conjunto de los enteros .Este evento es numerable, ya que podemos ponerlo en correspondencia con elconjunto de los
números naturales de la siguiente manera:
0 1 1 3 2 5
−1 2 −2 4 etcétera
En donde, 0 1 significa que al cero le corresponde el uno, de manera similar −1 2 , significa que al −1 le corresponde el
2, etcétera.
3. A ={−8, −6, −4, −2, 0, 2, 4,…}. Este evento es numerable y su correspondencia la podemos establecer por:
−8 1 −2 4
−6 2 0 5
−4 3 2 6 etcétera
Por último, definiremos al otro gran grupo de eventos entre los que podemos clasificar a todos los eventos que no son finitos.
Con la definición de numerable
o contable se puede verificar
que cualquier evento finito es
numerable, ya que siempre será
posible establecer un proceso
de conteo entre sus elementos.
1.3 Álgebra de eventos 13
Ejemplos 1.10 Eventos infinitos
Ejemplos 1.11 Igualdad de eventos
Ejemplos 1.12 Subeventos
Se dice que un evento A es infi-
nito si para cualquier evento
D ={1, 2, 3, 4,…, n} no existe
un valor de n con el que se
puedaestablecer unacorrespon-
dencia biunívoca entre A y D.
A continuación se muestran tres
ejemplos de eventos infinitos.
1. E: “La cantidad de lanzamientos de una moneda hasta obtener la primera águila”, E ={1, 2, 3, …}.
2. El evento cuyos elementos son todos los puntos del intervalo indicado en donde los extremos son diferentes, E = (2, 7).
3. El evento que representa la temperatura corporal de una persona. Este evento es infinito ya que al medir la temperatura puede
ocurrir cualquier valor dentro de un intervalo.
Los conceptos anteriores,aunque sencillos, requieren de gran cuidado en su aplicación. En los casos de eventos infinitos,se
presentan dificultades para encontrarla correspondencia que indique sison o no numerables. Si a esto agregamos que los eventos
infinitos no siempre son numerables y que la demostración de esto no es sencilla surgen muchas dificultades para distinguirentre
eventos numerables y no numerabl es, además de que es necesaria la introducción de algunos otros conceptos que quedan fuera de l
objetivo del libro. En el texto se tiene que los únicos eventos no numerables con los que tratamos son cuando resulten intervalos. Por
ejemplo, cualquier evento cuyos elementos son los puntos del intervalo (a, b) con a ≠ b no es numerable.
Relaciones fundamentales entre eventos
Cuando trabajamos con eventos observamos que entre sus elementos pueden existir algunas relaciones, mismas que revisamos a
continuación.
Los eventos A y B correspondientes a un mismo experimento son iguales, si cualquier resultado de A es también elemento de B y vice-
versa:
A = B, si ° a ∈ A, entonces a ∈ B y viceversa, ∀b ∈ B, entonces b ∈ A.
A continuación se muestra un par de ejemplos de eventos iguales.
1. Los eventos A ={a, e, i, o, u} y el evento B ={x | x es una vocal}; en este caso, A = B.
2. Los eventos A ={1, 3, 5, 7, 9} y el evento B ={x |x es un número dígito impar}; en este caso, A = B.
Una relación muy particular entre los eventos consiste en estudiar los casos cuando todos los elementos de un evento dado están
contenidos en elotro evento,suceso que se define a continuación.
Sean los eventos A y B correspondientes a un mismo experiment o, se dice que A es subevento de B si cualquier elemento que esté en A
estátambién en B. Lo anterior se simboliza A ⊂ B. Es decir, A ⊂ B; si a ∈ A, entonces a ∈ B. Cuando existe al menos un elemento de A que
no estáen B, entonces sedice queA ⊄ B.
Para una mejor comprensión de lo que son los subeventos se proporcionan algunos ejemplos.
1. Dados los eventos A ={a, e, i, o, u} y B ={x |x es una letra del alfabeto}, se cumple A⊂ B .
2. Sean A =[2, 5]y B =[−9, 20], vemos que A⊂ B.
3. Sean A =[2, 5]y B =(2, 10], en este caso A⊄ B, puesto que 2 ∈ A, pero 2 ∉ B .
Con la definición de eventos finitos se puede notar que un evento numerable es infinito, si al contar los
resultados posibles del evento el proceso de conteo no termina en el tiempo. También cualquier evento
no contable es infinito.
La teoría de eventos infinitos requiere una preparación conceptual profunda que sale de los
objetivos del texto, pero se recomienda consultar los trabajos de los mayores exponentes del tema,
como el ruso Georg Ferdinand Ludwing Philipp Cantor (San Petersburgo, Rusia, 3 de marzo de
1845-Halle, Alemania, 6 de enero de 1918) y de los alemanes Julius Wilhelm Richard Dedekind (6 de
octubre de 1831-12 de febrero de 1916) y Friedrich Ludwing Gottlob Frege (8 de noviembre de 1848-
26 de julio de 1925).
14 CAPÍTULO 1 BAses de LA Pr OBABiLid Ad
S A ∪ B
A B
Ejemplos 1.13 Eventos mutuamente excluyentes
Como se mencionó antes,entre los elementos de dos o más eventos puede serque no exista
alguna propiedad en común, en dicho caso se dice que ambos se excluyen o, concretamente,
que son mutuamente excluyentes, esto se formaliza con la definición y los ejemplos siguientes.
Los eventos A y B, correspondientes a un mismo experimento, se llaman mutuamente excluyentes
si no tienen resultados comunes. Es decir, para cualquier a ∈ A, se cumple a ∉ B; de igual manera,
paratodo b ∈ B, tenemos queb ∉ A.
1. Sean los eventos A ={a, e, i, o, u} y B ={x | x es una consonante}; en este caso, A y B son mutuamente excluyentes, ya que no
existe ningún elemento que sea vocaly consonante almismo tiempo.
2. Sean A = [2, 5] y B = [9, 20]; en este caso, A y B son mutuamente excluyentes.
Entonces, podemos generalizar que el evento vacío es mutuamente excluyente con cualquier otro evento.
Diagramas de Venn-Euler
En muchas ocasiones es preferible emplear una repre-
sentación gráfica de los eventos de un experimento, la
cual usualmente consiste en representar el espacio mues-
tral por rect ángulos y los eventos por figuras circulares u
ovaladas en forma simple o sombreada, como se muestra
en la figura 1.2. Estos diagramas se emplean para visuali -
zar las operaciones fundamentales entre eventos y se les
llama diagramas de Venn-Euler en honora los matemá-
ticos Leonhard Paul Euler (Basilea, Suiza, 15 de abril de
1707-San P etersburgo, Rusia, 18 de septiembre de 1783)
y John Venn (Hull, Yorkshire, Inglat erra, 4 de agosto de
1834-Cambridge, 4 de abril de 1923).
Figura 1.2 Representación de eventos por medio de diagramas
de Venn-Euler.
Operaciones fundamentales entre eventos
Dado un espacio muestral y sus eventos, surge l a pregunta sobre qué operaciones será posible y es
conveniente definir entre estos. En esta subsección se estudi an algunas operaciones fundament a-
les entre eventos, como unión, intersección, diferencia y complemento.
Unión entre eventos
La unión de los eventos A y B, correspondientes a un mismo experimento, constituye, en sí mismo,
otro evento formado por los resultados que pertenecen al evento A o al evento B o a ambos. La
unión la simbolizaremos porA ∪ B (A unión B).
A∪ B ={x x ∈ A o x ∈ B } la unión de los eventos A y B.
La representación general de la unión, por medio de diagramas de Venn-Euler, se ilustra en la parte sombreada de la figura 1.3.
Figura 1.3 Representación general de la unión entre dos eventos.
1. De las definiciones de igualdad de
eventos y subeventos se deduce
que si A = B, entonces A ⊂ B
y B ⊂ A.
2. Podemos generalizar que el
evento vacío es subevento de
cualquier evento.
B
A
S
Se ha observado que muchos
estudiantes cometen el
gravísimo error, al realizar
operaciones entre eventos, de
indicar como resultado de estas
operaciones solo a los elementos,
sin formar un evento. Pero las
operaciones entre eventos
siempre deben dar como
resultado otro evento.
1.3 Álgebra de eventos 15
S A ∩ B
A B
Ejemplos 1.15 Intersección entre dos eventos
1. Sean los eventos A ={a, e, i, o, u} y B ={e, o, h, w}. Luego, A∩ B ={e, o}.
2. Sean los eventos A =[−1, 5) y B =(3, 8]. Luego, A∩ B =(3, 5).
3. Sean los eventos A =[2, 5) y B =(3, 4]. Luego, A∩ B =(3, 4]= B.
Observe que en el último ejemplo
(3, 4] ⊂ [2, 5), y la intersección
fue (3, 4]. En general, si A ⊂ B
se cumple que A ∩ B = B.
S A – B
A B
Intersección entre eventos
La intersección entre los eventos A y B, correspondientes a un mismo experimento, es otro evento formado por los elementos que
pertenecen a ambos eventos. La intersección la simbolizaremos de la siguiente manera: A ∩ B (A intersección B).
A∩ B ={x x ∈ A y x ∈ B} la intersección entre los eventos A y B.
La representación general de la intersección mediante diagramas de Venn-Euler, corresponde al área sombreada de la figura 1.4.
Figura 1.4 Representación general de la intersección entre A y B.
Diferencia entre eventos
La diferencia del evento A menos el evento B, correspondientes a un mismo experimento, es otro evento formado por los elementos
del evento A y que no pertenecen al evento B. La diferencia la simbolizaremos de la siguiente manera: A − B (A menos B).
A− B ={x x ∈ A y x ∉ B} la diferencia del conjunto A menos B.
La representación general de la diferencia, mediante diagramas de Venn-Euler, se ilustra en el área sombreada de la figura 1.5.
Figura 1.5 Representación general de la diferencia A − B.
Ejemplos 1.14 Unión entre dos eventos
1. Sean los eventos A ={a, e, i, o, u} y B ={e, o, h, w}. Entonces: A∪ B ={a, e, i, o, u, h, w} .
2. Sean los eventos A =[−1, 5) y B =(3, 8]. Entonces: A∪ B =[−1, 8].
3. Sean los eventos A =[2, 5) y B =(3, 4]. Entonces: A∪ B =[2, 5)= A.
Observe que en el último ejemplo
(3, 4] ⊂ [2, 5), y la unión fue
[2, 5). En general, si A ⊂ B, se
cumple que A ∪ B = A.
16 CAPÍTULO 1 BAses de LA Pr OBABiLid Ad
Observe que en el último ejemplo A y B son mutuamente excluyentes. En general, si
los eventos son mutuamente excluyentes, se cumple que A − B = A y B − A = B.
Ejemplos 1.17 Evento complementario
Ejemplos 1.18 Operaciones entre eventos
Ejemplos 1.16 Diferencia entre eventos
1. Sean los eventos A ={a, e, i, o, u} y B ={e, o, h, w}. Luego, A− B ={a, i, u} y B − A={h, w}.
2. Sean los eventos A =[−1, 5) y B =(3, 8]. Luego, A− B =[−1, 3] y B − A =[5, 8].
3. Sean los eventos A =[2, 5) y B =(3, 4]. Luego, B− A =∅.
4. Sean los eventos A =[2, 5) y B =(13, 24]. Luego, A − B = A y B − A = B.
Evento complementario o complemento de un evento
El complemento del evento A es otro evento formado por los resultados del experimento que pertenecen al espacio muestral, pero
que no pertenecen al evento A. El complemento del evento A, lo simbolizaremos como Ac
o A' o Ā (complemento de A).
Ac
={x x ∈ S y x ∉ A} el evento complementario de A.
La representación general del complemento de un evento mediante diagramas de Venn-Euler se ilustra en el área sombreada de
la figura 1.6.
Figura 1.6 Representación general del complemento de A.
1. Sea S ={x |x es una letra del alfabeto}y B ={x | x es una consonante}. Luego, Bc ={a, e, i, o, u}.
2. Sea S =[−4, 10] y A =[−1, 5), entonces Ac =[−4, −1)∪[5, 10].
A continuación se muestra una serie de ejemplos de las operaciones entre eventos, en los que se consideran cualquiera de estas.
1. Dados el espacio muestral S = , el conjunto de los números enteros y los eventos A ={2, 3, 5, 7, 11, 13, 17}, B ={5, 6, 7, 8,…, 30},
C ={0, 1, 2, 3, 4, 5, 6, 7, 8, 9}y D ={−6, −4,…, 10, 12}, encuentre:
a) A ∩ B, A ∪ B, C ∩ A, C ∪ D, A − B, C − A, A ∩ D.
A∩ B ={2, 3, 5, 7, 11, 13, 17}∩{5, 6, 7, 8,…, 30}={ 5, 7, 11, 13, 17}.
A∪ B ={2, 3, 5, 7, 11, 13, 17}∪{5, 6, 7, 8, … , 30}= {2, 3, 5, 6, 7, 8, … , 30} .
C ∩ A ={0, 1, 2, 3, 4, 5,6, 7, 8, 9}∩{2, 3, 5, 7, 11,13, 17}= {2, 3, 5, 7}.
C ∪ D ={0, 1, 2, 3, 4,5, 6, 7, 8, 9}∪{−6, −4, −2, 0, 2, 4, 6, 8, 10, 12}
={−6, −4, −2, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12}
B
A
AC
S
Ob serve que en este ejemplo
(3, 4] ⊂ [2, 5) y la diferencia
fue ∅. En general, si A ⊂ B se
cumple que B − A = ∅.
1.3 Álgebra de eventos 17
S AC
S AC
∩ B
A B
A B
A− B ={2, 3, 5, 7, 11, 13, 17}−{5, 6, 7, 8, … , 30}= {2, 3}.
C − A ={0, 1, 2, 3, 4,5, 6, 7, 8, 9}−{2, 3, 5, 7, 11, 13, 17}= {0, 1, 4, 6, 8, 9}.
A∩ D ={2, 3, 5, 7, 11, 13, 17}∩{−6, −4, −2, 0, 2, 4, 6, 8, 10, 12}= {2}.
B ∩ D ={5, 6, 7, 8, … , 30}∩{−6, −4, −2, 0, 2, 4, 6, 8, 10, 12}= { 6, 8, 10, 12}.
2. Encuentre los resultados de las operaciones siguientes:
a) (A∩ B)−( A∩ D)= {5, 7, 11, 13, 17}−{2}= {5, 7, 11, 13, 17}.
b) (B ∩ D)
c
∩C ={ 6, 8, 10, 12}
c
∩{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}={0, 1, 2, 3, 4, 5, 7, 9}.
c) ( A− B)c ∩C ={2, 3}
c
∩{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}={0, 1, 4, 5, 6, 7, 8, 9}.
d) (C − A)∩ D ={0, 1, 4, 6, 8, 9}∩{−6, −4, −2, 0, 2, 4, 6, 8, 10, 12}= { 0, 4, 6, 8}.
e) (A∩ D)−C = {2}−{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}=∅.
f) (A∩ B)
c
−( A∩ D)
c
={ 5, 7, 11, 13, 17}
c
−{2}
c
={…1, 2, 3, 4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 19, …}−{…0, 1, 3, 4, …}= {2}.
3. Con diagramas de Venn-Euler verifique si son válidas las siguientes igualdades entre conjuntos.
a) Ac ∩ B = B − A
Figura 1.7 Representación de la igualdad entre Ac
∩ B = B − A.
4. Represente en diagramas de Venn-Euler los siguientes hechos: los eventos A y B son mutuamente excluyentes, A∩C ≠ ∅ y
B ∩C ≠ ∅.
Figura 1.8 Representación del ejemplo 4.
Particiones de eventos
En teoría del álgebra de eventos es de suma importancia trabajar con algunos eventos especiales donde sus mismos el ementos son
eventos de un espacio muestral dado. De hecho, el desarrollo teóri co de las probabilidades está basado en dichos eventos, per o debi-
do a los fines de un texto práctico de probabilidad y estadística, nos enfocaremos únicamente a uno de estos que definimos a conti-
nuación.
Llamaremos familia de eventos al conjunto donde todos sus elementos son eventos. Para diferenciar en la notación de un simple evento,
a la familia de eventos larepresentaremos por A, B, etcétera.
A B
C
S
18 CAPÍTULO 1 BAses de LA Pr OBABiLid Ad
5
n
Ejemplos 1.20 Generalización de la unión e intersección de eventos
Ejemplos 1.21 Partición
Indique cuáles son familia de eventos y cuáles no lo son.
1. {{1, 2, 3},{2, 3, 5, 7},{4, 8, 12, 16}} sí es una familia de eventos, ya que sus tres elementos {1, 2, 3},{2, 3, 5, 7} y {4, 8, 12, 16}
son eventos.
2. {1, 2, {1, 2, 3},{2, 3, 5, 7}} no es una familia de eventos, puesto que sus elementos 1 y 2 no son eventos.
3. {∅,{1, 2, 3},{2, 3, 5, 7},{4, 8, 12, 16}} sí es una familia de eventos, ya que sus cuatro elementos ∅,{1, 2, 3},{2, 3, 5, 7} y
{4, 8, 12, 16} son eventos.
4. {1, 2, 3,4}no es una familia de eventos, puesto que ninguno de sus cuatro elementos es un evento.
Generalización de la unión e intersección de eventos
Sean los eventos A1, A2, … , An, podemos generalizar las operaciones de unión e intersección entre ellos de la siguiente manera:
n
∪Ai = A1 ∪ A2 ∪…∪ An ={x |existe una i ∈ In
i=1
n
tal que x ∈ Ai } unión
∩Ai = A1 ∩ A2 ∩…∩ An ={x | x ∈ Ai
i=1
para toda i ∈ In} intersección.
Donde In denota al conjunto de todos los números naturales menores e iguales a n.
Sean los eventos A1 ={1, 2, 3, 4, 5, 6, 7, 8, 9}, A2 ={1, 4, 7, 10, 13, 16, 19, 22}, A3 ={3, 5, 7, 9, 11}, A4 ={2, 4, 6, 8, 10}y A5 = {0, 1, 2,
…, 9}, encuentre la unión e intersección de estos eventos.
Solución
Unión: ∪ Ai ={0, 1, 2,…, 10, 11, 13, 16, 19, 22}.
i=1
5
Intersección: ∩Ai =° .
i=1
En el estudio de los eventos y sus operaciones surgen familias de eventos que debido a sus propiedades son de gran importancia
en la formalización del desarrollo de la Teoría de las probabilidades, a dichas familias se les da el nombre de particiones.
Partición
Sea A un evento y A1, A2, … , An subeventos de A, que forman una familia A ={A1 , A2 ,…, An } de eventos, se dice que A es una par-
tición del evento A, si los subeventos cumplen:
a) Para cualesquiera eventos Ai y Aj , de un mismo experimento, con i, j ∈ In, se cumple Ai = Aj o en caso contrario Ai ∩ Aj =∅.
b) A =∪ Ai.
i=1
Dado el evento A ={1, 2,…, 100} indique si los eventos siguientes, del mismo experimento, forman una partición de A.
1. A1 ={1, 2, 3, 4, 5, 6, 7}, A2 ={8, 9, …, 70}, A3 ={70, 71, 72, …, 100}.
Observamos que los tres eventos son subeventos de A, y con esto la segunda condición de una partición se cumple, ya que
A= A1 ° A2 ° A3; sin embargo, la primera condición no se cumple, puesto que A2 ≠ A3 y A2 ∩ A3 ≠∅. Entonces los eventos no
forman una partición de A.
Ejemplos 1.19 Familia de eventos
1.3 Álgebra de eventos 19
2. A1 ={10, 11,…, 19}, A2 ={20, 21,…, 29}, … , A9 ={90, 91, … , 100}y A10 —los números dígitos.
Aquí, se puede verificar que se cumple la primera condición de particiones, ya que los 10 eventos son mutuamente excluyentes,
los eventos no forman una partición de A, ya que el evento A10 no es un subevento de A, puesto que 0 ∈ A10, pero 0 ∉ A.
3. A1 ={10, 11,…, 19}, A2 ={20, 21,…, 29}, … , A9 ={90, 91,…, 100} y A10 ={1, … , 9}.
Estos eventos sí forman una partición del evento A, ya que se cumplen las condiciones:
A= A1 ° A2 ° …° A10 y todos los pares de eventos son mutuamente excluyentes.
4. A1 ={10, 11, … , 19} , A2 ={20, 21, … , 29} , … , A9 ={90, 91, … , 100} , A10 ={1, … , 9} , A11 ={10, 11, … , 19} .
Estos eventos sí forman una partición del evento A, ya que se cumplen las condiciones:
A = A1 ° A2 ° …° A11, y todos los pares de eventos son mutuamente excluyentes, excepto los eventos 1 y 11, pero en este caso
se tiene que el evento 11 es igual al evento 1.
5. A = .
a) A1 =(−∞, −4), A2 =[−4, 7), A3 =[7, 45], A4 =(45, 1 056], A5 =(1 056, +∞). Se comprueba que estos eventos sí forman
una partición del evento A.
b) A1 =(−∞, 0), A2 =[0, ∞), estos eventos también forman una partición del evento A.
En el último inciso, podemos observar que los dos eventos son complementarios. Es decir, Ac
= A y Ac
= A . Entonces, el ejem-
1
plo 5b se puede generalizar.
6. Cualquier parde eventos A con su complemento Ac
siempre forman una partición de S.
2 2 1
a) Por ejemplo, si S ={1, 2, 3, 4, 5, 6, 7}, entonces una partición podría ser: A ={1, 3, 5, 7} y Ac ={2, 4, 6}.
b) Si S =[0, 20], entonces una partición estaría formada por la pareja A =[0, 4] y Ac =(4, 20].
Leyes del álgebra de eventos
Trabajar con eventos basándose en la definición de sus operaciones o propi edades resulta bastante tedioso. La solución de pro blemas
relacionados con los eventos también se puede hacer de manera fácil e intuitiva por medio de los diagramas de Venn -Euler, pero este
método carece de un fundamento sólido teórico para cualquier caso en general. Por lo anterior, se introducen las siguient es leyes de
la teoría de eventos,llamadas “Leyes o propiedades delálgebra de eventos”.
Sean S el espacio muestral y A una familia de eventos en S, con A, B y C, eventos cualesquiera de S, que pert enecen a A, llama-
remos Leyes del álgebra de eventos a las siguientes propiedades.
Tabla 1.1 Leyes del álgebra de eventos.
Leyes de idempotencia
A ∪ A = A A ∩ A = A
Leyes asociativas
(A ∪ B)∪C = A ∪(B ∪C ) (A ∩ B)∩C = A ∩(B ∩C )
Leyes conmutativas
A ∪B = B ∪ A A ∩B = B ∩ A
Leyes distributivas
A ∪(B ∩C ) =(A ∪ B)∩(A ∪C ) A ∩(B ∪C ) =(A ∩ B )∪(A ∩C )
Leyes de identidad
A ∪∅ = A A ∪S = S
A ∩°=° A ∩S = A
Leyes de complemento
A ∪ Ac
= S A ∩ Ac
= ∅
(Ac
)
c
= A S c
= ∅, ∅c
= S
Leyes de DeMorgan
(A ∪ B)
c
= Ac
∩B c
(A ∩ B)
c
= Ac
∪ B c
20 CAPÍTULO 1 BAses de LA Pr OBABiLid Ad
Ejemplos 1.22 Leyes del álgebra de eventos
Ejercicios 1.3
Con ayuda de estas leyes se pueden efectuar demostraciones sobre la igualdad entre eventos, como se muestra en los ejemplos
siguientes.
Con las leyes del álgebra de eventos verifique las igualdades siguientes:
1. A∩(Ac ∪ B)= A∩ B .
A∩(Ac ∪ B)=(A∩ Ac
)∪( A∩ B) ley distributiva,
=∅∪( A∩ B) ley del complemento,
2. A∩( A∪ B)= A.
= A∩ B ley de identidad.
A∩( A∪ B)=( A∪∅)∩( A∪ B) ley de identidad,
= A∪(∅∩ B) ley distributiva,
= A∪∅ ley de identidad,
= A ley de identidad.
3. (A∩ B ∩C )∪(Ac
∩ B ∩C )∪(Bc
∪C c
)= S
( A∩ B ∩C )∪(Ac ∩ B ∩C )∪(Bc ∪C c
)=
=( A∩ B ∩C )∪(Ac
∩(B ∩C ))∪(B ∩C )
c
leyes de De Morgany asociativa,
=( A∩ B ∩C )∪(Ac ∪(B ∩C )
c
)∩((B ∩C )∪(B ∩C )
c
) ley distributiva,
=( A∩ B ∩C )∪(Ac ∪(B ∩C )
c
)∩ S ley del complemento,
=( A∩ B ∩C )∪(Ac ∪(B ∩C )
c
) ley de identidad,
=( A∩ B ∩C )∪(A ∩(B ∩C ))
c
ley de De Morgan,
= S ley del complemento.
1. Mencione dos ejemplos de eventos finitos y dos de eventos
infinitos.
2. Indique si los siguientes eventos son numerables.
e) (A−C )
c
∩ B .
4. Por medio de diagramas de Venn-Euler verifique que son cier-
tas las igualdades siguientes:
a) A ={2, 4, 8, 16, 32, …}. a) A− B = A∩ Bc .
b) A={a, b, c, d, …}. b) Ac − B =( A∪ B)c .
c) A ={45, 44, 43, 42, 41, 40, …}. c) (B ∪ A)
c
∩C =(Bc ∩C )∩(Ac ∩C ).
d) A =[2, 1 768] d) A∪(Ac ∩ B)= A∪ B .
e) A =(−134, 234) .
3. Dado el espacio muestral S ={0, 1, … , 20}, los eventos
A={2, 4, 5, 6, 7, 8, 9, 11, 12, 13, 15} , B ={0, 2, 4, … , 20} y
e) (A∩ B)
c
= Ac ∪ Bc .
5. En los eventos siguientes construya una partición de cada
uno.
C ={2, 3, 5, 7, 11}, encuentre:
a) Ac ∩ Bc .
a) A ={2, 4, 6, 8, 10, 11, 13, 15, 17, 19, 20} .
b) A =(2, 24) .
b) (Ac ∩ B)
c
∪C . c) Números naturales.
c) A−(B ∩C ) .
d) (B −C )
c
− A .
d) A ={0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
1.4 Axiomatización de la probabilidad 21
En la sección 1.2 se trat a el problema rel ativo a la asignación de probabilidades para un evento, donde también se destaca la impor-
tancia de crear una base teórica para el estudio de la probabilidad. Di cha formalización comenzó en l a sección anterior al introducir
el espacio muestral y los eventos asícomo las leyes del álgebra de eventos.
En la presente sección daremos por hecho la asignación de probabili -
dad a un evento y comenzaremos a desarrollar una t eoría axiomática de las
probabilidades, a partir de la siguiente definición.
Dado un experimento con espacio muestral S y una familia de eventos A
de S tal que sus elementos cumplen con las leyes del álgebra de eventos,
llamaremos probabilidad axiomática a la función numérica P, cuyo do-
minio es A y rango el intervalo [0, 1], y es tal que los valores P(E) para
cualquier E en A , cumplen con los siguientes tres axiomas, llamados
axiomas de Kolmogórov, para familias finitas:
Axioma 1. Para cualquier evento E, de A, se cumple P(E) ≥ 0.
Axioma 2. Para el espacio muestral S, P(S) = 1.
Axioma 3. Para cualquier sucesión infinita (o finita) de eventos mutua-
mente excluyentes, de A, E1, E2, E3, … , se cumple
∞ ∞
P ∪ Ek = P(E1 )+ P(E2 )+⋯= ∑P(Ek ).
k=1 k=1
Hechas las aclaraciones anteriores y basándonos en los axiomas 1, 2 y
3 o los casos particulares del axioma 3, podemos formular los teoremas
necesarios para desarrollar una teoría axiomática de la probabilidad.
Teorema 1.1
Sea ∅ el evento vacío, entonces P(∅) = 0.
Demostración
• Sea el espacio muestral S, por la ley de identidad S = S ∪ ∅. Como S y
∅ son mutuament e excluyentes, en virtud del axioma 3, se deduce que
P(S )= P(S ∪∅)= P(S )+ P(∅), restando la probabilidad de S en ambos
lados de la igualdad, resulta que P(∅) = 0.
Teorema 1.2
Para cualquier evento E, P(E c
)=1− P( E ).
Demostración
• Sea el espacio muestral S, y E un evento en S. Por la ley del complemento,
tenemos que S = E ∪ E c
, por el axioma 2 se cumple 1= P(S )= P(E ∪ E c
).
Por otro lado, E y E c
son mutuamente excluyentes, de esta manera empleando el axioma 3 tendremos:
1= P(S )= P(E ∪ E c
)= P( E )+ P(E c
)
pasando P(E) al otro lado de la igualdad se obtiene P(E c
)=1− P( E ).
Teorema 1.3
Para cualquier evento E, 0 ≤ P(E ) ≤ 1.
Demostración
• Sea S el espacio muestral y E un evento en S, del axioma 1 tenemos que P(E) ≥ 0 y P(E c
) ≥ 0. Por el teorema 1.2, P(E c
) =
1 − P(E ), de donde se deduce que P(E ) = 1 − P(E c
) ≤ 1. Por tanto, 0 ≤ P(E ) ≤ 1.
Teorema 1.4
Si A y B son eventos de un mismo espacio muestral, tales que A ⊂ B, entonces
P(A) ≤ P(B).
1.4 Axiomatización de la probabilidad
Andréi Nikoláyevich Kolmogórov (Tambov, Rusia, 25 de abril
de 1903-Moscú, 20 de octubre de 1987), fue un matemático
que trabajó en probabilidad, topología, series de Fourier,
teoría de conjuntos, turbulencias, mecánica clásica, y teoría
de la complejidad algorítmica. En 1929 obtuvo su doctorado
en la universidad estatal de Moscú. Junto con Márkov
trabajaron en procesos estocásticos y de forma independiente
al matemático británico Sydney Chapman desarrollaron las
ecuaciones de Chapman-Kolmogórov de las cadenas de
Márkov. En 1933 publicó el libro Los fundamentos de la
teoría de la probabilidad, en el que establece las bases de
una teoría axiomática de la probabilidad; gracias a este
trabajo adquiere una gran reputación y popularidad entre los
matemáticos que investigaban sobre la probabilidad.
• A la terna (S, A, P ) se le suele llamar espacio probabilístico.
• Note que en la definición de probabilidad axiomática no se
menciona el método de obtención de la probabilidad, es
decir, al número P(E ) para cualquier evento E en A, sele
puede asignar un valor numérico de probabilidad según
alguna de las interpretaciones de probabilidad conocidas.
Por tanto, llamaremos a P(E) la probabilidad del
evento E, si para cualquier evento E en A, cumple con
los axiomas de Kolmogórov.
• En particular, la asignación de probabilidades según las
corrientes de probabilidad mencionadas cumplen con los
axiomas de Kolmogórov.
• El axioma 3 generalmente en los textos metodológicos se
formula para dos eventos A y B mutuamente excluyente,
quedando P ( A ∪B ) = P (A )+ P (B ) . En el caso de n
eventos E1, E2, E3, … , En mutuam ente excluyentes, el
axioma está dado por:
P ∪ E = P (E )+ P (E )+⋯+ P (E )= P
n
k 1 2
n
∑ (E ).
k =1
n k
k =1
22 CAPÍTULO 1 BAses de LA Pr OBABiLid Ad
Ejemplos 1.23 Teoremas
Demostración
• De las condiciones del teorema tenemos que A ⊂ B, por tanto, B s e puede representar como B = A° ( B − A), en donde A y
B − A son mutuamente excluyentes. Del axioma 3, tenemos P( B)= P( A∪( B − A))= P( A)+ P( B − A). Por el axioma 1
P( B −A)° 0, entonces se cumple
P( B)= P( A)+ P( B − A)≥ P( A), de donde P( A)≤ P( B).
Teorema 1.5
Para dos eventos cualesquiera A y B de un mismo espacio muestral, se cumple que:
P( A∪ B)= P( A)+ P( B)− P( A∩ B).
Demostración
• Empleando las leyes del álgebra, tenemos que:
A∪ B =( A∪ B)∩ S ley de identidad,
=( A∪ B)∩(A∪ Ac
) ley del complemento,
= A∪(B ∩ Ac
) ley distributiva.
Además A y B ∩ Ac
, son mutuamente excluyentes, entonces
P( A∪ B)= P (A∪(B ∩ Ac
))= P( A)+ P(B ∩ Ac
)
De manera similar, se tiene que B =( A∩ B)∪(B ∩ Ac
), donde A ∩ B y B ∩ Ac
son mutuamente excluyentes. Por tanto:
P( B)= P(( A∩ B)∪(B ∩ Ac
))= P( A∩ B)+ P(B ∩ Ac
)
Despejando P(B ∩ Ac
), resulta P(B ∩ Ac
)= P( B)− P( A∩ B) y sustituyendo en la igualdad (1), se obtiene:
P( A∪ B)= P( A)+ P( B)− P( A∩ B)
El siguiente teorema muestra la generalización del teorema 1.5.
Teorema 1.6
Para k eventos cualesquiera A1, A2, … , Ak , de un mismo espacio muestral, se cumple que:
(1)
k k k
P( A1 ° A2° Ak )= ∑P( Ai )− ∑ P( Ai ∩ Aj )+ ∑ P( Ai ∩ Aj ∩ Ar )
i=1 i<j=2 i<j<r=3
Teorema 1.7
(−1)k−1
P( A1 ∩ A2 Ak )
Para dos eventos cualesquiera A y B de un mismo espacio muestral, se cumple que
P( A− B)= P( A)− P( A∩ B).
Demostración
• Del ejercicio 4a de los ejercicios 1.3, A− B = A∩ Bc. Por otro lado, A =( A° Bc )∪( A∩ B) pero A ∩ B c
y A ∩ B son mutuamente
excluyentes, entonces delaxioma 3
P( A)= P( A° Bc )+ P( A° B), de donde P( A− B)= P( A)− P( A∩ B).
La formulación y demostración de los t eoremas del 1.1 al 1.7 fue fundamental para iniciar la construcción de una teoría de l a s proba-
bilidades que será utilizada en la parte estadística deltexto. Para una mejor comprensión de los teoremas se han diseñado algunos
ejemplos que se muestran a continuación.
1. Sean los eventos A y B, correspondientes a un mismo espacio muestral, tales que: P(Ac
)= 0.6, P(Bc
)= 0.7 y P( A∩ B)= 0.2.
Calcule: P(A ∪ B).
1.4 Axiomatización de la probabilidad 23
A B
0.2 0.4 0.1
0.3
S AC
Solución
Empleando el teorema 1.2, tenemos que
Finalmente, del teorema 1.5 resulta que
P( A)=1− P(Ac
)=1−0.6 = 0.4 y
P( B)=1− P(Bc
)=1−0.7 = 0.3 .
P( A∪ B)= P( A)+ P( B)− P( A∩ B)= 0.4 + 0.3−0.2 = 0.5 .
2. Sean los eventos A y B correspondientes a un mismo espacio muestral, tales que: P(( A∪ B)c
)= 0.2, P(Ac
)= 0.2 y P( A∩ B)= 0.2,
calcule P(A) y P(B).
Solución
Empleando el teorema 1.2 tenemos
Similarmente,
Finalmente, del teorema 1.5 resulta
Despejando P(B)
P( A)=1− P(Ac
)=1−0.2 = 0.8.
P( A∪ B)=1− P(( A∪ B)c
)=1−0.2 = 0.8.
P( A∪ B)= P( A)+ P( B)− P( A∩ B).
P( B)= P( A° B)− P( A)+ P( A∩ B)= 0.8−0.8+ 0.2 = 0.2.
3. Sean los eventos A y B, correspondientes a un mismo espacio muestral, tales que P(Ac
)= 0.4, P( B)= 0.5 y P( A∪ B)= 0.7.
Calcule P(A − B) y P(Ac
− B c
).
Solución
Del teorema 1.2, P( A)=1− P(Ac
)=1−0.4 = 0.6, y del teorema 1.5 despejando la probabilidad de la intersección P(A ∩ B ) =
P( A)+ P( B)− P( A∪ B)= 0.6 + 0.5−0.7 = 0.4, del teorema 1.7, tenemos
P( A− B)= P( A)− P( A∩ B)= 0.6−0.4 = 0.2 .
De igual manera, para calcular la probabilidad P(Ac − Bc
)recurrimos al teorema 1.7
P(Ac − Bc
)= P(Ac
)− P(Ac ∩ Bc
) aplicando la ley de De Morgan,
= P(Ac
)− P(( A∪ B)c
) con los complementos,
= 0.4 −0.3
= 0.1.
Una de las dificultades de utilizar álgebra de eventos, axiomas de Kolmogórov y teoremas demostrados
es que se deben memorizar sus resultados para poder emplear estas. En lugar de seguir este
camino, mostraremos que combinando las leyes del álgebra, los teoremas del 1.1 al 1.7 y los
diagram as de Venn-Euler, la solución para este tipo de problem as se simplifica en gran medida. Por
ejemplo, podemos calcular con facilidad las dos probabilidades anteriores si trazamos el diagrama
de probabilidades de Venn-Euler.
El diagrama de probabilidades de Venn-Euler se obtiene al agregar las probabilidades a los
sectores del diagram a que resultan de las condicio nes del problem a. Por ejemplo, en el problem a
anterior calculamos:
P( A) = 1−P (Ac
)= 1−0.4 = 0.6 y P(A ∩B ) = P( A) + P(B )−P ( A ∪ B ) = 0.6+ 0.5−0.7 = 0.4.
Entonces, el diagrama de Venn-Euler de probabilidades para calcular P ( A −B ) y P (Ac
−B c
)
está dado en la figura 1.9.
Figura 1.9 Diagrama de Venn-Euler de
probabilidades para el ejemplo 1.23 inciso 3.
24 CAPÍTULO 1 BAses de LA Pr OBABiLid Ad
4. Un juego consiste en extraer de manera aleatoria dos pelotas al mismo tiempo de una urna que contiene cinco pelotas numera -
das de 1 a 5, de igual forma y tamaño. La persona gana si las dos pelotas extraídas tienen número par, en otro caso la person a
pierde. Calcule la probabilidad de que la persona gane.
Solución
En este ejemplo el experimento consiste en extraer dos pelotas aleatoriamente de un total de cinco, numeradas del 1 al 5.
Definido el experimento el espacio muestral, en este caso lo podemos numerar, resulta:
S ={1−2, 1−3, 1−4, 1−5, 2−3, 2−4, 2−5, 3−4, 3−5, 4−5}
En donde la pareja i − j, representa a la extracción de las pelotas i con la j, con i ≠ j e i, j desde 1 hasta 5. El evento E lo definimos,
como: “las dos pelotas extraídas tienen número par”. Así,
E ={2−4}.
Por tanto, del espacio muestral encontrado, y considerando a los puntos muestrales equiprobables (¡explique esto último!), tene-
mos que la probabilidad del evento E estará dada por:
P( E )=
1
= 0.10.
10
5. Un experimento consiste en lanzar un dado no cargado una vez y, si sale un número impar entonces se lanza una moneda no
cargada. Si el lanzamiento del dado resulta par, entonces se lanza el dado por última vez.
a) Describa el espacio muestral para este experimento.
b) Asigne probabilidades a los puntos muestrales de acuerdo con las condiciones del experimento. ¿Son equiprobables los pun-
tos muestrales?
• La descripción del espacio muestral es sencilla, simbolizando los resultados del dado por 1, 2, 3, 4, 5 y 6; mientras quelosde
la moneda pors para soly a en el caso de águila, resultando
S ={(1, s),(1, a),(2, 1),(2, 2),(2, 3),(2, 4),(2, 5),(2, 6)
(3, s),(3, a),(4, 1),(4, 2),(4, 3),(4, 4),(4, 5),(4, 6)
(5, s),(5, a),(6, 1),(6, 2),(6, 3),(6, 4),(6, 5),(6, 6)}.
Es decir, el espacio muestral tiene 24 elementos.
• Para la asignación de probabilidades en este momento se dificulta en forma considerable, esto se debe a que no tenemos las
herramientas necesarias para tal efecto (en el capítulo tres regresaremos al problema y, como veremos, el cálculo de sus
probabilidad es es demasiado sencillo, si se resuelve por medio de eventos independi entes). Primero, notamos que los puntos
que están en A:
A B
0.2 0.4 0.1
0.3
A B
0.2 0.4 0.1
0.3
Explicación
La probabilidad de la intersección resultó P (A ∩ B ) = 0.4; como P (B ) = 0.5, entonces la parte de B que no pertenece a la intersección vale 0.1. De
manera similar, del valor P ( A ) = 0.6 podemos concluir que la probabilidad para la parte de A, que no está en la intersección, debe ser 0.2. Por último,
la probabilidad para el complemento de la unión vale 0.3. De aquí se pueden calcular las probabilidades deseadas mediante los diagram as de Venn-Euler.
Enseguida, dibujamos el diagrama de Venn-Euler para P ( A −B ) y P (Ac
−B c
), obteniendo los diagramas de la figura 1.10.
S A – B S AC
– BC
Figura 1.10 Representación general de la diferencia A − B y Ac
− Bc
.
Al observar el diagram a de la figura 1.10, la parte sombreada corresponde a P (A −B ) = 0.2 y P (Ac
−B c
)= 0.1, cuyos resultados coinciden con los
encontrados a través de los teoremas.
1.4 Axiomatización de la probabilidad 25
A ={(2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (2, 6), (4, 1), (4, 2), (4, 3), (4, 4), (4, 5), (4, 6),
(6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6)}.
Dichos puntos deben tener la misma probabilidad de ocurrir, puesto que todos se obtienen lanzando el dado dos veces.
Similarmente, los puntos que pertenecen a B deben tener la misma probabilidad de ocurrir (pri mero se lanza el dado una vez y
después la moneda):
B ={(1, s), (1, a), (3, s), (3, a), (5, s), (5, a)}.
Observamos que en los dos casos de puntos muestrales A y B una pareja cualesquiera, considerando un punto por evento,
por ejemplo(2, 1)∈ A y (1, s)∈ B, no han de tener la misma probabilidad de ocurrir, puesto que la probabilidad de que al lanzar
1
el dado resulte 1 es igual a que resulte 2, y son iguales a
6
; mientras que la probabilidad de que al lanzar la moneda resulte sol, la
podemos considerar como 0.5. Es decir:
1
probabilidad de 2:
1
probabilidad de 1:
Para la pareja (2, 1):
6
; para la pareja (1, s):
6
.
°
probabilidad de 1:
1
6
°
probabilidad de s:
1
2
Hasta ahora se ha descompuesto alespacio muestralS en dos eventos A y B,mutuamente excluyentes y se ha demostrado que
los puntos muestrales de S no son equiprobables, pero ¡aún no hemos asignado probabilidades a los puntos muestrales!
Asignación de probabilidades para los puntos
de las parejas de A
Si consideramos un espacio muestral S *, que contenga a los puntos muestrales que correspondan al experimento de lanzar un dado
dos veces,vemos que:
S *={(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (2, 6),
(3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (3, 6), (4, 1), (4, 2), (4, 3), (4, 4), (4, 5), (4, 6),
(5, 1), (5, 2), (5, 3), (5, 4), (5, 5), (5, 6), (6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6)}.
En este caso A ⊂ S *, y como todos los puntos de este espacio muestral tienen la misma probabilidad de ocurrir, puesto que se
obtienen de forma semejante (lanzando el dado dos veces) y la cantidad de puntos muestrales es 36, tenemos que la probabilidad de
cualquier punto del evento A es
1
. Por tanto, de la definición clásica de probabilidad resulta: P( A)=
18
=
1
.
36
Asignación de probabilidades para los puntos
de las parejas de B
Como los eventos A y B son mutuamente excluyentes, por los axiomas 2 y 3 de Kolmogórov:
1= P(S )= P( A° B)= P( A)+ P( B)= 0.5+ P( B).
Despejando la probabilidad del evento B, resulta: P( B)=
1
.
2
36 2
Como ya se mencionó, los puntos B ={(1, s ), (1, a), (3, s ), (3, a), (5, s ), (5, a )} deben tener la misma probabilidad de ocurrir.
Luego, si mbolizando el evento simpl e Ek ={(k , x)}, para k = 1, 3, 5 y x = s, a, ahora con la definición clásica de probabilidad se tiene
P( B)=6 P( Ek )=
1
,despejando P(Ek):
2
P( Ek )=
1
, para k = 1, 3, 5 y x = s, a.
12
Con esto se concluye que los puntos muestrales de S no son equiprobables.
26 CAPÍTULO 1 BAses de LA Pr OBABiLid Ad
1. Sean A y B dos eventos, en un mismo espacio muestral, tales
que P( A)= 0.3, P( B)= 0.3 y P( A∪ B)= 0.4. Calcule:
7. Un aparato electrónico contiene cinco sistemas electróni-
cos,de los cuales dos son realmente defectuosos. Se selec-
a) P( A∩ B) b) P(Ac
∪ Bc
) cionan al azar y al mismo tiempo dos de los cinco sistemas
2. Sean A y B dos eventos, en un mismo espacio muestral, tales
que P( A∪ B)= 0.9. Calcule P(Ac ∩ Bc
).
3. Sean los eventos A y B, en un mismo espacio muestral, tales
que P( A)= 0.5, P( B)= 0.7 y P( A∩ B)= 0.4. Calcule:
para someterlos a pruebas rigurosas y clasificarlos como de-
fectuosos o no defectuosos. Encuentre el espacio muestral y
los eventos en cada caso si la probabilidad de que los dos
sistemas probados sean buenos
a) P(Ac ∩ B) b) P( Ac − B). a) Si no hay diferencia entre buenos,ni entre defectuosos
4. Sean A y B dos eventos mutuamente excluyentes tales que
P( A)= 0.3 y P( B)= 0.6. Calcule P(Ac ∩ Bc
).
5. Sean A y B dos eventos mutuamente excluyentes tales que
P( A)= 0.4. Calcule P( Ac ∪ B).
6. Suponga que se lanzan tres monedas perfectas y se observa
la cantidad de águilas que quedan hacia arriba. Establezca
los puntos muestrales de este experimento y
a) Asigne una probabilidad razonable a cada punto.¿Son
los puntos igualmente probables?
(son indistinguibles entre sí).
b) Si existen diferencias entre buenos y entre defectuosos
(son distinguibles entre sí).
8. Resuelva el ejercicio anterior cuando la selección se realiza
analizando o seleccionando un sistema tras otro. Comente
los resultados obtenidos en ambos casos.
9. Sean los eventos A, B y C en un mismo espacio mues-
tral, tales que A y B son mutuamente excluyentes, con
P (A∪ B ∪C )
c
= 0.1, P( A∩C )= 0.2, P(B ∩C )= 0.1 y P(C)
b) Sea A el evento de observar exactamente una vez águila y
B el evento de observar al menos un águila. Obtenga los
puntos muestrales de A y B y calcule P(Ac ∩ B).
= 0.4. Calcule: P( A∪ B). Sugerencia: Trace un diagrama
de Venn-Euler.
Ejerciciosde repaso
Preguntas de autoevaluación
1.1 Explique qué es un modelo matemático.
1.2 ¿Cómo se le llama al proceso por el que se describen los
resultados de un modelo probabilístico?
1.3 ¿Cómo se le llama al conjunto de todos los resultados po-
b) A∪ B ⊂ A y A∪ B ⊂ B
c) A − B ⊂ A
d ) A − B ⊂ B
e) A ⊂ A − B
f ) Ac
∩ A = S
1.12 Defina una partición del espacio muestral.
1.4
1.5
sibles de un experimento estocástico?
¿Cómo se le llama al conjunto que representa a una parte
de todos los resultados posibles (pueden ser todos los re-
sultados o ninguno) de un experimento estocástico?
¿Cuáles son las corrientes de probabilidad más comunes?
1.13 Escriba las leyes de De Morgan de álgebra de eventos.
1.14 Describa los tres axiomas de Kolmogórov para álgebra
finita.
1.15 Sean A y B dos eventos cualesquiera de un mismo espa-
cio muestral. Determine qué incisos son correctos.
1.6 Si una persona asigna probabilidades a eventos depen-
diendo de su experiencia para realizar una toma de
decisión, estaría empleando la corrient e de probabilidad
llamada .
1.7 Cuando la probabilidad de ocurrencia de un evento se
a) P( A∩ B)= P( A)
b) P( A∩ B)≥ P( A)
c) P( A∩ B)≤ P( A)
d) P( Ac )= P( A)−1
e) P( A)=1− P( Ac )
asigna antes que se realice el experimento se le llama pro-
babilidad de tipo .
1.8 Explique cuándo dos eventos son mutuamente exclu-
yentes.
1.9 Enumere las operaciones fundamentales entre eventos.
1.10 El resultado de operaciones entre eventos siempre debe
resultar otro .
1.11 Sean A y B dos eventos cualesquiera de un mismo espa-
cio muestral. Determinar qué incisos son correctos.
1.16 Responda la siguiente cuestión y justifique su respuesta:
¿si el evento E está constituido de solo elementos negati-
vos, entonces su probabilidad tendrá que ser negativa?
1.17 ¿Qué evento es un subevento de cualquier otro evento?
1.18 A ∪ B = ∅, solo puede ocurrir si A y B son .
1.19 A ∩ B = ∅ solo puede ocurrir si:
1.20 Si A y B son dos eventos mutuamente excluyentes, ¿qué
incisos son correctos?
a) Ac
y B también son mutuamente excluyentes.
a) A∩ B ⊂ A y A∩ B ⊂ B b) Ac
y B c
también son mutuamente excluyentes.
Ejercicios 1.4
Ejercicios de repaso 27
c) P( A∪ B)= P( A)+ P( B) . a) P(Ac ∩ Bc
) b) P(Ac − B) .
d ) P( A∩ B)= P( A)− P( B) . 1.28 Sean A y B dos eventos mutuamente excluyentes tales
e) B es un subconjunto de Ac
. que P(A) = x y P(B) = y, con 0 < x + y < 1 y x, y > 0.
f ) P( A− B)= 0 .
g) P( A− B)= P( A) . Calcule P((A∩ B)
c
).
1.21 En términos generales, el cálculo de probabilidades es
equivalente a:
a) Predecir el futuro.
b) Encontrar valores numéricos que permitan cuantifi-
car la incertidumbre.
c) Establecer relaciones causa-efecto para fenómenos
naturales o experimentales.
d) Ninguna de las anteriores.
1.22 Indique si las siguientes afirmaciones son verdaderas o
falsas y explique su respuesta.
a) El evento A =[0,1] es un ejemplo de un evento infi-
nito contable, porque contiene un primer y último
elemento.
b) El evento A ={1, 2, 3, …} es un ejemplo de un even-
to infinito, por tanto no es contable, además pode-
mos agregarque no es contable; porque no contiene
un último elemento.
1.23 En la formulación de las siguientes preguntas existe un
error, indique cuál es.
Nota: ¡No se pide resolver el problema!
a) Sean A y B dos eventos mutuamente excluyentes
con: P(A) = 0.5, P(Bc
) = 0.6 y P(A ∩ B) = 0.1. Calcu-
le P(A ∪ B).
b) Sean A y B dos eventos que forman una partición
del espacio muestral, con: P(A) = 0.5 y P(B) = 0.3.
Calcule P(A ∪ B).
c) Sean A, B y C eventos que forman una partición del
espacio muestral S, con: P(A) = 0.4, P(B) = 0.6 y
P(C) = 0.3. Calcule P(A ∪ B ∪ C).
d) ) ¿Si A y B son dos eventos mutuamente
excluyentes, entonces en general P( A∩ B)= P( A)P(
B)?
Ejercicios complementarios con grado
de dificultad uno
1.24 Dado el espacio muestral S ={0, 1, … , 20}, los eventos
1.29 Sean los eventos A y B, mutuamente excluyentes, con
P(Ac
) = 0.6 y P(Bc
) = 0.7. Calcule P(A ∪ B).
1.30 Sean los eventos A y B, en un mismo espacio muestral,
tales que P(A ∪ B) = 0.4. Calcule P(Ac
∩ B c
).
1.31 Sean A y B dos eventos,en un mismo espacio muestral,
tales que P(A) = 0.7, P(A ∪ B) = 0.9 y P(B) = 0.6. Calcu-
le P(Ac
∪ B).
1.32 Sean los eventos A y B, en un mismo espacio muestral,
tales que P(A) = 0.7, P(B c
) = 0.6 y P(A ∪ B) = 0.9. C al-
cule:
a) P(Ac
∩ B) b) P(Ac
∩ B c
)
1.33 ¿Qué corriente de probabilidad será conveniente em-
plearpara la asignación de un valornumérico al suceso
de que Miguel Pérez se case este año?
1.34 El administrador de la logística de la red de distribución
de una línea de autobuses tiene que tomar la decisión de
cómo distribuir dos de cinco autobuses que viajen a
Guadalajara. R epresente por a1 , a2 , a3 , a4 y a5 a los cinco
autobuses y contesta lo siguiente.
a) Describa al espacio muestraldel experimento al se-
leccionar dos autobuses para viajar a Guadalajara.
b) Serán los puntos muéstrales equiprobables. Justifi-
que su respuesta.
1.35 Suponga que s e lanzan dos dados. Calcule la probabilidad
de que la suma de los números de las caras que quedan
hacia arriba sea 7.
1.36 Suponga que se lanzan tres monedas no cargadas y que
se observa la cantidad de águilas que quedan hacia arri-
ba. Establ ezca los puntos muestrales de este experi men -
to y asigne una probabilidad razonable a cada punto. Sea
A el evento de observar exactamente un águila y B el
evento de observar al menos un águila. Calcule P(A ∩ B).
1.37 Sean los eventos A ={x |x es un profesionista de Méxi-
co y es administrador} y B ={x |x es un profesionista
de México y sabe finanzas}; el espacio muestral se refiere
a todos los profesionistas de México, según datos del
A={2, 4, 5, 6, 7, 8, 9, 11, 12, 13, 15},
y C ={2, 3, 5, 7, 11}, encuentre:
B ={0, 2, 4, … , 20} censo de 2005, 10% de los profesionistas mexicanos son
administradores; 30% de los profesionistas mexicanos sa-
a) Ac ∩ Bc b) (Ac ∩ B)
c
∪C ben finanzas, pero solo 7% de los profesionistas son ad-
1.25 Si A es el evento formado por las vocales, indique cuál de
las siguientes familias representa una partición de A.
ministradores y saben finanzas.
a) ¿Son los eventos A y B mutuamente excluyentes? Jus-
a) {{a, e},{i, o}, u} c) {a,{e, i, o, u}} tifique su respuesta.
b
b) {{a, e},{i, o},{u}} d) {a, e, i, {o, u}}
) Calcule la probabilidad de que al seleccionar aleato-
riamente a un profesionista mexicano sea adminis-
1.26 Suponga que se lanzan cinco monedas no cargadas y ob-
servamos la cantidad de águilas que quedan hacia arriba.
Establezca los elementos del espacio muestral de este ex-
perimento.
1.27 Sean A y B eventos mutuamente excluyentes, tales que
P( A)= 0.3, P(Bc
)= 0.6. Calcule:
trador o conozca de finanzas.
c) Calcule l a probabilidad de que al seleccionar aleato-
riamente a un profesionista mexicano no sea admi-
nistrador, pero que sí conozca de finanzas.
1.38 Dos ajedrecistas, I y II, tienen la misma capacidad y jue -
gan el uno contra el otro una serie de 5 partidas. En cada
28 CAPÍTULO 1 BAses de LA Pr OBABiLid Ad
partida, no podrá haber tabl as, ya que en caso contrario,
se jugarán a cinco minutos, hasta obtener un ganador de
la partida. S e registra el resultado de cada partida. Sea A
el evento de que el ajedrecista I gane la serie (gane al me-
nos tres veces,en caso de que gane tres partidas la serie
se termina), encuentre P(A).
Ejercicios complementarios con grado
de dificultad dos
1.45 Suponga que se lanzan dos monedas cargadas de for-
ma contrari a, es decir, considérese que la probabilidad de
que resulte águila en una moneda es 0.3, en dicho caso l a
probabilidad de que resulte sol en la otra moneda será
también 0.3. Observe las combinaciones de todos los re -
sultados posibles que pueden ocurrir con las dos mo-
nedas.
a) Establezca los puntos muestrales de este experimento.
b) Asigne una probabilidad razonable a cada punto.
1.39 Los eventos A, B y C del espacio muestral S, son tales que
A y B forman una partición de C , P(C c
) = 0.2 y P(C ) =
4P(A). Calcule P(A), P(B) y P(C ).
1.40 Si A y B son eventos diferentes definidos en el mismo es-
pacio muestral, y si P(A ∩ B) = 0.4 y P(Ac
∩ B c
) = 0.1
Determine P (A∩ Bc
)∪(Ac ∩ B) .
1.46
¿Son los puntos igualmente probables?
Suponga que se lanzan dos monedas cargadas de forma
contraria es decir, considérese que la probabilidad de que
resulte águila en una moneda es 0.3; en dicho caso l a pro-
babilidad de que resulte solen la otra moneda será tam-
bién 0.3. Observe la cantidad de águilas que quedan
hacia arriba.
1.41 Sean los eventos A, B y C en un mismo espacio mues-
tral, tales que A y B son mutuamente excluyentes, con
P (A∪ B ∪C )
c
= 0.1, P( A∩C )= 0.2, P(B ∩C )= 0.1,
a) Establezca los puntos muestrales de este experimento.
b) Asigne una probabilidad razonable a cada punto. ¿Son
los puntos igualmente probables?
c) Sea A el evento de observar exactamente una vez
P(C) = 0.6, calcule: P(A) y P(B) si
a) P(A) = P(B).
b) P(A) = 2P(B).
c) 2P(A) = P(B).
1.42 Los eventos A, B y C del espacio muestral S, son tales que
A y B son mutuamente excluyentes, P(A) + P(B) = 1,
P(C) = 0.3, P(A ∩ C) = 0.1 y P(B) = 4P(A). C alcule P(A)
y P(B).
1.43 Un experimento consiste en lanzar un dado no cargado
una vezy, si sale un número mayor a 2 entonces se lan-
za una moneda no cargada. Si el lanzamiento del dado es
un número menor o igual a 2, entonces se lanza por últi -
ma vez el dado. Asigne probabilidades a los puntos mues-
trales e indique, si son o no equiprobables.
1.44 Hay cuatro billetes de 200 pesos cada uno, de igual aspec-
to, dos de los cuales son falsos, y se va a pagar una cuenta
con dos de esos billetes. La cuent a la cobra el encargado,
eligiendo al mismo tiempo dos de los cuatro billetes al
azar. Encuentre la probabilidad de que el encargado elija
al menos uno de los billetes falsos.
águila y B el evento de observar al menos un águila.
Obtenga los puntos muestrales de A y B.
d) A partir de la respuesta en c), calcule P(A), P(B),
P(A ∩ B) y P(Ac
∩ B).
1.47 Una constructora que trabaja para Casas ARPA ha calcu-
lado con datos históricos que cuando inicia dos casas al
mismo tiempo, la probabilidad de que termine a tiempo
ambas casas es 0.3, mientras que la probabilidad de que
termine a tiempo al menos una de las dos casas es de
0.95. ¿Cuál es la probabilidad de que en estas condicio-
nes construya a tiempo exactamente una casa?
1.48 El encargado de llevar a cabo la logística de la red de dis-
tribución de una empresa repartidora de refrescos en la
Ciudad de México ha calculado que la probabilidad de
retrasos en su reparto de los días viernes y sábado tiene
los siguientes valores. La probabilidad de retrasarse exac-
tamente un día es de 0.3, mientras que la probabilidad de
retrasarse al menos uno de los dos días es de 0.7. ¿Cuál es
la probabilidad de que en la siguient e semana se retrasen
en ambos días?
1.49 Supóngase el problema anterior, pero en donde un repartidor que trabaja de lunes a viernes tiene dos causas por las que
puede retrasar sus repartos. Una es por el día y tráfico de la semana, La otra causa se debe a manifestaciones que le ocasio -
nan retrasos de hasta una hora, entre una y dos horas y entre dos y tres horas. Las probabilidades se muestran en la tabla 1.2.
Tabla 1.2
Día de la semana
Manifestaciones Lunes Martes Miércoles Jueves Viernes
0-1 hora 0.04 0.05 0.10 0.10 0.20
1-2 horas 0.02 0.03 0.08 0.10 0.10
2-3 horas 0.00 0.01 0.05 0.08 0.04
a) ¿Cuál es probabilidad de que el trabajador se retrase una hora el miércoles?
b) ¿Cuál es la probabilidad de que el trabajador se retrase al menos una hora cada día?
c) ¿Cuál es la probabilidad de que el trabajador se retrase menos de una hora los primeros tres días de la semana?
1.50 El ingeniero de control de calidad de una fábrica de refri-
geradores tiene que revisar tres de seis refrigeradores en
donde hay dos defectuosos.
a) ¿Cuál es la probabilidad de que en los tres revisados
estén los dos defectuosos?
b) ¿Cuál es la probabilidad de que entre los tres revisa-
dos no exista ningún defectuoso?
Proyectos del capítulo 1 29
1.54 Sean A y B dos eventos tales que P(A) = 0.35 y P(B)
= 0.85, determine el rango de valores que puede tomar
P(A ∩ B) y las condiciones para sus valores máximos y
mínimos.
1.55 Los eventos A, B y C del espacio muestral S, son tales
que: A y B son mutuamente excluyentes P(B) = 0.4,
P °
( A∪ B ∪C )c = 0.1 , P(A ∩ C) = 0.1 y P(A) = 3P(C).
Ejercicios complementarios con grado
de dificultad tres
1.56
Calcule P(A) y P(C).
Demuestre que para cualquiera de dos eventos A y B,la
probabilidad que exactamente uno de los dos ocurra está
dada por la expresión P( A)+ P( B)−2 P( A∩ B).
1.51 Sean los eventos A, B y C, tales que, S = A° B ° C ,
P (A∩ B ∩C )
c
= 0.9 , P(C) = 0.6, P(A ∩ B) = 0.15, 1.57 Sean A y B dos eventos, demuestre que Ac
∩ B y A ∩ B c
son mutuamente excluyentes.
1.58 Para cualesquier eventos A , A , …, A , demuestre que
P(A ∩ C) = 0.2, P(B ∩ C) = 0.1, y P(A) = 2P(B). Calcule
P(A) y P(B). ° n n
1 2 n
a) P ∪ Ai ≤∑P( Ai )
1.52 Los eventos A, B y C forman una partición del espa-
cio muestral S. En estas condiciones asigne subjetiva-
i=1 i=1
° n n
mente probabilidades adecuadas a los eventos y calcule b) P ∩ Ai ≥∑P( Ai )−(n−1)
P ( A∪C )−( Ac − Bc ) . i=1 i=1
1.53 Sean los eventos A, B y C correspondientes a un mismo c) P
° n
A ≥1−
n
P( Ac ) .
espacio muestral, tales que B y C son mutuamente exclu-
yentes y A y B también son mutuamente excluyentes:
∩
i=1
n
∑ i
i=1
n
° c d) P Ai =1− P Ac .
P(A ∩ C) = 0.2, P ( A∪ B ∪C ) = 0.2 y P(A) = P(B) =
2P(C). Calcule P(A), P(B) y P(C).
∩
i=1 i=1
i
Proyectos del capítulo 1
I. En un circuito seri e como el mostrado en la figura 1.1 se mide la caída de voltaje en la resistencia con un voltímetro de alt a pre-
cisión, durante intervalos de tres minutos, obteniendo las mediciones siguientes en volts.
119.95 119.98 120.37 119.50 119.74 118.03 120.04 119.37 121.07 120.08
120.54 119.89 119.49 118.99 120.99 119.57 121.68 118.35 120.17 118.84
118.38 119.21 118.98 120.65 119.27 118.51 121.22 118.95 120.29 120.72
119.46 119.69 120.92 120.73 119.96 118.41 120.14 120.65 120.31 120.44
121.25 119.47 121.09 119.74 121.95 120.17 120.40 120.60 119.13 119.26
121.33 120.58 120.27 121.38 120.80 118.84 120.45 120.31 120.48 119.05
Resuelva los siguientes incisos.
a) ¿Cuál es la probabilidad de que la caída de voltaje en la resistencia sea mayor a 120.15 volts?
b) ¿Cuál es la probabilidad de que la caída de voltaje en la resistencia esté fuera de los rangos especificados 120 ± 0.25 para el
circuito? Defina cuál sería el espacio muestral en este modelo.
c) ¿Cuál será la probabilidad de que la caída de voltaje en la resistencia sea mayor a 122 volts? ¿Qué significa este resultado?
d) Explique qué tipo de corriente utilizó en los incisos anteriores para asignar probabilidades y, ¿por qué no utilizó a las otras
corrientes de probabilidad?
II. En la hoja “Divorcios por entidad” del archivo Datos de divorcios.xls que se encuentra en el C D -R OM, está una base de datos
extraída del INEGI de todos los divorcios registrados en la República Mexicana para cada estado de 1985 a 2011. Con esta infor-
mación:
i
° °

ajuas.docx

  • 1.
    Probabilidad y estadística Aplicaciones a laingeniería y las ciencias Eduardo Gutiérrez González Profesor de matemáticas de la UPIICSA–IPN Sección de Estudios de Posgrado e Investigación Olga Vladimirovna Panteleeva Profesora de matemáticas de la UACH Área de matemáticas PRIMERA EDICIÓN MÉXICO, 2014
  • 2.
    Dirección editorial: JavierEnrique Callejas Coordinadora editorial: Estela Delfín Ramírez Supervisor de preprensa: Gerardo Briones González Diseño de portada: Juan Bernardo Rosado Solís/Signx Imágenes: Adrian Zamorategui Berber Fotografías: © Thinkstockphoto Revisión Técnica: Alex Polo Velázquez Universidad Autónoma Metropolitana-Azcapotzalco Probabilidad y estadística. Aplicaciones a la ingeniería y las ciencias Derechos reservados: © 2014, Eduardo Gutiérrez Gónzalez/ Olga Vladimirovna Panteleeva © 2014, Grupo Editorial Patria, S.A. de C.V. Renacimiento 180, Colonia San Juan Tlihuaca Azcapotzalco, México D. F. Miembro de la Cámara Nacional de la Industrial Editorial Mexicana Registro Núm. 43 ISBN: 978-607-438-766-7 Queda prohibida la reproducción o transmisión total o parcial del contenido de la presenta obra en cuales- quiera formas, sean electrónicas o mecánicas, sin el consentimiento previo y por escrito del editor. Impreso en México Printed in Mexico Primera edición: 2014 info editorialpatria.com.mx www.editorialpatria.com.mx
  • 3.
    Eduardo Gutiérrez González Doctoren Ciencias (f ísico-matemáticas), realizó estudios de licenciatura, maestría y doctorado en la Universidad Estatal de San Petersburgo, Federación Rusa en análisis matemático de 1984-1994. Doctor en Ciencias (estadística), realizó estudios de maestría de 2002-2004 y doctorado de 2005-2009 en el Colegio de Posgraduados-México en el programa en Estadística. Maestro en ingeniería, realizó estudios de maestría en el Posgrado de Ingeniería de la UNAM-México, en Ingeniería de Sistemas en el campo disciplinario de Investigación de Operaciones de 2004-2006. Actualmente académico de tiempo completo en la Sección de Estudios de Posgrado e Investigación deUPIICSA-IPN,becario por la DEDICT-COFAA y E.D.D. Olga Vladimirovna Panteleeva Maestra en Ciencias Físico-Matemáticas (matemáticas aplicadas), realizó estudios de licenciatura y maestría en la Universidad Es - tatal de San Petersburgo, Federación Rusa, en Matemáticas aplicadas y procesos de control de 1986-1992. Doctora en Ciencias (esta- dística), realizó estudios de maestría de 2005-2007 y doctorado de 2008-2012 en el Colegio de Posgraduados-México en el programa en Estadística. Actualmente académica de tiempo completo en la Universidad Autónoma de Chapingo en el área de matemáticas. Agradecimientos Cuando se termina una obra existen infinidad de compañeros y colegas a los que se les debe en cierta forma la conclusión de e sta y sin hacer a un lado a nadie, agradecemos infinitamente a todos nuestros compañeros de trabajo, tanto de las Academias de Matemá- ticas como de Investigación de Operaciones y de la Sección de Graduados de UPIICSA -IPN, así como a los compañeros del Programa en Estadística del colegio de Posgraduados campus montecillo, donde adquirimos grandes conocimientos sobre la probabilidad y la estadística que han hecho posible la escritura de este texto. Muy en particular agradecemos a los compañeros del grupo Gitam (Gru- po de Investigación y Trabajos Académicos de Matemáticas, de las academias de matemáticas de UPIICSA -IPN, fundado en 2013) a través de la línea 2 de investigación sobre probabilidad y estadística por las aportaciones obtenidas durante el Seminario de Probabi- lidad y Estadística (2013--), así como a los integrantes del Diplomado en Formación Docente en Probabilidad y Estadística con vigen- cia 2013-2015. Por último, agradecemos a todos los revisores de la editorial cuyas contribuciones han sido inmejorables para que el texto tenga una mejor presentación y calidad en su desarrollo. Eduardo Gutiérrez y Olga Vladimirovna
  • 4.
    Palabras de losautores En términos generales el libro está divido en tres partes. En la primera trabajamos con los fenómenos probabilísticos; en la se- gunda con la estadística tanto descriptiva como inferencial y en la tercera los modelos de regresión lineales. Con estas tres partes, el libro se perfecciona con un avance completo de los con- ceptos básicos que tienen mayor aplicación en problemas prác- ticos de las diferentes esferas de la ingeniería. La primera parte del libro inicia con la explicación de las diferentes corrientes que existen en la asignación de probabili- dades a un suceso. Durante los primeros tres capítulos se realiza una construcción matemática de la teoría de las probabilidades, apoyada con los espacios muestrales, el álgebra de eventos, téc- nicas de conteo, probabilidad condicional y eventos indepen- dientes. En los capítulos 4 al 8 se introduce al estudio de las funcio- nes al cálculo de probabilidades, por medio del concepto de variables aleatorias. Es decir, de manera más formal se inicia el uso de funciones, tanto discretas como continuas, en el de- sarrollo de la teoría de las probabilidades. El paso que se da en estos capítulos es uno de los más trascendentales en el desarrollo de la obra, debido a la introducción a las funciones en el es- tudio de las probabilidades, formaliza la creación de una ver- dadera ciencia matemática de las probabilidades. El capítulo 8 tiene una relevancia teórica que forma el vínculo para pasar de la probabilidad a la estadística. En este capítulo se revisan las transformaciones de las variables aleatorias por medio de los métodos más comunes como: la función de distribución acumu- lada,la función generatriz de momento y la técnica de los ja- cobianos. Con estas técnicas se sustenta la demostración de la mayoría de fórmulas que utilizamos en la segunda parte del tex- to sobrela estadísticainferencial. La segunda parte del libro la dedicamos al estudio dela estadística; se inicia en los capítulos 9 y 10 con la parte descrip- tiva. En el capítulo 9 revisamos la estadística descriptiva para da- tos no agrupados, donde analizamos las diferentes medidas, tanto centrales como de desviación. Dentro de las medidas centrales estudiamos la media, mediana, moda, media geométrica, me- dia ponderada, media armónica y cuantiles. En las medidas de desviación analizamos el rango, la varianza y la desviación es- tándar. Revisamos los coeficientes de variación y covarianza, y los parámetros de forma para un conjunto de datos; al final se revisan algunas aplicaciones delos datos no agrupados a in- versiones. En el capítulo 10 realizamos un trabajo bastante completo sobre la estadística descriptiva para datos agrupados. Estudiamos las clases de frecuencias y sus medidas centrales (antes mencionadas) y cuantiles. Agregamos un apartado para las gráficas de las clases de frecuencia, con las que se analizan las distribuciones de los datos; simetría, sesgo y curtosis. Por úl- timo, revisamos la técnica gráfica Q-Q, para realizar una prue- ba de bondad de ajuste. El estudio sobre las distribuciones muestrales lo iniciamos en el capítulo 11 donde se explica a detalle sobre las distribucio- nes muestrales de la media y diferencia de medias para varia- bles normales. Ampliamos las distribuciones muestrales para la suma y el promedio de las distribuciones más comunes estu- diadas en la teoría de las probabilidades. Es decir, en el caso dis- creto, hablamos sobre las distribuciones Bernoulli, binomial, geométrica, Poisson, etc., mientras que en el caso continuo nos referimos a la familia exponencial, beta, Pareto, etc. Continua- mos el capítulo con una breveintroducción sobrelas estadís- ticas de orden. Al final, hacemos una revisión detallada del Teorema Central del Límite en sus diferentes presentaciones, media,suma y distribuciones específicas. En el capítulo 12 se habla de manera breve sobre los estima- dores puntuales y sus propiedades más importantes: suficiencia, insesgamiento, eficiencia relativa y varianza mínima. Veremos algunas propiedades asintóticas deseables de una sucesión de estimadores. Después, revisamos con mucho detalle los inter- valos de confianza. Iniciamos con los conceptos básicos sobre las propiedades de un buen intervalo de confianza, con estos conceptos revisamos a detalle la parte metodológica de los intervalos de confianza para los parámetros de poblaciones normales o aproximadamente normales, para una población y comparación de estas. Al final con intervalos de confianza para proporciones y diferencia de proporciones en muestras grandes. En el capítulo 13 hacemos una revisión similar a la del capí- tulo 12, pero ahora utilizamos las pruebas de hipótesis. Se inicia con la descripción de los conceptos básicos sobre pruebas de hipótesis y su metodología. Primero revisamos qué es una hipó- tesis estadística y cuáles son los errores que cometemos al lle- var a cabo una prueba. Asimismo, tratamos a detalle la potencia de la prueba. Hacemos un resumen de los casos más comunes en las pruebas de hipótesis: simple contra simple, simple contra Prefacio
  • 5.
    compuesta y compuestacontra compuesta, donde tratamos so- bre la prueba uniformemente más potente. Al final, revisamos a detalle la parte metodológica de las pruebas de hipótesis para los parámetros de poblaciones normales o aproximadamente normales y poblaciones tipo Bernoulli. En la tercera parte del texto en un solo capítulo hacemos una revisión detallada de los modelos de regresión tanto sim- ples como múltiples. En el primer caso explicamos cómo llevar • Toma de decisiones • Evaluación de proyectos • Entre muchas otras Unas palabras del estilo y forma de escritura Prefacio v a cabo un análisis sobre la regresión, desde la construcción de un diagrama de dispersión, hasta los intervalos de confianza y pruebas de hipótesis de los parámetros de regresión. Durante el desarrollo de los resultados de una regresión vemos cómo en- contrar e interpretar su ecuación, cómo obtener predicciones y cómo calcular intervalos de confianza para estas. Con la regresión múltiple ampliamos los modelos a regresiones curvi- líneas, casos con errores multiplicativos y problemas de Cobb- Douglas. Además de explicar a detalle los diferentes problemas que se pueden presentar con las observaciones de una muestra como puede ser la multicolinealidad, datos aberrantes, trans- formaciones Box-Cox para variables de respuesta no normales, etcétera. Sin importar los avances que tengamos en computación y en la teoría dela estadística en los textos metodológicos so- bre aplicaciones de la estadística inferencial se conserva el viejo esquema del uso exclusivo de la distribución normal para las fórmulas y métodos que se acostumbra usar en los intervalos de confianza y prueba de hipótesis. Por otro lado, los textos que hablan sobre las bases teóricas para diferentes tipos de distri- buciones resultan ser demasiado teóricos de manera que a un lector sin formación matemática se le dificulta comprender el desarrollo del libro. En la presente obra damos un enfoque teórico y metodoló- gico. Así, el lector que solo tenga interés en la parte metodológi- ca de la estadística descriptiva e inferencial podrá avanzar en su estudio sin problemas. De manera paralela a la metodología damos un desarrollo teórico de la probabilidad, así como de la estadística descriptiva e inferencial. De esta manera los lectores más avanzados podrán comprender las bases teóricas para la creación de otros estimadores puntuales de los parámetros de poblaciones diferentes a la normal. Es decir, con estas bases los lectores más avanzados estarán en posibilidad de construir in- tervalos de confianza y llevar a cabo pruebas de hipótesis para parámetros de poblaciones diferentes a la normal. Otra aportación de transcendencia de la presente obra con respecto a otras reside en que la parte de probabilidad la mayo- ría de los autores se refieren a esta como un simple escalón para el desarrollo de la estadística. En este texto mostramos parte de su importancia, además de resaltar las aplicaciones actuales de la teoría de las probabilidades, en diferentes áreas de las cien- cias,por ejemplo: • Administración • Ingeniería • Informática • Simulación de sistemas • Control de calidad El estilo de escritura del libro es muy sencillo,muestra con- ceptos que son la base para los desarrollos teóricos. Cada tema tratado en el libro está reforzado por una gran cantidad de ejemplos y ejercicios prácticos, en cada sección abarcan di- ferentes formas de ver un problema (en total se tienen más de 1 600 ejercicios que incluyen más de 2 800 incisos). Las solu- ciones y sugerencias a la mayoría de los problemas están en el CD-ROM y fueron hechas en Excel-Microsoft bajo la con- sideración de todos los dígitos, por estas razones las solucio- nes que obtenga el lector pueden variar ligeramente respecto a las mostradas en el CD-ROM, pero estas variaciones deben ser mínimas. El libro está escrito de la siguiente forma: Cada sección se escribe con el número del capítulo al que pertenece, seguida de un punto y el número correspondiente a la sección dada; se ini- cia con la sección uno en cada capítulo. Ejemplo 4.3, significa la sección 3 del capítulo 4. En el caso de las subsecciones, se utiliza una tipografía diferente para diferenciarlos. Bases teóricas requeridas Para la comprensión de los temas se requiere solo conoci- mientos básicos de los cursos de cálculo diferencial e integral. En algunos temas tal vez no sea necesario el manejo de las demostraciones, pero en los ejemplos y ejercicios correspon- dientes sí. Objetivos del texto El objetivo de este libro es presentar, a los futuros profesionistas, herramientas cuantitativas que puedan aplicar en los problemas que les corresponda resolver dentro de su ámbito laboral, y así llegar a una mejor toma de decisiones. Al final del texto espe- ramos queel lector sea capaz de: • Describir las diferentes corrientes de la probabilidad de eventos. • Definir el concepto de variable aleatoria. • Nombrar los tipos de modelos discretos y continuos más comunes. • Identificarel tipo de modelo al quepertenece el experi- mento. • Ejemplificar las diferentes corrientes de probabilidad y los modelos más comunes de probabilidad. • Resolver problemas para el cálculo de probabilidades. • Aplicar los diferentes modelos en su área de trabajo. • Proponer e investigar experimentos aleatorios para crear modelos probabilísticos.
  • 6.
    vi Prefacio • Describirlas diferentes técnicas de la estadística descripti- va, para llevar a cabo un estudio detallado del comporta- miento de los datos. • Definir los conceptos de parámetros y estadísticos. • Nombrar las diferentes técnicas que se pueden utilizar para realizar inferencias. • Identificar en un problema dado, cuándo un dato se refie- re a un parámetro y cuándo a un estadístico. • Ejemplificar las diferentes técnicas para estimar un pará- metro, tanto puntual como por intervalos. • Aplicar las inferencias a su área laboral. • Experimentar desde el punto de vista de la estadística in- ferencial. • Proponer e investigar experimentos donde se tengan dis- tribuciones muestrales para hacer inferencias con respecto a sus parámetros. • Aplicar la regresión lineal para determinar relaciones en- tre variables y poder lograr hacer predicciones en situacio- nes de su área laboral.
  • 7.
    A g ra d e c i m i e n t o s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii Prefacio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv CAPÍTULO 1 Bases de la probabilidad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Modelos determinísticos y probabilísticos . . . . . . . . . . . . . . . . . . . . 3 1.2 Interpretaciones de la probabilidad . . . . . . . . . . . . . . . . . . . . . . . . . 8 Corriente frecuentista . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Corriente clásica (a priori ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Corriente subjetivista . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Corriente bayesiana (a posteriori ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.3 Álgebra de e v e n t o s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Conceptos fundamentales de eventos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Relaciones fundamentales entre eventos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Diagramas de V e n n - E u l e r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Operaciones fundamentales entre e v e n t o s . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Particiones de eventos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Generalización de la unión e intersección de e v e n t o s . . . . . . . . . . . . . . . . . . . . 18 Leyes del álgebra de e v e n t o s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 1.4 Axiomatización de la p r o b a b ili d a d . . . . . . . . . . . . . . . . . . . . . . . . . . 21 CAPÍTULO 2 Técnicas de conteo y probabilidad . . . . . . . . . . . . . . . . . . . . . . . 31 2.1 Regla de la mu lt i p l i c a ci ó n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.2 Diagrama de árbol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 2.3 Arreglos con y sin r e p e t i c i ó n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Arreglos con repetición (reemplazo) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Arreglos sin repetición: p e r m u t a c i o n e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Permutaciones con elementos indistinguibles . . . . . . . . . . . . . . . . . . . . . . . . . 37 Permutaciones c i r c u l a r e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Contenido
  • 8.
    viii Contenido k 2.4 Combinaciones........................................................................................39 Propiedades en el cálculo de Cn.....................................................................40 Combinatorias multinomiales .......................................................................41 2.5 Regla de la suma.....................................................................................42 2.6 Aplicación de las técnicas de conteo a la probabilidad..........................46 Probabilidad condicional ..........................................................59 3.1 Probabilidad condicional.......................................................................60 Comprobación de los axiomas de Kolmogórov para P (A B )..................................................61 Tabla de probabilidad conjunta ...................................................................................................62 3.2 Regla de la multiplicación de probabilidades......................................65 Generalización de la regla de multiplicación de probabilidades .....................................66 Empleo de los diagramas de árbol en la probabilidad condicional ................................67 3.3 Teorema de Bayes ...................................................................................70 3.4 Eventos independientes........................................................................78 Elecciones sin reemplazo en poblaciones grandes ............................................................81 Generalización de eventos independientes ....................................................81 Eventos independientes aplicados a circuitos ................................................83 Variables aleatorias discretas.....................................................95 4.1 Variables aleatorias................................................................................96 Generalización de la asignación de probabilidades a los valores de la variable . 98 4.2 Variables aleatorias discretas .............................................................99 Distribución de probabilidad .........................................................................99 4.3 Función de una variable aleatoria discreta........................................103 4.4 Valor esperado de una vad...................................................................105 Propiedades del valor esperado de una vad .................................................106 4.5 Variancia de una vad............................................................................108 Propiedades de la variancia de una vad .......................................................109 4.6 Generadores de números aleatorios discretos .....................................114 Modelos discretos de probabilidad ..........................................123 5.1 Modelo uniforme discreto ...................................................................124 Cálculo de probabilidades ..........................................................................125 CAPÍTULO 3 CAPÍTULO 4 CAPÍTULO 5
  • 9.
    Contenido ix 5.2 Modelosde Bernoulli y binomial . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 Notación de la función de distribución acumulada . . . . . . . . . . . . . . . . . . . . . . 129 Cálculo de probabilidades de los modelos binomiales y uso de tablas binomiales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 Modelos “aproximadamente binomiales” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 5.3 Modelo g e o m é t r i c o . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 Cálculo de probabilidades de un modelo geométrico . . . . . . . . . . . . . . . . . . . . 137 5.4 Modelo de Pascal o binomial negativa . . . . . . . . . . . . . . . . . . . . . . 139 5.5 Modelo hipergeométrico . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 Aproximación hipergeométrica por binomial. . . . . . . . . . . . . . . . . . . . . . . . . . . 146 5.6 Modelo de Poisson . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 Cálculo de probabilidades de modelos de Poisson y uso de tablas . . . . . . . . . . 150 Aproximación de la binomial por Poisson . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 CAPÍTULO 6 Variables aleatorias continuas . . . . . . . . . . . . . . . . . . . . . . . . . . 165 6.1 Variables aleatorias continuas. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 Función de densidad de probabilidad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 Función acumulada de una variable aleatoria continua . . . . . . . . . . . . . . . . . . 169 Propiedades de una función de distribución acumulada . . . . . . . . . . . . . . . . . . 169 Cálculo de probabilidades mediante la función de distribución acumulada . . . . 172 6.2 Valor esperado y variancia de una variable aleatoria continua . . . . 174 Propiedades del valor esperado de una vac . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 Variancia de una variable aleatoria continua. . . . . . . . . . . . . . . . . . . . . . . . . . . 174 Propiedades de la variancia de una vac . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 6.3 Desigualdad de Ch e b ysh e v . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177 6.4 Generadores de números aleatorios con la función de distribución acumulada, caso continuo . . . . . . . . . . . . . . . . . . . 179 CAPÍTULO 7 Modelos continuos de probabilidad . . . . . . . . . . . . . . . . . . . . . . 189 7.1 Modelo uniforme continuo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190 7.2 Modelo triangular . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 7.3 Modelo exponencial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197 Relación entre las distribuciones exponencial y de Poisson . . . . . . . . . . . . . . . 200 7.4 Modelo normal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201 Cálculo de probabilidades . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
  • 10.
    x Contenido Propiedades dela distribución normal estándar ...........................................205 Uso de tablas de la función acumulada ........................................................205 Uso de tablas porcentuales ........................................................................208 7.5 Aproximación de la binomial por la normal........................................211 7.6 Modelos de probabilidad tipo gamma ................................................213 Propiedades de la función gamma .............................................................214 7.7 Modelos de probabilidad tipo Erlang ..................................................217 7.8 Modelos de probabilidad tipo Weibull ........................................................217 7.9 Modelos lognormal ...............................................................................220 7.10 Modelos de probabilidad tipo beta......................................................222 7.11 Distribución ji cuadrada.......................................................................226 Uso de tablas de la distribución ji cuadrada ..................................................226 7.12 Distribución t-Student..........................................................................228 Uso de tablas de la distribución t-Student.....................................................228 7.13 Distribución F..........................................................................................230 Uso de tablas de la distribución F...............................................................230 Variables aleatorias conjuntas y transformaciones ...........................241 8.1 Multivariables discretas.......................................................................242 Distribución de probabilidad conjunta discreta..............................................242 Función de distribución acumulada............................................................243 Función de probabilidad marginal ..............................................................245 Función de probabilidad condicional..........................................................246 Variables aleatorias independientes .............................................................246 Valor esperado ............................................................................................248 Covariancia..................................................................................................249 Distribución multinomial..............................................................................254 8.2 Multivariables continuas......................................................................255 8.3 Transformación de variables con la función de distribución acumulada...............................................................................................265 Caso discreto...............................................................................................265 Caso continuo .............................................................................................266 8.4 Funciones generadoras de momentos ..............................................267 Momentos....................................................................................................267 Función generatriz de momentos...............................................................269 Función generatriz de momentos y variables independientes ......................................272 CAPÍTULO 8
  • 11.
    Contenido xi n 8.5 Técnicade jacobianos para transformar variables aleatorias.................273 Transformaciones uno a uno .....................................................................274 Transformaciones que no son uno a uno .....................................................279 8.6 Transformaciones y relaciones entre normales χ2 , t y F.........................281 CAPÍTULO 9 Estadística descriptiva para datos no agrupados . . . . . . . . . . . . 287 9.1 Estadística . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289 9.2 Población y muestra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289 Probabilidad contra estadística . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290 Caracteres y variables estadísticas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290 Escalas de medición de una variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291 Escalas de medidas cuantitativas o métricas . . . . . . . . . . . . . . . . . . . . . . . . . . 292 9.3 Técnicas de mu e s t r e o . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294 Muestreo aleatorio simple . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294 Muestreo estratificado . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295 Muestreo sistemático con iniciación aleatoria . . . . . . . . . . . . . . . . . . . . . . . . . 296 Muestreo por c o n g l o m e r a d o s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296 Tamaño de la muestra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296 Uso de tablas de números aleatorios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299 9.4 Parámetros y e st a d í s t i co s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300 9.5 Medidas centrales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300 La media . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300 La mediana . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302 La moda . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303 Otros valores medios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304 9.6 Cuantiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307 9.7 Medidas de dispersión . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310 Rango . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310 Variancia y desviación estándar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310 Desviación media. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312 Rangos intercuantiles o intercuantílicos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313 Coeficiente de variación y covarianza . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314 9.8 Parámetros de forma en la distribución de la muestra . . . . . . . . . . 318 9.9 Aplicación de las medidas para datos no agrupados a inversiones . 323 Estadística descriptiva para datos agrupados.......................................333 10.1 Clases de frecuencia ...........................................................................334 Cálculo de las frecuencias acumuladas .......................................................335 CAPÍTULO 10
  • 12.
    xii Contenido Distribución defrecuencias para variables cualitativas ...................................................336 Distribución de frecuencias para variables cuantitativas.................................................336 10.2 Medidas centrales en clases de frecuencia...........................................341 Media por clases de frecuencia ..................................................................341 Moda en clases de frecuencia ....................................................................342 10.3 Cuantiles ..................................................................................................342 Cálculo de los cuantiles ..............................................................................343 Clasificación de los cuantiles......................................................................344 10.4 Medidas de dispersión en clases de frecuencias .................................345 10.5 Gráficos ....................................................................................................347 Gráfico de barras.........................................................................................348 Gráficos lineales, polígonos de frecuencias .............................................................................352 Diagrama de tallo y hoja (stem-leaf )..........................................................354 Diagrama circular o de pastel.....................................................................356 Desviación cuartil y cajas de dispersión .......................................................357 10.6 Asimetría y curtosis ..............................................................................360 10.7 Aplicación de las gráficas a pruebas de bondad de ajuste..................362 Técnica gráfica Q-Q para una prueba de ajuste de distribuciones ...................................362 Ejemplo de la técnica gráfica Q-Q para una prueba de normalidad............................362 Técnica analítica Q-Q, para una prueba de normalidad.......................................................365 CAPÍTULO 11 Distribuciones muestrales y teorema central del límite . . . . . . . 377 11.1 Muestra aleatoria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 378 11.2 Estadísticas imp o r t a n t e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381 Media y varianza de la media muestral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383 Media y varianza de una diferencia de medias . . . . . . . . . . . . . . . . . . . . . . . . . 385 Media y varianza de la varianza m u e s t r a l . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 385 Media y varianza de una combinación lineal . . . . . . . . . . . . . . . . . . . . . . . . . . 385 11.3 Distribuciones muestrales asociadas a la normal . . . . . . . . . . . . . . 386 Sumas, promedios y combinaciones lineales de variables aleatorias normales con la misma media y varianza. . . . . . . . . . . . . . . . . . . . . . . . . . . 386 Cálculo del tamaño de la muestra en distribuciones normales . . . . . . . . . . . . . 388 Fórmulas para el tamaño mínimo de muestra en distribuciones normales . . . . 390 Diferencia de medias de distribuciones n o r m a l e s . . . . . . . . . . . . . . . . . . . . . . . 392 Cálculo del tamaño de la muestra para diferencia de medias . . . . . . . . . . . . . . 393 11.4 Distribuciones de Bernoulli . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395 Distribución de la suma de variables de Bernoulli (Binomial) . . . . . . . . . . . . . . 395 Media y varianza de una p r o p o r c i ó n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395
  • 13.
    Contenido xiii Media yvarianza de una diferencia de proporciones ....................................................396 Distribución muestral de la suma y media de otras distribuciones ...........................397 11.5 Introducción a las estadísticas de orden.........................................398 11.6 Teorema central del límite media y suma muestral...........................400 Teorema central del límite para la media de variables .................................................400 Teorema central del límite suma de variables .................................................................402 11.7 Teorema central del límite para diferencia de medias ......................404 11.8 Teorema central del límite para proporciones....................................407 Teorema central del límite para diferencia de proporciones .......................................407 Cálculo del tamaño mínimo de muestra para proporciones muestras grandes ................................................................................408 11.9 Teorema central del límite para distribuciones específicas ..............411 Teorema central del límite para distribuciones discretas .............................................413 Distribuciones a las que no se puede aplicar el teorema central del límite ...........414 11.10 Ley de los grandes números...........................................................414 Desigualdades de Markov y Chebyshev....................................................415 Convergencias en probabilidad y distribución............................................415 Demostración del teorema central del límite ..............................................416 Estimación puntual y por intervalos de confianza .............................423 12.1 Conceptos básicos sobre estimadores puntuales................................425 Espacio paramétrico...................................................................................425 Valores de los estimadores puntuales..........................................................427 Estimadores insesgados............................................................................428 Estimadores insesgados de distribuciones específicas...................................................431 12.2 Estadísticas suficientes ......................................................................433 Propiedad de invarianza.............................................................................434 Búsqueda de estimadores insesgados.........................................................436 Estimadores insesgados con menor varianza ..............................................436 12.3 Error cuadrado medio..........................................................................437 12.4 Propiedades asintóticas deseables de los estimadores......................440 12.5 Conceptos básicos de los intervalos de confianza...............................442 12.6 Intervalos de confianza para los parámetros de una población normal...................................................................................443 Intervalos de confianza para la media de poblaciones normales o aproxi madamente normales cuando se conoce s .......................................443 Intervalos de confianza para medias de poblaciones normales o aproxi madamente normales cuando se desconoce s..................................443 CAPÍTULO 12
  • 14.
    xiv Contenido Ejemplos variadospara la estimación de la media..............................................................445 Intervalos de confianza para la varianza de poblaciones normales...............................448 Ejemplos variados para varianzas..............................................................................................449 12.7 Intervalos de confianza para comparar dos poblaciones normales....................................................................................................452 Resultados posibles de las comparaciones entre dos medias.........................................453 Intervalos de confianza para la diferencia de medias, poblaciones aproximadamente normales cuando se conocen s1 y s2............................................453 Intervalos de confianza para la diferencia de medias de poblaciones normales cuando se desconocen s y s , pero se sabe que s2 = s2........................454 1 2 1 2 Intervalos de confianza para la diferencia de medias de poblaciones normales cuando se desconocen s y s , pero se sabe s2 ≠ s2.................................455 1 2 1 2 Intervalos de confianza para la diferencia de medias de poblaciones aproximadamente normales, se desconocen s1 y s2 muestras grandes................456 Intervalos de confianza para la diferencia de medias de observaciones pareadas con diferencias normales.....................................................................................458 Ejemplos variados para la estimación de diferencia de medias......................................460 Intervalos de confianza para la razón entre varianzas de poblaciones normales.........................................................................................................464 12.8 Intervalos de confianza para proporciones .............................................470 Intervalos de confianza para proporciones muestras grandes.........................................470 Ejemplos variados para proporciones.......................................................................................471 Intervalo de confianza de diferencia de proporciones muestras grandes....................473 Metodología para pruebas de hipótesis sobre los parámetros de una distribución normal..........................................................................485 13.1 Conceptos básicos sobre pruebas de hipótesis......................................486 Regiones de rechazo y no rechazo............................................................................................487 Tipos de errores en una prueba de hipótesis.........................................................................488 Función de potencia y tamaño de la prueba..........................................................................491 Elección de la hipótesis nula y alterna.....................................................................................494 Cálculo de las probabilidades para los dos tipos de errores............................................494 Conceptos básicos sobre los tipos de pruebas de hipótesis.............................................498 13.2 Pruebas de hipótesis para los parámetros de una distribución normal.....................................................................................499 Pruebas de hipótesis para la media de poblaciones aproximadamente normales cuando se conoce s.....................................................................499 Pruebas de hipótesis para la media de poblaciones aproximadamente normales cuando se desconoce s.................................................................505 Pruebas para la varianza de poblaciones normales............................................................508 CAPÍTULO 13
  • 15.
    Contenido xv 13.3 Pruebasde hipótesis para comparar dos poblaciones normales....................................................................................................513 Pruebas de hipótesis para la diferencia de medias sobre poblaciones aproximadamente normales cuando se conocen s2 y s2 ...........................................514 1 2 Pruebas de hipótesis para la diferencia de medias sobre poblaciones aproximadamente normales cuando se desconocen s2 y s2 1 2 pero s2 =s2............................................................................................ 517 1 2 Pruebas de hipótesis para la diferencia de medias sobre poblaciones aproximadamente normales cuando se desconocen s2 y s2 1 2 pero s2 ≠s2 ........................................................................................... 520 1 2 Pruebas de hipótesis para la diferencia de medias de observaciones pareadas con diferencias normales.....................................................................................523 Pruebas de hipótesis para la razón entre varianzas de poblaciones normales................................................................................................... 527 13.4 Pruebas para poblaciones tipo Bernoulli, proporciones ........................ 533 Descarga el capítulo Regresión lineal simple y múltiple (véase en el CD-ROM) 14.1 Regresión lineal simple Diagrama de dispersión Supuestos de la variable dependiente en el análisis de regresión 14.2 Método de mínimos cuadrados para optimizar el error Supuestos del error en un modelo lineal 14.3 Error estándar de estimación y propiedades de los estimadores 14.4 Prueba de hipótesis para el parámetro de la pendiente 14.5 Coeficientes de correlación y determinación Coeficiente de correlación lineal Coeficiente de determinación 14.6 Intervalos de confianza para la predicción y estimación 14.7 Regresión lineal múltiple Planteamiento general del modelo de regresión lineal múltiple Generalización de resultados de la regresión lineal y prueba F Uso de Excel de Microsoft para la regresión lineal múltiple Solución de un modelo de regresión lineal múltiple Análisis de residuales en la regresión lineal múltiple Problem as en la regresión lineal múltiple Regresión curvilínea Modelos de regresión con variables de respuesta transformadas CAPÍTULO 14
  • 16.
    Objetivos generales Objetivosespecíficos Bases de la probabilidad • Demostrar que en la actualidad los fenómenos aleatorios que ocurren en la industria, las ciencias sociales, los estudios de mercado y los juegos de azar deben ser estudiados mediante modelos aleatorios. • Explicar que la probabilidad, aunque se utiliza con base en diferentes corrientes, constituye un área de la ciencia que está bien estructurada y tiene una justificación matemática consistente, razón por lo que es estudiada más allá de los problemas de juegos de azar. • Explicar qué es un modelo probabilístico. • Describir y enumerar los espacios muestrales de experimentos probabilísticos. • Ejemplificar los eventos de un experimento probabilístico. • Describir las cuatro principales corrientes de la probabilidad. • Definir las operaciones fundamentales del álgebra de eventos. • Resolver problemas de operaciones entre eventos mediante sus definiciones y diagramas de Venn. • Calcular probabilidades de eventos con base en los principales teoremas de la probabilidad axiomática. 1
  • 18.
    2 CAPÍTULO 1BAses de LA Pr OBABiLid Ad Desde su aparición en la faz de la Tierra, el ser humano siempre ha estado en contacto con situaciones aleatorias, ya sean de experien- cias natural es o de juegos que él mismo crea, en las cuales prevalece la incertidumbre. Por ejemplo, en las tumbas egipcias s e han encontrado restos de dados cúbicos que datan del año 2000 a.C. con marcas idénti cas a las de los dados actuales; más aún, hay indi- cios de que cerca del año 3500 a.C. los egipcios practicaban juegos de azar con objetos de hueso. Porestas razones,elestudio de la incertidumbre siempre ha tenido un interés particularpara la humanidad, desde conocerel clima, el resultado del lanzamiento de una moneda o un dado, hasta situaciones modernas, como la cantidad de artículos defect uosos en un lote de tamaño n, cambios de voltaje en un circuito eléctrico, curso del valor del dólar en un día determinado y los movimien- tos en la bolsa de valores para conocer cuáles acciones tienen mayor o menor riesgo en su inversión, entre otras. Así, desde su aparición, los juegos con incertidumbre han dejado un gran reto a diferentes matemáticos para calcular las prob a- bilidades de éxito que tiene un jugador en un juego de azar. De manera que, haciendo un poco de historia, resulta que la crea - ción de la probabilidad s e atribuye a los matemáticos franceses del siglo Xvii Blaise P ascal (1623-1662) y Pierre de F ermat (1601-1665) cuando lograron obtener probabilidades exactas para cierto tipo de problemas relacionados con el juego de los dados; por ejemplo, la solución al problema propuesto por el noble francés Antoine Gombauld (1607 -1684), qui en preguntó a P ascal, “¿cuál es la proba- bilidad de que ocurran dos seises al menos una vez al lanzarun parde dados 24veces?” Aunque algunos matemáticos anteriores, como Gerolamo C ardano (1501 -1576) y Galileo Galilei (1564-1642), en el siglo Xvi, ya habí an realizado i mport antes contribuciones a su desarrollo calculando algunas combinaciones numéricas para ciertos problemas relacionados con los dados. Uno d e los proble- mas clásicos con los que dio inicio el cálculo de probabilidades consiste en saber cuántos dados hay que lanzar para que la p robabi- lidad de que salga algún 6 supere 50%. En la actualidad, en México hay una gran cantidad de juegos de azar para los cuales se requi ere efectuar ciertos cálculos de probabilidades; por ejemplo, lotería, juegos de quinielas deportivas, juegos de quiniel as numéri- cas,entre muchos otros. La historia nos muestra que la teoría de la probabilidad dio sus pri meros paso s en el siglo Xvi con Gerol amo Cardano y Galileo Galilei; posteriormente, en el siglo Xvii, con Blaise P ascal, Pierre de F ermat, Jean y Jacques B ernoulli (1654-1705) y De Moivre (1667- 1754); en el siglo Xviii, con Daniel Bernoulli (1700-1782), Kart Friedrich Gauss (1777-1855) y Siméon Denis P oisson (1781-1840); en el siglo XX, con A. Markov, Chebyschev y Liapunov, entre otros. Pero, sin duda, qui en sentó las bases t eóricas para formalizar el de - sarrollo de la teoría de las probabilidades fue el matemático ruso Kol mogórov, en 1933, al introducir la teoría de la medida en el cálcu- lo de probabilidades. Durante todo este texto se habla de probabilidad, pero, ¿qué se entiende por esta ciencia? Probabilidad es la rama de las matemáticas que se ocupa de medir o det erminar cuantitativamente la posibilidad de que ocurra un determinado suceso. Así, en el desarrollo del texto, principalmente en los pri meros capítulos, se analiza cómo, en general, la probabilidad e stá basada en el estudio de la Teoría combinatoria, ampliándose al cálculo, gracias al uso de las funciones. Hoy día, l a teoría de la probabilidad es una herramienta important e en la mayoría de las áreas de ingeniería, ciencias y admi nis- tración. De manera que realizar un estudio adecuado de la probabilidad es fundamental para el éxito de muchas compañías, en particular las de seguros, ya que estas evalúan las probabilidades de los sucesos que les interesan (p. ej., accidentes de autos, in unda- ciones, epidemi as, etc.) mediant e una minuciosa recopilación de datos (experi encias) que permiten inferir dichas probabilidad es con suficiente aproxi mación como para poder asignar las cuotas o costos de manera que la aseguradora no sufra pérdidas. Ad emás de las compañías de seguros, la probabilidad tiene diversas aplicaciones en otras áreas como medicina, meteorología, mercadotecnia, pre- dicciones de terremotos, comportamiento humano, finanzas, etcétera. En el presente capítulo trat amos los fundamentos teóricos en los que se basa la construcción de l a T eoría de las probabilidades. Portanto,el capítulo inicia con el tratamiento de los modelos y su importancia en elestudio de los diferentes fenómenos; de igual forma se hace énfasis en los modelos matemáticos, los cuales se clasifican en: • Determinísticos. • Probabilísticos. Después,definimos los experimentos aleatorios y determinísticos. Por su parte,elestudio de las bases de la probabilidad co- mienza con una discusión acerca de las diferentes corrientes para la asignación de probabilidades a un suceso, como: • Corriente frecuentista. • Corriente clásica. • Corriente subjetiva. • Corriente bayesiana. Enseguida, se aborda la construcción matemática de la Teorí a de l as probabilidades, introduciendo los axiomas de Kolmogórov, con los que prácticamente iniciamos un estudio formal de las probabilidades como una ciencia. Introducción
  • 19.
    1.1 Modelos determinísticosy probabilísticos 3 a x + a x + a x +e = x 1.1 Modelos determinísticos y probabilísticos Ejemplos 1.1 Modelos determinísticos Es important e resaltar que la axiomatización de la Teoría de las probabilidades s e conserva hasta el final de l a presente obra. P ara el desarrollo de esta se introduce una sección referente a la teoría de conjuntos a la que llamamos álgebra de eventos, la cual, junto con los axiomas de Kolmogórov, constituyen la base científica del desarrollo de la probabilidad. El capítulo continúa con la formulación y demostración de diferentes t eoremas y finaliza con una breve explicación de la apli ca- ción de estos en el cálculo de probabilidades. Para terminar, revisamos algunas funciones en Excel para el cálculo de probabilidades. Uno de los objetivos del estudio de las ciencias es desarrollar estructuras conceptuales que permitan comprender los fenómeno s que ocurren en la naturaleza para poderpredecir los efectos que de ellos se deriven. De la experiencia científica,se deduce fácilmente que para poder estudiar un fenómeno es necesaria su imitación o reproducción en una cantidad suficiente, a fin de que su inve stiga- ción sea lo más precisa posible. Esta necesidad es lo q ue da origen a los modelos. Ahora bien, ¿qué entendemos por modelo y qué lo origina? Por modelo, entenderemos la representación o reproducción de los fenómenos. Los modelos pueden ser de diferentes tipos, pero para los obj etivos de este texto, son de interés los modelos matemáticos. Ve a- mos a continuación la definición de modelo matemático que se utiliza durante todo eltexto. Un modelo matemático es unarepresentación simbólicade un fenómeno cualquiera, realizada con elfin de estudiarlo mejor, dichas representaciones puedeser fenómenos f ísicos, económicos, sociales, etcétera. Los modelos matemáticos pueden cl asificarse en determinísticos y probabilísticos, y para poderlos diferenciar es necesario cono- cer su definición y algunos ejemplos. Primero, presentamos la definición de modelos determinísticos. Cuando se realiza el modelo matemático de un fenómeno y en este se pueden manejar los factores que intervienen en su estudio con el propósito depredecir sus resultados, sellamará modelo determinístico. A continuación se presentan algunos ejemplos de modelos determinísticos. 1. El lanzamiento de una moneda con ambos lados iguales (p. ej., águilas). Al plantear este modelo es posible determinar que siem- pre es posible predecir el resultado (suponiendo que la moneda no puede quedar en posi ción vertical), puesto que solo hay una opción: águila. 2. Cuando tenemos una inversión c a una tasa r, podemos calcular su Valor Presente Neto, VP N (c). El modelo es determinístico, puesto que tiene una inversión fija c a una tasa fija r; portanto,es posible predecir el resultado que ocurrirá al cabo de n años mediante el uso de la siguiente fórmula: VPN(c)= c . (1+ r )n Por ejemplo, si vamos a recibir c = 150 000 pesos dentro de cuatro años, pero queremos saber cuánto vale hoy, VP N(c), debemos descontar los intereses que s e generan desde hoy hasta dentro de cuatro años. Si el interés anual es de 8% en operaciones a cuatro años,entonces eldía de hoy debemos invertir: VPN(c)= 150 000 =110 254.50 . (1+ 0.08)4 Entonces, si iniciamos la inversión con 110 254.50 al cabo de cuatro años tendremos 150 000 pesos. 3. Sea una economía en equilibrio determinada por el modelo económico de entradas y salidas de Wassiley Leontief, aplicado a tres empresas distintas. a11x1 + a12 x2 + a13 x3 + e1 = x1 a21x1 + a22 x2 + a23 x3 + e2 = x2 31 1 32 2 33 3 3 3 Donde: xi representa la producción de la empresa i; ei representa la demanda externa sobre la empresa i; y aij representa el núme- ro de unidades de producto de la empresa i necesarias para producir una unidad de producto de la industria j. Conociendo la
  • 20.
    4 CAPÍTULO 1BAses de LA Pr OBABiLid Ad i V-Voltaje R-Resistencia Ejemplos 1.2 Modelos probabilísticos demanda externa porempresa y la demanda interna entre empresas,con este modelo es posi- ble predecir la producción de cada empresa. 4. El modelo de una compañía donde se elaboran dos productos al pasar en forma consecutiva, a través de una línea de producción, por tres máquinas distintas. En este caso, el tiempo por máquina asignado a los dos productos está limitado por una cantidad determinada de horas pordía; el tiempo de producción y la ganancia por artículo de cada producto se pueden esta- blecer de manera que al combinar los productos podemos obtener una ganancia óptima. En el modelo anterior se puede notar que estamos controlando los diferentes parámetros que intervienen. Por tanto,alestablecerel modelo matemático correspondiente y los valores para los factores es posible predecir su resultado. 5. Se puede diseñar un modelo que muestre la influencia de la fuerza de fricción sobre un cuerpo que se mueve en una superficie. Con este modelo se puede concluir que en superficies más ásperas se tiene mayor fuerza de rozamiento. El modelo anterior es determinístico, ya que en este se manejan superficies y se puede pre- decir el resultado. Por ejemplo, la distancia a la que se puede detener el móvil; esto es,si se mueve el cuerpo con una fuerza inicial y cambiamos las asperezas podremos establecer una fórmula matemática que indique (como resultado de un cálculo numérico) la distancia en la que se detendrá elmóvil. 6. La caída de voltaje en una resistencia de un circuito eléctrico se puede observar en la figura 1.1. Figura 1.1 Circuito eléctrico con una resistencia. Por los cursos de f ísica sabemos que la Ley de Ohm indica que la caída de vol - taje en este circuito eléctrico con una resistencia está dada por V = Ri, donde, R representa l a resistencia, medida en ohms; i la corriente medida en amperes, y V el voltaje medido en volts. Elotro tipo de modelos que revisamos ocurre cuando no podemos controlar los factores que intervienen en dichos modelos. A partir de lo cual surge la defini - ción de modelo probabilístico o estocástico. Los modelos probabilísticos o modelos estocásticos son aquellos modelos ma- temáticos de los fenómenos en los cuales no se pueden controlar los factores que intervienen en su estudio, además de que dichos factores ocurren de tal manera que no es posible predecir sus resultados. Los modelos probabilísticos son de gran interés en el texto; por tanto, para una mejor comprensión de estos se presentan los siguientes ejemplos. 1. Los modelos clásicos probabilísticos s e refieren a los juegos de azar, como el lanzamiento de una moneda equilibrada o l egal (es de- cir, que no está cargada a ningún lado), para determinar el resultado que va a ocurrir. En el lanzami ento de un dado no carga do (esto es, que un lado del dado no pesa más que los otros) no es posible predecir qué número quedará en la parte de arriba del dado. Wassiley Leontief nació el 5 de agosto de 1906, en San Petersburgo, y murió el 5 de febrero de 1999, en Nueva York. Inició sus estudios superiores en la universidad de San Petersburgo y terminó el doctorado en la universidad de Humboldt, Berlín en 1928. En 1931 emigró de forma definitiva a Estados Unidos de América. El modelo de entradas y salidas fue presentado por primera vez en el artículo de Leontief Quantitative Input and Ouput Relations in the Economic System of the United States, Review of Economic Statistics 18 (1936), pp. 105-125. Una versión actualizada del modelo aparece en el libro de Leontief, Input-Output Analysis, Nueva York, Oxford University Press, 1966. Leontief ganó el premio Nobel de Economía en 1973 por su desarrollo del análisis de insumo y producción de entradas y salidas. En general, sabemos que cualquier modelo físico es una aproxim ación de la realidad; no obstante, este no la puede representar en forma exacta, esto se debe a que en cada fenómeno intervienen infinidad de factores y no es posible involucrarlos a todos en el modelo. Por esta razón, salvo que se diga otra cosa, en el texto se consideran los modelos conocidos sobre diferentes fenómenos físicos como determinísticos. Por ejemplo, en el circuito anterior, la caída real de voltaje está influenciada por los factores: humedad, calentamiento del alambre conductor, temperatura, etcétera, que para fines prácticos se pueden considerar despreciables. De manera similar, en el modelo del movimiento de un cuerpo sobre una superficie con fricción, se considera que las otras fuerzas que intervienen son despreciables.
  • 21.
    1.1 Modelos determinísticosy probabilísticos 5 Ejemplos 1.3 Experimentos aleatorios 2. En el lanzamiento de una moneda equilibrada 10 veces para obtener cinco águilas, el modelo es de tipo probabilístico, puesto que no podemos predecir el resultado que va a ocurrir en el siguiente lanzamiento. 3. Las cartas o fichas que le tocarán a una persona al inicio de una partida de un juego de cartas o domino, respectivamente. 4. En el ej emplo 2 de la lista 1.1 de ejemplos, la tasa anual de inversión para un año determinado en realidad está condicionada a situaciones de incertidumbre del país; por consiguiente, bajo estas condiciones no podemos predecir el VP N para un año deter - minado sino conocemos con anterioridad la tasa r. 5. En una línea de producción, al realizar el control de calidad de los artículos se detecta cierta cantidad de productos defectuosos; no es posible determinar la cantidad o porcentaje de estos en la línea. 6. Si deseamos conocer los ingresos por acción para una compañía de teléfonos, estos se pueden estimar mediante el P IB (Produc - to Interno Bruto) que se mide en millones de pesos. Entonces, establ ecemos, medi ante una ecuación, un modelo para su estima - ción, pero no podemos sabercon exactitud sus resultados. 7. El conocimiento del curso de una acción referent e a una empresa en la bolsa de valores es uno de los principales problemas qu e todo accionista quisiera saber cómo predecir. Este es un problema financiero muy complejo que depende de muchos factores, incluyendo los políticos, por lo que no se puede controlar el curso de la acción ya que esta se encuentra envuelta en mucha in - certidumbre; portanto,solo es posible indicarun rango de valores posibles en elque se tengan evidencias que podrán encon- trarse en el curso de la bolsa para dicha acción. En el caso del dól ar podrí amos tener evidenci as de que al dí a siguiente su costo estará entre 12.40 y 12.80 pesos, pero en realidad no conocemos cuál será su cotización exacta, puesto que est e estará influi do porfactores que pueden tenermucha incertidumbre, como situaciones políticas. 8. Si deseamos conocer el lugar de caída de un satélite que se salió de su órbita y se dirige a la Tierra no podemos predecir el lugar donde caerá,puesto que no es posible controlarsu movimiento; portanto,solo es posible indicar una región en donde se cree que caerá, con un valor numérico que represente la aseveración. 9. La posición de un electrón en un momento dado, la cual no es posible establecer, pues, de los cursos de f ísica sabem os que un electrón no tiene una posición fija, ya que cambia constantemente, sin reglas en su movi miento. En tal caso, solo podemos est a- blecer un área en la que supongamos con un cierto valor numérico la posibilidad de que el electrón se encuentre ahí. 10. Si en el circuito eléctrico del ejemplo 6 de la lista 1.1 de ejemplos consideramos los demás factores que intervienen en el c ircui- to y medimos los voltajes con un voltímetro de alta calidad, podremos apreciar que al tomar diferentes mediciones existen cambios pequeños en estas. En estas condiciones, podremos considerar a la caída de voltaje V = Ri como un modelo probabi- lístico. Al reproducir cualquier fenómeno, ya sea de manera determinística o probabilística, estamos experimentando, por lo que es necesario aclarar lo siguiente: ¿qué entenderemos porexperimento al utilizar un modelo matemático de tipo probabilístico (cabe aclarar que hasta este momento no se ha dado la definición de probabilidad)? Así, para ir aclarando los conceptos, a continua ción se presenta la definición formal de experimento aleatorio. Llamaremos experim ento aleatorio al proceso de obtención de una observación en que se cumple alguna de las siguientes condiciones: a) Todos los resultados posibles son conocidos. b) Antes de realizar el experimento el resultado es desconocido. c) Es posible repetir el experimento en condiciones ideales. Ahora, con el propósito de acl arar mejor la definición de experimentos aleatorios, en los siguient es ejemplos ilustramos algu nos procesos aleatorios que muestran este tipo de experimentos. 1. Lanzamiento de tres monedas hasta obtener dos águilas. 2. Lanzamiento de una moneda tres veces hasta obtener dos águilas. ¿Existe alguna diferencia con el inciso anterior? 3. Lanzamiento de una moneda tres veces y la realización del conteo referente a la cantidad de soles que aparecen en estos lanza- mientos. 4. Lanzamiento de un dado, observando la cara superior que resulte. 5. Lanzamiento de dos dados y la realización del conteo de la suma que resulta en sus caras superiores. 6. Un inspectorde control de calidad analiza lotes de 60 artículos cada uno.El proceso de controlde calidad consiste en elegir cinco artículos sin reemplazo y determinar sison buenos o defectuosos. 7. Sea un lote de 60 artículos que tiene 10 defectuosos. Entonces, se define el proceso de seleccionar los artículos sin reemplazo y anotarlos resultados hasta obtenerelúltimo defectuoso.
  • 22.
    6 CAPÍTULO 1BAses de LA Pr OBABiLid Ad Ejemplos 1.4 Experimentos determinísticos Ejemplos 1.5 Espacios muestrales 8. Observar las cantidades máxima y mínima de personas que llegan a la estación Potrero del metro en la Ciudad de México, cada día, en intervalos de cinco minutos. 9. Medir cada 10 minutos la caída de voltaje en un circuito eléctrico con una sola resistencia. Además de los experimentos aleatorios, también tenemos los deter- minísticos, de los cuales enseguida se present a su definición y se muestran algunos ejemplos para su mejor comprensión. 1. En un modelo de valor presente neto de una serie de flujos de efectivo Vi de una inversión c, a una tasa fija r, podemos calcular su VPN(c) al cabo de n años,el cual se calcula de la siguiente forma: VPN(c)=−inversión(c)+ ∑ Vi . i=1 (1+ r )i 2. El tiempo de caída libre de un objeto. Si se conoce la altura y no existen fuerzas externas, el tiempo de caída se puede predecir por medio de la expresión obtenida en el curso de f ísica: h =− 1 gt 2 , donde h es la altura, g la aceleración de la gravedad y t el 2 tiempo de caída. 3. La mezcla de sustancias químicas para la obtención de algún compuesto. Después de realizar un experimento, por lo general se registran sus resultados para obtener las conclusiones correspondientes al fenómeno en estudio, por lo que surge la necesidad de intro - ducir un nuevo concepto referente al conjunto de todos los resultados del experi mento. El concep - to de espacio muestralse emplea en la sección 1.3, junto con sus propiedades de conjuntos; por ahora es suficiente introducir su definición. Al conjunto de todos los resultados posibles de un experimento probabilístico lo llamaremos espa- cio muestral del experimento y lo denotaremos por S. A su vez, a los elementos de un espacio muestral los llamaremos puntos muestrales. Los espacios muestrales forman una part e primordial en el desarrollo de la teoría de las pro - babilidades, por lo que es indispensable mostrar algunos ejemplos de estos. Aunque de aquí en adelante se hablará de estos en los capítulos subsecuentes. 1. El experimento sobre el lanzamiento de una moneda se realiza tres veces y se anotan sus posibles resultados. El espacio muestral está representado por a, en el caso de águila, y por s, en el caso de cara o sol. Por tanto: S ={sss, ssa, sas, ass, saa, asa, aas, aaa} . 2. El experimento sobre el lanzamiento de una moneda se realiza tres veces y se anota la cantidad de águilas que aparecen. De es te modo, 0 representa la ausencia de águilas, 1 representa la presencia de un águila, etcétera. De este modo,el espacio muestral sería: S ={0, 1, 2, 3} . Compare los resultados de los ejemplos 1 y 2, ¿qué puede concluir? 3. Se realiza el experimento sobre el lanzamiento de dos dados y se anota la suma de las caras superiores que resultan. En este caso, el espacio muestral estará formado por: S ={ 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} . Al proceso por el cual se describen los fenómenos cuyos resultados pueden predecirse, lo llamaremos experimento determinístico. Entendemos por conjunto a una colección de objetos bien definida mediante alguna o algunas propiedades en común. En tanto, por objeto comprendemos no solo cosas físicas (como discos, computadoras, entre otras), sino también cosas abstractas, como los números o las letras. A los objetos que forman el conjunto, los llamamos elementos del conjunto. n
  • 23.
    1.1 Modelos determinísticosy probabilísticos 7 Ejemplos 1.6 Eventos simples 4. Se realiza el experimento de lanzamiento de dos dados, de los cuales s e toma l a diferencia del valor mayor menos el valor menor que resulta en sus caras superiores.En este caso,elespacio muestralresultante es: S ={0, 1, 2, 3, 4, 5}. 5. Se realiza el experi mento de lanzamiento de un dado dos veces, de las cuales se toma l a diferencia del valor del primer resul tado menos el valor del segundo resultado de las caras superiores. El espacio muestral resultante es: S ={−5, −4 , −3, −2 , −1, 0, 1, 2 , 3, 4 , 5} 6. Suponga que se tiene un lote de tres refrigeradores de tamaño 3 (dos de estos están en buen estado y uno está defectuoso). En- tonces,se realiza elexperimento de extraerdos refrigeradores del lote,sin que haya un reemplazo. Denotando al refrigerador bueno porb y al defectuoso pord,determine el espacio muestral. a) Si en el parelegido se consideran diferencias solo entre los dos buenos,no importa el orden. Cuando se trata de conjuntos sabemos que no importa el orden en que se coloquen sus elementos. Entonces, denotando a los artículos buenos por b1 y b2 , respectivamente, se tiene: S ={{b1 , b2 }, {b1 , d}, {b2 , d}} b) Si en el par el egido se consideran diferencias entre los dos buenos y el orden de extracción, para distinguir el orden de ext rac- ción de los refrigeradores, los pares elegidos se escriben juntos sin separarlos, indicando que el de la izquierda se extrae antes que el de la derecha: S ={b1b2 , b2b1, b1d , db1 , b2d , db2 }. c) Solo es de interés si el refrigerador es bueno o defectuoso, no importa el orden: S ={{b, b}, {b, d}}. d) En el par elegido los dos buenos son indistinguibles, pero sí importa el orden de extracción: S ={bb, bd , db}. Después de tratar con los espacios muestrales, entonces nos preguntamos: ¿qué pasa si solo consideramos una parte de estos? Para poder dar una respuesta a la pregunta es necesario definir qué es un evento y qué es un evento simple. Dado un experimento aleatorio y su espacio muestralS, sellama evento aun conjunto deresultados posibles de S. Podemos notar que un evento no es más que un subconjunto de un espacio muestral. A continuación definimos los eventos que contienen uno y solo un elemento del espacio muestral, y que serán utilizados de forma implícita en la siguiente sección cuando hablemos sobre la corriente clásica de probabilidad. Al evento que consta de un solo elemento le llamaremos evento simple. Obtenga el evento indicado en los espacios muestrales de los ejemplos anteriores. 1. Se lanza una moneda tres veces y se anotan los resultados posibles. Sea el evento E: “Aparece una sola águila”. Representando águila pora y solpors, el evento será: E ={ssa, sas, ass} . 2. El lanzamiento de una moneda tres veces y el conteo de la cantidad de águilas que aparecen. Sea el evento E : “aparece un águila”, E ={1}. 3. El lanzamiento de un dado y la cara superior que resulta.Sea E el evento que denota:“el número de la cara que resulta no es mayor a 4”. E ={1, 2, 3, 4}
  • 24.
    8 CAPÍTULO 1BAses de LA Pr OBABiLid Ad Ejercicios 1.1 4. El lanzamiento de dos dados de los cuales se cuenta la suma que resulta en sus caras superiores. Sea el evento E: “la suma de las caras resultantes es mayorque 4”. E ={5, 6, 7, 8, 9, 10, 11,12} . No obstante lo tratado hasta aquí, aún no hemos visto cómo asignar probabilidades a los eventos ni cómo definir a esta. La res- puesta está en la siguiente sección. 1. Suponga que se lanzan tres monedas no cargadas y s e obser- va la cantidad de águilas que quedan hacia arriba. a) Establezca los elementos del espacio muestral de este ex - perimento. b) Sea A el evento: “obt ención de al menos un águila”. Escri- ba los elementos de A. 2. Suponga que se lanzan tres monedas no cargadas y s e obser- van las combinaciones posibles de resultados que pueden ocurrir con las tres monedas. a) Establezca los puntos muestrales de este experimento. b) Sea A el evento “Observar al menos un águila”. Obtenga los puntos muestrales de A. 3. Un aparato electrónico contiene cuatro sistemas electróni- cos. Al azar s e seleccionan dos de estos cuatro sistemas para someterlos a pruebas rigurosas y clasificarlos como defec- tuosos o no defectuosos. Si dos de los cuatro sistemas en realidad son defectuosos, encuentre el espacio muestral del experimento suponiendo que: a) No se diferencia entre uno y otro bueno, ni entre uno y otro defectuoso, ni importa el orden entre bueno y defec- tuoso,solo importa cuántos buenos y cuántos defectuo- sos hay. b) Sí existe diferencia entre uno y otro bueno, y entre uno y otro defectuoso; sin embargo,no importa el orden entre bueno y defectuoso, solo importa cuántos buenos y cuántos defectuosos hay. c) No se diferencia entre uno y otro bueno, ni entre uno y otro defectuoso,pero síimporta el orden entre defectuo- so y bueno. d) Sí existe diferencia entre uno y otro bueno, y entre uno y otro defectuoso; además, sí importa el orden entre defec- tuoso y bueno. 4. Una agencia comercial compra papelerí a a uno de tres ven - dedores V1 , V2 , V3 . El pedido s e ordena en dos días sucesivos (sin repetir vendedor), un pedido por día, tal que V1V3, lo que significa que el vendedorV1 recibe el pedido el primer día y el vendedor V3 lo recibe el segundo día. Establ ezca los puntos muestrales de este experimento. 5. En un experimento que consiste en lanzar un dado no car- gado una vez,al salir un número par entonces se lanza una moneda no cargada. En cambio, si el lanzamiento del dado no resulta par, entonces se lanza el dado por última vez. Describa el espacio muestral para este experimento. 6. El administrador de una red logística de autobuses tiene que tomar la decisión de cómo distribuir dos de tres autobuses para viajar a otra ciudad. Represente con a1 , a2 y a3 a los tres autobuses y describa el espacio muestral del experimento: “Seleccionar dos autobuses para viajar a la otra ciudad”. 7. El administrador de una red logística de autobuses debe to- mar la decisión de cómo ordenar la distribución de dos de tres autobuses con elfin de que viajen a otra ciudad en dos días sucesivos (sin repetir un autobús). R epresente con a1 , a2 y a3 los tres autobuses. Ordene los viajes de tal forma que a1 a3 , lo que significa que el autobús a1 viaja a la otra ciudad el primer día y el autobús a3 el segundo día. a) Establezca los puntos muestrales de este experimento. b) ¿Qué diferencia observó con la respuesta del problema anterior? En la actualidad, la palabra probabilidad es empleada con demasiada frecuencia por las personas; por ejemplo, en expresiones como: “Es p robab le que hoy estudie estadística”; “El equipo mexicano de fútbol está jugando mal , y es muy probable que en su siguiente partido pierda”; “El cielo está bastante despejado; por tanto, no hay muchas posibilidades de que llueva”; entre otras. Como se pue- de notar en las expresiones anteriores, las palabras relacionadas con la p robab ilidad tienen la característica de basarse en sucesos que pueden serverdaderos, además de que a causa de los hechos observados (resultados preliminares,tiempo,etcétera),se puede hablar de la posibilidad de su ocurrencia. A pesar de los esfuerzos realizados por muchos matemáticos para asignar de forma única la probabilidad a un suceso, todo ha sido en vano, pues desde los inicios de su estudio hasta nuestros días no existe una forma única de asignación de probabil idades. Solo contamos con diferentes corrientes de probabilidad, las cuales se aplican para asignar un valor numérico a la posibilidad de la 1.2 Interpretaciones de la probabilidad
  • 25.
    La frecuencia relativade un suceso es igual al cociente de la cantidad de veces que ocurre el suceso entre el total de veces que se repite el experimento. 1.2 Interpretaciones de la probabilidad 9 ocurrencia de algún suceso probabilístico.1 De hecho, el verdadero significado de la probabilidad aún se considera conflictivo; por tanto, en lugar de iniciar el siguiente texto con una definición formal de probabilidad, pri mero trataremos sus cuatro corrie ntes más comunes. Corriente frecuentista En la corriente frecuentista —tal vez una de las más empleadas— se asigna un valor de probabilidad a un evento E, a partir del cual se considera que ocurrirá. La definición o interpretación de la probabilidad está basada,como su nombre lo indica, en la frecuencia relativa con la cual se obtendría E, si el experimento se repite una gran cantidad de veces, en con- diciones similares (no idénticas, puesto que en este caso el proceso no sería aleatorio). Un ejemplo de la frecuencia relativa de un suceso es un experimento en el que se lanza una moneda tres veces y se cuenta la cantidad de sol es que aparecen. Así, sea el evento E: “obtención de dos soles en los tres lanzamientos”; la pregunta es: ¿cuál es la probabilidad de que ocurra el evento E? Para responder a la pregunta desde el punto de vista frecuentista, se debe realizar el experimento una gran cantidad de ve - ces. Supóngase que el experimento se repite 1 000 veces en condiciones similares y como resultado se obtienen 400 casos con dos soles; en tal situación, se diría que la probabilidad de que ocurra E, será: 400 = 0.4. Ahora bien, si el experimento se repite 100 000 1 000 38 000 veces, de las cuales 38 000 resultan con dos soles, diríamos que la probabilidad de que ocurra E es: 100 000 = 0.38, de esta forma po- dríamos repetir nuestro experimento tantas veces como se quiera y obteneruna frecuencia relativa para la probabilidad del evento E. Entonces, surge la siguiente pregunta: ¿por qué diferentes resultados para un mismo evento? La respuesta está en la interpretación de qué entendemos por: “repetir el experimento una gran cantidad de veces”,¿qué se entiende poruna gran cantidad de veces?,y ¿cuál sería dicha cantidad de repeticiones? Dichas condiciones son muy vagas para servir de base en una definición científica de probabilidad. Aunado a lo anterior, no es posible repetir una gran cantidad de veces muchos de los fenómenos, por ejemplo: a) Para calcular la probabilidad de que el lanzamiento de un cohete resulte exitoso, evidentemente no es posible realizar una gran cantidad de lanzamientos de cohetes; por tanto, la probabilidad se obtiene en forma frecuentista del éxito de un lanzamiento. b) ¿Cómo calcular la probabilidad de que Manuel viva 70 años? ¿Cuáles serían las repeticiones? c) Para cal cular la probabilidad de que Juan P érez se case este año, tampoco podemos realizar una gran cantidad de repeticiones del experimento; por tanto, s e indica el valor numérico que represente desde el punto de vista de la frecuencia relativa que Juan Pérez se case o no este año. Corriente clásica (a priori) En la corriente clásica se consideran espacios muestrales uniformes, es decir, se asignan probabilidades a eventos con base en resul- tados equiprobables (igualmente verosímiles). Esto es, los clasistas asignan la misma probabilidad a cada punto del espacio muestral 1 (es decir: n , donde n es la cantidad de elementos del espacio muestral); posteriormente, para obtener la probabilidad de la ocurrencia de un evento E, se suma la cantidad de elementos de E y se multiplica por la probabilidad de un elemento del espacio muestral 1 . °n Cabe apuntar que de lo anterior se deduce que la probabilidad de los puntos muestrales se establece a priori; es decir, antes de cual- quier experimento. Resolviendo el ejemplo anterior en la forma clásica tendremos, lo siguiente: Se lanza una moneda equilibrada tres veces y se anotan los resultados posibles que aparecen; sea el evento E: “obtención de dos soles en los tres lanzamientos”, la pregunta es: ¿cuál es la probabilidad de que ocurra el evento E? Para responder a la pregunta, primero obtenemos el espacio muestral desde el punto de vista clásico; de este modo, representan - do águila pora y solpors, tendremos: S ={sss, ssa, sas, ass, saa, asa, aas, aaa}. En estos casos, ssa representa que los primeros dos lanzamientos resultaron soles y el tercer lanzamiento águila. Considerando que cada punto del espacio muestral es equiprobable con probabilidad de ocurrencia 1 , tendremos que la probabilidad del evento E 8 (resulten dos soles en los tres lanzamientos) se resuelve al conocer la cantidad de elementos del evento: 1 Existe una gran cantidad de sucesos en los que cada una de sus alternativas tiene varias soluciones, pero sin que se tenga la posibilidad de una asignación numérica de probabilidad, en tal casose dice que el suceso ocurre bajoincertidumbre.
  • 26.
    10 CAPÍTULO 1BAses de LA Pr OBABiLid Ad E ={ssa, sas, ass}. En este caso, como E contiene tres elementos tenemos que la probabilidad de que ocurra el evento E es: Probabilidad de E = 3× 1 = 0.375. 8 Algunas de las dificultades por las cuales atraviesa esta interpretación de probabilidad son: • En primer lugar, al hablar de resultados equiprobables (que tienen la misma probabilidad) estamos empleando el concepto que estamos definiendo. • En segundo lugar, cuando los resultados no son equiprobables (en este caso el ejemplo 3 de la sección 1.5, sobre el lanzamiento de los dos dados, donde se anota la suma de los números resultantes S ={2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}, sus elementos no son equiprobables. ¡Calcúlelos!). • En tercer lugar no se indica un método para realizar el cálculo de las probabilidades. • En otros casos como los siguientes, la probabilidad clásica no da respuesta: a) Para calcul ar la probabilidad de que el lanzami ento de un cohete resulte exitoso, no podemos asignar probabilidades igual es a los resultados del experimento; por tanto, es necesario un método diferente para el cálculo de probabilidades. b) Para calcular la probabilidad de que una persona se case este año, no podemos hablar de resultados equiprobables para determinar el valor numérico que represente la probabilidad de que dicha persona se case este año,considerando a todos los años equiprobables. Corriente subjetivista En la corriente subj etivista (interpretación de la probabilidad que es muy empleada en el estudio del análisis de d ecisiones ) se asig- nan probabilidades a eventos basándose en el conoci miento o experiencia que cada persona tiene sobre el experimento; por tant o, la probabilidad asignada está sujeta al conoci miento que el científico tenga con respecto al fenómeno estudiado. De este modo, para un mismo experi mento las probabilidades asignadas por diferentes personas pueden ser distintas. En el ejemplo anterior del lanza mien- to de la moneda tres veces, donde se realiza el conteo de la cantidad de soles que aparecen, el evento E se definió como l a obtención de dos sol es en los tres lanzamientos. La pregunta es: ¿cuál es la probabilidad de que ocurra el evento E? P ara responder a la pregun- ta anterior, desde el punto de vista subjetivista, la respuesta dependerá del conocimiento que se tenga del lanzamiento de la moneda. Porejemplo, si el individuo que lanza la moneda puede tenercierta habilidad en el lanzamiento,dará una probabilidad mayor a la verosimilitud del evento E; por el contrario, si el sujeto no tiene tal habilidad, la probabilidad será pequeña. La probabilidad subjetiva se suele asignar cuando se tiene poco o nada de conocimiento previo sobre el evento. Es decir, cuan do los eventos se presentan solo una vez o un número muy reducido de veces. P or ej emplo, si en una empresa se está programando l a logística de distribución de material final, la asignación de probabilidad de que los recorridos se realicen con éxito al no tener infor- mación de datos históricos,se puede asignarde forma subjetiva. La interpretación subjetiva de l a probabilidad tiene diferentes dificultades, y una de las principales es la dependencia en e l juicio de cada persona al asignarla, además de que tal juicio debe estar complet amente fuera de contradicciones, lo que es sumamente di- f ícil por depender de la persona que la asigna. Como se hizo mención antes, a un mismo experimento se le pueden asignar dife rentes probabilidades de éxito,dependiendo delcientífico que lo está realizando,aun en el caso de que dos o más científicos trabajen en conjunto. Finalmente, podemos mencionar que en la asignación de probabilidades subjetivas se emplea, en muchos casos, el cono ci- miento frecuentista que se tenga delexperimento. La asignación subjetiva de probabilidades fue introducida en 1926 por Frank Ramsey en su libro T he Foundation of Mathematics and other Logical Essays. P osteriormente, B ernard Koopman, Richard Good y Leonardo S avage fueron perfeccionando esta manera de asignarprobabilidades. Corriente bayesiana (a posteriori) En la corriente bayesiana se asignan probabilidades a los eventos después del experimento. Es decir, la asignación de probabi lidades está basada en el conoci miento de la ocurrencia de eventos que estén en dependencia con el evento de estudio. Por ejemplo, si que- remos asignar una probabilidad al evento de que el día 3 de septiembre llueva y tenemos la siguiente información: a) Los días 1 y 2 de septiembre no llovió. b) Los días 1 y 2 de septiembre llegó un huracán a 400 kilómetros de distancia y llovió ambos días. Es obvio suponerque la asignación de probabilidades en ambos casos es muy diferente,ya que tenemos información que hace cambiar nuestra asignación de probabilidades. En tal situación decimos que la información obtenida influyó en la asignación de probabilidades. Otro ej emplo, es el caso anterior cuando se lanza una moneda equilibrada tres veces y se cuenta la cantidad de soles Las probabilidades de este tipo se estudian en el capítulo 3, Probabilidad condicional.
  • 27.
    1.3 Álgebra deeventos 11 Ejercicios 1.2 que aparecen, el evento E: “obtención de dos sol es en los tres lanza- mientos”; la pregunta es: ¿cuál es la probabilidad de que ocurra el evento E?, si se sabe que el primer lanzamiento resultó sol. Esta corriente de probabilidad es la base motora de la teoría de decisiones, puesto que cualquier toma de decisiones está influi - da portodo tipo de información que se pueda tenersobre un fenó- meno en estudio. El uso de esta corriente es posible en la parte de decisiones llamada árboles de decisión. 1. ¿En qué se basa la definición frecuentista para calcular la probabilidad de un evento? 2. ¿Cómo se considera el espacio muestral en la corriente clá- sica de probabilidad? 3. ¿Cómo es la asignación de probabilidades en los eventos de la corriente subjetiva? 4. ¿Por qué a la corrient e bayesiana s e le conoce también con el nombre de a posteriori? 5. ¿Cuáles son las dificultades por l as que atravi esa la interpre- tación clásica para l a asignación de probabilidades a los dife- rentes eventos? 6. Si quiere abrir un negocio en cierta localidad y desea esti- mar una probabilidad de éxito, qué tipo de corri ente de pro- babilidad aplicaría en cada una de las situaciones indicadas considerando lo siguiente: a) Cuenta con una gran cantidad de datos históricos sobre éxitos y fracasos en la apertura de negocios del mismo ramo que el de usted en localidades semejantes. b) No tiene datos que le muestren algún histórico sobre las probabilidades de éxito de su negocio. 7. ¿Cómo asignaría probabilidades a los siguientes eventos? a) La probabilidad de que salga una carta roja al seleccionar una carta de una baraja de 52. b) La probabilidad de que salga un 2 o una carta negra al seleccionaruna carta de una baraja de 52. c) La probabilidad de que salga un 7 o un 8 al seleccionar una carta de una baraja de las 52 cartas que contiene el mazo. d) La probabilidad de que en 2018 Marcelo Ebrard gane las elecciones para presidente . e) La probabilidad de que 10 de los siguientes 80 usuarios del metro en la estación Universidad sean estudiantes. f) La probabilidad de que el siguiente edificio más alto que se construye en China se caiga en 40 años. 8. En los siguientes ejemplos, ¿qué tipo de corriente se pudo haber utilizado para la probabilidad asignada? a) La probabilidad de que Víctor llegue temprano al trabajo es de 0.65. b) La probabilidad de que Raquel decida casarse este año es de 0.90. c) La probabilidad de que Morelia gane el siguiente partido, si ha ganado los cuatro últimos juegos, es de 0.79. En la sección 1.1 se definieron los conceptos de espacio muestral y evento, entendiendo por este último un subconjunto del es pacio muestral, entonces es posible utilizar los resultados obtenidos en la teoría de conjuntos p ara los esp acios mu estrales y los even tos para construir un álgebra de eventos. Conceptos fundamentales de eventos El espacio muestral fue denotado por S, los eventos con letras mayúsculas, A, B, C, etcétera, mientras que los resultados del experi- mento que cumplen las condiciones del evento se representan con letras minúsculas a, b, etcétera. Si el resultado a pertenece al evento A, lo simbolizamos a ∈ A ; en caso contrario, por a ∉ A . Los eventos también s e represent an con llaves, dentro de las que se escriben sus elementos (¡sin repetirlos!), o las propiedades que dichos elementos cumplen, por ejemplo: A ={x |x es el lado que queda arriba al lanzar un dado} evento por comprensión. A={1, 2, 3, 4, 5, 6} evento por extensión. Los eventos que revisamos en el texto se pueden clasificar en dos grandes grupos. El primero de ellos se define y ejemplifica a continuación. 1.3 Álgebra de eventos Después de revisar las corrientes de probabilidad y ver que no tenemos una forma universal de asignación de probabilidades para un evento, concluimos que no es posible construir una teoría matemática formal de las probabilidades. Por tanto, es necesario estructurar a la probabilidad sobre una base axiomática que le dé el formalismo que el álgebra, la geometría y las otras áreas de las matemáticas tienen, lo cual se logra haciendo uso de la teoría de conjuntos aplicada a los eventos, formando lo que denominaremos álgebra de eventos.
  • 28.
    12 CAPÍTULO 1BAses de LA Pr OBABiLid Ad Ejemplos 1.7 Eventos finitos Ejemplos 1.8 Evento vacío Ejemplos 1.9 Eventos numerables Si al contar los elementos de un evento, el proceso de conteo termina en el tiempo, es decir, resulta una cantidad determinada, entonces dicho evento se llama finito. 1. A: Número par resultado del lanzamiento de un dado: A ={2, 4, 6}. 2. A: Al menos se observan cuatro soles en seis lanzamientos de una moneda: A ={4, 5, 6}. A continuación, definimos y mostramos dos ejemplos de eventos que no pueden ocurrir. El evento que no contiene ningún elemento, esto es, en el que no existe algún resultado del experimento que cumpla las condiciones del evento, se llama evento vacío. El evento vacío suele denotarsepor ∅ o { }. 1. A: “Lanzamiento de un par de dados y que la suma de los números de sus lados sea mayor a 13”. Es decir, A ={ }, el evento A no tiene ningún elemento, puesto que la máxima suma de los números de las caras en el lanzamiento de dos dados es 12. 2. En una supervisión para el control de calidad se inspecciona un lote con 30 artículos, entre los cuales hay dos defectuosos. Sea el evento A: “Extraer cuatro artículos al mismo tiempo que contenga tres defectuosos”. C omo el lote tiene únicamente dos defec- tuosos, entonces no existen eventos que contengan tres defectuosos; por tanto, A =° . Ant es de definir al otro gran grupo de eventos en que se pueden clasificar todos estos, aparte de los eventos finitos, veamos una definición de eventos que no necesariamente son finitos, pero que sípodemos establecerun proceso de conteo entre sus elementos. Se dice que un evento A es numerable o contable si entre sus elementos y el conjunto de los números naturales, , o algún subconjunto de este existe una correspondencia en la que a cada elemento del evento A le corresponde uno y solo un elemento de (o de algún subconjunto de ), además a cada elemento de (o de algún subconjunto de ), le corresponde un elemento de A. A continuación se muestran tres ejemplos de eventos numerables. Los siguientes incisos son casos particulares de eventos numerables. 1. El conjunto A ={x | x es una vocal}. Este evento es numerable, ya que podemos ponerlo en correspondencia con el subconjun- to de los números naturales {1, 2, 3, 4, 5} de la siguiente manera: a 1; e 2; i 3; o 4; u 5 2. El conjunto de los enteros .Este evento es numerable, ya que podemos ponerlo en correspondencia con elconjunto de los números naturales de la siguiente manera: 0 1 1 3 2 5 −1 2 −2 4 etcétera En donde, 0 1 significa que al cero le corresponde el uno, de manera similar −1 2 , significa que al −1 le corresponde el 2, etcétera. 3. A ={−8, −6, −4, −2, 0, 2, 4,…}. Este evento es numerable y su correspondencia la podemos establecer por: −8 1 −2 4 −6 2 0 5 −4 3 2 6 etcétera Por último, definiremos al otro gran grupo de eventos entre los que podemos clasificar a todos los eventos que no son finitos. Con la definición de numerable o contable se puede verificar que cualquier evento finito es numerable, ya que siempre será posible establecer un proceso de conteo entre sus elementos.
  • 29.
    1.3 Álgebra deeventos 13 Ejemplos 1.10 Eventos infinitos Ejemplos 1.11 Igualdad de eventos Ejemplos 1.12 Subeventos Se dice que un evento A es infi- nito si para cualquier evento D ={1, 2, 3, 4,…, n} no existe un valor de n con el que se puedaestablecer unacorrespon- dencia biunívoca entre A y D. A continuación se muestran tres ejemplos de eventos infinitos. 1. E: “La cantidad de lanzamientos de una moneda hasta obtener la primera águila”, E ={1, 2, 3, …}. 2. El evento cuyos elementos son todos los puntos del intervalo indicado en donde los extremos son diferentes, E = (2, 7). 3. El evento que representa la temperatura corporal de una persona. Este evento es infinito ya que al medir la temperatura puede ocurrir cualquier valor dentro de un intervalo. Los conceptos anteriores,aunque sencillos, requieren de gran cuidado en su aplicación. En los casos de eventos infinitos,se presentan dificultades para encontrarla correspondencia que indique sison o no numerables. Si a esto agregamos que los eventos infinitos no siempre son numerables y que la demostración de esto no es sencilla surgen muchas dificultades para distinguirentre eventos numerables y no numerabl es, además de que es necesaria la introducción de algunos otros conceptos que quedan fuera de l objetivo del libro. En el texto se tiene que los únicos eventos no numerables con los que tratamos son cuando resulten intervalos. Por ejemplo, cualquier evento cuyos elementos son los puntos del intervalo (a, b) con a ≠ b no es numerable. Relaciones fundamentales entre eventos Cuando trabajamos con eventos observamos que entre sus elementos pueden existir algunas relaciones, mismas que revisamos a continuación. Los eventos A y B correspondientes a un mismo experimento son iguales, si cualquier resultado de A es también elemento de B y vice- versa: A = B, si ° a ∈ A, entonces a ∈ B y viceversa, ∀b ∈ B, entonces b ∈ A. A continuación se muestra un par de ejemplos de eventos iguales. 1. Los eventos A ={a, e, i, o, u} y el evento B ={x | x es una vocal}; en este caso, A = B. 2. Los eventos A ={1, 3, 5, 7, 9} y el evento B ={x |x es un número dígito impar}; en este caso, A = B. Una relación muy particular entre los eventos consiste en estudiar los casos cuando todos los elementos de un evento dado están contenidos en elotro evento,suceso que se define a continuación. Sean los eventos A y B correspondientes a un mismo experiment o, se dice que A es subevento de B si cualquier elemento que esté en A estátambién en B. Lo anterior se simboliza A ⊂ B. Es decir, A ⊂ B; si a ∈ A, entonces a ∈ B. Cuando existe al menos un elemento de A que no estáen B, entonces sedice queA ⊄ B. Para una mejor comprensión de lo que son los subeventos se proporcionan algunos ejemplos. 1. Dados los eventos A ={a, e, i, o, u} y B ={x |x es una letra del alfabeto}, se cumple A⊂ B . 2. Sean A =[2, 5]y B =[−9, 20], vemos que A⊂ B. 3. Sean A =[2, 5]y B =(2, 10], en este caso A⊄ B, puesto que 2 ∈ A, pero 2 ∉ B . Con la definición de eventos finitos se puede notar que un evento numerable es infinito, si al contar los resultados posibles del evento el proceso de conteo no termina en el tiempo. También cualquier evento no contable es infinito. La teoría de eventos infinitos requiere una preparación conceptual profunda que sale de los objetivos del texto, pero se recomienda consultar los trabajos de los mayores exponentes del tema, como el ruso Georg Ferdinand Ludwing Philipp Cantor (San Petersburgo, Rusia, 3 de marzo de 1845-Halle, Alemania, 6 de enero de 1918) y de los alemanes Julius Wilhelm Richard Dedekind (6 de octubre de 1831-12 de febrero de 1916) y Friedrich Ludwing Gottlob Frege (8 de noviembre de 1848- 26 de julio de 1925).
  • 30.
    14 CAPÍTULO 1BAses de LA Pr OBABiLid Ad S A ∪ B A B Ejemplos 1.13 Eventos mutuamente excluyentes Como se mencionó antes,entre los elementos de dos o más eventos puede serque no exista alguna propiedad en común, en dicho caso se dice que ambos se excluyen o, concretamente, que son mutuamente excluyentes, esto se formaliza con la definición y los ejemplos siguientes. Los eventos A y B, correspondientes a un mismo experimento, se llaman mutuamente excluyentes si no tienen resultados comunes. Es decir, para cualquier a ∈ A, se cumple a ∉ B; de igual manera, paratodo b ∈ B, tenemos queb ∉ A. 1. Sean los eventos A ={a, e, i, o, u} y B ={x | x es una consonante}; en este caso, A y B son mutuamente excluyentes, ya que no existe ningún elemento que sea vocaly consonante almismo tiempo. 2. Sean A = [2, 5] y B = [9, 20]; en este caso, A y B son mutuamente excluyentes. Entonces, podemos generalizar que el evento vacío es mutuamente excluyente con cualquier otro evento. Diagramas de Venn-Euler En muchas ocasiones es preferible emplear una repre- sentación gráfica de los eventos de un experimento, la cual usualmente consiste en representar el espacio mues- tral por rect ángulos y los eventos por figuras circulares u ovaladas en forma simple o sombreada, como se muestra en la figura 1.2. Estos diagramas se emplean para visuali - zar las operaciones fundamentales entre eventos y se les llama diagramas de Venn-Euler en honora los matemá- ticos Leonhard Paul Euler (Basilea, Suiza, 15 de abril de 1707-San P etersburgo, Rusia, 18 de septiembre de 1783) y John Venn (Hull, Yorkshire, Inglat erra, 4 de agosto de 1834-Cambridge, 4 de abril de 1923). Figura 1.2 Representación de eventos por medio de diagramas de Venn-Euler. Operaciones fundamentales entre eventos Dado un espacio muestral y sus eventos, surge l a pregunta sobre qué operaciones será posible y es conveniente definir entre estos. En esta subsección se estudi an algunas operaciones fundament a- les entre eventos, como unión, intersección, diferencia y complemento. Unión entre eventos La unión de los eventos A y B, correspondientes a un mismo experimento, constituye, en sí mismo, otro evento formado por los resultados que pertenecen al evento A o al evento B o a ambos. La unión la simbolizaremos porA ∪ B (A unión B). A∪ B ={x x ∈ A o x ∈ B } la unión de los eventos A y B. La representación general de la unión, por medio de diagramas de Venn-Euler, se ilustra en la parte sombreada de la figura 1.3. Figura 1.3 Representación general de la unión entre dos eventos. 1. De las definiciones de igualdad de eventos y subeventos se deduce que si A = B, entonces A ⊂ B y B ⊂ A. 2. Podemos generalizar que el evento vacío es subevento de cualquier evento. B A S Se ha observado que muchos estudiantes cometen el gravísimo error, al realizar operaciones entre eventos, de indicar como resultado de estas operaciones solo a los elementos, sin formar un evento. Pero las operaciones entre eventos siempre deben dar como resultado otro evento.
  • 31.
    1.3 Álgebra deeventos 15 S A ∩ B A B Ejemplos 1.15 Intersección entre dos eventos 1. Sean los eventos A ={a, e, i, o, u} y B ={e, o, h, w}. Luego, A∩ B ={e, o}. 2. Sean los eventos A =[−1, 5) y B =(3, 8]. Luego, A∩ B =(3, 5). 3. Sean los eventos A =[2, 5) y B =(3, 4]. Luego, A∩ B =(3, 4]= B. Observe que en el último ejemplo (3, 4] ⊂ [2, 5), y la intersección fue (3, 4]. En general, si A ⊂ B se cumple que A ∩ B = B. S A – B A B Intersección entre eventos La intersección entre los eventos A y B, correspondientes a un mismo experimento, es otro evento formado por los elementos que pertenecen a ambos eventos. La intersección la simbolizaremos de la siguiente manera: A ∩ B (A intersección B). A∩ B ={x x ∈ A y x ∈ B} la intersección entre los eventos A y B. La representación general de la intersección mediante diagramas de Venn-Euler, corresponde al área sombreada de la figura 1.4. Figura 1.4 Representación general de la intersección entre A y B. Diferencia entre eventos La diferencia del evento A menos el evento B, correspondientes a un mismo experimento, es otro evento formado por los elementos del evento A y que no pertenecen al evento B. La diferencia la simbolizaremos de la siguiente manera: A − B (A menos B). A− B ={x x ∈ A y x ∉ B} la diferencia del conjunto A menos B. La representación general de la diferencia, mediante diagramas de Venn-Euler, se ilustra en el área sombreada de la figura 1.5. Figura 1.5 Representación general de la diferencia A − B. Ejemplos 1.14 Unión entre dos eventos 1. Sean los eventos A ={a, e, i, o, u} y B ={e, o, h, w}. Entonces: A∪ B ={a, e, i, o, u, h, w} . 2. Sean los eventos A =[−1, 5) y B =(3, 8]. Entonces: A∪ B =[−1, 8]. 3. Sean los eventos A =[2, 5) y B =(3, 4]. Entonces: A∪ B =[2, 5)= A. Observe que en el último ejemplo (3, 4] ⊂ [2, 5), y la unión fue [2, 5). En general, si A ⊂ B, se cumple que A ∪ B = A.
  • 32.
    16 CAPÍTULO 1BAses de LA Pr OBABiLid Ad Observe que en el último ejemplo A y B son mutuamente excluyentes. En general, si los eventos son mutuamente excluyentes, se cumple que A − B = A y B − A = B. Ejemplos 1.17 Evento complementario Ejemplos 1.18 Operaciones entre eventos Ejemplos 1.16 Diferencia entre eventos 1. Sean los eventos A ={a, e, i, o, u} y B ={e, o, h, w}. Luego, A− B ={a, i, u} y B − A={h, w}. 2. Sean los eventos A =[−1, 5) y B =(3, 8]. Luego, A− B =[−1, 3] y B − A =[5, 8]. 3. Sean los eventos A =[2, 5) y B =(3, 4]. Luego, B− A =∅. 4. Sean los eventos A =[2, 5) y B =(13, 24]. Luego, A − B = A y B − A = B. Evento complementario o complemento de un evento El complemento del evento A es otro evento formado por los resultados del experimento que pertenecen al espacio muestral, pero que no pertenecen al evento A. El complemento del evento A, lo simbolizaremos como Ac o A' o Ā (complemento de A). Ac ={x x ∈ S y x ∉ A} el evento complementario de A. La representación general del complemento de un evento mediante diagramas de Venn-Euler se ilustra en el área sombreada de la figura 1.6. Figura 1.6 Representación general del complemento de A. 1. Sea S ={x |x es una letra del alfabeto}y B ={x | x es una consonante}. Luego, Bc ={a, e, i, o, u}. 2. Sea S =[−4, 10] y A =[−1, 5), entonces Ac =[−4, −1)∪[5, 10]. A continuación se muestra una serie de ejemplos de las operaciones entre eventos, en los que se consideran cualquiera de estas. 1. Dados el espacio muestral S = , el conjunto de los números enteros y los eventos A ={2, 3, 5, 7, 11, 13, 17}, B ={5, 6, 7, 8,…, 30}, C ={0, 1, 2, 3, 4, 5, 6, 7, 8, 9}y D ={−6, −4,…, 10, 12}, encuentre: a) A ∩ B, A ∪ B, C ∩ A, C ∪ D, A − B, C − A, A ∩ D. A∩ B ={2, 3, 5, 7, 11, 13, 17}∩{5, 6, 7, 8,…, 30}={ 5, 7, 11, 13, 17}. A∪ B ={2, 3, 5, 7, 11, 13, 17}∪{5, 6, 7, 8, … , 30}= {2, 3, 5, 6, 7, 8, … , 30} . C ∩ A ={0, 1, 2, 3, 4, 5,6, 7, 8, 9}∩{2, 3, 5, 7, 11,13, 17}= {2, 3, 5, 7}. C ∪ D ={0, 1, 2, 3, 4,5, 6, 7, 8, 9}∪{−6, −4, −2, 0, 2, 4, 6, 8, 10, 12} ={−6, −4, −2, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12} B A AC S Ob serve que en este ejemplo (3, 4] ⊂ [2, 5) y la diferencia fue ∅. En general, si A ⊂ B se cumple que B − A = ∅.
  • 33.
    1.3 Álgebra deeventos 17 S AC S AC ∩ B A B A B A− B ={2, 3, 5, 7, 11, 13, 17}−{5, 6, 7, 8, … , 30}= {2, 3}. C − A ={0, 1, 2, 3, 4,5, 6, 7, 8, 9}−{2, 3, 5, 7, 11, 13, 17}= {0, 1, 4, 6, 8, 9}. A∩ D ={2, 3, 5, 7, 11, 13, 17}∩{−6, −4, −2, 0, 2, 4, 6, 8, 10, 12}= {2}. B ∩ D ={5, 6, 7, 8, … , 30}∩{−6, −4, −2, 0, 2, 4, 6, 8, 10, 12}= { 6, 8, 10, 12}. 2. Encuentre los resultados de las operaciones siguientes: a) (A∩ B)−( A∩ D)= {5, 7, 11, 13, 17}−{2}= {5, 7, 11, 13, 17}. b) (B ∩ D) c ∩C ={ 6, 8, 10, 12} c ∩{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}={0, 1, 2, 3, 4, 5, 7, 9}. c) ( A− B)c ∩C ={2, 3} c ∩{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}={0, 1, 4, 5, 6, 7, 8, 9}. d) (C − A)∩ D ={0, 1, 4, 6, 8, 9}∩{−6, −4, −2, 0, 2, 4, 6, 8, 10, 12}= { 0, 4, 6, 8}. e) (A∩ D)−C = {2}−{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}=∅. f) (A∩ B) c −( A∩ D) c ={ 5, 7, 11, 13, 17} c −{2} c ={…1, 2, 3, 4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 19, …}−{…0, 1, 3, 4, …}= {2}. 3. Con diagramas de Venn-Euler verifique si son válidas las siguientes igualdades entre conjuntos. a) Ac ∩ B = B − A Figura 1.7 Representación de la igualdad entre Ac ∩ B = B − A. 4. Represente en diagramas de Venn-Euler los siguientes hechos: los eventos A y B son mutuamente excluyentes, A∩C ≠ ∅ y B ∩C ≠ ∅. Figura 1.8 Representación del ejemplo 4. Particiones de eventos En teoría del álgebra de eventos es de suma importancia trabajar con algunos eventos especiales donde sus mismos el ementos son eventos de un espacio muestral dado. De hecho, el desarrollo teóri co de las probabilidades está basado en dichos eventos, per o debi- do a los fines de un texto práctico de probabilidad y estadística, nos enfocaremos únicamente a uno de estos que definimos a conti- nuación. Llamaremos familia de eventos al conjunto donde todos sus elementos son eventos. Para diferenciar en la notación de un simple evento, a la familia de eventos larepresentaremos por A, B, etcétera. A B C S
  • 34.
    18 CAPÍTULO 1BAses de LA Pr OBABiLid Ad 5 n Ejemplos 1.20 Generalización de la unión e intersección de eventos Ejemplos 1.21 Partición Indique cuáles son familia de eventos y cuáles no lo son. 1. {{1, 2, 3},{2, 3, 5, 7},{4, 8, 12, 16}} sí es una familia de eventos, ya que sus tres elementos {1, 2, 3},{2, 3, 5, 7} y {4, 8, 12, 16} son eventos. 2. {1, 2, {1, 2, 3},{2, 3, 5, 7}} no es una familia de eventos, puesto que sus elementos 1 y 2 no son eventos. 3. {∅,{1, 2, 3},{2, 3, 5, 7},{4, 8, 12, 16}} sí es una familia de eventos, ya que sus cuatro elementos ∅,{1, 2, 3},{2, 3, 5, 7} y {4, 8, 12, 16} son eventos. 4. {1, 2, 3,4}no es una familia de eventos, puesto que ninguno de sus cuatro elementos es un evento. Generalización de la unión e intersección de eventos Sean los eventos A1, A2, … , An, podemos generalizar las operaciones de unión e intersección entre ellos de la siguiente manera: n ∪Ai = A1 ∪ A2 ∪…∪ An ={x |existe una i ∈ In i=1 n tal que x ∈ Ai } unión ∩Ai = A1 ∩ A2 ∩…∩ An ={x | x ∈ Ai i=1 para toda i ∈ In} intersección. Donde In denota al conjunto de todos los números naturales menores e iguales a n. Sean los eventos A1 ={1, 2, 3, 4, 5, 6, 7, 8, 9}, A2 ={1, 4, 7, 10, 13, 16, 19, 22}, A3 ={3, 5, 7, 9, 11}, A4 ={2, 4, 6, 8, 10}y A5 = {0, 1, 2, …, 9}, encuentre la unión e intersección de estos eventos. Solución Unión: ∪ Ai ={0, 1, 2,…, 10, 11, 13, 16, 19, 22}. i=1 5 Intersección: ∩Ai =° . i=1 En el estudio de los eventos y sus operaciones surgen familias de eventos que debido a sus propiedades son de gran importancia en la formalización del desarrollo de la Teoría de las probabilidades, a dichas familias se les da el nombre de particiones. Partición Sea A un evento y A1, A2, … , An subeventos de A, que forman una familia A ={A1 , A2 ,…, An } de eventos, se dice que A es una par- tición del evento A, si los subeventos cumplen: a) Para cualesquiera eventos Ai y Aj , de un mismo experimento, con i, j ∈ In, se cumple Ai = Aj o en caso contrario Ai ∩ Aj =∅. b) A =∪ Ai. i=1 Dado el evento A ={1, 2,…, 100} indique si los eventos siguientes, del mismo experimento, forman una partición de A. 1. A1 ={1, 2, 3, 4, 5, 6, 7}, A2 ={8, 9, …, 70}, A3 ={70, 71, 72, …, 100}. Observamos que los tres eventos son subeventos de A, y con esto la segunda condición de una partición se cumple, ya que A= A1 ° A2 ° A3; sin embargo, la primera condición no se cumple, puesto que A2 ≠ A3 y A2 ∩ A3 ≠∅. Entonces los eventos no forman una partición de A. Ejemplos 1.19 Familia de eventos
  • 35.
    1.3 Álgebra deeventos 19 2. A1 ={10, 11,…, 19}, A2 ={20, 21,…, 29}, … , A9 ={90, 91, … , 100}y A10 —los números dígitos. Aquí, se puede verificar que se cumple la primera condición de particiones, ya que los 10 eventos son mutuamente excluyentes, los eventos no forman una partición de A, ya que el evento A10 no es un subevento de A, puesto que 0 ∈ A10, pero 0 ∉ A. 3. A1 ={10, 11,…, 19}, A2 ={20, 21,…, 29}, … , A9 ={90, 91,…, 100} y A10 ={1, … , 9}. Estos eventos sí forman una partición del evento A, ya que se cumplen las condiciones: A= A1 ° A2 ° …° A10 y todos los pares de eventos son mutuamente excluyentes. 4. A1 ={10, 11, … , 19} , A2 ={20, 21, … , 29} , … , A9 ={90, 91, … , 100} , A10 ={1, … , 9} , A11 ={10, 11, … , 19} . Estos eventos sí forman una partición del evento A, ya que se cumplen las condiciones: A = A1 ° A2 ° …° A11, y todos los pares de eventos son mutuamente excluyentes, excepto los eventos 1 y 11, pero en este caso se tiene que el evento 11 es igual al evento 1. 5. A = . a) A1 =(−∞, −4), A2 =[−4, 7), A3 =[7, 45], A4 =(45, 1 056], A5 =(1 056, +∞). Se comprueba que estos eventos sí forman una partición del evento A. b) A1 =(−∞, 0), A2 =[0, ∞), estos eventos también forman una partición del evento A. En el último inciso, podemos observar que los dos eventos son complementarios. Es decir, Ac = A y Ac = A . Entonces, el ejem- 1 plo 5b se puede generalizar. 6. Cualquier parde eventos A con su complemento Ac siempre forman una partición de S. 2 2 1 a) Por ejemplo, si S ={1, 2, 3, 4, 5, 6, 7}, entonces una partición podría ser: A ={1, 3, 5, 7} y Ac ={2, 4, 6}. b) Si S =[0, 20], entonces una partición estaría formada por la pareja A =[0, 4] y Ac =(4, 20]. Leyes del álgebra de eventos Trabajar con eventos basándose en la definición de sus operaciones o propi edades resulta bastante tedioso. La solución de pro blemas relacionados con los eventos también se puede hacer de manera fácil e intuitiva por medio de los diagramas de Venn -Euler, pero este método carece de un fundamento sólido teórico para cualquier caso en general. Por lo anterior, se introducen las siguient es leyes de la teoría de eventos,llamadas “Leyes o propiedades delálgebra de eventos”. Sean S el espacio muestral y A una familia de eventos en S, con A, B y C, eventos cualesquiera de S, que pert enecen a A, llama- remos Leyes del álgebra de eventos a las siguientes propiedades. Tabla 1.1 Leyes del álgebra de eventos. Leyes de idempotencia A ∪ A = A A ∩ A = A Leyes asociativas (A ∪ B)∪C = A ∪(B ∪C ) (A ∩ B)∩C = A ∩(B ∩C ) Leyes conmutativas A ∪B = B ∪ A A ∩B = B ∩ A Leyes distributivas A ∪(B ∩C ) =(A ∪ B)∩(A ∪C ) A ∩(B ∪C ) =(A ∩ B )∪(A ∩C ) Leyes de identidad A ∪∅ = A A ∪S = S A ∩°=° A ∩S = A Leyes de complemento A ∪ Ac = S A ∩ Ac = ∅ (Ac ) c = A S c = ∅, ∅c = S Leyes de DeMorgan (A ∪ B) c = Ac ∩B c (A ∩ B) c = Ac ∪ B c
  • 36.
    20 CAPÍTULO 1BAses de LA Pr OBABiLid Ad Ejemplos 1.22 Leyes del álgebra de eventos Ejercicios 1.3 Con ayuda de estas leyes se pueden efectuar demostraciones sobre la igualdad entre eventos, como se muestra en los ejemplos siguientes. Con las leyes del álgebra de eventos verifique las igualdades siguientes: 1. A∩(Ac ∪ B)= A∩ B . A∩(Ac ∪ B)=(A∩ Ac )∪( A∩ B) ley distributiva, =∅∪( A∩ B) ley del complemento, 2. A∩( A∪ B)= A. = A∩ B ley de identidad. A∩( A∪ B)=( A∪∅)∩( A∪ B) ley de identidad, = A∪(∅∩ B) ley distributiva, = A∪∅ ley de identidad, = A ley de identidad. 3. (A∩ B ∩C )∪(Ac ∩ B ∩C )∪(Bc ∪C c )= S ( A∩ B ∩C )∪(Ac ∩ B ∩C )∪(Bc ∪C c )= =( A∩ B ∩C )∪(Ac ∩(B ∩C ))∪(B ∩C ) c leyes de De Morgany asociativa, =( A∩ B ∩C )∪(Ac ∪(B ∩C ) c )∩((B ∩C )∪(B ∩C ) c ) ley distributiva, =( A∩ B ∩C )∪(Ac ∪(B ∩C ) c )∩ S ley del complemento, =( A∩ B ∩C )∪(Ac ∪(B ∩C ) c ) ley de identidad, =( A∩ B ∩C )∪(A ∩(B ∩C )) c ley de De Morgan, = S ley del complemento. 1. Mencione dos ejemplos de eventos finitos y dos de eventos infinitos. 2. Indique si los siguientes eventos son numerables. e) (A−C ) c ∩ B . 4. Por medio de diagramas de Venn-Euler verifique que son cier- tas las igualdades siguientes: a) A ={2, 4, 8, 16, 32, …}. a) A− B = A∩ Bc . b) A={a, b, c, d, …}. b) Ac − B =( A∪ B)c . c) A ={45, 44, 43, 42, 41, 40, …}. c) (B ∪ A) c ∩C =(Bc ∩C )∩(Ac ∩C ). d) A =[2, 1 768] d) A∪(Ac ∩ B)= A∪ B . e) A =(−134, 234) . 3. Dado el espacio muestral S ={0, 1, … , 20}, los eventos A={2, 4, 5, 6, 7, 8, 9, 11, 12, 13, 15} , B ={0, 2, 4, … , 20} y e) (A∩ B) c = Ac ∪ Bc . 5. En los eventos siguientes construya una partición de cada uno. C ={2, 3, 5, 7, 11}, encuentre: a) Ac ∩ Bc . a) A ={2, 4, 6, 8, 10, 11, 13, 15, 17, 19, 20} . b) A =(2, 24) . b) (Ac ∩ B) c ∪C . c) Números naturales. c) A−(B ∩C ) . d) (B −C ) c − A . d) A ={0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
  • 37.
    1.4 Axiomatización dela probabilidad 21 En la sección 1.2 se trat a el problema rel ativo a la asignación de probabilidades para un evento, donde también se destaca la impor- tancia de crear una base teórica para el estudio de la probabilidad. Di cha formalización comenzó en l a sección anterior al introducir el espacio muestral y los eventos asícomo las leyes del álgebra de eventos. En la presente sección daremos por hecho la asignación de probabili - dad a un evento y comenzaremos a desarrollar una t eoría axiomática de las probabilidades, a partir de la siguiente definición. Dado un experimento con espacio muestral S y una familia de eventos A de S tal que sus elementos cumplen con las leyes del álgebra de eventos, llamaremos probabilidad axiomática a la función numérica P, cuyo do- minio es A y rango el intervalo [0, 1], y es tal que los valores P(E) para cualquier E en A , cumplen con los siguientes tres axiomas, llamados axiomas de Kolmogórov, para familias finitas: Axioma 1. Para cualquier evento E, de A, se cumple P(E) ≥ 0. Axioma 2. Para el espacio muestral S, P(S) = 1. Axioma 3. Para cualquier sucesión infinita (o finita) de eventos mutua- mente excluyentes, de A, E1, E2, E3, … , se cumple ∞ ∞ P ∪ Ek = P(E1 )+ P(E2 )+⋯= ∑P(Ek ). k=1 k=1 Hechas las aclaraciones anteriores y basándonos en los axiomas 1, 2 y 3 o los casos particulares del axioma 3, podemos formular los teoremas necesarios para desarrollar una teoría axiomática de la probabilidad. Teorema 1.1 Sea ∅ el evento vacío, entonces P(∅) = 0. Demostración • Sea el espacio muestral S, por la ley de identidad S = S ∪ ∅. Como S y ∅ son mutuament e excluyentes, en virtud del axioma 3, se deduce que P(S )= P(S ∪∅)= P(S )+ P(∅), restando la probabilidad de S en ambos lados de la igualdad, resulta que P(∅) = 0. Teorema 1.2 Para cualquier evento E, P(E c )=1− P( E ). Demostración • Sea el espacio muestral S, y E un evento en S. Por la ley del complemento, tenemos que S = E ∪ E c , por el axioma 2 se cumple 1= P(S )= P(E ∪ E c ). Por otro lado, E y E c son mutuamente excluyentes, de esta manera empleando el axioma 3 tendremos: 1= P(S )= P(E ∪ E c )= P( E )+ P(E c ) pasando P(E) al otro lado de la igualdad se obtiene P(E c )=1− P( E ). Teorema 1.3 Para cualquier evento E, 0 ≤ P(E ) ≤ 1. Demostración • Sea S el espacio muestral y E un evento en S, del axioma 1 tenemos que P(E) ≥ 0 y P(E c ) ≥ 0. Por el teorema 1.2, P(E c ) = 1 − P(E ), de donde se deduce que P(E ) = 1 − P(E c ) ≤ 1. Por tanto, 0 ≤ P(E ) ≤ 1. Teorema 1.4 Si A y B son eventos de un mismo espacio muestral, tales que A ⊂ B, entonces P(A) ≤ P(B). 1.4 Axiomatización de la probabilidad Andréi Nikoláyevich Kolmogórov (Tambov, Rusia, 25 de abril de 1903-Moscú, 20 de octubre de 1987), fue un matemático que trabajó en probabilidad, topología, series de Fourier, teoría de conjuntos, turbulencias, mecánica clásica, y teoría de la complejidad algorítmica. En 1929 obtuvo su doctorado en la universidad estatal de Moscú. Junto con Márkov trabajaron en procesos estocásticos y de forma independiente al matemático británico Sydney Chapman desarrollaron las ecuaciones de Chapman-Kolmogórov de las cadenas de Márkov. En 1933 publicó el libro Los fundamentos de la teoría de la probabilidad, en el que establece las bases de una teoría axiomática de la probabilidad; gracias a este trabajo adquiere una gran reputación y popularidad entre los matemáticos que investigaban sobre la probabilidad. • A la terna (S, A, P ) se le suele llamar espacio probabilístico. • Note que en la definición de probabilidad axiomática no se menciona el método de obtención de la probabilidad, es decir, al número P(E ) para cualquier evento E en A, sele puede asignar un valor numérico de probabilidad según alguna de las interpretaciones de probabilidad conocidas. Por tanto, llamaremos a P(E) la probabilidad del evento E, si para cualquier evento E en A, cumple con los axiomas de Kolmogórov. • En particular, la asignación de probabilidades según las corrientes de probabilidad mencionadas cumplen con los axiomas de Kolmogórov. • El axioma 3 generalmente en los textos metodológicos se formula para dos eventos A y B mutuamente excluyente, quedando P ( A ∪B ) = P (A )+ P (B ) . En el caso de n eventos E1, E2, E3, … , En mutuam ente excluyentes, el axioma está dado por: P ∪ E = P (E )+ P (E )+⋯+ P (E )= P n k 1 2 n ∑ (E ). k =1 n k k =1
  • 38.
    22 CAPÍTULO 1BAses de LA Pr OBABiLid Ad Ejemplos 1.23 Teoremas Demostración • De las condiciones del teorema tenemos que A ⊂ B, por tanto, B s e puede representar como B = A° ( B − A), en donde A y B − A son mutuamente excluyentes. Del axioma 3, tenemos P( B)= P( A∪( B − A))= P( A)+ P( B − A). Por el axioma 1 P( B −A)° 0, entonces se cumple P( B)= P( A)+ P( B − A)≥ P( A), de donde P( A)≤ P( B). Teorema 1.5 Para dos eventos cualesquiera A y B de un mismo espacio muestral, se cumple que: P( A∪ B)= P( A)+ P( B)− P( A∩ B). Demostración • Empleando las leyes del álgebra, tenemos que: A∪ B =( A∪ B)∩ S ley de identidad, =( A∪ B)∩(A∪ Ac ) ley del complemento, = A∪(B ∩ Ac ) ley distributiva. Además A y B ∩ Ac , son mutuamente excluyentes, entonces P( A∪ B)= P (A∪(B ∩ Ac ))= P( A)+ P(B ∩ Ac ) De manera similar, se tiene que B =( A∩ B)∪(B ∩ Ac ), donde A ∩ B y B ∩ Ac son mutuamente excluyentes. Por tanto: P( B)= P(( A∩ B)∪(B ∩ Ac ))= P( A∩ B)+ P(B ∩ Ac ) Despejando P(B ∩ Ac ), resulta P(B ∩ Ac )= P( B)− P( A∩ B) y sustituyendo en la igualdad (1), se obtiene: P( A∪ B)= P( A)+ P( B)− P( A∩ B) El siguiente teorema muestra la generalización del teorema 1.5. Teorema 1.6 Para k eventos cualesquiera A1, A2, … , Ak , de un mismo espacio muestral, se cumple que: (1) k k k P( A1 ° A2° Ak )= ∑P( Ai )− ∑ P( Ai ∩ Aj )+ ∑ P( Ai ∩ Aj ∩ Ar ) i=1 i<j=2 i<j<r=3 Teorema 1.7 (−1)k−1 P( A1 ∩ A2 Ak ) Para dos eventos cualesquiera A y B de un mismo espacio muestral, se cumple que P( A− B)= P( A)− P( A∩ B). Demostración • Del ejercicio 4a de los ejercicios 1.3, A− B = A∩ Bc. Por otro lado, A =( A° Bc )∪( A∩ B) pero A ∩ B c y A ∩ B son mutuamente excluyentes, entonces delaxioma 3 P( A)= P( A° Bc )+ P( A° B), de donde P( A− B)= P( A)− P( A∩ B). La formulación y demostración de los t eoremas del 1.1 al 1.7 fue fundamental para iniciar la construcción de una teoría de l a s proba- bilidades que será utilizada en la parte estadística deltexto. Para una mejor comprensión de los teoremas se han diseñado algunos ejemplos que se muestran a continuación. 1. Sean los eventos A y B, correspondientes a un mismo espacio muestral, tales que: P(Ac )= 0.6, P(Bc )= 0.7 y P( A∩ B)= 0.2. Calcule: P(A ∪ B).
  • 39.
    1.4 Axiomatización dela probabilidad 23 A B 0.2 0.4 0.1 0.3 S AC Solución Empleando el teorema 1.2, tenemos que Finalmente, del teorema 1.5 resulta que P( A)=1− P(Ac )=1−0.6 = 0.4 y P( B)=1− P(Bc )=1−0.7 = 0.3 . P( A∪ B)= P( A)+ P( B)− P( A∩ B)= 0.4 + 0.3−0.2 = 0.5 . 2. Sean los eventos A y B correspondientes a un mismo espacio muestral, tales que: P(( A∪ B)c )= 0.2, P(Ac )= 0.2 y P( A∩ B)= 0.2, calcule P(A) y P(B). Solución Empleando el teorema 1.2 tenemos Similarmente, Finalmente, del teorema 1.5 resulta Despejando P(B) P( A)=1− P(Ac )=1−0.2 = 0.8. P( A∪ B)=1− P(( A∪ B)c )=1−0.2 = 0.8. P( A∪ B)= P( A)+ P( B)− P( A∩ B). P( B)= P( A° B)− P( A)+ P( A∩ B)= 0.8−0.8+ 0.2 = 0.2. 3. Sean los eventos A y B, correspondientes a un mismo espacio muestral, tales que P(Ac )= 0.4, P( B)= 0.5 y P( A∪ B)= 0.7. Calcule P(A − B) y P(Ac − B c ). Solución Del teorema 1.2, P( A)=1− P(Ac )=1−0.4 = 0.6, y del teorema 1.5 despejando la probabilidad de la intersección P(A ∩ B ) = P( A)+ P( B)− P( A∪ B)= 0.6 + 0.5−0.7 = 0.4, del teorema 1.7, tenemos P( A− B)= P( A)− P( A∩ B)= 0.6−0.4 = 0.2 . De igual manera, para calcular la probabilidad P(Ac − Bc )recurrimos al teorema 1.7 P(Ac − Bc )= P(Ac )− P(Ac ∩ Bc ) aplicando la ley de De Morgan, = P(Ac )− P(( A∪ B)c ) con los complementos, = 0.4 −0.3 = 0.1. Una de las dificultades de utilizar álgebra de eventos, axiomas de Kolmogórov y teoremas demostrados es que se deben memorizar sus resultados para poder emplear estas. En lugar de seguir este camino, mostraremos que combinando las leyes del álgebra, los teoremas del 1.1 al 1.7 y los diagram as de Venn-Euler, la solución para este tipo de problem as se simplifica en gran medida. Por ejemplo, podemos calcular con facilidad las dos probabilidades anteriores si trazamos el diagrama de probabilidades de Venn-Euler. El diagrama de probabilidades de Venn-Euler se obtiene al agregar las probabilidades a los sectores del diagram a que resultan de las condicio nes del problem a. Por ejemplo, en el problem a anterior calculamos: P( A) = 1−P (Ac )= 1−0.4 = 0.6 y P(A ∩B ) = P( A) + P(B )−P ( A ∪ B ) = 0.6+ 0.5−0.7 = 0.4. Entonces, el diagrama de Venn-Euler de probabilidades para calcular P ( A −B ) y P (Ac −B c ) está dado en la figura 1.9. Figura 1.9 Diagrama de Venn-Euler de probabilidades para el ejemplo 1.23 inciso 3.
  • 40.
    24 CAPÍTULO 1BAses de LA Pr OBABiLid Ad 4. Un juego consiste en extraer de manera aleatoria dos pelotas al mismo tiempo de una urna que contiene cinco pelotas numera - das de 1 a 5, de igual forma y tamaño. La persona gana si las dos pelotas extraídas tienen número par, en otro caso la person a pierde. Calcule la probabilidad de que la persona gane. Solución En este ejemplo el experimento consiste en extraer dos pelotas aleatoriamente de un total de cinco, numeradas del 1 al 5. Definido el experimento el espacio muestral, en este caso lo podemos numerar, resulta: S ={1−2, 1−3, 1−4, 1−5, 2−3, 2−4, 2−5, 3−4, 3−5, 4−5} En donde la pareja i − j, representa a la extracción de las pelotas i con la j, con i ≠ j e i, j desde 1 hasta 5. El evento E lo definimos, como: “las dos pelotas extraídas tienen número par”. Así, E ={2−4}. Por tanto, del espacio muestral encontrado, y considerando a los puntos muestrales equiprobables (¡explique esto último!), tene- mos que la probabilidad del evento E estará dada por: P( E )= 1 = 0.10. 10 5. Un experimento consiste en lanzar un dado no cargado una vez y, si sale un número impar entonces se lanza una moneda no cargada. Si el lanzamiento del dado resulta par, entonces se lanza el dado por última vez. a) Describa el espacio muestral para este experimento. b) Asigne probabilidades a los puntos muestrales de acuerdo con las condiciones del experimento. ¿Son equiprobables los pun- tos muestrales? • La descripción del espacio muestral es sencilla, simbolizando los resultados del dado por 1, 2, 3, 4, 5 y 6; mientras quelosde la moneda pors para soly a en el caso de águila, resultando S ={(1, s),(1, a),(2, 1),(2, 2),(2, 3),(2, 4),(2, 5),(2, 6) (3, s),(3, a),(4, 1),(4, 2),(4, 3),(4, 4),(4, 5),(4, 6) (5, s),(5, a),(6, 1),(6, 2),(6, 3),(6, 4),(6, 5),(6, 6)}. Es decir, el espacio muestral tiene 24 elementos. • Para la asignación de probabilidades en este momento se dificulta en forma considerable, esto se debe a que no tenemos las herramientas necesarias para tal efecto (en el capítulo tres regresaremos al problema y, como veremos, el cálculo de sus probabilidad es es demasiado sencillo, si se resuelve por medio de eventos independi entes). Primero, notamos que los puntos que están en A: A B 0.2 0.4 0.1 0.3 A B 0.2 0.4 0.1 0.3 Explicación La probabilidad de la intersección resultó P (A ∩ B ) = 0.4; como P (B ) = 0.5, entonces la parte de B que no pertenece a la intersección vale 0.1. De manera similar, del valor P ( A ) = 0.6 podemos concluir que la probabilidad para la parte de A, que no está en la intersección, debe ser 0.2. Por último, la probabilidad para el complemento de la unión vale 0.3. De aquí se pueden calcular las probabilidades deseadas mediante los diagram as de Venn-Euler. Enseguida, dibujamos el diagrama de Venn-Euler para P ( A −B ) y P (Ac −B c ), obteniendo los diagramas de la figura 1.10. S A – B S AC – BC Figura 1.10 Representación general de la diferencia A − B y Ac − Bc . Al observar el diagram a de la figura 1.10, la parte sombreada corresponde a P (A −B ) = 0.2 y P (Ac −B c )= 0.1, cuyos resultados coinciden con los encontrados a través de los teoremas.
  • 41.
    1.4 Axiomatización dela probabilidad 25 A ={(2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (2, 6), (4, 1), (4, 2), (4, 3), (4, 4), (4, 5), (4, 6), (6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6)}. Dichos puntos deben tener la misma probabilidad de ocurrir, puesto que todos se obtienen lanzando el dado dos veces. Similarmente, los puntos que pertenecen a B deben tener la misma probabilidad de ocurrir (pri mero se lanza el dado una vez y después la moneda): B ={(1, s), (1, a), (3, s), (3, a), (5, s), (5, a)}. Observamos que en los dos casos de puntos muestrales A y B una pareja cualesquiera, considerando un punto por evento, por ejemplo(2, 1)∈ A y (1, s)∈ B, no han de tener la misma probabilidad de ocurrir, puesto que la probabilidad de que al lanzar 1 el dado resulte 1 es igual a que resulte 2, y son iguales a 6 ; mientras que la probabilidad de que al lanzar la moneda resulte sol, la podemos considerar como 0.5. Es decir: 1 probabilidad de 2: 1 probabilidad de 1: Para la pareja (2, 1): 6 ; para la pareja (1, s): 6 . ° probabilidad de 1: 1 6 ° probabilidad de s: 1 2 Hasta ahora se ha descompuesto alespacio muestralS en dos eventos A y B,mutuamente excluyentes y se ha demostrado que los puntos muestrales de S no son equiprobables, pero ¡aún no hemos asignado probabilidades a los puntos muestrales! Asignación de probabilidades para los puntos de las parejas de A Si consideramos un espacio muestral S *, que contenga a los puntos muestrales que correspondan al experimento de lanzar un dado dos veces,vemos que: S *={(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (2, 6), (3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (3, 6), (4, 1), (4, 2), (4, 3), (4, 4), (4, 5), (4, 6), (5, 1), (5, 2), (5, 3), (5, 4), (5, 5), (5, 6), (6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6)}. En este caso A ⊂ S *, y como todos los puntos de este espacio muestral tienen la misma probabilidad de ocurrir, puesto que se obtienen de forma semejante (lanzando el dado dos veces) y la cantidad de puntos muestrales es 36, tenemos que la probabilidad de cualquier punto del evento A es 1 . Por tanto, de la definición clásica de probabilidad resulta: P( A)= 18 = 1 . 36 Asignación de probabilidades para los puntos de las parejas de B Como los eventos A y B son mutuamente excluyentes, por los axiomas 2 y 3 de Kolmogórov: 1= P(S )= P( A° B)= P( A)+ P( B)= 0.5+ P( B). Despejando la probabilidad del evento B, resulta: P( B)= 1 . 2 36 2 Como ya se mencionó, los puntos B ={(1, s ), (1, a), (3, s ), (3, a), (5, s ), (5, a )} deben tener la misma probabilidad de ocurrir. Luego, si mbolizando el evento simpl e Ek ={(k , x)}, para k = 1, 3, 5 y x = s, a, ahora con la definición clásica de probabilidad se tiene P( B)=6 P( Ek )= 1 ,despejando P(Ek): 2 P( Ek )= 1 , para k = 1, 3, 5 y x = s, a. 12 Con esto se concluye que los puntos muestrales de S no son equiprobables.
  • 42.
    26 CAPÍTULO 1BAses de LA Pr OBABiLid Ad 1. Sean A y B dos eventos, en un mismo espacio muestral, tales que P( A)= 0.3, P( B)= 0.3 y P( A∪ B)= 0.4. Calcule: 7. Un aparato electrónico contiene cinco sistemas electróni- cos,de los cuales dos son realmente defectuosos. Se selec- a) P( A∩ B) b) P(Ac ∪ Bc ) cionan al azar y al mismo tiempo dos de los cinco sistemas 2. Sean A y B dos eventos, en un mismo espacio muestral, tales que P( A∪ B)= 0.9. Calcule P(Ac ∩ Bc ). 3. Sean los eventos A y B, en un mismo espacio muestral, tales que P( A)= 0.5, P( B)= 0.7 y P( A∩ B)= 0.4. Calcule: para someterlos a pruebas rigurosas y clasificarlos como de- fectuosos o no defectuosos. Encuentre el espacio muestral y los eventos en cada caso si la probabilidad de que los dos sistemas probados sean buenos a) P(Ac ∩ B) b) P( Ac − B). a) Si no hay diferencia entre buenos,ni entre defectuosos 4. Sean A y B dos eventos mutuamente excluyentes tales que P( A)= 0.3 y P( B)= 0.6. Calcule P(Ac ∩ Bc ). 5. Sean A y B dos eventos mutuamente excluyentes tales que P( A)= 0.4. Calcule P( Ac ∪ B). 6. Suponga que se lanzan tres monedas perfectas y se observa la cantidad de águilas que quedan hacia arriba. Establezca los puntos muestrales de este experimento y a) Asigne una probabilidad razonable a cada punto.¿Son los puntos igualmente probables? (son indistinguibles entre sí). b) Si existen diferencias entre buenos y entre defectuosos (son distinguibles entre sí). 8. Resuelva el ejercicio anterior cuando la selección se realiza analizando o seleccionando un sistema tras otro. Comente los resultados obtenidos en ambos casos. 9. Sean los eventos A, B y C en un mismo espacio mues- tral, tales que A y B son mutuamente excluyentes, con P (A∪ B ∪C ) c = 0.1, P( A∩C )= 0.2, P(B ∩C )= 0.1 y P(C) b) Sea A el evento de observar exactamente una vez águila y B el evento de observar al menos un águila. Obtenga los puntos muestrales de A y B y calcule P(Ac ∩ B). = 0.4. Calcule: P( A∪ B). Sugerencia: Trace un diagrama de Venn-Euler. Ejerciciosde repaso Preguntas de autoevaluación 1.1 Explique qué es un modelo matemático. 1.2 ¿Cómo se le llama al proceso por el que se describen los resultados de un modelo probabilístico? 1.3 ¿Cómo se le llama al conjunto de todos los resultados po- b) A∪ B ⊂ A y A∪ B ⊂ B c) A − B ⊂ A d ) A − B ⊂ B e) A ⊂ A − B f ) Ac ∩ A = S 1.12 Defina una partición del espacio muestral. 1.4 1.5 sibles de un experimento estocástico? ¿Cómo se le llama al conjunto que representa a una parte de todos los resultados posibles (pueden ser todos los re- sultados o ninguno) de un experimento estocástico? ¿Cuáles son las corrientes de probabilidad más comunes? 1.13 Escriba las leyes de De Morgan de álgebra de eventos. 1.14 Describa los tres axiomas de Kolmogórov para álgebra finita. 1.15 Sean A y B dos eventos cualesquiera de un mismo espa- cio muestral. Determine qué incisos son correctos. 1.6 Si una persona asigna probabilidades a eventos depen- diendo de su experiencia para realizar una toma de decisión, estaría empleando la corrient e de probabilidad llamada . 1.7 Cuando la probabilidad de ocurrencia de un evento se a) P( A∩ B)= P( A) b) P( A∩ B)≥ P( A) c) P( A∩ B)≤ P( A) d) P( Ac )= P( A)−1 e) P( A)=1− P( Ac ) asigna antes que se realice el experimento se le llama pro- babilidad de tipo . 1.8 Explique cuándo dos eventos son mutuamente exclu- yentes. 1.9 Enumere las operaciones fundamentales entre eventos. 1.10 El resultado de operaciones entre eventos siempre debe resultar otro . 1.11 Sean A y B dos eventos cualesquiera de un mismo espa- cio muestral. Determinar qué incisos son correctos. 1.16 Responda la siguiente cuestión y justifique su respuesta: ¿si el evento E está constituido de solo elementos negati- vos, entonces su probabilidad tendrá que ser negativa? 1.17 ¿Qué evento es un subevento de cualquier otro evento? 1.18 A ∪ B = ∅, solo puede ocurrir si A y B son . 1.19 A ∩ B = ∅ solo puede ocurrir si: 1.20 Si A y B son dos eventos mutuamente excluyentes, ¿qué incisos son correctos? a) Ac y B también son mutuamente excluyentes. a) A∩ B ⊂ A y A∩ B ⊂ B b) Ac y B c también son mutuamente excluyentes. Ejercicios 1.4
  • 43.
    Ejercicios de repaso27 c) P( A∪ B)= P( A)+ P( B) . a) P(Ac ∩ Bc ) b) P(Ac − B) . d ) P( A∩ B)= P( A)− P( B) . 1.28 Sean A y B dos eventos mutuamente excluyentes tales e) B es un subconjunto de Ac . que P(A) = x y P(B) = y, con 0 < x + y < 1 y x, y > 0. f ) P( A− B)= 0 . g) P( A− B)= P( A) . Calcule P((A∩ B) c ). 1.21 En términos generales, el cálculo de probabilidades es equivalente a: a) Predecir el futuro. b) Encontrar valores numéricos que permitan cuantifi- car la incertidumbre. c) Establecer relaciones causa-efecto para fenómenos naturales o experimentales. d) Ninguna de las anteriores. 1.22 Indique si las siguientes afirmaciones son verdaderas o falsas y explique su respuesta. a) El evento A =[0,1] es un ejemplo de un evento infi- nito contable, porque contiene un primer y último elemento. b) El evento A ={1, 2, 3, …} es un ejemplo de un even- to infinito, por tanto no es contable, además pode- mos agregarque no es contable; porque no contiene un último elemento. 1.23 En la formulación de las siguientes preguntas existe un error, indique cuál es. Nota: ¡No se pide resolver el problema! a) Sean A y B dos eventos mutuamente excluyentes con: P(A) = 0.5, P(Bc ) = 0.6 y P(A ∩ B) = 0.1. Calcu- le P(A ∪ B). b) Sean A y B dos eventos que forman una partición del espacio muestral, con: P(A) = 0.5 y P(B) = 0.3. Calcule P(A ∪ B). c) Sean A, B y C eventos que forman una partición del espacio muestral S, con: P(A) = 0.4, P(B) = 0.6 y P(C) = 0.3. Calcule P(A ∪ B ∪ C). d) ) ¿Si A y B son dos eventos mutuamente excluyentes, entonces en general P( A∩ B)= P( A)P( B)? Ejercicios complementarios con grado de dificultad uno 1.24 Dado el espacio muestral S ={0, 1, … , 20}, los eventos 1.29 Sean los eventos A y B, mutuamente excluyentes, con P(Ac ) = 0.6 y P(Bc ) = 0.7. Calcule P(A ∪ B). 1.30 Sean los eventos A y B, en un mismo espacio muestral, tales que P(A ∪ B) = 0.4. Calcule P(Ac ∩ B c ). 1.31 Sean A y B dos eventos,en un mismo espacio muestral, tales que P(A) = 0.7, P(A ∪ B) = 0.9 y P(B) = 0.6. Calcu- le P(Ac ∪ B). 1.32 Sean los eventos A y B, en un mismo espacio muestral, tales que P(A) = 0.7, P(B c ) = 0.6 y P(A ∪ B) = 0.9. C al- cule: a) P(Ac ∩ B) b) P(Ac ∩ B c ) 1.33 ¿Qué corriente de probabilidad será conveniente em- plearpara la asignación de un valornumérico al suceso de que Miguel Pérez se case este año? 1.34 El administrador de la logística de la red de distribución de una línea de autobuses tiene que tomar la decisión de cómo distribuir dos de cinco autobuses que viajen a Guadalajara. R epresente por a1 , a2 , a3 , a4 y a5 a los cinco autobuses y contesta lo siguiente. a) Describa al espacio muestraldel experimento al se- leccionar dos autobuses para viajar a Guadalajara. b) Serán los puntos muéstrales equiprobables. Justifi- que su respuesta. 1.35 Suponga que s e lanzan dos dados. Calcule la probabilidad de que la suma de los números de las caras que quedan hacia arriba sea 7. 1.36 Suponga que se lanzan tres monedas no cargadas y que se observa la cantidad de águilas que quedan hacia arri- ba. Establ ezca los puntos muestrales de este experi men - to y asigne una probabilidad razonable a cada punto. Sea A el evento de observar exactamente un águila y B el evento de observar al menos un águila. Calcule P(A ∩ B). 1.37 Sean los eventos A ={x |x es un profesionista de Méxi- co y es administrador} y B ={x |x es un profesionista de México y sabe finanzas}; el espacio muestral se refiere a todos los profesionistas de México, según datos del A={2, 4, 5, 6, 7, 8, 9, 11, 12, 13, 15}, y C ={2, 3, 5, 7, 11}, encuentre: B ={0, 2, 4, … , 20} censo de 2005, 10% de los profesionistas mexicanos son administradores; 30% de los profesionistas mexicanos sa- a) Ac ∩ Bc b) (Ac ∩ B) c ∪C ben finanzas, pero solo 7% de los profesionistas son ad- 1.25 Si A es el evento formado por las vocales, indique cuál de las siguientes familias representa una partición de A. ministradores y saben finanzas. a) ¿Son los eventos A y B mutuamente excluyentes? Jus- a) {{a, e},{i, o}, u} c) {a,{e, i, o, u}} tifique su respuesta. b b) {{a, e},{i, o},{u}} d) {a, e, i, {o, u}} ) Calcule la probabilidad de que al seleccionar aleato- riamente a un profesionista mexicano sea adminis- 1.26 Suponga que se lanzan cinco monedas no cargadas y ob- servamos la cantidad de águilas que quedan hacia arriba. Establezca los elementos del espacio muestral de este ex- perimento. 1.27 Sean A y B eventos mutuamente excluyentes, tales que P( A)= 0.3, P(Bc )= 0.6. Calcule: trador o conozca de finanzas. c) Calcule l a probabilidad de que al seleccionar aleato- riamente a un profesionista mexicano no sea admi- nistrador, pero que sí conozca de finanzas. 1.38 Dos ajedrecistas, I y II, tienen la misma capacidad y jue - gan el uno contra el otro una serie de 5 partidas. En cada
  • 44.
    28 CAPÍTULO 1BAses de LA Pr OBABiLid Ad partida, no podrá haber tabl as, ya que en caso contrario, se jugarán a cinco minutos, hasta obtener un ganador de la partida. S e registra el resultado de cada partida. Sea A el evento de que el ajedrecista I gane la serie (gane al me- nos tres veces,en caso de que gane tres partidas la serie se termina), encuentre P(A). Ejercicios complementarios con grado de dificultad dos 1.45 Suponga que se lanzan dos monedas cargadas de for- ma contrari a, es decir, considérese que la probabilidad de que resulte águila en una moneda es 0.3, en dicho caso l a probabilidad de que resulte sol en la otra moneda será también 0.3. Observe las combinaciones de todos los re - sultados posibles que pueden ocurrir con las dos mo- nedas. a) Establezca los puntos muestrales de este experimento. b) Asigne una probabilidad razonable a cada punto. 1.39 Los eventos A, B y C del espacio muestral S, son tales que A y B forman una partición de C , P(C c ) = 0.2 y P(C ) = 4P(A). Calcule P(A), P(B) y P(C ). 1.40 Si A y B son eventos diferentes definidos en el mismo es- pacio muestral, y si P(A ∩ B) = 0.4 y P(Ac ∩ B c ) = 0.1 Determine P (A∩ Bc )∪(Ac ∩ B) . 1.46 ¿Son los puntos igualmente probables? Suponga que se lanzan dos monedas cargadas de forma contraria es decir, considérese que la probabilidad de que resulte águila en una moneda es 0.3; en dicho caso l a pro- babilidad de que resulte solen la otra moneda será tam- bién 0.3. Observe la cantidad de águilas que quedan hacia arriba. 1.41 Sean los eventos A, B y C en un mismo espacio mues- tral, tales que A y B son mutuamente excluyentes, con P (A∪ B ∪C ) c = 0.1, P( A∩C )= 0.2, P(B ∩C )= 0.1, a) Establezca los puntos muestrales de este experimento. b) Asigne una probabilidad razonable a cada punto. ¿Son los puntos igualmente probables? c) Sea A el evento de observar exactamente una vez P(C) = 0.6, calcule: P(A) y P(B) si a) P(A) = P(B). b) P(A) = 2P(B). c) 2P(A) = P(B). 1.42 Los eventos A, B y C del espacio muestral S, son tales que A y B son mutuamente excluyentes, P(A) + P(B) = 1, P(C) = 0.3, P(A ∩ C) = 0.1 y P(B) = 4P(A). C alcule P(A) y P(B). 1.43 Un experimento consiste en lanzar un dado no cargado una vezy, si sale un número mayor a 2 entonces se lan- za una moneda no cargada. Si el lanzamiento del dado es un número menor o igual a 2, entonces se lanza por últi - ma vez el dado. Asigne probabilidades a los puntos mues- trales e indique, si son o no equiprobables. 1.44 Hay cuatro billetes de 200 pesos cada uno, de igual aspec- to, dos de los cuales son falsos, y se va a pagar una cuenta con dos de esos billetes. La cuent a la cobra el encargado, eligiendo al mismo tiempo dos de los cuatro billetes al azar. Encuentre la probabilidad de que el encargado elija al menos uno de los billetes falsos. águila y B el evento de observar al menos un águila. Obtenga los puntos muestrales de A y B. d) A partir de la respuesta en c), calcule P(A), P(B), P(A ∩ B) y P(Ac ∩ B). 1.47 Una constructora que trabaja para Casas ARPA ha calcu- lado con datos históricos que cuando inicia dos casas al mismo tiempo, la probabilidad de que termine a tiempo ambas casas es 0.3, mientras que la probabilidad de que termine a tiempo al menos una de las dos casas es de 0.95. ¿Cuál es la probabilidad de que en estas condicio- nes construya a tiempo exactamente una casa? 1.48 El encargado de llevar a cabo la logística de la red de dis- tribución de una empresa repartidora de refrescos en la Ciudad de México ha calculado que la probabilidad de retrasos en su reparto de los días viernes y sábado tiene los siguientes valores. La probabilidad de retrasarse exac- tamente un día es de 0.3, mientras que la probabilidad de retrasarse al menos uno de los dos días es de 0.7. ¿Cuál es la probabilidad de que en la siguient e semana se retrasen en ambos días? 1.49 Supóngase el problema anterior, pero en donde un repartidor que trabaja de lunes a viernes tiene dos causas por las que puede retrasar sus repartos. Una es por el día y tráfico de la semana, La otra causa se debe a manifestaciones que le ocasio - nan retrasos de hasta una hora, entre una y dos horas y entre dos y tres horas. Las probabilidades se muestran en la tabla 1.2. Tabla 1.2 Día de la semana Manifestaciones Lunes Martes Miércoles Jueves Viernes 0-1 hora 0.04 0.05 0.10 0.10 0.20 1-2 horas 0.02 0.03 0.08 0.10 0.10 2-3 horas 0.00 0.01 0.05 0.08 0.04 a) ¿Cuál es probabilidad de que el trabajador se retrase una hora el miércoles? b) ¿Cuál es la probabilidad de que el trabajador se retrase al menos una hora cada día? c) ¿Cuál es la probabilidad de que el trabajador se retrase menos de una hora los primeros tres días de la semana?
  • 45.
    1.50 El ingenierode control de calidad de una fábrica de refri- geradores tiene que revisar tres de seis refrigeradores en donde hay dos defectuosos. a) ¿Cuál es la probabilidad de que en los tres revisados estén los dos defectuosos? b) ¿Cuál es la probabilidad de que entre los tres revisa- dos no exista ningún defectuoso? Proyectos del capítulo 1 29 1.54 Sean A y B dos eventos tales que P(A) = 0.35 y P(B) = 0.85, determine el rango de valores que puede tomar P(A ∩ B) y las condiciones para sus valores máximos y mínimos. 1.55 Los eventos A, B y C del espacio muestral S, son tales que: A y B son mutuamente excluyentes P(B) = 0.4, P ° ( A∪ B ∪C )c = 0.1 , P(A ∩ C) = 0.1 y P(A) = 3P(C). Ejercicios complementarios con grado de dificultad tres 1.56 Calcule P(A) y P(C). Demuestre que para cualquiera de dos eventos A y B,la probabilidad que exactamente uno de los dos ocurra está dada por la expresión P( A)+ P( B)−2 P( A∩ B). 1.51 Sean los eventos A, B y C, tales que, S = A° B ° C , P (A∩ B ∩C ) c = 0.9 , P(C) = 0.6, P(A ∩ B) = 0.15, 1.57 Sean A y B dos eventos, demuestre que Ac ∩ B y A ∩ B c son mutuamente excluyentes. 1.58 Para cualesquier eventos A , A , …, A , demuestre que P(A ∩ C) = 0.2, P(B ∩ C) = 0.1, y P(A) = 2P(B). Calcule P(A) y P(B). ° n n 1 2 n a) P ∪ Ai ≤∑P( Ai ) 1.52 Los eventos A, B y C forman una partición del espa- cio muestral S. En estas condiciones asigne subjetiva- i=1 i=1 ° n n mente probabilidades adecuadas a los eventos y calcule b) P ∩ Ai ≥∑P( Ai )−(n−1) P ( A∪C )−( Ac − Bc ) . i=1 i=1 1.53 Sean los eventos A, B y C correspondientes a un mismo c) P ° n A ≥1− n P( Ac ) . espacio muestral, tales que B y C son mutuamente exclu- yentes y A y B también son mutuamente excluyentes: ∩ i=1 n ∑ i i=1 n ° c d) P Ai =1− P Ac . P(A ∩ C) = 0.2, P ( A∪ B ∪C ) = 0.2 y P(A) = P(B) = 2P(C). Calcule P(A), P(B) y P(C). ∩ i=1 i=1 i Proyectos del capítulo 1 I. En un circuito seri e como el mostrado en la figura 1.1 se mide la caída de voltaje en la resistencia con un voltímetro de alt a pre- cisión, durante intervalos de tres minutos, obteniendo las mediciones siguientes en volts. 119.95 119.98 120.37 119.50 119.74 118.03 120.04 119.37 121.07 120.08 120.54 119.89 119.49 118.99 120.99 119.57 121.68 118.35 120.17 118.84 118.38 119.21 118.98 120.65 119.27 118.51 121.22 118.95 120.29 120.72 119.46 119.69 120.92 120.73 119.96 118.41 120.14 120.65 120.31 120.44 121.25 119.47 121.09 119.74 121.95 120.17 120.40 120.60 119.13 119.26 121.33 120.58 120.27 121.38 120.80 118.84 120.45 120.31 120.48 119.05 Resuelva los siguientes incisos. a) ¿Cuál es la probabilidad de que la caída de voltaje en la resistencia sea mayor a 120.15 volts? b) ¿Cuál es la probabilidad de que la caída de voltaje en la resistencia esté fuera de los rangos especificados 120 ± 0.25 para el circuito? Defina cuál sería el espacio muestral en este modelo. c) ¿Cuál será la probabilidad de que la caída de voltaje en la resistencia sea mayor a 122 volts? ¿Qué significa este resultado? d) Explique qué tipo de corriente utilizó en los incisos anteriores para asignar probabilidades y, ¿por qué no utilizó a las otras corrientes de probabilidad? II. En la hoja “Divorcios por entidad” del archivo Datos de divorcios.xls que se encuentra en el C D -R OM, está una base de datos extraída del INEGI de todos los divorcios registrados en la República Mexicana para cada estado de 1985 a 2011. Con esta infor- mación: i ° °