SlideShare una empresa de Scribd logo
1 de 15
SEMICONDUCTORES
Programa: Ing. de Sistemas e Informática
Curso: Física Electrónica
Alumno: Ferni Francisco Nogueira Linari
Profesor: Roberto Rodríguez Cahuana
2014
Los Semiconductores Intrínsecos
Se dice que un semiconductor es “intrínseco” cuando se encuentra en estado
puro, o sea, que no contiene ninguna impureza, ni átomos de otro tipo dentro
de su estructura. En ese caso, la cantidad de huecos que dejan los
electrones en la banda de valencia al atravesar la banda prohibida será igual
a la cantidad de electrones libres que se encuentran presentes en la banda
de conducción.
Cuando se eleva la temperatura de la red cristalina de un elemento
semiconductor intrínseco, algunos de los enlaces covalentes se
rompen y varios electrones pertenecientes a la banda de valencia se
liberan de la atracción que ejerce el núcleo del átomo sobre los
mismos. Esos electrones libres saltan a la banda de conducción y allí
funcionan como “electrones de conducción”, pudiéndose desplazar
libremente de un átomo a otro dentro de la propia estructura
cristalina, siempre que el elemento semiconductor se estimule con el
paso de una corriente eléctrica.
Como se puede observar en la ilustración, en el caso de los
semiconductores el espacio correspondiente a la banda prohibida
es mucho más estrecho en comparación con los materiales
aislantes. La energía de salto de banda (Eg) requerida por los
electrones para saltar de la banda de valencia a la de conducción
es de 1 eV aproximadamente. En los semiconductores de silicio
(Si), la energía de salto de banda requerida por los electrones es de
1,21 eV, mientras que en los de germanio (Ge) es de 0,785 eV.
Estructura cristalina de un semiconductor intrínseco, compuesta
solamente por átomos de silicio (Si) que forman una celosía. Como
se puede observar en la ilustración, los átomos de silicio (que sólo
poseen cuatro electrones en la última órbita o banda de valencia), se
unen formando enlaces covalente para completar ocho electrones y
crear así un cuerpo sólido semiconductor. En esas condiciones el
cristal de silicio se comportará igual que si fuera un cuerpo aislante
Semiconductores Extrínsecos
Los semiconductores extrínsecos se caracterizan, porque tienen un pequeño
porcentaje de impurezas, respecto a los intrínsecos; esto es, posee
elementos trivalentes o pentavalentes, o lo que es lo mismo, se dice que el
elemento está dopado.
Dependiendo de si está dopado de elementos trivalentes, o pentavalentes,
se diferencian dos tipos:
Semiconductores Extrínsecos Tipo n:
Son los que están dopados, con elementos pentavalentes, como por
ejemplo (As, P, Sb). Que sean elementos pentavalentes, quiere decir que
tienen cinco electrones en la última capa, lo que hace que al formarse la
estructura cristalina, un electrón quede fuera de ningún enlace covalente,
quedándose en un nivel superior al de los otros cuatro. Como
consecuencia de la temperatura, además de la formación de los pares e-h,
se liberan los electrones que no se han unido.
Como ahora en el semiconductor existe un mayor número de electrones
que de huecos, se dice que los electrones son los portadores
mayoritarios, y a las impurezas se las llama donadoras.
En cuanto a la conductividad del material, esta aumenta de una forma muy
elevada, por ejemplo; introduciendo sólo un átomo donador por cada 1000
átomos de silicio, la conductividad es 24100 veces mayor que la del silicio
puro.
Al aplicar una tensión al semiconductor de la figura, los electrones
libres dentro del semiconductor se mueven hacia la izquierda y los
huecos lo hacen hacia la derecha. Cuando un hueco llega al
extremo derecho del cristal, uno de los electrones del circuito
externo entra al semiconductor y se recombina con el hueco.
Los electrones libres de la figura circulan hacia el extremo izquierdo del
cristal, donde entran al conductor y fluyen hacia el positivo de la batería.
Semiconductores Extrínsecos Tipo p:
En este caso son los que están dopados con elementos
trivalentes, (Al, B, Ga, In). El hecho de ser trivalentes, hace que a
la hora de formar la estructura cristalina, dejen una vacante con
un nivel energético ligeramente superior al de la banda de
valencia, pues no existe el cuarto electrón que lo rellenaría.
Esto hace que los electrones salten a las vacantes con facilidad, dejando
huecos en la banda de valencia, y siendo los huecos portadores
mayoritarios.
En el circuito hay también un flujo de portadores minoritarios. Los
electrones libres dentro del semiconductor circulan de derecha a
izquierda. Como hay muy pocos portadores minoritarios, su efecto
es casi despreciable en este circuito.
Unión p-n
En una unión entre un semiconductor p y uno n, a temperatura
ambiente, los huecos de la zona p pasan por difusión hacia la
zona n y los electrones de la zona n pasan a la zona p.
En la zona de la unión, huecos y electrones se
recombinan, quedando una estrecha zona de transición con una
distribución de carga debida a la presencia de los iones de las
impurezas y a la ausencia de huecos y electrones.
Se crea, entonces un campo eléctrico que produce corrientes de
desplazamiento, que equilibran a las de difusión. A la diferencia de
potencial correspondiente a este campo eléctrico se le llama
potencial de contacto V0.
Bibliografía
http://www.asifunciona.com/fisica/ke_semiconductor/ke_semicondu
ctor_4.htm
http://www.uv.es/candid/docencia/ed_tema-02.pdf
http://fisicauva.galeon.com/aficiones1925813.html
http://www.sc.ehu.es/sbweb/electronica/elec_basica/tema2/Paginas
/Pagina6.htm
http://personales.upv.es/jquiles/prffi/semi/ayuda/hlppn.htm

Más contenido relacionado

La actualidad más candente

Problemario circuitos electricos
Problemario circuitos electricosProblemario circuitos electricos
Problemario circuitos electricos
Clai Roman
 
Aplicaciones de las series de fourier en el área de la ingeníeria
Aplicaciones de las series de fourier en el área de la ingeníeriaAplicaciones de las series de fourier en el área de la ingeníeria
Aplicaciones de las series de fourier en el área de la ingeníeria
elen mora
 
Defectos o imperfecciones en los sistemas cristalinos
Defectos o imperfecciones en los sistemas cristalinosDefectos o imperfecciones en los sistemas cristalinos
Defectos o imperfecciones en los sistemas cristalinos
Juan Carlos Corpi
 
Calculo de la capacitancia
Calculo de la capacitanciaCalculo de la capacitancia
Calculo de la capacitancia
Chuy' Irastorza
 
Resistencia y resistividad
Resistencia y resistividadResistencia y resistividad
Resistencia y resistividad
nachoHL
 

La actualidad más candente (20)

Circuitos
CircuitosCircuitos
Circuitos
 
Analisis circuitos eléctricos primer y segundo orden
Analisis circuitos eléctricos primer y segundo ordenAnalisis circuitos eléctricos primer y segundo orden
Analisis circuitos eléctricos primer y segundo orden
 
Ejemplo de publicación de un Articulo formato IEEE
Ejemplo de publicación de un Articulo formato IEEEEjemplo de publicación de un Articulo formato IEEE
Ejemplo de publicación de un Articulo formato IEEE
 
Problemario circuitos electricos
Problemario circuitos electricosProblemario circuitos electricos
Problemario circuitos electricos
 
Aplicaciones de las series de fourier en el área de la ingeníeria
Aplicaciones de las series de fourier en el área de la ingeníeriaAplicaciones de las series de fourier en el área de la ingeníeria
Aplicaciones de las series de fourier en el área de la ingeníeria
 
Tiristores, características, aplicaciones y funcionamiento.
Tiristores, características, aplicaciones y funcionamiento.Tiristores, características, aplicaciones y funcionamiento.
Tiristores, características, aplicaciones y funcionamiento.
 
Inductancia
InductanciaInductancia
Inductancia
 
Defectos o imperfecciones en los sistemas cristalinos
Defectos o imperfecciones en los sistemas cristalinosDefectos o imperfecciones en los sistemas cristalinos
Defectos o imperfecciones en los sistemas cristalinos
 
Resistencia equivalente
Resistencia equivalenteResistencia equivalente
Resistencia equivalente
 
Ejercicios tema 3 1. Estructura cristalina.
Ejercicios tema 3 1. Estructura cristalina.Ejercicios tema 3 1. Estructura cristalina.
Ejercicios tema 3 1. Estructura cristalina.
 
Formulario de integrales
Formulario de integralesFormulario de integrales
Formulario de integrales
 
Calculo de la capacitancia
Calculo de la capacitanciaCalculo de la capacitancia
Calculo de la capacitancia
 
Rotor devanado
Rotor devanadoRotor devanado
Rotor devanado
 
IMPEDANCIA Y REACTANCIA
IMPEDANCIA Y REACTANCIAIMPEDANCIA Y REACTANCIA
IMPEDANCIA Y REACTANCIA
 
Voltaje de rizado
Voltaje de rizadoVoltaje de rizado
Voltaje de rizado
 
Características de la onda senoidal
Características de la onda senoidal Características de la onda senoidal
Características de la onda senoidal
 
Diagramas de fases ejercicios y problemas
Diagramas de fases ejercicios y problemasDiagramas de fases ejercicios y problemas
Diagramas de fases ejercicios y problemas
 
Senoides y fasores presentacion ppt
Senoides  y fasores presentacion pptSenoides  y fasores presentacion ppt
Senoides y fasores presentacion ppt
 
Resistencia y resistividad
Resistencia y resistividadResistencia y resistividad
Resistencia y resistividad
 
Informe leyes-de-kirchhoff
Informe leyes-de-kirchhoffInforme leyes-de-kirchhoff
Informe leyes-de-kirchhoff
 

Destacado (6)

Semiconductoresintrinsecosyextrinsecos
SemiconductoresintrinsecosyextrinsecosSemiconductoresintrinsecosyextrinsecos
Semiconductoresintrinsecosyextrinsecos
 
1.4. Materiales Extrínsecos
1.4. Materiales Extrínsecos1.4. Materiales Extrínsecos
1.4. Materiales Extrínsecos
 
Los semiconductores intrínsecos y los semiconductores extrínsecos (dopado)
Los semiconductores intrínsecos y los semiconductores  extrínsecos (dopado)Los semiconductores intrínsecos y los semiconductores  extrínsecos (dopado)
Los semiconductores intrínsecos y los semiconductores extrínsecos (dopado)
 
Union PN Semiconductores
Union PN SemiconductoresUnion PN Semiconductores
Union PN Semiconductores
 
Semiconductores intrinsecos y extrinsecos
Semiconductores intrinsecos y extrinsecosSemiconductores intrinsecos y extrinsecos
Semiconductores intrinsecos y extrinsecos
 
Materiales semiconductores
Materiales semiconductoresMateriales semiconductores
Materiales semiconductores
 

Similar a Semiconductores intrínsecos y extrínsecos

Semiconductores intrísecos y dopados
Semiconductores intrísecos y dopadosSemiconductores intrísecos y dopados
Semiconductores intrísecos y dopados
Fiorella Vilca
 
Semiconductores intrinsecos y dopados
Semiconductores intrinsecos y dopadosSemiconductores intrinsecos y dopados
Semiconductores intrinsecos y dopados
castropc
 
Semiconductores intrinsecos y semiconductores dopados
Semiconductores intrinsecos y semiconductores dopadosSemiconductores intrinsecos y semiconductores dopados
Semiconductores intrinsecos y semiconductores dopados
Daniel Villafana
 

Similar a Semiconductores intrínsecos y extrínsecos (20)

Semiconductores intrísecos y dopados
Semiconductores intrísecos y dopadosSemiconductores intrísecos y dopados
Semiconductores intrísecos y dopados
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores trabajo
Semiconductores trabajoSemiconductores trabajo
Semiconductores trabajo
 
Semiconductores intrínsecos
Semiconductores intrínsecosSemiconductores intrínsecos
Semiconductores intrínsecos
 
Semiconductores intrínsecos
Semiconductores intrínsecosSemiconductores intrínsecos
Semiconductores intrínsecos
 
Semiconductores febusca
Semiconductores febuscaSemiconductores febusca
Semiconductores febusca
 
Semiconductores intrinsecos y dopados
Semiconductores intrinsecos y dopadosSemiconductores intrinsecos y dopados
Semiconductores intrinsecos y dopados
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores fmgs
Semiconductores fmgsSemiconductores fmgs
Semiconductores fmgs
 
Semiconductores fmgs
Semiconductores fmgsSemiconductores fmgs
Semiconductores fmgs
 
Semiconductores fmgs
Semiconductores fmgsSemiconductores fmgs
Semiconductores fmgs
 
Semiconductores intrinsecos dopados
Semiconductores intrinsecos dopadosSemiconductores intrinsecos dopados
Semiconductores intrinsecos dopados
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores intrinsecos y semiconductores dopados
Semiconductores intrinsecos y semiconductores dopadosSemiconductores intrinsecos y semiconductores dopados
Semiconductores intrinsecos y semiconductores dopados
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Teoría del semiconductor
Teoría del semiconductorTeoría del semiconductor
Teoría del semiconductor
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 

Semiconductores intrínsecos y extrínsecos

  • 1. SEMICONDUCTORES Programa: Ing. de Sistemas e Informática Curso: Física Electrónica Alumno: Ferni Francisco Nogueira Linari Profesor: Roberto Rodríguez Cahuana 2014
  • 2. Los Semiconductores Intrínsecos Se dice que un semiconductor es “intrínseco” cuando se encuentra en estado puro, o sea, que no contiene ninguna impureza, ni átomos de otro tipo dentro de su estructura. En ese caso, la cantidad de huecos que dejan los electrones en la banda de valencia al atravesar la banda prohibida será igual a la cantidad de electrones libres que se encuentran presentes en la banda de conducción.
  • 3. Cuando se eleva la temperatura de la red cristalina de un elemento semiconductor intrínseco, algunos de los enlaces covalentes se rompen y varios electrones pertenecientes a la banda de valencia se liberan de la atracción que ejerce el núcleo del átomo sobre los mismos. Esos electrones libres saltan a la banda de conducción y allí funcionan como “electrones de conducción”, pudiéndose desplazar libremente de un átomo a otro dentro de la propia estructura cristalina, siempre que el elemento semiconductor se estimule con el paso de una corriente eléctrica.
  • 4. Como se puede observar en la ilustración, en el caso de los semiconductores el espacio correspondiente a la banda prohibida es mucho más estrecho en comparación con los materiales aislantes. La energía de salto de banda (Eg) requerida por los electrones para saltar de la banda de valencia a la de conducción es de 1 eV aproximadamente. En los semiconductores de silicio (Si), la energía de salto de banda requerida por los electrones es de 1,21 eV, mientras que en los de germanio (Ge) es de 0,785 eV.
  • 5. Estructura cristalina de un semiconductor intrínseco, compuesta solamente por átomos de silicio (Si) que forman una celosía. Como se puede observar en la ilustración, los átomos de silicio (que sólo poseen cuatro electrones en la última órbita o banda de valencia), se unen formando enlaces covalente para completar ocho electrones y crear así un cuerpo sólido semiconductor. En esas condiciones el cristal de silicio se comportará igual que si fuera un cuerpo aislante
  • 6. Semiconductores Extrínsecos Los semiconductores extrínsecos se caracterizan, porque tienen un pequeño porcentaje de impurezas, respecto a los intrínsecos; esto es, posee elementos trivalentes o pentavalentes, o lo que es lo mismo, se dice que el elemento está dopado. Dependiendo de si está dopado de elementos trivalentes, o pentavalentes, se diferencian dos tipos:
  • 7. Semiconductores Extrínsecos Tipo n: Son los que están dopados, con elementos pentavalentes, como por ejemplo (As, P, Sb). Que sean elementos pentavalentes, quiere decir que tienen cinco electrones en la última capa, lo que hace que al formarse la estructura cristalina, un electrón quede fuera de ningún enlace covalente, quedándose en un nivel superior al de los otros cuatro. Como consecuencia de la temperatura, además de la formación de los pares e-h, se liberan los electrones que no se han unido.
  • 8. Como ahora en el semiconductor existe un mayor número de electrones que de huecos, se dice que los electrones son los portadores mayoritarios, y a las impurezas se las llama donadoras. En cuanto a la conductividad del material, esta aumenta de una forma muy elevada, por ejemplo; introduciendo sólo un átomo donador por cada 1000 átomos de silicio, la conductividad es 24100 veces mayor que la del silicio puro.
  • 9. Al aplicar una tensión al semiconductor de la figura, los electrones libres dentro del semiconductor se mueven hacia la izquierda y los huecos lo hacen hacia la derecha. Cuando un hueco llega al extremo derecho del cristal, uno de los electrones del circuito externo entra al semiconductor y se recombina con el hueco. Los electrones libres de la figura circulan hacia el extremo izquierdo del cristal, donde entran al conductor y fluyen hacia el positivo de la batería.
  • 10. Semiconductores Extrínsecos Tipo p: En este caso son los que están dopados con elementos trivalentes, (Al, B, Ga, In). El hecho de ser trivalentes, hace que a la hora de formar la estructura cristalina, dejen una vacante con un nivel energético ligeramente superior al de la banda de valencia, pues no existe el cuarto electrón que lo rellenaría.
  • 11. Esto hace que los electrones salten a las vacantes con facilidad, dejando huecos en la banda de valencia, y siendo los huecos portadores mayoritarios.
  • 12. En el circuito hay también un flujo de portadores minoritarios. Los electrones libres dentro del semiconductor circulan de derecha a izquierda. Como hay muy pocos portadores minoritarios, su efecto es casi despreciable en este circuito.
  • 13. Unión p-n En una unión entre un semiconductor p y uno n, a temperatura ambiente, los huecos de la zona p pasan por difusión hacia la zona n y los electrones de la zona n pasan a la zona p. En la zona de la unión, huecos y electrones se recombinan, quedando una estrecha zona de transición con una distribución de carga debida a la presencia de los iones de las impurezas y a la ausencia de huecos y electrones.
  • 14. Se crea, entonces un campo eléctrico que produce corrientes de desplazamiento, que equilibran a las de difusión. A la diferencia de potencial correspondiente a este campo eléctrico se le llama potencial de contacto V0.