SlideShare una empresa de Scribd logo
1 de 32
Descargar para leer sin conexión
Gluconeogénesis
Importancia biológica
Determinados tejidos NECESITAN un aporte CONTINUO de glucosa:
Cerebro: depende de glucosa como combustible primario
Eritrocito: utiliza glucosa como único combustible
Consumo glucosa
Cerebro: 120 g/dia
Organismo: 160 g/dia
Reservas de glucosa
Liquidos corporales: 20 g
Glucógeno: 160 g
Las reservas directas de glucosa solo son suficientes para cubrir las
necesidades de un día!!!: períodos más largos de ayuno implican la
necesidad de sistemas alternativos de obtener glucosa
GLUCONEOGENESIS: síntesis de glucosa a partir de precursores que no
sean hidratos de carbono:
LACTATO: músculo esquelético activo cuando
Glicolisis > fosforilación oxidativa
AMINOACIDOS: degradación de proteínas de la dieta o
proteínas de músculo esquelético.
GLICEROL: hidrólisis triacilglicéridos en células adiposas.
GLUCONEOGENESIS:
síntesis de glucosa a partir de piruvato.
• Los precursores gluconeogénicos se convierten a
piruvato, o bien entran en la ruta por conversión a
oxalacetato o dihidroxiacetona fosfato
• Cualquier metabolito que pueda ser convertido a
piruvato u oxalacetato puede ser un precursor de
glucosa
Lactato como precursor gluconeogénico
Durante ejercicio físico vigoroso, cuando se contrae el músculo esquelético:
NADH es regenerado a NAD+ por
LACTATO DESHIDROGENASA
>Glicolisis Ciclo del ácido cítrico
Regeneración a NAD+ por
el metabolismo aerobio
(Ciclo del ácido cítrico +
cadena transporte)
Formación de
NADH por la
Glicolisis
>
Lactato como tal queda como punto muerto en el metabolismo: debe convertirse de nuevo
en piruvato para poder ser metabolizado: es reconvertido a piruvato en el hígado
Glicerol como
precursor
gluconeogénico
Aminoácidos
precursores
de glucosa
Localización tisular
Hígado (90%) y riñón (10%)
son los órganos donde tiene
lugar principalmente la
gluconeogénesis
En Cerebro, músculo esquelético y
músculo cardíaco tiene lugar muy
poca gluconeogénesis
CEREBRO
MUSCULO ESQUELETICO
MUSCULO CARDIACO
GLUCOSA EN
SANGRE
GLUCONEOGENESIS
HIGADO/RIÑON
La gluconeogénesis en hígado y riñón ayuda a mantener el nivel de
glucosa necesario en sangre para que cerebro y músculos puedan extraer
la suficiente glucosa para atender a sus demandas energéticas
GLICOLISIS: Glucosa Piruvato
GLUCONEOGENESIS: Piruvato Glucosa
Sin embargo, la gluconeogénesis no es el proceso inverso de la
glicolisis
Razon termodinámica: 3 reacciones de la glicolisis estan muy
desplazadas del equilibrio, practicamente irreversibles
Hexoquinasa
Glucosa + ATP Glucosa-6-fosfato + ADP + Pi + 2H+
∆G= -8 Kcal/mol
fosfofructoquinasa
Fructosa-6-fosfato + ATP Fructosa-1,6-bifosfato + ADP ∆G= -5,3 Kcal/mol
Piruvato quinasa
Fosfoenolpiruvato + ADP Piruvato + ATP ∆G= -4 Kcal/mol
En la gluconeogénesis estas reacciones son sustituidas por
reacciones nuevas:
Formación de Fosfoenolpiruvato:
Piruvato carboxilasa
Piruvato + CO2 + ATP + H2O Oxalacetato + ADP + Pi + 2H+
Fosdoenolpiruvato carboxiquinasa
Oxalacetato + GTP Fosfoenolpiruvato + GDP + CO2
Formación de Fructosa-6-fosfato:
Fructosa 1,6 Bifosfatasa
Fructosa-1,6-Bifosfato + H2O Fructosa-6-fosfato + Pi
Formación de Glucosa:
Glucosa 6-fosfatasa
Glucosa-6-fosfato + H2O Glucosa + Pi
Glicolisis
Gluconeogénesis
Conversión de Piruvato en fosfoenolpiruvato
Se realiza en dos pasos:
a) Carboxilación del piruvato,
consumiendo ATP
b) Descarboxilación y fosforilación del
oxalacetato, consumiendo GTP
Se realiza en la matriz mitocondrial.
a) Carboxilación del piruvato
Catalizado por PIRUVATO CARBOXILASA:
Estructura:
Region N-terminal 300-350 aa : Dominio de captación de ATP
Región C-terminal: dominio de unión de Biotina
BIOTINA:
transportador de CO2 activado.
Unida al enzima por una
cadena larga y flexible.
Mecanismo de la Piruvato carboxilasa
Mecanismo de tres etapas:
1. Activación del CO2
2. Unión del CO2 activado a la biotina
3. Paso del CO2 desde biotina al piruvato. El brazo
unido a biotina permite el transporte del CO2
entre los dos centros activos del enzima.
La presencia de Acetil CoA: control fisiológico
-carga energética alta: oxalacetato glucosa
-carga energética baja: oxalacetato ciclo del ácido
citrico
La etapa de carboxilación de biotina depende de la unión
previa de Acetil CoA: ACTIVACION ALOSTERICA
Piruvato carboxilasa es un enzima mitocondrial, mientras que
el resto de enzimas de la gluconogénesis son citosólicos: Se
debe transportar el oxalacetato producido fuera de la
mitocondria:
1. Oxalacetato es reducido a malato por una malato
deshidrogenasa mitocondrial ligada a NADH
2. Malato es transportado al citosol por el sistema
lanzadera malato-aspartato
3. Una vez en el citosol, el malato es reoxidado a
oxalacetato por una malato deshidrogenasa citosólica
ligada a NAD+
Oxalacetato es descarboxilado y fosforilado simultaneamente por
FOSFOENOLPIRUVATO CARBOXIQUINASA (PEP
carboxiquinasa). La hidrólisis del GTP y liberación de CO2
desplazan al reacción hacia la formación de PEP.
B) Transporte de Oxalacetato al citosol y conversión a
fosfoenolpiruvato
Mecanismo de la
FOSFOENOLPIRUVATO CARBOXIQUINASA
Conversión de Fructosa-1,6-bifosfato en Fructosa-6-fosfato
Una vez formado, el Fosfoenolpiruvato es metabolizado por los enzimas de la
glicolisis pero en sentido inverso (reacciones en equilibrio).
El siguiente paso irreversible es la hidrólisis de Fructosa-1,6-bifosfato en Fructosa-
6-fosfato y Pi:
Catalizado por FRUCTOSA-1,6-BIFOSFATASA, enzima alostérico.
Requiere Mg2+.
Inhibido por AMP, fructosa 2,6-bifosfato
activado por ATP, citrato
Formación de Glucosa
La Fructosa-6-fosfato formada se convierte rápidamente en Glucosa-6-fosfato
En la mayoría de tejidos: Glucosa-6-fosfato Síntesis de glucógeno
Razón principal: Glucosa-6-fosfato NO DIFUNDE fuera de la célula,
mientras que glucosa si
El mantenimiento de la glucosa dentro de la célula se realiza por dos sistemas:
Regulación de la glucosa-6-fosfatasa:
Glucosa-6-fosfatasa solo se encuentra presente en tejidos cuya función
sea mantener los niveles de glucosa en sangre: HIGADO y en menor
grado RIÑON
Formación de Glucosa
Glucosa no es sintetizada en el citosol.
Glucosa-6-fosfato es transportada al
lumen del retículo endoplasmático, en
hidrolizada por Glucosa-6-fosfatasa
unida a la membrana.
Vesiculas del RE difunden, liberando
glucosa a la sangre al fusionarse con
la membrana plasmática
Glucosa-6-fosfatasa precisa de la presencia de una proteína estabilizadora que une
Ca2+ (SP).
Es necesaria también la utilización de transportadores específicos de glucosa-6-
fosfato (T1), asi como de Pi (T2) y glucosa (T3)
Balance global de la gluconeogénesis
La estequiometría de la gluconeogénesis es:
2 Piruvato + 4 ATP + 2 GTP + 2 NADH + 6 H2O Glucosa + 4 ADP + 2 GDP + 6 Pi + 2 NAD+ + 2H+
∆G= -9 Kcal/mol
mientras que la reacción inversa de la glucolisis seria :
2 Piruvato + 2 ATP + 2 NADH + 2 H2O Glucosa + 2 ADP + 2 Pi + 2 NAD+ + 2H+
∆G= 20 Kcal/mol
El coste extra de la gluconeogénesis es de 4 moléculas de alto potencial de
transferencia de grupos fosforilo (2 ATP y 2 GTP): Se usa la energia del ATP
y GTP para convertir una reacción energéticamente desfavorable como es la
reacción inversa de la glicolisis (∆G= 20 Kcal/mol) en una reacción
energéticamente favorable (∆G= -9 Kcal/mol)
Regulación de la Gluconeogénesis / Glicolisis
Gluconeogénesis y glicolisis estan coordinadas: una de las vias esta relativamente inactiva
y la otra funciona a velocidad elevada
Razón: ambas rutas son altamente exergónicas y podrían estar funcionando al mismo
tiempo, con un resultado final de consumo de 2 ATP y 2 GTP por cada ciclo de reacción.
Sistema de control: las CANTIDADES Y ACTIVIDADES de los enzimas característicos de
cada ruta están controlados de tal manera que no pueden ser ambas rutas activas
simultaneamente:
-Velocidad de la glicolisis: controlada por concentración de glucosa
-Velocidad de la gluconeogénesis: controlada por concentración de lactato y
otros precursores
Regulación de la
Gluconeogénesis /
Glicolisis
Regulación de la conversión
fructosa-6-fosfato/fructosa 1,6 bifosfato
Nivel elevado de AMP: carga energética baja, necesidad de síntesis de ATP GLICOLISIS
Nivel bajo de AMP/citrato: carga energética alta, desconexión de la glicolisis GLUCONEOGENESIS
Ambos enzimas son regulados en el hígado por los niveles de la molécula señal Fructosa-2,6-
bifosfato cuyos niveles son:
- Bajos en ayuno
- Altos en alimentación
Debido a efectos antagonistas entre insulina/glucagon
En ayuno, se activa la gluconeogénesis en hígado para suministrar los niveles de glucosa
en sangre necesarios para cerebro, y músculo.
Fructosa-2,6-bifosfato:
activador alosterico de la fosfofructoquinasa
Inhibidor alostérico de fructosa-1,6-bifosfatasa
Una concentración alta de Fructosa-2,6-bifosfato estimula la glicolisis
Una concentración baja de Fructosa-2,6-bifosfato :estimula la gluconeogénesis
La concentración de Fructosa-2,6-bifostato en la célula depende del balance entre
su síntesis (catalizada por fosfofructoquinasa-2 PFK-2) y su degradación (catalizada
por fructosa bifosfatasa-2 FBPasa-2)
Fructosa 2,6 bifosfato
Las dos actividades enzimáticas
forman parte de un enzima
bifuncional y están controladas
por fosforilación/defosforilación
Regulación de la conversión
fosfoenolpiruvato/piruvato
carga energética alta o niveles de precursores de glucosa altos:
Glicolisis Gluconeogénesis
Regulación de la Gluconeogénesis / Glicolisis
Las cantidades de los enzimas clave de glicolisis y gluconeogénesis también están
reguladas: control de su expresión génica
INSULINA: aumenta después de la ingesta de alimentos
Estimula expresión de :
FOSFOFRUCTOQUINASA
PIRUVATO QUINASA
ENZIMA BIFUNCIONAL PFK-2/ FBPasa-2
GLUCAGON: aumenta en ayuno
Inhibe expresión de :
FOSFOFRUCTOQUINASA
PIRUVATO QUINASA
ENZIMA BIFUNCIONAL PFK-2/ FBPasa-2
Estimula expresión de
FOSFOENOLPIRUVATO CARBOXIQUINASA
FRUCTOSA-1,6-BIFOSFATASA
Este control sobre la expresión génica es mucho mas lento (horas/días) que el control
alostérico (segundos/minutos)
Ciclos de sustrato
Una pareja de reacciones como:
Constituye un CICLO de SUSTRATO.
Ambas reacciones no son plenamente activas al mismo tiempo, PERO
experimentos de marcaje isotópico han demostrado que tampoco una
reacción esta COMPLETAMENTE desactivada cuando la otra es activa.
¿Por qué este gasto extra de ATP?. Dos posibles:
1) Mecanismo de generación de calor:
en los musculos de vuelo del abejorro ambas enzimas están activas, lo cual
le permite mantener temperatura muscular de 30º C, incluso a temperatura
ambiental de 10º C. En las abejas no ocurre esto, y no pueden volar a
temperatura ambiente baja.
2) Mecanismo de control, de amplificación de señal metabólica:
Regulación por ciclos de sustrato
Supongamos una reacción de A a
B, y que a la vez tiene lugar la
conversión de B a A cada una
catalizada por un enzima a una
determinada velocidad. En
principio esto puede verse como
poco eficiente, la producción de B
es solo 10, frente a 100 que
obtendríamos sin reacción reversa
Que ocurre si ahora interviene un
efector alostérico que funciona
aumentando un 20% la conversión
de A a B y disminuyendo otro 20%
la conversión de B en A? Se
obtiene proporcionalmente mas
flujo de B que si solo hubiera
estado activa la ruta de A a B
Flujo neto de B: 100 Flujo neto de B: 10
Flujo neto de B: 120
( Ganancia 20%) Flujo neto de B: 48
(Ganancia 380%)
+ Efector
Alostérico
Estos ciclos consumen energía pero
son mejores a la hora de responder
rápidamente a necesidades de
productos
+ Efector
Alostérico
Relaciones intertisulares en la síntesis hepática de Glucosa
El lactato producido en músculo esquelético activo y en eritocritos (carecen de mitocondrias)
es una FUENTE de ENERGIA para OTROS ORGANOS.
Durante ejercicio físico vigoroso, cuando se contrae el músculo esquelético:
NADH es regenerado a NAD+ por
LACTATO DESHIDROGENASA
>Glicolisis Ciclo del ácido cítrico
Regeneración a NAD+ por
el metabolismo aerobio
(Ciclo del ácido cítrico +
cadena transporte)
Formación de
NADH por la
Glicolisis
>
Lactato como tal queda como punto muerto en el metabolismo: debe convertirse de nuevo
en piruvato para poder ser metabolizado
Relaciones intertisulares en la síntesis hepática de Glucosa
El lactato producido en músculo esquelético activo permea a la sangre:
Este lactato puede
permear a celulas del
higado donde es de nuevo
oxidado a piruvato y
convertido a glucosa por
gluconeogénesis, que es
liberada al torrente
sanguineo para que puede
ser utilizada en músculo
(CICLO DE CORI).
El lactato puede también permear a células del músculo cardíaco donde es también
oxidado a piruvato, pero pasando posteriormente al ciclo del ácido cítrico y cadena de
transporte electrónico para producir ATP.
Ciclo de Cori
Relaciones intertisulares en la síntesis hepática de Glucosa
Ciclo glucosa-alanina :
(1) En músculo: Transaminación de piruvato para producir
alanina, que viaja al hígado por el torrente sanguíneo
(2) En higado: Transaminación de alanina a piruvato que
pasa a glucoconeogénesis
(3) La Glucosa producida se libera al torrente sanguineo
Este proceso ayuda a
mantener el balance de
nitrógeno (se transporta
NH4
+ al hígado)
Coordinación glicolisis/gluconeogénesis en diferentes tejidos
La ingestión de Alcohol inhibe la Gluconeogénesis
El etanol es oxidado principalmente en el hígado por la alcohol deshidrogenasa:
Alcohol
deshidrogenasa
CH3CH2OH + NAD+ CH3CHO + NADH
Etanol Acetaldehido
Exceso de poder
reductor en el
citosol
Este exceso de NADH en el citosol crea problemas para la gluconeogénesis
hepática:
Lactato
deshidrogenasa
Piruvato + NADH Lactato + NAD+
fuerza el equilibrio de la reacción de lactato deshidrogenasa hacia
la formación de lactato:
Malato
deshidrogenasa
Oxalacetato + NADH malato + NAD+
fuerza el equilibrio de la reacción de malato deshidrogenasa
(lanzadera aspartato-malato) hacia la formación de malato
Es decir se consumen Piruvato y oxalacetato: inhibición de la gluconeogénesis

Más contenido relacionado

La actualidad más candente (20)

Glucogenolisis expo.
Glucogenolisis expo.Glucogenolisis expo.
Glucogenolisis expo.
 
Glucogenesis y glucogenolisis
Glucogenesis y glucogenolisisGlucogenesis y glucogenolisis
Glucogenesis y glucogenolisis
 
Vías metabólicas integradas
Vías metabólicas integradasVías metabólicas integradas
Vías metabólicas integradas
 
Síntesis de fosfolípidos y triglicéridos
Síntesis de fosfolípidos y triglicéridos Síntesis de fosfolípidos y triglicéridos
Síntesis de fosfolípidos y triglicéridos
 
Glucogenolisis
Glucogenolisis Glucogenolisis
Glucogenolisis
 
Gluconeogénesis
GluconeogénesisGluconeogénesis
Gluconeogénesis
 
Gluconeogenesis
GluconeogenesisGluconeogenesis
Gluconeogenesis
 
Metabolismo de carbohidratos.
Metabolismo de carbohidratos.Metabolismo de carbohidratos.
Metabolismo de carbohidratos.
 
Metabolismo de aminoácidos y proteínas
Metabolismo de aminoácidos y proteínasMetabolismo de aminoácidos y proteínas
Metabolismo de aminoácidos y proteínas
 
Gluconeogenesis
GluconeogenesisGluconeogenesis
Gluconeogenesis
 
09 síntesis de acidos grasos
09 síntesis de acidos grasos09 síntesis de acidos grasos
09 síntesis de acidos grasos
 
Unidad VIII Metabolismo de aminoácidos
Unidad VIII Metabolismo de aminoácidosUnidad VIII Metabolismo de aminoácidos
Unidad VIII Metabolismo de aminoácidos
 
Sintesis de colesterol
Sintesis de colesterolSintesis de colesterol
Sintesis de colesterol
 
Glucólisis
GlucólisisGlucólisis
Glucólisis
 
Regulación alostérica
Regulación alostéricaRegulación alostérica
Regulación alostérica
 
Glucólisis
GlucólisisGlucólisis
Glucólisis
 
Metabolismo.de.purinas.857553965
Metabolismo.de.purinas.857553965Metabolismo.de.purinas.857553965
Metabolismo.de.purinas.857553965
 
Digestión y absorción de lípidos
Digestión y absorción de lípidosDigestión y absorción de lípidos
Digestión y absorción de lípidos
 
Glucagón
GlucagónGlucagón
Glucagón
 
Glucolisis
GlucolisisGlucolisis
Glucolisis
 

Similar a Gluconeogenesis

Similar a Gluconeogenesis (20)

gluconeogenesis.pdf
gluconeogenesis.pdfgluconeogenesis.pdf
gluconeogenesis.pdf
 
Gluconeogenesis
GluconeogenesisGluconeogenesis
Gluconeogenesis
 
Gluconeogenesis 1
Gluconeogenesis 1Gluconeogenesis 1
Gluconeogenesis 1
 
Metabolimo de carbohidratos
Metabolimo de carbohidratosMetabolimo de carbohidratos
Metabolimo de carbohidratos
 
Glucolisis
GlucolisisGlucolisis
Glucolisis
 
Gluconeogénesis
GluconeogénesisGluconeogénesis
Gluconeogénesis
 
T6 gluco neo
T6 gluco neoT6 gluco neo
T6 gluco neo
 
glucolisis paso a paso.pdf
glucolisis paso a paso.pdfglucolisis paso a paso.pdf
glucolisis paso a paso.pdf
 
Glucógeno
GlucógenoGlucógeno
Glucógeno
 
GLUCONEOGENESIS
GLUCONEOGENESISGLUCONEOGENESIS
GLUCONEOGENESIS
 
GLUCONEOGENESIS
GLUCONEOGENESISGLUCONEOGENESIS
GLUCONEOGENESIS
 
Gluconeogénesis
GluconeogénesisGluconeogénesis
Gluconeogénesis
 
Gluconeogénesis
Gluconeogénesis  Gluconeogénesis
Gluconeogénesis
 
Gluconeogénesis o síntesis de glucosa
Gluconeogénesis o síntesis de glucosaGluconeogénesis o síntesis de glucosa
Gluconeogénesis o síntesis de glucosa
 
Seminario-Gluconeogénesis.pptx
Seminario-Gluconeogénesis.pptxSeminario-Gluconeogénesis.pptx
Seminario-Gluconeogénesis.pptx
 
Glicolisis
GlicolisisGlicolisis
Glicolisis
 
metabolismo carbohidratos UCSS.pptx
metabolismo carbohidratos UCSS.pptxmetabolismo carbohidratos UCSS.pptx
metabolismo carbohidratos UCSS.pptx
 
METABOLISMO-DE-LOS-CARBOHIDRATOS- bioqu 2t.pdf
METABOLISMO-DE-LOS-CARBOHIDRATOS- bioqu 2t.pdfMETABOLISMO-DE-LOS-CARBOHIDRATOS- bioqu 2t.pdf
METABOLISMO-DE-LOS-CARBOHIDRATOS- bioqu 2t.pdf
 
Gluconeogénesis, Síntesis del Glucogeno(Glucogenesis), Ciclo de Calvin, Fotor...
Gluconeogénesis, Síntesis del Glucogeno(Glucogenesis), Ciclo de Calvin, Fotor...Gluconeogénesis, Síntesis del Glucogeno(Glucogenesis), Ciclo de Calvin, Fotor...
Gluconeogénesis, Síntesis del Glucogeno(Glucogenesis), Ciclo de Calvin, Fotor...
 
GUCOLISIS - UNCP - II SEMESTRE
GUCOLISIS - UNCP - II SEMESTREGUCOLISIS - UNCP - II SEMESTRE
GUCOLISIS - UNCP - II SEMESTRE
 

Más de Yochi Cun

Ejercicios excell 2
Ejercicios excell 2Ejercicios excell 2
Ejercicios excell 2Yochi Cun
 
Proyecto informatica
Proyecto informaticaProyecto informatica
Proyecto informaticaYochi Cun
 
Ejercicios excell 1
Ejercicios excell 1Ejercicios excell 1
Ejercicios excell 1Yochi Cun
 
Gráficos microsoft excel 2010
Gráficos microsoft excel 2010Gráficos microsoft excel 2010
Gráficos microsoft excel 2010Yochi Cun
 
Gráficos microsoft excel 2010
Gráficos microsoft excel 2010Gráficos microsoft excel 2010
Gráficos microsoft excel 2010Yochi Cun
 
Gráficos microsoft excel 2010
Gráficos microsoft excel 2010Gráficos microsoft excel 2010
Gráficos microsoft excel 2010Yochi Cun
 
Gráficos microsoft excel 2010
Gráficos microsoft excel 2010Gráficos microsoft excel 2010
Gráficos microsoft excel 2010Yochi Cun
 
Gráficos microsoft excel 2010
Gráficos microsoft excel 2010Gráficos microsoft excel 2010
Gráficos microsoft excel 2010Yochi Cun
 
Libro de google drive
Libro de google driveLibro de google drive
Libro de google driveYochi Cun
 
Practica utilizando los operadoresde busqueda
Practica utilizando los operadoresde busquedaPractica utilizando los operadoresde busqueda
Practica utilizando los operadoresde busquedaYochi Cun
 
Informatica bibliotecas 1
Informatica bibliotecas 1Informatica bibliotecas 1
Informatica bibliotecas 1Yochi Cun
 
Google drive
Google driveGoogle drive
Google driveYochi Cun
 
Google drive
Google driveGoogle drive
Google driveYochi Cun
 
C mo_trabajar_con_tic_en_el_aula_una_gu_a_para_la_acci_n_pedag_gica_cap_tulo...
 C mo_trabajar_con_tic_en_el_aula_una_gu_a_para_la_acci_n_pedag_gica_cap_tulo... C mo_trabajar_con_tic_en_el_aula_una_gu_a_para_la_acci_n_pedag_gica_cap_tulo...
C mo_trabajar_con_tic_en_el_aula_una_gu_a_para_la_acci_n_pedag_gica_cap_tulo...Yochi Cun
 
Syllabus informática ii 2014 semestre
Syllabus informática ii 2014 semestreSyllabus informática ii 2014 semestre
Syllabus informática ii 2014 semestreYochi Cun
 
Educacion para la salud
Educacion para la saludEducacion para la salud
Educacion para la saludYochi Cun
 

Más de Yochi Cun (20)

Ejercicios excell 2
Ejercicios excell 2Ejercicios excell 2
Ejercicios excell 2
 
Proyecto informatica
Proyecto informaticaProyecto informatica
Proyecto informatica
 
Ejercicios excell 1
Ejercicios excell 1Ejercicios excell 1
Ejercicios excell 1
 
Gráficos microsoft excel 2010
Gráficos microsoft excel 2010Gráficos microsoft excel 2010
Gráficos microsoft excel 2010
 
Gráficos microsoft excel 2010
Gráficos microsoft excel 2010Gráficos microsoft excel 2010
Gráficos microsoft excel 2010
 
Gráficos microsoft excel 2010
Gráficos microsoft excel 2010Gráficos microsoft excel 2010
Gráficos microsoft excel 2010
 
Gráficos microsoft excel 2010
Gráficos microsoft excel 2010Gráficos microsoft excel 2010
Gráficos microsoft excel 2010
 
Gráficos microsoft excel 2010
Gráficos microsoft excel 2010Gráficos microsoft excel 2010
Gráficos microsoft excel 2010
 
Libro de google drive
Libro de google driveLibro de google drive
Libro de google drive
 
Practica utilizando los operadoresde busqueda
Practica utilizando los operadoresde busquedaPractica utilizando los operadoresde busqueda
Practica utilizando los operadoresde busqueda
 
Informatica bibliotecas 1
Informatica bibliotecas 1Informatica bibliotecas 1
Informatica bibliotecas 1
 
Google apps
Google appsGoogle apps
Google apps
 
Google drive
Google driveGoogle drive
Google drive
 
Google drive
Google driveGoogle drive
Google drive
 
BLOGGER
BLOGGERBLOGGER
BLOGGER
 
BLOG
BLOGBLOG
BLOG
 
C mo_trabajar_con_tic_en_el_aula_una_gu_a_para_la_acci_n_pedag_gica_cap_tulo...
 C mo_trabajar_con_tic_en_el_aula_una_gu_a_para_la_acci_n_pedag_gica_cap_tulo... C mo_trabajar_con_tic_en_el_aula_una_gu_a_para_la_acci_n_pedag_gica_cap_tulo...
C mo_trabajar_con_tic_en_el_aula_una_gu_a_para_la_acci_n_pedag_gica_cap_tulo...
 
Syllabus informática ii 2014 semestre
Syllabus informática ii 2014 semestreSyllabus informática ii 2014 semestre
Syllabus informática ii 2014 semestre
 
Informatica
InformaticaInformatica
Informatica
 
Educacion para la salud
Educacion para la saludEducacion para la salud
Educacion para la salud
 

Gluconeogenesis

  • 2. Importancia biológica Determinados tejidos NECESITAN un aporte CONTINUO de glucosa: Cerebro: depende de glucosa como combustible primario Eritrocito: utiliza glucosa como único combustible Consumo glucosa Cerebro: 120 g/dia Organismo: 160 g/dia Reservas de glucosa Liquidos corporales: 20 g Glucógeno: 160 g Las reservas directas de glucosa solo son suficientes para cubrir las necesidades de un día!!!: períodos más largos de ayuno implican la necesidad de sistemas alternativos de obtener glucosa GLUCONEOGENESIS: síntesis de glucosa a partir de precursores que no sean hidratos de carbono: LACTATO: músculo esquelético activo cuando Glicolisis > fosforilación oxidativa AMINOACIDOS: degradación de proteínas de la dieta o proteínas de músculo esquelético. GLICEROL: hidrólisis triacilglicéridos en células adiposas.
  • 3. GLUCONEOGENESIS: síntesis de glucosa a partir de piruvato. • Los precursores gluconeogénicos se convierten a piruvato, o bien entran en la ruta por conversión a oxalacetato o dihidroxiacetona fosfato • Cualquier metabolito que pueda ser convertido a piruvato u oxalacetato puede ser un precursor de glucosa
  • 4. Lactato como precursor gluconeogénico Durante ejercicio físico vigoroso, cuando se contrae el músculo esquelético: NADH es regenerado a NAD+ por LACTATO DESHIDROGENASA >Glicolisis Ciclo del ácido cítrico Regeneración a NAD+ por el metabolismo aerobio (Ciclo del ácido cítrico + cadena transporte) Formación de NADH por la Glicolisis > Lactato como tal queda como punto muerto en el metabolismo: debe convertirse de nuevo en piruvato para poder ser metabolizado: es reconvertido a piruvato en el hígado
  • 7. Localización tisular Hígado (90%) y riñón (10%) son los órganos donde tiene lugar principalmente la gluconeogénesis En Cerebro, músculo esquelético y músculo cardíaco tiene lugar muy poca gluconeogénesis CEREBRO MUSCULO ESQUELETICO MUSCULO CARDIACO GLUCOSA EN SANGRE GLUCONEOGENESIS HIGADO/RIÑON La gluconeogénesis en hígado y riñón ayuda a mantener el nivel de glucosa necesario en sangre para que cerebro y músculos puedan extraer la suficiente glucosa para atender a sus demandas energéticas
  • 8. GLICOLISIS: Glucosa Piruvato GLUCONEOGENESIS: Piruvato Glucosa Sin embargo, la gluconeogénesis no es el proceso inverso de la glicolisis Razon termodinámica: 3 reacciones de la glicolisis estan muy desplazadas del equilibrio, practicamente irreversibles Hexoquinasa Glucosa + ATP Glucosa-6-fosfato + ADP + Pi + 2H+ ∆G= -8 Kcal/mol fosfofructoquinasa Fructosa-6-fosfato + ATP Fructosa-1,6-bifosfato + ADP ∆G= -5,3 Kcal/mol Piruvato quinasa Fosfoenolpiruvato + ADP Piruvato + ATP ∆G= -4 Kcal/mol En la gluconeogénesis estas reacciones son sustituidas por reacciones nuevas: Formación de Fosfoenolpiruvato: Piruvato carboxilasa Piruvato + CO2 + ATP + H2O Oxalacetato + ADP + Pi + 2H+ Fosdoenolpiruvato carboxiquinasa Oxalacetato + GTP Fosfoenolpiruvato + GDP + CO2 Formación de Fructosa-6-fosfato: Fructosa 1,6 Bifosfatasa Fructosa-1,6-Bifosfato + H2O Fructosa-6-fosfato + Pi Formación de Glucosa: Glucosa 6-fosfatasa Glucosa-6-fosfato + H2O Glucosa + Pi
  • 10. Conversión de Piruvato en fosfoenolpiruvato Se realiza en dos pasos: a) Carboxilación del piruvato, consumiendo ATP b) Descarboxilación y fosforilación del oxalacetato, consumiendo GTP
  • 11. Se realiza en la matriz mitocondrial. a) Carboxilación del piruvato Catalizado por PIRUVATO CARBOXILASA: Estructura: Region N-terminal 300-350 aa : Dominio de captación de ATP Región C-terminal: dominio de unión de Biotina BIOTINA: transportador de CO2 activado. Unida al enzima por una cadena larga y flexible.
  • 12. Mecanismo de la Piruvato carboxilasa Mecanismo de tres etapas: 1. Activación del CO2 2. Unión del CO2 activado a la biotina 3. Paso del CO2 desde biotina al piruvato. El brazo unido a biotina permite el transporte del CO2 entre los dos centros activos del enzima. La presencia de Acetil CoA: control fisiológico -carga energética alta: oxalacetato glucosa -carga energética baja: oxalacetato ciclo del ácido citrico La etapa de carboxilación de biotina depende de la unión previa de Acetil CoA: ACTIVACION ALOSTERICA
  • 13. Piruvato carboxilasa es un enzima mitocondrial, mientras que el resto de enzimas de la gluconogénesis son citosólicos: Se debe transportar el oxalacetato producido fuera de la mitocondria: 1. Oxalacetato es reducido a malato por una malato deshidrogenasa mitocondrial ligada a NADH 2. Malato es transportado al citosol por el sistema lanzadera malato-aspartato 3. Una vez en el citosol, el malato es reoxidado a oxalacetato por una malato deshidrogenasa citosólica ligada a NAD+ Oxalacetato es descarboxilado y fosforilado simultaneamente por FOSFOENOLPIRUVATO CARBOXIQUINASA (PEP carboxiquinasa). La hidrólisis del GTP y liberación de CO2 desplazan al reacción hacia la formación de PEP. B) Transporte de Oxalacetato al citosol y conversión a fosfoenolpiruvato
  • 15. Conversión de Fructosa-1,6-bifosfato en Fructosa-6-fosfato Una vez formado, el Fosfoenolpiruvato es metabolizado por los enzimas de la glicolisis pero en sentido inverso (reacciones en equilibrio). El siguiente paso irreversible es la hidrólisis de Fructosa-1,6-bifosfato en Fructosa- 6-fosfato y Pi: Catalizado por FRUCTOSA-1,6-BIFOSFATASA, enzima alostérico. Requiere Mg2+. Inhibido por AMP, fructosa 2,6-bifosfato activado por ATP, citrato
  • 16. Formación de Glucosa La Fructosa-6-fosfato formada se convierte rápidamente en Glucosa-6-fosfato En la mayoría de tejidos: Glucosa-6-fosfato Síntesis de glucógeno Razón principal: Glucosa-6-fosfato NO DIFUNDE fuera de la célula, mientras que glucosa si El mantenimiento de la glucosa dentro de la célula se realiza por dos sistemas: Regulación de la glucosa-6-fosfatasa: Glucosa-6-fosfatasa solo se encuentra presente en tejidos cuya función sea mantener los niveles de glucosa en sangre: HIGADO y en menor grado RIÑON
  • 17. Formación de Glucosa Glucosa no es sintetizada en el citosol. Glucosa-6-fosfato es transportada al lumen del retículo endoplasmático, en hidrolizada por Glucosa-6-fosfatasa unida a la membrana. Vesiculas del RE difunden, liberando glucosa a la sangre al fusionarse con la membrana plasmática Glucosa-6-fosfatasa precisa de la presencia de una proteína estabilizadora que une Ca2+ (SP). Es necesaria también la utilización de transportadores específicos de glucosa-6- fosfato (T1), asi como de Pi (T2) y glucosa (T3)
  • 18. Balance global de la gluconeogénesis La estequiometría de la gluconeogénesis es: 2 Piruvato + 4 ATP + 2 GTP + 2 NADH + 6 H2O Glucosa + 4 ADP + 2 GDP + 6 Pi + 2 NAD+ + 2H+ ∆G= -9 Kcal/mol mientras que la reacción inversa de la glucolisis seria : 2 Piruvato + 2 ATP + 2 NADH + 2 H2O Glucosa + 2 ADP + 2 Pi + 2 NAD+ + 2H+ ∆G= 20 Kcal/mol El coste extra de la gluconeogénesis es de 4 moléculas de alto potencial de transferencia de grupos fosforilo (2 ATP y 2 GTP): Se usa la energia del ATP y GTP para convertir una reacción energéticamente desfavorable como es la reacción inversa de la glicolisis (∆G= 20 Kcal/mol) en una reacción energéticamente favorable (∆G= -9 Kcal/mol)
  • 19. Regulación de la Gluconeogénesis / Glicolisis Gluconeogénesis y glicolisis estan coordinadas: una de las vias esta relativamente inactiva y la otra funciona a velocidad elevada Razón: ambas rutas son altamente exergónicas y podrían estar funcionando al mismo tiempo, con un resultado final de consumo de 2 ATP y 2 GTP por cada ciclo de reacción. Sistema de control: las CANTIDADES Y ACTIVIDADES de los enzimas característicos de cada ruta están controlados de tal manera que no pueden ser ambas rutas activas simultaneamente: -Velocidad de la glicolisis: controlada por concentración de glucosa -Velocidad de la gluconeogénesis: controlada por concentración de lactato y otros precursores
  • 21. Regulación de la conversión fructosa-6-fosfato/fructosa 1,6 bifosfato Nivel elevado de AMP: carga energética baja, necesidad de síntesis de ATP GLICOLISIS Nivel bajo de AMP/citrato: carga energética alta, desconexión de la glicolisis GLUCONEOGENESIS Ambos enzimas son regulados en el hígado por los niveles de la molécula señal Fructosa-2,6- bifosfato cuyos niveles son: - Bajos en ayuno - Altos en alimentación Debido a efectos antagonistas entre insulina/glucagon En ayuno, se activa la gluconeogénesis en hígado para suministrar los niveles de glucosa en sangre necesarios para cerebro, y músculo.
  • 22. Fructosa-2,6-bifosfato: activador alosterico de la fosfofructoquinasa Inhibidor alostérico de fructosa-1,6-bifosfatasa Una concentración alta de Fructosa-2,6-bifosfato estimula la glicolisis Una concentración baja de Fructosa-2,6-bifosfato :estimula la gluconeogénesis La concentración de Fructosa-2,6-bifostato en la célula depende del balance entre su síntesis (catalizada por fosfofructoquinasa-2 PFK-2) y su degradación (catalizada por fructosa bifosfatasa-2 FBPasa-2) Fructosa 2,6 bifosfato Las dos actividades enzimáticas forman parte de un enzima bifuncional y están controladas por fosforilación/defosforilación
  • 23. Regulación de la conversión fosfoenolpiruvato/piruvato carga energética alta o niveles de precursores de glucosa altos: Glicolisis Gluconeogénesis
  • 24. Regulación de la Gluconeogénesis / Glicolisis Las cantidades de los enzimas clave de glicolisis y gluconeogénesis también están reguladas: control de su expresión génica INSULINA: aumenta después de la ingesta de alimentos Estimula expresión de : FOSFOFRUCTOQUINASA PIRUVATO QUINASA ENZIMA BIFUNCIONAL PFK-2/ FBPasa-2 GLUCAGON: aumenta en ayuno Inhibe expresión de : FOSFOFRUCTOQUINASA PIRUVATO QUINASA ENZIMA BIFUNCIONAL PFK-2/ FBPasa-2 Estimula expresión de FOSFOENOLPIRUVATO CARBOXIQUINASA FRUCTOSA-1,6-BIFOSFATASA Este control sobre la expresión génica es mucho mas lento (horas/días) que el control alostérico (segundos/minutos)
  • 25. Ciclos de sustrato Una pareja de reacciones como: Constituye un CICLO de SUSTRATO. Ambas reacciones no son plenamente activas al mismo tiempo, PERO experimentos de marcaje isotópico han demostrado que tampoco una reacción esta COMPLETAMENTE desactivada cuando la otra es activa. ¿Por qué este gasto extra de ATP?. Dos posibles: 1) Mecanismo de generación de calor: en los musculos de vuelo del abejorro ambas enzimas están activas, lo cual le permite mantener temperatura muscular de 30º C, incluso a temperatura ambiental de 10º C. En las abejas no ocurre esto, y no pueden volar a temperatura ambiente baja. 2) Mecanismo de control, de amplificación de señal metabólica:
  • 26. Regulación por ciclos de sustrato Supongamos una reacción de A a B, y que a la vez tiene lugar la conversión de B a A cada una catalizada por un enzima a una determinada velocidad. En principio esto puede verse como poco eficiente, la producción de B es solo 10, frente a 100 que obtendríamos sin reacción reversa Que ocurre si ahora interviene un efector alostérico que funciona aumentando un 20% la conversión de A a B y disminuyendo otro 20% la conversión de B en A? Se obtiene proporcionalmente mas flujo de B que si solo hubiera estado activa la ruta de A a B Flujo neto de B: 100 Flujo neto de B: 10 Flujo neto de B: 120 ( Ganancia 20%) Flujo neto de B: 48 (Ganancia 380%) + Efector Alostérico Estos ciclos consumen energía pero son mejores a la hora de responder rápidamente a necesidades de productos + Efector Alostérico
  • 27. Relaciones intertisulares en la síntesis hepática de Glucosa El lactato producido en músculo esquelético activo y en eritocritos (carecen de mitocondrias) es una FUENTE de ENERGIA para OTROS ORGANOS. Durante ejercicio físico vigoroso, cuando se contrae el músculo esquelético: NADH es regenerado a NAD+ por LACTATO DESHIDROGENASA >Glicolisis Ciclo del ácido cítrico Regeneración a NAD+ por el metabolismo aerobio (Ciclo del ácido cítrico + cadena transporte) Formación de NADH por la Glicolisis > Lactato como tal queda como punto muerto en el metabolismo: debe convertirse de nuevo en piruvato para poder ser metabolizado
  • 28. Relaciones intertisulares en la síntesis hepática de Glucosa El lactato producido en músculo esquelético activo permea a la sangre: Este lactato puede permear a celulas del higado donde es de nuevo oxidado a piruvato y convertido a glucosa por gluconeogénesis, que es liberada al torrente sanguineo para que puede ser utilizada en músculo (CICLO DE CORI). El lactato puede también permear a células del músculo cardíaco donde es también oxidado a piruvato, pero pasando posteriormente al ciclo del ácido cítrico y cadena de transporte electrónico para producir ATP.
  • 30. Relaciones intertisulares en la síntesis hepática de Glucosa Ciclo glucosa-alanina : (1) En músculo: Transaminación de piruvato para producir alanina, que viaja al hígado por el torrente sanguíneo (2) En higado: Transaminación de alanina a piruvato que pasa a glucoconeogénesis (3) La Glucosa producida se libera al torrente sanguineo Este proceso ayuda a mantener el balance de nitrógeno (se transporta NH4 + al hígado)
  • 32. La ingestión de Alcohol inhibe la Gluconeogénesis El etanol es oxidado principalmente en el hígado por la alcohol deshidrogenasa: Alcohol deshidrogenasa CH3CH2OH + NAD+ CH3CHO + NADH Etanol Acetaldehido Exceso de poder reductor en el citosol Este exceso de NADH en el citosol crea problemas para la gluconeogénesis hepática: Lactato deshidrogenasa Piruvato + NADH Lactato + NAD+ fuerza el equilibrio de la reacción de lactato deshidrogenasa hacia la formación de lactato: Malato deshidrogenasa Oxalacetato + NADH malato + NAD+ fuerza el equilibrio de la reacción de malato deshidrogenasa (lanzadera aspartato-malato) hacia la formación de malato Es decir se consumen Piruvato y oxalacetato: inhibición de la gluconeogénesis