SlideShare una empresa de Scribd logo
1 de 2
Descargar para leer sin conexión
http://fisica-pre.blogspot.com 
ANUAL UNI – EXAMEN 19 1 
CALORIMETRÍA – PROBLEMAS RESUELTOS 
01 La figura representa la temperatura T en función del calor absorbido Q por 10 gramos de un líquido inicialmente a 0 ºC. La temperatura de ebullición del líquido (en ºC) y el calor de vaporización (en cal/g) son: 
A) 80 y 200 B) 200 y 80 C) 100 y 200 D) 120 y 2 000 E) 120 y 80 Resolución: Para que el líquido se pueda vaporizar, debe alcanzar la temperatura de ebullición. Mientras el líquido se convierte en vapor, su temperatura se mantiene constante. En la figura podemos observa que la temperatura es constante a 80 ºC. Luego la temperatura es de 80 ºC. Para que todo el líquido se convierta en vapor, necesita ganar: Q = 3 000 – 1 000 = 2 000 cal Q = mL → 2 000 = 10 L → L = 200 cal/g … Rpta: A 02 Considere el fenómeno de ebullición del agua y diga cuál de las siguientes afirmaciones es correcta: 
A) El agua hierve siempre a 100 ºC independientemente de la presión y el volumen. 
B) En al Sierra el agua hierve a mayor temperatura que en la Costa. 
C) El agua hierve debido a que la energía térmica que reciben las moléculas les permite vencer la fuerza de atracción gravitatoria. 
D) Una vez que el agua empieza a hervir, su temperatura se mantiene constante hasta que se transforme totalmente en vapor. 
E) Las moléculas del agua se mueven en una dirección tal que el cambio de temperatura es mínimo. 
Resolución: Mientras el agua se transforma en vapor, la temperatura se “mantiene constante”. Rpta: D 
03 Sobre un cubo de hielo a 0 ºC se coloca una moneda de plata de 1,5 cm de diámetro, de 15 g, que se encuentra a 85 ºC. Cuando la moneda está a 0 ºC ha descendido en el hielo “h” cm, manteniéndose horizontal. Sin considerar las pérdidas de calor al medio ambiente, calcule la distancia “h” en cm. ρHielo = 0,92 g/cm3; CeAg = 5,59·10-2 cal/g ºC LFusión del hielo = 80 cal/g A) 0,54 B) 1,01 C) 1,56 D) 2,03 E) 2,54 
Resolución: ΣQ = 0 QMoneda + QHielo = 0 m Ce ΔT + mL = 0 (15)(5,59·10-2)(-85)+m(80) = 0 La masa de hielo que se derrite: m = 0,89 g ρHielo V = 0,89 (0,92)(A h) = 0,89 (0,92)(h= 0,89 → h = 0,54 cm … Rpta: A 04 En un calorímetro de capacidad calorífica despreciable contiene agua a 40 ºC. Si se vierten 100 g de hielo a -80 ºC al cabo de cierto tiempo se observa que no todo el hielo se derrite. ¿Cuántos gramos de agua había originalmente? A) 200 g B) Más de 110 g C) Menos de 500 g D) Menos de 300 g E) 300 g Resolución: Suponiendo que se derrite exactamente todo el hielo, la temperatura final sería 0 ºC: ΣQ = 0 → QAgua + QHielo = 0 mAgua CeAgua ΔT + mHielo CeHielo ΔT + mHielo LFusión = 0 mAgua (1)(0 – 40) + (100)(0,5)(0+80)+(100)(80)=0 mAgua (-40) + 4 000 + 8 000 = 0 → mAgua = 300 g Pero, no todo el hielo se derrite, entonces había menos de 300 g de agua. … Rpta: D 05 Se vierte 150 g de café caliente a 85 ºC dentro de un vaso con tapa de vidrio de 210 g incluyendo la tapa a 22 ºC. Calcular el calor específico del vidrio en cal/g ºC, si la temperatura de equilibrio es 70,68 ºC. Considere que no se intercambia calor con el ambiente. Cecafé = 4 000 J/kg ºC A) 0,1 B) 0,2 C) 0,4 D) 0,6 E) 1 Resolución: ΣQ = 0 → Qcafé + Qvidrio = 0 mcafé Cecafé ΔT + mvidrio Cevidrio ΔT = 0 Donde: CeCafé = 4 000 J/kg ºC = 0,96 cal/g ºC (0,15)(0,96)(70,68-85)+(0,21)(Cevidrio)(70,68-22) = 0 Cevidrio = 0,2 cal/g ºC … Rpta: B 
1 000 
3 000 
4 000 
80 
120 
T(ºC) 
Q(cal) 
h 
1,5 cm
http://fisica-pre.blogspot.com 
ANUAL UNI – EXAMEN 19 2 
06 Un calorímetro cuyo equivalente en agua es de 50 g contiene 300 g de agua a la temperatura de 28 ºC. Si se introducen 20 g de hielo a 0 ºC. ¿Cuál será aproximadamente la temperatura final de equilibrio? A) 22,16 ºC B) 32,16 ºC C) 42,16 ºC 
D) 52,16 ºC E) 62,16 ºC 
Resolución: 
ΣQ = 0 → Q1 + Q2 + Q3 + QCAL = 0 
mHieloLF+mAguaCeAguaΔT+m3Ce3ΔT+mCALCeCALΔT = 0 (20)(80)+(20)(1)(T)+(300)(1)(T-28)+50(T-28)=0 1 600 +20T + 350(T-28)=0 → T=22,16 ºC …Rpta: A 07 Un bloque de hielo de masa 4 777 g a 0 ºC cae desde una altura de 14 m a un lago congelado a 0 ºC. Calcular la masa (en gramos) del hielo que se funde. (g= 10 m/s2; LFusión = 80 cal/g) A) 1 g B) 2 g C) 3 g D) 4 g E) 5 g Resolución: La energía potencial (Ep) se convierte en energía calorífica (Q): Q = Ep → mDerretida LF = mgh 
mDerretida (80) = (4,777)(10)(14) Como: 1 J = 0,24 cal mDerretida (80) = (4,777)(10)(14)(0,24) mDerretida = 2 g … Rpta: B 08 Un vaso de vidrio con una masa de 30 g contiene 300 ml de agua a 30 ºC, si se coloca un cubo de hielo a 0 ºC de masa 50 g en el vaso. Calcule aproximadamente la temperatura final de equilibrio. (LFusión del hielo = 80 cal/g; CeVidrio = 0,15 cal/g ºC) A) 14,5 ºC B) 15,5 ºC C) 16,5 ºC D) 17,5 ºC E) 18,5 ºC 
Resolución: 
ΣQ = 0 → Q1 + Q2 + Q3 + Qvidrio = 0 50·80+(50)(1)T+(300)(1)(T-30)+(30)(0,15)(T-30)=0 4 000+50T+300T-9 000 + 4,5T-135 = 0 354,5 T = 5 135 → T= 14,48 ºC … Rpta: A 
09 Un bloque de cobre de 5 kg que está a 300 ºC se introduce en un recipiente con paredes aislantes que contiene una mezcla de hielo y agua a 0 ºC. Luego de un tiempo se alcanza el equilibrio y el bloque de cobre queda con una temperatura de 0 ºC. Calcular la cantidad de hielo, en kg, que se fundió. (CeCu = 0,094 cal/g ºC; LFusión= 80 cal/g) A) 0,76 B) 1,06 C) 1,76 D) 2,56 E) 3,56 Resolución: ΣQ = 0 → QCu + QHielo = 0 mCu CeCu ΔT + mHielo LF = 0 (5 000)(0,094)(0-300) + mHielo (80) = 0 mHielo = 1 762,5 g = 1,76 kg … Rpta: C 10 Una caja llena de perdigones de plomo se lanza verticalmente hasta una altura de 4m sobre el piso, luego cae al suelo quedando en reposo. Suponiendo que las paredes de la caja son aislantes térmicos ideales y la temperatura inicial de los perdigones era de 20 ºC. Calcule la temperatura final de los perdigones después de efectuar cinco lanzamientos. (CePb= 0,128 kJ/kg K; g= 9,8 m/s2) A) 20,5 B) 21,0 C) 21,5 D) 22,0 E) 22,5 Resolución: 
En cada lanzamiento la energía potencial gravitatoria (Ep=mgh) se convierte en calor (Q). En cinco lanzamientos se cumplirá: Q = 5 Ep → m Ce ΔT = 5 (mgh) (128)(T-20) = 5 (9,8)(4) → T = 21,53 ºC … Rpta: C 
0ºC 
TºC 
28ºC 
Q1 
Q2 
Q3 
QCAL 
Equivalente en agua=50 
calorías 
joules 
Q1 
Q2 
Q3 
0ºC 
30ºC 
T 
Qvidrio

Más contenido relacionado

La actualidad más candente

Unidad 1: Termodinámica
Unidad 1: TermodinámicaUnidad 1: Termodinámica
Unidad 1: Termodinámica
neidanunez
 
EJERCICIOS RESUELTOS TERMOQUIMICA
EJERCICIOS RESUELTOS TERMOQUIMICAEJERCICIOS RESUELTOS TERMOQUIMICA
EJERCICIOS RESUELTOS TERMOQUIMICA
Quo Vadis
 
Electrolisis soluciones
Electrolisis solucionesElectrolisis soluciones
Electrolisis soluciones
edwinvargas777
 
Un cubo de hielo esta flotando en un vaso de agua
Un cubo de hielo esta flotando en un vaso de aguaUn cubo de hielo esta flotando en un vaso de agua
Un cubo de hielo esta flotando en un vaso de agua
lina LEON
 
Problemas resueltos fluidos
Problemas resueltos fluidosProblemas resueltos fluidos
Problemas resueltos fluidos
edeive
 

La actualidad más candente (20)

Unidad 1: Termodinámica
Unidad 1: TermodinámicaUnidad 1: Termodinámica
Unidad 1: Termodinámica
 
Ejemplos y Problemas
Ejemplos y ProblemasEjemplos y Problemas
Ejemplos y Problemas
 
EJERCICIOS RESUELTOS TERMOQUIMICA
EJERCICIOS RESUELTOS TERMOQUIMICAEJERCICIOS RESUELTOS TERMOQUIMICA
EJERCICIOS RESUELTOS TERMOQUIMICA
 
Problemas de qumica termodinamica
Problemas de qumica termodinamicaProblemas de qumica termodinamica
Problemas de qumica termodinamica
 
Electrolisis soluciones
Electrolisis solucionesElectrolisis soluciones
Electrolisis soluciones
 
Cinetica Quimica
Cinetica QuimicaCinetica Quimica
Cinetica Quimica
 
Electroquímica celdas ecuación de nerst-leyes de faraday
Electroquímica celdas ecuación de nerst-leyes de faradayElectroquímica celdas ecuación de nerst-leyes de faraday
Electroquímica celdas ecuación de nerst-leyes de faraday
 
Equilibrio quimico presentacion
Equilibrio quimico presentacionEquilibrio quimico presentacion
Equilibrio quimico presentacion
 
Un cubo de hielo esta flotando en un vaso de agua
Un cubo de hielo esta flotando en un vaso de aguaUn cubo de hielo esta flotando en un vaso de agua
Un cubo de hielo esta flotando en un vaso de agua
 
Problemas resueltos mecanica_de_fluidos
Problemas resueltos mecanica_de_fluidosProblemas resueltos mecanica_de_fluidos
Problemas resueltos mecanica_de_fluidos
 
Ejercicios de hidrostatica (1)
Ejercicios de hidrostatica (1)Ejercicios de hidrostatica (1)
Ejercicios de hidrostatica (1)
 
Ejercicios de-estructura-cristalina resueltos
Ejercicios de-estructura-cristalina resueltosEjercicios de-estructura-cristalina resueltos
Ejercicios de-estructura-cristalina resueltos
 
Problemas resueltos fluidos
Problemas resueltos fluidosProblemas resueltos fluidos
Problemas resueltos fluidos
 
Ejercicios analitica
Ejercicios analiticaEjercicios analitica
Ejercicios analitica
 
Ejercicios de electroquimica
Ejercicios de electroquimicaEjercicios de electroquimica
Ejercicios de electroquimica
 
Sesion 2 sustancia pura 2016
Sesion  2 sustancia pura 2016Sesion  2 sustancia pura 2016
Sesion 2 sustancia pura 2016
 
Problemas sobre vaciado de tanques
Problemas sobre vaciado de tanquesProblemas sobre vaciado de tanques
Problemas sobre vaciado de tanques
 
Fórmulas Unidad 1.pdf
Fórmulas Unidad 1.pdfFórmulas Unidad 1.pdf
Fórmulas Unidad 1.pdf
 
Gases ideales
Gases idealesGases ideales
Gases ideales
 
Serie de problemas de transferencia de calor
Serie de problemas de transferencia de calorSerie de problemas de transferencia de calor
Serie de problemas de transferencia de calor
 

Similar a 126696901 000049-ejercicios-resueltos-de-fisica-calorimetria

Tippens fisica 7e_diapositivas_17
Tippens fisica 7e_diapositivas_17Tippens fisica 7e_diapositivas_17
Tippens fisica 7e_diapositivas_17
gabocordovez
 
Problemas calortrabajoprimeraley
Problemas calortrabajoprimeraleyProblemas calortrabajoprimeraley
Problemas calortrabajoprimeraley
Jose Miranda
 
CALOR-ESPECIFICO-CALOR-LATENTE.pdfluzmariaortizcortez
CALOR-ESPECIFICO-CALOR-LATENTE.pdfluzmariaortizcortezCALOR-ESPECIFICO-CALOR-LATENTE.pdfluzmariaortizcortez
CALOR-ESPECIFICO-CALOR-LATENTE.pdfluzmariaortizcortez
lucilaayacucho
 

Similar a 126696901 000049-ejercicios-resueltos-de-fisica-calorimetria (20)

Sem5 elect modi fisica ii
Sem5 elect modi fisica iiSem5 elect modi fisica ii
Sem5 elect modi fisica ii
 
Sem5 amb fisica ii
Sem5 amb fisica iiSem5 amb fisica ii
Sem5 amb fisica ii
 
Fisica ii unidad v-calor-2015
Fisica ii unidad v-calor-2015Fisica ii unidad v-calor-2015
Fisica ii unidad v-calor-2015
 
Problemascalortrabajoprimeraley 121019140729-phpapp01
Problemascalortrabajoprimeraley 121019140729-phpapp01Problemascalortrabajoprimeraley 121019140729-phpapp01
Problemascalortrabajoprimeraley 121019140729-phpapp01
 
problemas-resueltos-termoquimica.pdf
problemas-resueltos-termoquimica.pdfproblemas-resueltos-termoquimica.pdf
problemas-resueltos-termoquimica.pdf
 
Tippens fisica 7e_diapositivas_17
Tippens fisica 7e_diapositivas_17Tippens fisica 7e_diapositivas_17
Tippens fisica 7e_diapositivas_17
 
Calor
CalorCalor
Calor
 
CLASE 6 Calor latente
CLASE 6 Calor latenteCLASE 6 Calor latente
CLASE 6 Calor latente
 
Calor
CalorCalor
Calor
 
Calorimetria Presion Constante (1).pptx
Calorimetria Presion Constante (1).pptxCalorimetria Presion Constante (1).pptx
Calorimetria Presion Constante (1).pptx
 
carolimetria a presion constante.pptx
carolimetria a presion constante.pptxcarolimetria a presion constante.pptx
carolimetria a presion constante.pptx
 
Calorimetria Presion Constante.pptx
Calorimetria Presion Constante.pptxCalorimetria Presion Constante.pptx
Calorimetria Presion Constante.pptx
 
ENTALPIA
ENTALPIAENTALPIA
ENTALPIA
 
Resumen y ejercicios calor temperatura.pptx
Resumen y ejercicios calor temperatura.pptxResumen y ejercicios calor temperatura.pptx
Resumen y ejercicios calor temperatura.pptx
 
Problemas calortrabajoprimeraley
Problemas calortrabajoprimeraleyProblemas calortrabajoprimeraley
Problemas calortrabajoprimeraley
 
Teoria de calorimetria- problemas propuestos.pdf
Teoria de calorimetria- problemas propuestos.pdfTeoria de calorimetria- problemas propuestos.pdf
Teoria de calorimetria- problemas propuestos.pdf
 
Calorimetria
CalorimetriaCalorimetria
Calorimetria
 
Semana 5 cal
Semana 5  calSemana 5  cal
Semana 5 cal
 
Prob. gases 1ra,y 2da.ley
Prob. gases 1ra,y 2da.leyProb. gases 1ra,y 2da.ley
Prob. gases 1ra,y 2da.ley
 
CALOR-ESPECIFICO-CALOR-LATENTE.pdfluzmariaortizcortez
CALOR-ESPECIFICO-CALOR-LATENTE.pdfluzmariaortizcortezCALOR-ESPECIFICO-CALOR-LATENTE.pdfluzmariaortizcortez
CALOR-ESPECIFICO-CALOR-LATENTE.pdfluzmariaortizcortez
 

Último

Morgado & Rodríguez (eds.) - Los animales en la historia y en la cultura [201...
Morgado & Rodríguez (eds.) - Los animales en la historia y en la cultura [201...Morgado & Rodríguez (eds.) - Los animales en la historia y en la cultura [201...
Morgado & Rodríguez (eds.) - Los animales en la historia y en la cultura [201...
frank0071
 
Derivadas- sus aplicaciones en la vida cotidiana
Derivadas- sus aplicaciones en la vida cotidianaDerivadas- sus aplicaciones en la vida cotidiana
Derivadas- sus aplicaciones en la vida cotidiana
pabv24
 
DILATADORES ESOFAGICOS estenosis benignas (1).pptx
DILATADORES ESOFAGICOS estenosis benignas (1).pptxDILATADORES ESOFAGICOS estenosis benignas (1).pptx
DILATADORES ESOFAGICOS estenosis benignas (1).pptx
GabyCrespo6
 
UNIDAD DIDÁCTICA-LLEGÓ EL OTOÑO-PRIMER AÑO.docx
UNIDAD DIDÁCTICA-LLEGÓ EL OTOÑO-PRIMER AÑO.docxUNIDAD DIDÁCTICA-LLEGÓ EL OTOÑO-PRIMER AÑO.docx
UNIDAD DIDÁCTICA-LLEGÓ EL OTOÑO-PRIMER AÑO.docx
TeresitaJaques2
 

Último (20)

Musculos Paraproteticos, protesis, musculos
Musculos Paraproteticos, protesis, musculosMusculos Paraproteticos, protesis, musculos
Musculos Paraproteticos, protesis, musculos
 
Morgado & Rodríguez (eds.) - Los animales en la historia y en la cultura [201...
Morgado & Rodríguez (eds.) - Los animales en la historia y en la cultura [201...Morgado & Rodríguez (eds.) - Los animales en la historia y en la cultura [201...
Morgado & Rodríguez (eds.) - Los animales en la historia y en la cultura [201...
 
Homo Ergaster. Evolución y datos del hominido
Homo Ergaster. Evolución y datos del hominidoHomo Ergaster. Evolución y datos del hominido
Homo Ergaster. Evolución y datos del hominido
 
Anatomía y fisiología del rumen 000000000
Anatomía y fisiología del rumen 000000000Anatomía y fisiología del rumen 000000000
Anatomía y fisiología del rumen 000000000
 
CASO CLÍNICO INFECCIONES Y TUMORES.pptx
CASO CLÍNICO INFECCIONES Y TUMORES.pptxCASO CLÍNICO INFECCIONES Y TUMORES.pptx
CASO CLÍNICO INFECCIONES Y TUMORES.pptx
 
Enfermeria_Geriatrica_TeresaPerezCastro.doc
Enfermeria_Geriatrica_TeresaPerezCastro.docEnfermeria_Geriatrica_TeresaPerezCastro.doc
Enfermeria_Geriatrica_TeresaPerezCastro.doc
 
Derivadas- sus aplicaciones en la vida cotidiana
Derivadas- sus aplicaciones en la vida cotidianaDerivadas- sus aplicaciones en la vida cotidiana
Derivadas- sus aplicaciones en la vida cotidiana
 
1890 –7 de junio - Henry Marmaduke Harris obtuvo una patente británica (Nº 88...
1890 –7 de junio - Henry Marmaduke Harris obtuvo una patente británica (Nº 88...1890 –7 de junio - Henry Marmaduke Harris obtuvo una patente británica (Nº 88...
1890 –7 de junio - Henry Marmaduke Harris obtuvo una patente británica (Nº 88...
 
SESION 3º caracteristicas de los seres vivos.pdf
SESION 3º caracteristicas de los seres vivos.pdfSESION 3º caracteristicas de los seres vivos.pdf
SESION 3º caracteristicas de los seres vivos.pdf
 
Antequera, L. - Historia desconocida del descubrimiento de América [2021].pdf
Antequera, L. - Historia desconocida del descubrimiento de América [2021].pdfAntequera, L. - Historia desconocida del descubrimiento de América [2021].pdf
Antequera, L. - Historia desconocida del descubrimiento de América [2021].pdf
 
DILATADORES ESOFAGICOS estenosis benignas (1).pptx
DILATADORES ESOFAGICOS estenosis benignas (1).pptxDILATADORES ESOFAGICOS estenosis benignas (1).pptx
DILATADORES ESOFAGICOS estenosis benignas (1).pptx
 
UNIDAD DIDÁCTICA-LLEGÓ EL OTOÑO-PRIMER AÑO.docx
UNIDAD DIDÁCTICA-LLEGÓ EL OTOÑO-PRIMER AÑO.docxUNIDAD DIDÁCTICA-LLEGÓ EL OTOÑO-PRIMER AÑO.docx
UNIDAD DIDÁCTICA-LLEGÓ EL OTOÑO-PRIMER AÑO.docx
 
Glaeser, E. - El triunfo de las ciudades [2011].pdf
Glaeser, E. - El triunfo de las ciudades [2011].pdfGlaeser, E. - El triunfo de las ciudades [2011].pdf
Glaeser, E. - El triunfo de las ciudades [2011].pdf
 
El Gran Atractor, la misteriosa fuerza que está halando a la Vía Láctea.pptx
El Gran Atractor, la misteriosa fuerza que está halando a la Vía Láctea.pptxEl Gran Atractor, la misteriosa fuerza que está halando a la Vía Láctea.pptx
El Gran Atractor, la misteriosa fuerza que está halando a la Vía Láctea.pptx
 
Evolución Historica de los mapas antiguos.ppt
Evolución Historica de los mapas antiguos.pptEvolución Historica de los mapas antiguos.ppt
Evolución Historica de los mapas antiguos.ppt
 
ATENCIÓN DEL TRABAJO DE PARTO, GINECOLOGIA Y OBSTETRICIA
ATENCIÓN DEL TRABAJO DE PARTO, GINECOLOGIA Y OBSTETRICIAATENCIÓN DEL TRABAJO DE PARTO, GINECOLOGIA Y OBSTETRICIA
ATENCIÓN DEL TRABAJO DE PARTO, GINECOLOGIA Y OBSTETRICIA
 
Pelos y fibras. Criminalistica pelos y fibras
Pelos y fibras. Criminalistica pelos y fibrasPelos y fibras. Criminalistica pelos y fibras
Pelos y fibras. Criminalistica pelos y fibras
 
REINO FUNGI: CONCEPTO, CARACTERISTICAS, ETC
REINO FUNGI: CONCEPTO, CARACTERISTICAS, ETCREINO FUNGI: CONCEPTO, CARACTERISTICAS, ETC
REINO FUNGI: CONCEPTO, CARACTERISTICAS, ETC
 
desequilibrio acido baseEE Y TEORIA ACIDO BASICO DE STEWART
desequilibrio acido baseEE Y TEORIA ACIDO BASICO DE STEWARTdesequilibrio acido baseEE Y TEORIA ACIDO BASICO DE STEWART
desequilibrio acido baseEE Y TEORIA ACIDO BASICO DE STEWART
 
FICHA MATEMÁTICA comparamos numeros.pdf
FICHA MATEMÁTICA  comparamos numeros.pdfFICHA MATEMÁTICA  comparamos numeros.pdf
FICHA MATEMÁTICA comparamos numeros.pdf
 

126696901 000049-ejercicios-resueltos-de-fisica-calorimetria

  • 1. http://fisica-pre.blogspot.com ANUAL UNI – EXAMEN 19 1 CALORIMETRÍA – PROBLEMAS RESUELTOS 01 La figura representa la temperatura T en función del calor absorbido Q por 10 gramos de un líquido inicialmente a 0 ºC. La temperatura de ebullición del líquido (en ºC) y el calor de vaporización (en cal/g) son: A) 80 y 200 B) 200 y 80 C) 100 y 200 D) 120 y 2 000 E) 120 y 80 Resolución: Para que el líquido se pueda vaporizar, debe alcanzar la temperatura de ebullición. Mientras el líquido se convierte en vapor, su temperatura se mantiene constante. En la figura podemos observa que la temperatura es constante a 80 ºC. Luego la temperatura es de 80 ºC. Para que todo el líquido se convierta en vapor, necesita ganar: Q = 3 000 – 1 000 = 2 000 cal Q = mL → 2 000 = 10 L → L = 200 cal/g … Rpta: A 02 Considere el fenómeno de ebullición del agua y diga cuál de las siguientes afirmaciones es correcta: A) El agua hierve siempre a 100 ºC independientemente de la presión y el volumen. B) En al Sierra el agua hierve a mayor temperatura que en la Costa. C) El agua hierve debido a que la energía térmica que reciben las moléculas les permite vencer la fuerza de atracción gravitatoria. D) Una vez que el agua empieza a hervir, su temperatura se mantiene constante hasta que se transforme totalmente en vapor. E) Las moléculas del agua se mueven en una dirección tal que el cambio de temperatura es mínimo. Resolución: Mientras el agua se transforma en vapor, la temperatura se “mantiene constante”. Rpta: D 03 Sobre un cubo de hielo a 0 ºC se coloca una moneda de plata de 1,5 cm de diámetro, de 15 g, que se encuentra a 85 ºC. Cuando la moneda está a 0 ºC ha descendido en el hielo “h” cm, manteniéndose horizontal. Sin considerar las pérdidas de calor al medio ambiente, calcule la distancia “h” en cm. ρHielo = 0,92 g/cm3; CeAg = 5,59·10-2 cal/g ºC LFusión del hielo = 80 cal/g A) 0,54 B) 1,01 C) 1,56 D) 2,03 E) 2,54 Resolución: ΣQ = 0 QMoneda + QHielo = 0 m Ce ΔT + mL = 0 (15)(5,59·10-2)(-85)+m(80) = 0 La masa de hielo que se derrite: m = 0,89 g ρHielo V = 0,89 (0,92)(A h) = 0,89 (0,92)(h= 0,89 → h = 0,54 cm … Rpta: A 04 En un calorímetro de capacidad calorífica despreciable contiene agua a 40 ºC. Si se vierten 100 g de hielo a -80 ºC al cabo de cierto tiempo se observa que no todo el hielo se derrite. ¿Cuántos gramos de agua había originalmente? A) 200 g B) Más de 110 g C) Menos de 500 g D) Menos de 300 g E) 300 g Resolución: Suponiendo que se derrite exactamente todo el hielo, la temperatura final sería 0 ºC: ΣQ = 0 → QAgua + QHielo = 0 mAgua CeAgua ΔT + mHielo CeHielo ΔT + mHielo LFusión = 0 mAgua (1)(0 – 40) + (100)(0,5)(0+80)+(100)(80)=0 mAgua (-40) + 4 000 + 8 000 = 0 → mAgua = 300 g Pero, no todo el hielo se derrite, entonces había menos de 300 g de agua. … Rpta: D 05 Se vierte 150 g de café caliente a 85 ºC dentro de un vaso con tapa de vidrio de 210 g incluyendo la tapa a 22 ºC. Calcular el calor específico del vidrio en cal/g ºC, si la temperatura de equilibrio es 70,68 ºC. Considere que no se intercambia calor con el ambiente. Cecafé = 4 000 J/kg ºC A) 0,1 B) 0,2 C) 0,4 D) 0,6 E) 1 Resolución: ΣQ = 0 → Qcafé + Qvidrio = 0 mcafé Cecafé ΔT + mvidrio Cevidrio ΔT = 0 Donde: CeCafé = 4 000 J/kg ºC = 0,96 cal/g ºC (0,15)(0,96)(70,68-85)+(0,21)(Cevidrio)(70,68-22) = 0 Cevidrio = 0,2 cal/g ºC … Rpta: B 1 000 3 000 4 000 80 120 T(ºC) Q(cal) h 1,5 cm
  • 2. http://fisica-pre.blogspot.com ANUAL UNI – EXAMEN 19 2 06 Un calorímetro cuyo equivalente en agua es de 50 g contiene 300 g de agua a la temperatura de 28 ºC. Si se introducen 20 g de hielo a 0 ºC. ¿Cuál será aproximadamente la temperatura final de equilibrio? A) 22,16 ºC B) 32,16 ºC C) 42,16 ºC D) 52,16 ºC E) 62,16 ºC Resolución: ΣQ = 0 → Q1 + Q2 + Q3 + QCAL = 0 mHieloLF+mAguaCeAguaΔT+m3Ce3ΔT+mCALCeCALΔT = 0 (20)(80)+(20)(1)(T)+(300)(1)(T-28)+50(T-28)=0 1 600 +20T + 350(T-28)=0 → T=22,16 ºC …Rpta: A 07 Un bloque de hielo de masa 4 777 g a 0 ºC cae desde una altura de 14 m a un lago congelado a 0 ºC. Calcular la masa (en gramos) del hielo que se funde. (g= 10 m/s2; LFusión = 80 cal/g) A) 1 g B) 2 g C) 3 g D) 4 g E) 5 g Resolución: La energía potencial (Ep) se convierte en energía calorífica (Q): Q = Ep → mDerretida LF = mgh mDerretida (80) = (4,777)(10)(14) Como: 1 J = 0,24 cal mDerretida (80) = (4,777)(10)(14)(0,24) mDerretida = 2 g … Rpta: B 08 Un vaso de vidrio con una masa de 30 g contiene 300 ml de agua a 30 ºC, si se coloca un cubo de hielo a 0 ºC de masa 50 g en el vaso. Calcule aproximadamente la temperatura final de equilibrio. (LFusión del hielo = 80 cal/g; CeVidrio = 0,15 cal/g ºC) A) 14,5 ºC B) 15,5 ºC C) 16,5 ºC D) 17,5 ºC E) 18,5 ºC Resolución: ΣQ = 0 → Q1 + Q2 + Q3 + Qvidrio = 0 50·80+(50)(1)T+(300)(1)(T-30)+(30)(0,15)(T-30)=0 4 000+50T+300T-9 000 + 4,5T-135 = 0 354,5 T = 5 135 → T= 14,48 ºC … Rpta: A 09 Un bloque de cobre de 5 kg que está a 300 ºC se introduce en un recipiente con paredes aislantes que contiene una mezcla de hielo y agua a 0 ºC. Luego de un tiempo se alcanza el equilibrio y el bloque de cobre queda con una temperatura de 0 ºC. Calcular la cantidad de hielo, en kg, que se fundió. (CeCu = 0,094 cal/g ºC; LFusión= 80 cal/g) A) 0,76 B) 1,06 C) 1,76 D) 2,56 E) 3,56 Resolución: ΣQ = 0 → QCu + QHielo = 0 mCu CeCu ΔT + mHielo LF = 0 (5 000)(0,094)(0-300) + mHielo (80) = 0 mHielo = 1 762,5 g = 1,76 kg … Rpta: C 10 Una caja llena de perdigones de plomo se lanza verticalmente hasta una altura de 4m sobre el piso, luego cae al suelo quedando en reposo. Suponiendo que las paredes de la caja son aislantes térmicos ideales y la temperatura inicial de los perdigones era de 20 ºC. Calcule la temperatura final de los perdigones después de efectuar cinco lanzamientos. (CePb= 0,128 kJ/kg K; g= 9,8 m/s2) A) 20,5 B) 21,0 C) 21,5 D) 22,0 E) 22,5 Resolución: En cada lanzamiento la energía potencial gravitatoria (Ep=mgh) se convierte en calor (Q). En cinco lanzamientos se cumplirá: Q = 5 Ep → m Ce ΔT = 5 (mgh) (128)(T-20) = 5 (9,8)(4) → T = 21,53 ºC … Rpta: C 0ºC TºC 28ºC Q1 Q2 Q3 QCAL Equivalente en agua=50 calorías joules Q1 Q2 Q3 0ºC 30ºC T Qvidrio