Inteligencia
ArtificialProfesor: Dr. Cesar Augusto Isaza Bohorquez
EVALUACIÓN A TITULO DE COMPETENCIA (ETC)
Alumno: Samuel...
2. Representación del
aprendizaje.
2.1 Aprendizaje
2.1.1 Aprendizaje repetitivo
2.1.2 Aprendizaje cognitivo
2.2 Redes semá...
2.1 Aprendizaje
El aprendizaje es el proceso a través del cual se adquieren o modifican
habilidades, destrezas, conocimien...
2.1.1 Cognitivo 2.1.2 Repetitivo
Inteligencia Artificial 4
• Aprendemos de la
experiencia pero es el
sujeto quien construy...
Inteligencia Artificial 5
2.2 Redes semánticas
• Una red semántica o esquema de representación
en Red es una forma de repr...
• Dos elementos semánticos entre los que se admite se da la
relación semántica que representa la red, estarán unidos
media...
Una red semántica representa conocimiento mediante un grafo:
 Nodos: Conceptos
 Arcos etiquetados: Relaciones entre conc...
Básicamente, podemos distinguir tres categorías de redes semánticas:
 Redes IS-A, en las que los enlaces entre nodos está...
• Este método descripción y pareamiento se utiliza para
solucionar problemas de IA y es por decirlo de alguna
manera de lo...
Pareamiento Descripción
Inteligencia Artificial 10
• AMOR
o Querer a una persona o cosa
sobre todas las cosas
o Palabra de...
Se debe de representar de manera adecuada el
conocimiento para poder compararlo.
Inteligencia Artificial 11
2.3 Métodos de...
El granjero, la zorra, el ganso y
el trigo
• Un granjero quiere cruzar un
río llevando consigo una
zorra, una ganso y un s...
Inteligencia Artificial 13
2.3 Métodos de descripción y pareamiento
2.4 Analogías
Aprendizaje por Analogía
El razonamiento analógico intenta emular la capacidad
humana de recordar la solució...
• Problema base: El problema ya resuelto tal que su
solución servirá de base para resolver el nuevo
problema.
• Conocimien...
Razonamiento unificado
• Visión unificada de los componentes básicos de un
sistema analógico.
• Problema tipo. Dada como ent...
Inteligencia Artificial 17
2.4 Analogías
Recuperación Aprendizaje Mapeo Justificación Aprendizaje
Inteligencia Artificial 18
Fases
• Recuperación. Dada la situació...
• El reconocimiento de abstracciones es un concepto muy
subjetivo dado que éstas son combinaciones de estados
mentales y e...
Próxima SlideShare
Cargando en…5
×

Inteligencia artificial etc(avance2) samuel_tiburcio_parra

510 visualizaciones

Publicado el

Publicado en: Educación
0 comentarios
0 recomendaciones
Estadísticas
Notas
  • Sé el primero en comentar

  • Sé el primero en recomendar esto

Sin descargas
Visualizaciones
Visualizaciones totales
510
En SlideShare
0
De insertados
0
Número de insertados
29
Acciones
Compartido
0
Descargas
7
Comentarios
0
Recomendaciones
0
Insertados 0
No insertados

No hay notas en la diapositiva.

Inteligencia artificial etc(avance2) samuel_tiburcio_parra

  1. 1. Inteligencia ArtificialProfesor: Dr. Cesar Augusto Isaza Bohorquez EVALUACIÓN A TITULO DE COMPETENCIA (ETC) Alumno: Samuel Tiburcio Parra.
  2. 2. 2. Representación del aprendizaje. 2.1 Aprendizaje 2.1.1 Aprendizaje repetitivo 2.1.2 Aprendizaje cognitivo 2.2 Redes semánticas 2.3 Método de descripción y pareamiento 2.4 Analogías 2.5 Reconocimiento de abstracciones Inteligencia Artificial 2
  3. 3. 2.1 Aprendizaje El aprendizaje es el proceso a través del cual se adquieren o modifican habilidades, destrezas, conocimientos, conductas o valores como resultado del estudio, la experiencia, la instrucción, el razonamiento y la observación. Este proceso puede ser analizado desde distintas perspectivas, por lo que existen distintas teorías del aprendizaje. El aprendizaje es una de las funciones mentales más importantes en humanos, animales y sistemas artificiales. Inteligencia Artificial 3
  4. 4. 2.1.1 Cognitivo 2.1.2 Repetitivo Inteligencia Artificial 4 • Aprendemos de la experiencia pero es el sujeto quien construye el conocimiento del mundo externo en función de su organización cognitiva interna, el sujeto interpreta la realidad y proyecta sobre ella los significados que va construyendo. • Se produce cuando el individuo memoriza contenidos sin comprenderlos o relacionarlos con sus conocimientos previos, no encuentra significado a los contenidos. 2.1 Aprendizaje
  5. 5. Inteligencia Artificial 5 2.2 Redes semánticas • Una red semántica o esquema de representación en Red es una forma de representación de conocimiento lingüístico en la que los conceptos y sus interrelaciones se representan mediante un grafo. En caso de que no existan ciclos, estas redes pueden ser visualizadas como árboles. Las redes semánticas son usadas, entre otras cosas, para representar mapas conceptuales y mentales. • En un grafo o red semántica los elementos semánticos se representan por nodos.
  6. 6. • Dos elementos semánticos entre los que se admite se da la relación semántica que representa la red, estarán unidos mediante una línea, flecha o enlace o arista. • Cierto tipo de relaciones no simétricas requieren grafos dirigidos que usan flechas en lugar de líneas. Inteligencia Artificial 6 2.2 Redes semánticas
  7. 7. Una red semántica representa conocimiento mediante un grafo:  Nodos: Conceptos  Arcos etiquetados: Relaciones entre conceptos Por red semántica actualmente se entiende toda una familia de representaciones basadas en grafos que difieren entre sí en los nombres que se permiten para nodos y arcos, y en las inferencias que pueden hacerse Los elementos básicos que encontramos en todos los esquemas de redes son: Estructuras de datos en nodos, que representan conceptos, unidas por arcos que representan las relaciones entre los conceptos. Un conjunto de procedimientos de inferencia que operan sobre las estructuras de datos. Inteligencia Artificial 7 2.2 Redes semánticas
  8. 8. Básicamente, podemos distinguir tres categorías de redes semánticas:  Redes IS-A, en las que los enlaces entre nodos están etiquetados.  Grafos conceptuales: en los que existen dos tipos de nodos: de conceptos y de relaciones  Redes de marcos: en los que los puntos de unión de los enlaces son parte de la etiqueta del nodo. Inteligencia Artificial 8 2.2 Redes semánticas
  9. 9. • Este método descripción y pareamiento se utiliza para solucionar problemas de IA y es por decirlo de alguna manera de los más básicos. • El primer paso consiste en identificar todas las características de un objeto. Después se realiza una búsqueda con un conjunto de objetos ya definidos. • En realidad se utilizan dos métodos muy importantes: el extractor y el evaluador de conocimientos. • Al realizar el pareamiento de los objetos puede ser que no caigan exactamente en el patrón de conocimiento por lo que se tiene que tener una medida de similitud. Inteligencia Artificial 9 2.3 Métodos de descripción y pareamiento
  10. 10. Pareamiento Descripción Inteligencia Artificial 10 • AMOR o Querer a una persona o cosa sobre todas las cosas o Palabra de 4 caracteres: ‘A’, ‘M’, ‘O’ y ‘R’ yuxtapuestos • AMOR = AMOR • AMOR = ROMA • Amor = AMOR • Amor = Cariño • Amor = Amar Distancia Léxica 1 Círculo Descripción: Figura formada por todos los puntos comprendidos a una distancia equidistante del centro correspondidos en un ángulo de 0 a 360 grados. Propiedades Centro (punto) Diámetro (dos veces radio) Áreas 2.3 Métodos de descripción y pareamiento
  11. 11. Se debe de representar de manera adecuada el conocimiento para poder compararlo. Inteligencia Artificial 11 2.3 Métodos de descripción y pareamiento
  12. 12. El granjero, la zorra, el ganso y el trigo • Un granjero quiere cruzar un río llevando consigo una zorra, una ganso y un saco de trigo. Por desgracia, su bote es tan pequeño que sólo puede transportar una de sus pertenencias en cada viaje. Peor aún, la zorra, si no se le vigila, se como al ganso, y el ganso, si no se le cuida, se come el trigo; de modo que el granjero no debe dejar a la zorra sola con el ganso o al ganso solo con el trigo. Inteligencia Artificial 12 2.3 Métodos de descripción y pareamiento
  13. 13. Inteligencia Artificial 13 2.3 Métodos de descripción y pareamiento
  14. 14. 2.4 Analogías Aprendizaje por Analogía El razonamiento analógico intenta emular la capacidad humana de recordar la solución de problemas previos ante la aparición de problemas parecidos en los que se llevan a cabo razonamientos análogos para alcanzar sus soluciones respectivas. Análisis de analogías Generalización inductiva sobre las relaciones que se cumplen en un determinado dominio (origen o fuente), suponiendo que también se cumplen en otro dominio (destino o meta); el proceso de analogías esta basado en que si dos situaciones son similares en algún aspecto entonces pueden serlo en otro (“explota la experiencia acumulada”). Inteligencia Artificial 14
  15. 15. • Problema base: El problema ya resuelto tal que su solución servirá de base para resolver el nuevo problema. • Conocimiento base: La información disponible sobre el problema base y su dominio. • Problema objetivo: El nuevo problema a resolver “Entre ambos existe una relación de causalidad.” Inteligencia Artificial 15 2.4 Analogías
  16. 16. Razonamiento unificado • Visión unificada de los componentes básicos de un sistema analógico. • Problema tipo. Dada como entrada una situación objetivo, da como resultado una representación aumentada de la misma en la que consten las inferencias analógicas obtenidas de una situación base. Inteligencia Artificial 16 2.4 Analogías
  17. 17. Inteligencia Artificial 17 2.4 Analogías
  18. 18. Recuperación Aprendizaje Mapeo Justificación Aprendizaje Inteligencia Artificial 18 Fases • Recuperación. Dada la situación objetivo, el sistema ha de ser capaz de recuperar un caso base potencialmente análogo y poner en correspondencia las partes correspondientes de ambas. • Elaboración. Derivar atributos, relaciones o cadenas causales adicionales que pueden ser utilizadas sobre la situación objetivo • Mapeo. Mapear los atributos seleccionados sobre el objetivo con posibles modificaciones • Justificación. Justificar que los atributos son válidos • Aprendizaje. Guardar la representación aumentada de la situación objetivo; en la creación la reglas generales motivadas por la analogía o en el refinamiento de las mismas a partir de más razonamientos sobre la misma o diferentes situaciones base 2.4 Analogías
  19. 19. • El reconocimiento de abstracciones es un concepto muy subjetivo dado que éstas son combinaciones de estados mentales y eventos. • Los Sistemas Inteligentes se basan fundamentalmente en reglas ECA (Evento-Condición-Acción) • Generalmente respondemos a estímulos (eventos), y en base a ellos vemos cuales son importantes para nosotros y nos comportamos de cierta manera. • Para lo que a una persona le representa algo para otra representa cosas totalmente distintas. • La abstracción permite llegar a cierto tipo de conclusiones y preguntas resueltas. Inteligencia Artificial 19 2.5 Reconocimiento de abstracciones

×