SlideShare una empresa de Scribd logo
1 de 16
 Un semiconductor es un material o compuesto
que tiene propiedades aislantes o conductoras.
Unos de los elementos más usados como
semiconductores son el silicio, el germanio y
selenio, además hay otros que no son
elementos como los mencionados
anteriormente si no que son compuestos como
lo son el Arseniuro de Galio, el Telururo de
Plomo y el Seleniuro de Zinc.
 Describiremos la importancia y las propiedades
de los semiconductores intrínsecos y los
semiconductores dopados.
Los semiconductores son
elementos que tienen una
conductividad eléctrica inferior
a la de un conductor metálico
pero superior a la de un buen
aislante. El semiconductor más
utilizado es el silicio, que es el
elemento más abundante en la
naturaleza, después del
oxígeno. Otros
semiconductores son el
germanio y el selenio.
 Es un semiconductor puro. A temperatura ambiente
se comporta como un aislante porque solo tiene
unos pocos electrones libres y huecos debidos a la
energía térmica.
 En un semiconductor intrínseco también hay flujos
de electrones y huecos, aunque la corriente total
resultante sea cero. Esto se debe a que por acción
de la energía térmica se producen los electrones
libres y los huecos por pares, por lo tanto hay
tantos electrones libres como huecos con lo que la
corriente total es cero.
 Intrínseco indica un material semiconductor
extremadamente puro contiene una cantidad
insignificante de átomos de impurezas. Donde
n=p=ni
Como se puede observar en la
ilustración, en el caso de los
semiconductores el espacio
correspondiente a la banda
prohibida es mucho más
estrecho en comparación con los
materiales aislantes. La energía
de salto de banda (Eg) requerida
por los electrones para saltar de
la banda de valencia a la de
conducción es de 1 eV
aproximadamente. En los
semiconductores de silicio (Si), la
energía de salto de banda
requerida por los electrones es
de 1,21 eV, mientras que en los
de germanio (Ge) es de 0,785
eV.
 Cuando los electrones libres
llegan la extremo derecho del
cristal, entran al conductor
externo (normalmente un hilo
de cobre) y circulan hacia el
terminal positivo de la batería.
Por otro lado, los electrones
libres en el terminal negativo
de la batería fluirían hacia el
extremos izquierdo del cristal.
Así entran en el cristal y se
recombinan con los huecos que
llegan al extremo izquierdo del
cristal. Se produce un flujo
estable de electrones libres y
huecos dentro del
semiconductor.
 Si un electrón de valencia se
convierte en electrón de
conducción deja una posición
vacante, y si aplicamos un
campo eléctrico al
semiconductor, este “hueco”
puede ser ocupado por otro
electrón de valencia, que deja a
su vez otro hueco. Este efecto
es el de una carga +e
moviéndose en dirección del
campo eléctrico. A este proceso
le llamamos ‘generación térmica
de pares electrón-hueco’.
 El silicio en su modelo
bidimensional, Vemos como
cada átomo de silicio se rodea
de sus 4 vecinos próximos con
lo que comparte sus electrones
de valencia.
A 0ºK todos los electrones hacen
su papel de enlace y tienen
energías correspondientes a la
banda de valencia. Esta banda
estará completa, mientras que la
de conducción permanecerá vacía.
Es cuando hablamos de que el
conductor es un aislante perfecto.
 El dopaje consiste en
sustituir algunos átomos
de silicio por átomos de
otros elementos. A estos
últimos se les conoce con
el nombre de impurezas.
Dependiendo del tipo de
impureza con el que se
dope al semiconductor
puro o intrínseco
aparecen dos clases de
semiconductores.(5)
 Semiconductor tipo P
 Semiconductor tipo N
Sentido del movimiento de un electrón y un
hueco en el silicio.
En la actualidad el elemento más utilizado para fabricar
semiconductores para el uso de la industria electrónica es el
cristal de silicio (Si) por ser un componente relativamente barato
de obtener. La materia prima empleada para fabricar cristales
semiconductores de silicio es la arena, uno de los materiales más
abundantes en la naturaleza. En su forma industrial primaria el
cristal de silicio tiene la forma de una oblea de muy poco
grosor (entre 0,20 y 0,25 mm aproximadamente), pulida como un
espejo.
A la izquierda se muestra la ilustración de una oblea (wafer) o cristal semiconductor de.silicio pulida con brillo de espejo,
destinada a la fabricación de transistores y circuitos.integrados. A la derecha aparece la cuarta parte de la oblea
conteniendo cientos de.minúsculos dados o “chips”, que se pueden obtener de cada una. Esos chips son los.que después
de pasar por un proceso tecnológico apropiado se convertirán en.transistores o circuitos integrados. Una vez que los chips
se han convertido en.transistores o circuitos integrados serán desprendidos de la oblea y colocados dentro.de una cápsula
protectora con sus correspondientes conectores externos.
 Impurezas de valencia 5
(Arsénico, Antimonio,
Fósforo). Tenemos un cristal
de Silicio dopado con
átomos de valencia 5
 Los átomo de valencia 5
tienen un electrón de más,
así con una temperatura no
muy elevada (a temperatura
ambiente por ejemplo), el
5º electrón se hace electrón
libre. Esto es, como solo se
pueden tener 8 electrones
en la órbita de valencia, el
átomo pentavalente suelta
un electrón que será libre.
 Impurezas de valencia 3
(Aluminio, Boro, Galio). Tenemos
un cristal de Silicio dopado con
átomos de valencia 3.
 Los átomo de valencia 3 tienen un
electrón de menos, entonces
como nos falta un electrón
tenemos un hueco. Esto es, ese
átomo trivalente tiene 7 electrones
en la orbita de valencia. Al átomo
de valencia 3 se le llama "átomo
trivalente" o "Aceptor".
 A estas impurezas se les llama
"Impurezas Aceptoras". Hay
tantos huecos como impurezas de
valencia 3 y sigue habiendo
huecos de generación térmica
(muy pocos). El número de
huecos se llama p (huecos/m3).
 Para los semiconductores
del Grupo IV como Silicio,
Germanio y Carburo de
silicio, los dopantes más
comunes son elementos del
Grupo III o del Grupo V.
Boro, Arsénico, Fósforo, y
ocasionalmente Galio, son
utilizados para dopar al
Silicio.
Ejemplo de dopaje de Silicio
por el Fósforo (dopaje Tipo N).
En el caso del Fósforo, se dona
un electrón
 El siguiente es un
ejemplo de dopaje de
Silicio por el Boro (P
dopaje). En el caso del
boro le falta un electrón
y, por tanto, es donado
un hueco de electrón.
La cantidad de
portadores mayoritarios
será función directa de
la cantidad de átomos
de impurezas
introducidos.
En el doping tipo p, la creación de
agujeros, es alcanzada mediante la
incorporación en el silicio de átomos con
3 electrones de valencia, generalmente
se utiliza boro.(9)
En la producción de
semiconductores, se
denomina dopaje al proceso
intencional de agregar
impurezas en un
semiconductor
extremadamente puro
(también referido como
intrínseco) con el fin de
cambiar sus propiedades
eléctricas. Las impurezas
utilizadas dependen del tipo
de semiconductores a dopar.
Un semiconductor es “intrínseco”
cuando se encuentra en estado
puro, o sea, que no contiene
ninguna impureza, ni átomos de
otro tipo dentro de su estructura.
En ese caso, la cantidad de
huecos que dejan los electrones
en la banda de valencia al
atravesar la banda prohibida será
igual a la cantidad de electrones
libres que se encuentran
presentes en la banda de
conducción
http://fisicadesemiconductores.blogspot.com/
http://www.sc.ehu.es/sbweb/electronica/elec_basica/tema2/Paginas/
Pagina4.htm
http://quintonochea.wikispaces.com/semiconductores1
http://fisicauva.galeon.com/aficiones1925812.html
http://www.ifent.org/lecciones/semiconductor/dopado.asp
http://www.asifunciona.com
http://www.sc.ehu.es/sbweb/electronica/elec_basica/tema2/Paginas/
Pagina5.htm
http://es.wikipedia.org/wiki/Dopaje_(semiconductores)
http://ecotecnologias.wordpress.com/tag/celdas-solares/

Más contenido relacionado

La actualidad más candente

Semiconductores martin ybazita muñoz
Semiconductores martin ybazita muñozSemiconductores martin ybazita muñoz
Semiconductores martin ybazita muñoz
martindeica
 
Semiconductores Intrinsecos y semiconductores dopados
Semiconductores Intrinsecos y semiconductores dopadosSemiconductores Intrinsecos y semiconductores dopados
Semiconductores Intrinsecos y semiconductores dopados
Marlyn Peña
 

La actualidad más candente (19)

Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Los semiconductores intrínsecos y los semiconductores extrínsecos (dopado)
Los semiconductores intrínsecos y los semiconductores  extrínsecos (dopado)Los semiconductores intrínsecos y los semiconductores  extrínsecos (dopado)
Los semiconductores intrínsecos y los semiconductores extrínsecos (dopado)
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
-Semiconductores-
-Semiconductores- -Semiconductores-
-Semiconductores-
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores intrinsecos y dopados
Semiconductores intrinsecos y dopadosSemiconductores intrinsecos y dopados
Semiconductores intrinsecos y dopados
 
Semiconductores martin ybazita muñoz
Semiconductores martin ybazita muñozSemiconductores martin ybazita muñoz
Semiconductores martin ybazita muñoz
 
Semiconductores Intrinsecos y Dopados
Semiconductores Intrinsecos y DopadosSemiconductores Intrinsecos y Dopados
Semiconductores Intrinsecos y Dopados
 
SemiConductores
SemiConductoresSemiConductores
SemiConductores
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores Intrinsecos y semiconductores dopados
Semiconductores Intrinsecos y semiconductores dopadosSemiconductores Intrinsecos y semiconductores dopados
Semiconductores Intrinsecos y semiconductores dopados
 

Similar a SEMICONDUCTORES

Lossemiconductoresintrnsecosylossemiconductoresdopados
LossemiconductoresintrnsecosylossemiconductoresdopadosLossemiconductoresintrnsecosylossemiconductoresdopados
Lossemiconductoresintrnsecosylossemiconductoresdopados
Darwin Oclocho Minchan
 
Semiconductores t.andres bambaren alcala
Semiconductores   t.andres bambaren alcalaSemiconductores   t.andres bambaren alcala
Semiconductores t.andres bambaren alcala
Handrezito
 

Similar a SEMICONDUCTORES (20)

Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
semiconductores
semiconductoressemiconductores
semiconductores
 
Semiconductores ok
Semiconductores okSemiconductores ok
Semiconductores ok
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Trabajos de semiconductores
Trabajos de semiconductoresTrabajos de semiconductores
Trabajos de semiconductores
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Los semiconductores intrínsecos y los semiconductores dopados
Los semiconductores intrínsecos y los semiconductores dopadosLos semiconductores intrínsecos y los semiconductores dopados
Los semiconductores intrínsecos y los semiconductores dopados
 
Los semiconductores
Los semiconductoresLos semiconductores
Los semiconductores
 
Lossemiconductoresintrnsecosylossemiconductoresdopados
LossemiconductoresintrnsecosylossemiconductoresdopadosLossemiconductoresintrnsecosylossemiconductoresdopados
Lossemiconductoresintrnsecosylossemiconductoresdopados
 
Los semiconductores intr insecos y los semiconductores dopados
Los semiconductores intr insecos y los semiconductores dopadosLos semiconductores intr insecos y los semiconductores dopados
Los semiconductores intr insecos y los semiconductores dopados
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
SEMICONDUCTORES
SEMICONDUCTORESSEMICONDUCTORES
SEMICONDUCTORES
 
Semiconductores t.andres bambaren alcala
Semiconductores   t.andres bambaren alcalaSemiconductores   t.andres bambaren alcala
Semiconductores t.andres bambaren alcala
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores intrínsecos y semiconductores dopados
Semiconductores intrínsecos y semiconductores dopadosSemiconductores intrínsecos y semiconductores dopados
Semiconductores intrínsecos y semiconductores dopados
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores
Semiconductores Semiconductores
Semiconductores
 

Último

TEMA 14.DERIVACIONES ECONÓMICAS, SOCIALES Y POLÍTICAS DEL PROCESO DE INTEGRAC...
TEMA 14.DERIVACIONES ECONÓMICAS, SOCIALES Y POLÍTICAS DEL PROCESO DE INTEGRAC...TEMA 14.DERIVACIONES ECONÓMICAS, SOCIALES Y POLÍTICAS DEL PROCESO DE INTEGRAC...
TEMA 14.DERIVACIONES ECONÓMICAS, SOCIALES Y POLÍTICAS DEL PROCESO DE INTEGRAC...
jlorentemartos
 
FORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURA
FORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURAFORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURA
FORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURA
El Fortí
 

Último (20)

Prueba de evaluación Geografía e Historia Comunidad de Madrid 2º de la ESO
Prueba de evaluación Geografía e Historia Comunidad de Madrid 2º de la ESOPrueba de evaluación Geografía e Historia Comunidad de Madrid 2º de la ESO
Prueba de evaluación Geografía e Historia Comunidad de Madrid 2º de la ESO
 
Supuestos_prácticos_funciones.docx
Supuestos_prácticos_funciones.docxSupuestos_prácticos_funciones.docx
Supuestos_prácticos_funciones.docx
 
La Sostenibilidad Corporativa. Administración Ambiental
La Sostenibilidad Corporativa. Administración AmbientalLa Sostenibilidad Corporativa. Administración Ambiental
La Sostenibilidad Corporativa. Administración Ambiental
 
Power Point: Fe contra todo pronóstico.pptx
Power Point: Fe contra todo pronóstico.pptxPower Point: Fe contra todo pronóstico.pptx
Power Point: Fe contra todo pronóstico.pptx
 
SEXTO SEGUNDO PERIODO EMPRENDIMIENTO.pptx
SEXTO SEGUNDO PERIODO EMPRENDIMIENTO.pptxSEXTO SEGUNDO PERIODO EMPRENDIMIENTO.pptx
SEXTO SEGUNDO PERIODO EMPRENDIMIENTO.pptx
 
TEMA 14.DERIVACIONES ECONÓMICAS, SOCIALES Y POLÍTICAS DEL PROCESO DE INTEGRAC...
TEMA 14.DERIVACIONES ECONÓMICAS, SOCIALES Y POLÍTICAS DEL PROCESO DE INTEGRAC...TEMA 14.DERIVACIONES ECONÓMICAS, SOCIALES Y POLÍTICAS DEL PROCESO DE INTEGRAC...
TEMA 14.DERIVACIONES ECONÓMICAS, SOCIALES Y POLÍTICAS DEL PROCESO DE INTEGRAC...
 
Análisis de los Factores Externos de la Organización.
Análisis de los Factores Externos de la Organización.Análisis de los Factores Externos de la Organización.
Análisis de los Factores Externos de la Organización.
 
Revista Apuntes de Historia. Mayo 2024.pdf
Revista Apuntes de Historia. Mayo 2024.pdfRevista Apuntes de Historia. Mayo 2024.pdf
Revista Apuntes de Historia. Mayo 2024.pdf
 
FORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURA
FORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURAFORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURA
FORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURA
 
Tema 10. Dinámica y funciones de la Atmosfera 2024
Tema 10. Dinámica y funciones de la Atmosfera 2024Tema 10. Dinámica y funciones de la Atmosfera 2024
Tema 10. Dinámica y funciones de la Atmosfera 2024
 
LA LITERATURA DEL BARROCO 2023-2024pptx.pptx
LA LITERATURA DEL BARROCO 2023-2024pptx.pptxLA LITERATURA DEL BARROCO 2023-2024pptx.pptx
LA LITERATURA DEL BARROCO 2023-2024pptx.pptx
 
Feliz Día de la Madre - 5 de Mayo, 2024.pdf
Feliz Día de la Madre - 5 de Mayo, 2024.pdfFeliz Día de la Madre - 5 de Mayo, 2024.pdf
Feliz Día de la Madre - 5 de Mayo, 2024.pdf
 
Tema 19. Inmunología y el sistema inmunitario 2024
Tema 19. Inmunología y el sistema inmunitario 2024Tema 19. Inmunología y el sistema inmunitario 2024
Tema 19. Inmunología y el sistema inmunitario 2024
 
Lecciones 05 Esc. Sabática. Fe contra todo pronóstico.
Lecciones 05 Esc. Sabática. Fe contra todo pronóstico.Lecciones 05 Esc. Sabática. Fe contra todo pronóstico.
Lecciones 05 Esc. Sabática. Fe contra todo pronóstico.
 
SISTEMA RESPIRATORIO PARA NIÑOS PRIMARIA
SISTEMA RESPIRATORIO PARA NIÑOS PRIMARIASISTEMA RESPIRATORIO PARA NIÑOS PRIMARIA
SISTEMA RESPIRATORIO PARA NIÑOS PRIMARIA
 
CONCURSO NACIONAL JOSE MARIA ARGUEDAS.pptx
CONCURSO NACIONAL JOSE MARIA ARGUEDAS.pptxCONCURSO NACIONAL JOSE MARIA ARGUEDAS.pptx
CONCURSO NACIONAL JOSE MARIA ARGUEDAS.pptx
 
SESION DE PERSONAL SOCIAL. La convivencia en familia 22-04-24 -.doc
SESION DE PERSONAL SOCIAL.  La convivencia en familia 22-04-24  -.docSESION DE PERSONAL SOCIAL.  La convivencia en familia 22-04-24  -.doc
SESION DE PERSONAL SOCIAL. La convivencia en familia 22-04-24 -.doc
 
TIENDAS MASS MINIMARKET ESTUDIO DE MERCADO
TIENDAS MASS MINIMARKET ESTUDIO DE MERCADOTIENDAS MASS MINIMARKET ESTUDIO DE MERCADO
TIENDAS MASS MINIMARKET ESTUDIO DE MERCADO
 
Interpretación de cortes geológicos 2024
Interpretación de cortes geológicos 2024Interpretación de cortes geológicos 2024
Interpretación de cortes geológicos 2024
 
Procedimientos para la planificación en los Centros Educativos tipo V ( multi...
Procedimientos para la planificación en los Centros Educativos tipo V ( multi...Procedimientos para la planificación en los Centros Educativos tipo V ( multi...
Procedimientos para la planificación en los Centros Educativos tipo V ( multi...
 

SEMICONDUCTORES

  • 1.
  • 2.  Un semiconductor es un material o compuesto que tiene propiedades aislantes o conductoras. Unos de los elementos más usados como semiconductores son el silicio, el germanio y selenio, además hay otros que no son elementos como los mencionados anteriormente si no que son compuestos como lo son el Arseniuro de Galio, el Telururo de Plomo y el Seleniuro de Zinc.  Describiremos la importancia y las propiedades de los semiconductores intrínsecos y los semiconductores dopados.
  • 3. Los semiconductores son elementos que tienen una conductividad eléctrica inferior a la de un conductor metálico pero superior a la de un buen aislante. El semiconductor más utilizado es el silicio, que es el elemento más abundante en la naturaleza, después del oxígeno. Otros semiconductores son el germanio y el selenio.
  • 4.  Es un semiconductor puro. A temperatura ambiente se comporta como un aislante porque solo tiene unos pocos electrones libres y huecos debidos a la energía térmica.  En un semiconductor intrínseco también hay flujos de electrones y huecos, aunque la corriente total resultante sea cero. Esto se debe a que por acción de la energía térmica se producen los electrones libres y los huecos por pares, por lo tanto hay tantos electrones libres como huecos con lo que la corriente total es cero.  Intrínseco indica un material semiconductor extremadamente puro contiene una cantidad insignificante de átomos de impurezas. Donde n=p=ni
  • 5. Como se puede observar en la ilustración, en el caso de los semiconductores el espacio correspondiente a la banda prohibida es mucho más estrecho en comparación con los materiales aislantes. La energía de salto de banda (Eg) requerida por los electrones para saltar de la banda de valencia a la de conducción es de 1 eV aproximadamente. En los semiconductores de silicio (Si), la energía de salto de banda requerida por los electrones es de 1,21 eV, mientras que en los de germanio (Ge) es de 0,785 eV.
  • 6.  Cuando los electrones libres llegan la extremo derecho del cristal, entran al conductor externo (normalmente un hilo de cobre) y circulan hacia el terminal positivo de la batería. Por otro lado, los electrones libres en el terminal negativo de la batería fluirían hacia el extremos izquierdo del cristal. Así entran en el cristal y se recombinan con los huecos que llegan al extremo izquierdo del cristal. Se produce un flujo estable de electrones libres y huecos dentro del semiconductor.
  • 7.  Si un electrón de valencia se convierte en electrón de conducción deja una posición vacante, y si aplicamos un campo eléctrico al semiconductor, este “hueco” puede ser ocupado por otro electrón de valencia, que deja a su vez otro hueco. Este efecto es el de una carga +e moviéndose en dirección del campo eléctrico. A este proceso le llamamos ‘generación térmica de pares electrón-hueco’.
  • 8.  El silicio en su modelo bidimensional, Vemos como cada átomo de silicio se rodea de sus 4 vecinos próximos con lo que comparte sus electrones de valencia. A 0ºK todos los electrones hacen su papel de enlace y tienen energías correspondientes a la banda de valencia. Esta banda estará completa, mientras que la de conducción permanecerá vacía. Es cuando hablamos de que el conductor es un aislante perfecto.
  • 9.  El dopaje consiste en sustituir algunos átomos de silicio por átomos de otros elementos. A estos últimos se les conoce con el nombre de impurezas. Dependiendo del tipo de impureza con el que se dope al semiconductor puro o intrínseco aparecen dos clases de semiconductores.(5)  Semiconductor tipo P  Semiconductor tipo N Sentido del movimiento de un electrón y un hueco en el silicio.
  • 10. En la actualidad el elemento más utilizado para fabricar semiconductores para el uso de la industria electrónica es el cristal de silicio (Si) por ser un componente relativamente barato de obtener. La materia prima empleada para fabricar cristales semiconductores de silicio es la arena, uno de los materiales más abundantes en la naturaleza. En su forma industrial primaria el cristal de silicio tiene la forma de una oblea de muy poco grosor (entre 0,20 y 0,25 mm aproximadamente), pulida como un espejo. A la izquierda se muestra la ilustración de una oblea (wafer) o cristal semiconductor de.silicio pulida con brillo de espejo, destinada a la fabricación de transistores y circuitos.integrados. A la derecha aparece la cuarta parte de la oblea conteniendo cientos de.minúsculos dados o “chips”, que se pueden obtener de cada una. Esos chips son los.que después de pasar por un proceso tecnológico apropiado se convertirán en.transistores o circuitos integrados. Una vez que los chips se han convertido en.transistores o circuitos integrados serán desprendidos de la oblea y colocados dentro.de una cápsula protectora con sus correspondientes conectores externos.
  • 11.  Impurezas de valencia 5 (Arsénico, Antimonio, Fósforo). Tenemos un cristal de Silicio dopado con átomos de valencia 5  Los átomo de valencia 5 tienen un electrón de más, así con una temperatura no muy elevada (a temperatura ambiente por ejemplo), el 5º electrón se hace electrón libre. Esto es, como solo se pueden tener 8 electrones en la órbita de valencia, el átomo pentavalente suelta un electrón que será libre.
  • 12.  Impurezas de valencia 3 (Aluminio, Boro, Galio). Tenemos un cristal de Silicio dopado con átomos de valencia 3.  Los átomo de valencia 3 tienen un electrón de menos, entonces como nos falta un electrón tenemos un hueco. Esto es, ese átomo trivalente tiene 7 electrones en la orbita de valencia. Al átomo de valencia 3 se le llama "átomo trivalente" o "Aceptor".  A estas impurezas se les llama "Impurezas Aceptoras". Hay tantos huecos como impurezas de valencia 3 y sigue habiendo huecos de generación térmica (muy pocos). El número de huecos se llama p (huecos/m3).
  • 13.  Para los semiconductores del Grupo IV como Silicio, Germanio y Carburo de silicio, los dopantes más comunes son elementos del Grupo III o del Grupo V. Boro, Arsénico, Fósforo, y ocasionalmente Galio, son utilizados para dopar al Silicio. Ejemplo de dopaje de Silicio por el Fósforo (dopaje Tipo N). En el caso del Fósforo, se dona un electrón
  • 14.  El siguiente es un ejemplo de dopaje de Silicio por el Boro (P dopaje). En el caso del boro le falta un electrón y, por tanto, es donado un hueco de electrón. La cantidad de portadores mayoritarios será función directa de la cantidad de átomos de impurezas introducidos. En el doping tipo p, la creación de agujeros, es alcanzada mediante la incorporación en el silicio de átomos con 3 electrones de valencia, generalmente se utiliza boro.(9)
  • 15. En la producción de semiconductores, se denomina dopaje al proceso intencional de agregar impurezas en un semiconductor extremadamente puro (también referido como intrínseco) con el fin de cambiar sus propiedades eléctricas. Las impurezas utilizadas dependen del tipo de semiconductores a dopar. Un semiconductor es “intrínseco” cuando se encuentra en estado puro, o sea, que no contiene ninguna impureza, ni átomos de otro tipo dentro de su estructura. En ese caso, la cantidad de huecos que dejan los electrones en la banda de valencia al atravesar la banda prohibida será igual a la cantidad de electrones libres que se encuentran presentes en la banda de conducción