SlideShare una empresa de Scribd logo
1 de 16
PRESENTADO POR:
ANGELICA CONTRERAS
 Un semiconductor es un material o compuesto que tiene
propiedades aislantes o conductoras. Unos de los elementos más
usados como semiconductores son el silicio, el germanio y
selenio, además hay otros que no son elementos como los
mencionados anteriormente si no que son compuestos como lo
son el Arseniuro de Galio, el Telururo de Plomo y el Seleniuro de
Zinc.(1)
 Describiremos la importancia y las propiedades de los
semiconductores intrínsecos y los semiconductores dopados.
(1) http://fisicadesemiconductores.blogspot.com/
 Es un semiconductor puro. A temperatura ambiente se
comporta como un aislante porque solo tiene unos pocos
electrones libres y huecos debidos a la energía térmica.
 En un semiconductor intrínseco también hay flujos de
electrones y huecos, aunque la corriente total resultante sea
cero. Esto se debe a que por acción de la energía térmica se
producen los electrones libres y los huecos por pares, por lo
tanto hay tantos electrones libres como huecos con lo que la
corriente total es cero.
 Intrínseco indica un material semiconductor extremadamente
puro contiene una cantidad insignificante de átomos de
impurezas. Donde n=p=ni
(2) http://www.sc.ehu.es/sbweb/electronica/elec_basica/tema2/Paginas/Pagina4.htm
Es un semiconductor
puro. A temperatura
ambiente se
comporta como un
aislante porque solo
tiene unos pocos
electrones libres y
huecos debidos a la
energía térmica.
En un semiconductor
intrínseco también hay
flujos de electrones y
huecos, aunque la corriente
total resultante sea cero.
Esto se debe a que por
acción de la energía
térmica se producen los
electrones libres y los
huecos por pares, por lo
tanto hay tantos electrones
libres como huecos con lo
que la corriente total es
cero.
La tensión aplicada
en la figura forzará
a los electrones
libres a circular
hacia la derecha
(del terminal
negativo de la pila
al positivo) y a los
huecos hacia la
izquierda.
 Modelo de bandas de energía: Conducción
intrínseca
 Cuando los electrones libres
llegan la extremo derecho del
cristal, entran al conductor
externo (normalmente un hilo
de cobre) y circulan hacia el
terminal positivo de la batería.
Por otro lado, los electrones
libres en el terminal negativo de
la batería fluirían hacia el
extremos izquierdo del cristal.
Así entran en el cristal y se
recombinan con los huecos que
llegan al extremo izquierdo del
cristal. Se produce un flujo
estable de electrones libres y
huecos dentro del
semiconductor.
(3) http://quintonochea.wikispaces.com/semiconductores1
 Si un electrón de valencia se convierte en
electrón de conducción deja una posición
vacante, y si aplicamos un campo eléctrico
al semiconductor, este “hueco” puede ser
ocupado por otro electrón de valencia, que
deja a su vez otro hueco. Este efecto es el de
una carga +e moviéndose en dirección del
campo eléctrico. A este proceso le llamamos
‘generación térmica de pares electrón-
hueco’
(4) http://fisicauva.galeon.com/aficiones1925812.html
 El silicio en su modelo bidimensional,
Vemos como cada átomo de silicio se rodea
de sus 4 vecinos próximos con lo que
comparte sus electrones de valencia.
A 0ºK todos los electrones hacen su papel de
enlace y tienen energías correspondientes a
la banda de valencia. Esta banda estará
completa, mientras que la de conducción
permanecerá vacía. Es cuando hablamos de
que el conductor es un aislante perfecto.
 El dopaje consiste en
sustituir algunos átomos de
silicio por átomos de otros
elementos. A estos últimos
se les conoce con el nombre
de impurezas. Dependiendo
del tipo de impureza con el
que se dope al
semiconductor puro o
intrínseco aparecen dos
clases de
semiconductores.(5)
 Semiconductor tipo P
 Semiconductor tipo N
Sentido del movimiento de un electrón y un
hueco en el silicio.
(5) http://www.ifent.org/lecciones/semiconductor/dopado.asp
 Impurezas de valencia 5
(Arsénico, Antimonio,
Fósforo). Tenemos un cristal
de Silicio dopado con átomos
de valencia 5
 Los átomo de valencia 5
tienen un electrón de más,
así con una temperatura no
muy elevada (a temperatura
ambiente por ejemplo), el 5º
electrón se hace electrón
libre. Esto es, como solo se
pueden tener 8 electrones en
la órbita de valencia, el
átomo pentavalente suelta un
electrón que será libre.
(6) http://www.sc.ehu.es/sbweb/electronica/elec_basica/tema2/Paginas/Pagina5.htm
 Impurezas de valencia 3 (Aluminio,
Boro, Galio). Tenemos un cristal de
Silicio dopado con átomos de valencia
3.
 Los átomo de valencia 3 tienen un
electrón de menos, entonces como nos
falta un electrón tenemos un hueco.
Esto es, ese átomo trivalente tiene 7
electrones en la orbita de valencia. Al
átomo de valencia 3 se le llama "átomo
trivalente" o "Aceptor".
 A estas impurezas se les llama
"Impurezas Aceptoras". Hay tantos
huecos como impurezas de valencia 3 y
sigue habiendo huecos de generación
térmica (muy pocos). El número de
huecos se llama p (huecos/m3). (7)
(7)
http://www.sc.ehu.es/sbweb/electronica/elec_basica/tema2
/Paginas/Pagina5.htm
 Para los semiconductores
del Grupo IV como Silicio,
Germanio y Carburo de
silicio, los dopantes más
comunes son elementos
del Grupo III o del Grupo
V. Boro, Arsénico, Fósforo,
y ocasionalmente Galio,
son utilizados para dopar
al Silicio.
(8) http://es.wikipedia.org/wiki/Dopaje_(semiconductores)
Ejemplo de dopaje de Silicio por el
Fósforo (dopaje Tipo N). En el caso del
Fósforo, se dona un electrón
 El siguiente es un
ejemplo de dopaje de
Silicio por el Boro (P
dopaje). En el caso del
boro le falta un electrón
y, por tanto, es donado
un hueco de electrón.La
cantidad de portadores
mayoritarios será
función directa de la
cantidad de átomos de
impurezas introducidos.
En el doping tipo p, la creación de agujeros,
es alcanzada mediante la incorporación en el
silicio de átomos con 3 electrones de
valencia, generalmente se utiliza boro.(9)
(9)
http://ecotecnologias.wordpress.com/tag/celda
s-solares/
En la producción de
semiconductores, se
denomina dopaje al
proceso intencional de
agregar impurezas en un
semiconductor
extremadamente puro
(también referido como
intrínseco) con el fin de
cambiar sus propiedades
eléctricas. Las impurezas
utilizadas dependen del
tipo de semiconductores
a dopar.
Un semiconductor es
“intrínseco” cuando se
encuentra en estado puro, o
sea, que no contiene ninguna
impureza, ni átomos de otro
tipo dentro de su estructura. En
ese caso, la cantidad de huecos
que dejan los electrones en la
banda de valencia al atravesar
la banda prohibida será igual a
la cantidad de electrones libres
que se encuentran presentes en
la banda de conducción
 El siguiente es un ejemplo de dopaje de Silicio por el
Boro (P dopaje). En el caso del boro le falta un electrón
y, por tanto, es donado un hueco de electrón.
 http://es.wikipedia.org/wiki/Semiconductor
 http://www.monografias.com/trabajos11/semi/semi.shtml
 http://www.asifunciona.com/fisica/ke_semiconductor/ke_
semiconductor_3.htm
 http://www.etitudela.com/Electrotecnia/downloads/intro
duccion.pdf
 http://www.ifent.org/lecciones/semiconductor/default.asp

Más contenido relacionado

La actualidad más candente (20)

Semiconductores ok
Semiconductores okSemiconductores ok
Semiconductores ok
 
SemiConductores
SemiConductoresSemiConductores
SemiConductores
 
Los semiconductores
Los semiconductoresLos semiconductores
Los semiconductores
 
Semiconductores Intrínsecos y Dopados
Semiconductores Intrínsecos y DopadosSemiconductores Intrínsecos y Dopados
Semiconductores Intrínsecos y Dopados
 
Semiconductor
SemiconductorSemiconductor
Semiconductor
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores Intrinsecos y semiconductores dopados
Semiconductores Intrinsecos y semiconductores dopadosSemiconductores Intrinsecos y semiconductores dopados
Semiconductores Intrinsecos y semiconductores dopados
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Los semiconductores intr insecos y los semiconductores dopados
Los semiconductores intr insecos y los semiconductores dopadosLos semiconductores intr insecos y los semiconductores dopados
Los semiconductores intr insecos y los semiconductores dopados
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores
 Semiconductores Semiconductores
Semiconductores
 
Trabajos de semiconductores
Trabajos de semiconductoresTrabajos de semiconductores
Trabajos de semiconductores
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 

Similar a Semiconductores

Similar a Semiconductores (20)

Los semiconductores intrínsecos y los semiconductores dopados
Los semiconductores intrínsecos y los semiconductores dopadosLos semiconductores intrínsecos y los semiconductores dopados
Los semiconductores intrínsecos y los semiconductores dopados
 
semiconductores
semiconductoressemiconductores
semiconductores
 
Lossemiconductoresintrnsecosylossemiconductoresdopados
LossemiconductoresintrnsecosylossemiconductoresdopadosLossemiconductoresintrnsecosylossemiconductoresdopados
Lossemiconductoresintrnsecosylossemiconductoresdopados
 
-Semiconductores-
-Semiconductores- -Semiconductores-
-Semiconductores-
 
Los semiconductores intrinsecos y los semi conductores dopados
Los semiconductores intrinsecos y los semi conductores dopadosLos semiconductores intrinsecos y los semi conductores dopados
Los semiconductores intrinsecos y los semi conductores dopados
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores erick
Semiconductores erickSemiconductores erick
Semiconductores erick
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores
Semiconductores Semiconductores
Semiconductores
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Ua 2 semiconductores-rildo
Ua 2 semiconductores-rildoUa 2 semiconductores-rildo
Ua 2 semiconductores-rildo
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
SEMICONDUCTORES ELABORADO POR MARCO GUTIERREZ
SEMICONDUCTORES ELABORADO POR MARCO GUTIERREZSEMICONDUCTORES ELABORADO POR MARCO GUTIERREZ
SEMICONDUCTORES ELABORADO POR MARCO GUTIERREZ
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores martin ybazita muñoz
Semiconductores martin ybazita muñozSemiconductores martin ybazita muñoz
Semiconductores martin ybazita muñoz
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
SEMICONDUCTORES
SEMICONDUCTORESSEMICONDUCTORES
SEMICONDUCTORES
 

Más de GOBIERNO REGIONAL DE HUANCAVELICA (16)

Fiesta del espiritu santo en la villa de oropesa
Fiesta del espiritu santo en la villa  de oropesaFiesta del espiritu santo en la villa  de oropesa
Fiesta del espiritu santo en la villa de oropesa
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Solidos cristalinos
Solidos cristalinosSolidos cristalinos
Solidos cristalinos
 
Curva caracteristica de un diodo
Curva caracteristica de un diodoCurva caracteristica de un diodo
Curva caracteristica de un diodo
 
Union p n
Union p nUnion p n
Union p n
 
Diodos
DiodosDiodos
Diodos
 
Nanoelectronica
NanoelectronicaNanoelectronica
Nanoelectronica
 
Nano electronica
Nano electronicaNano electronica
Nano electronica
 
Nano electronica
Nano electronicaNano electronica
Nano electronica
 
Nano electronica
Nano electronicaNano electronica
Nano electronica
 
Nano electronica
Nano electronicaNano electronica
Nano electronica
 
Anexo 2042
Anexo 2042Anexo 2042
Anexo 2042
 
Otro menu
Otro menuOtro menu
Otro menu
 
Menu
MenuMenu
Menu
 
Guia de dota
Guia de dotaGuia de dota
Guia de dota
 
Guia de dota
Guia de dotaGuia de dota
Guia de dota
 

Semiconductores

  • 2.  Un semiconductor es un material o compuesto que tiene propiedades aislantes o conductoras. Unos de los elementos más usados como semiconductores son el silicio, el germanio y selenio, además hay otros que no son elementos como los mencionados anteriormente si no que son compuestos como lo son el Arseniuro de Galio, el Telururo de Plomo y el Seleniuro de Zinc.(1)  Describiremos la importancia y las propiedades de los semiconductores intrínsecos y los semiconductores dopados. (1) http://fisicadesemiconductores.blogspot.com/
  • 3.  Es un semiconductor puro. A temperatura ambiente se comporta como un aislante porque solo tiene unos pocos electrones libres y huecos debidos a la energía térmica.  En un semiconductor intrínseco también hay flujos de electrones y huecos, aunque la corriente total resultante sea cero. Esto se debe a que por acción de la energía térmica se producen los electrones libres y los huecos por pares, por lo tanto hay tantos electrones libres como huecos con lo que la corriente total es cero.  Intrínseco indica un material semiconductor extremadamente puro contiene una cantidad insignificante de átomos de impurezas. Donde n=p=ni (2) http://www.sc.ehu.es/sbweb/electronica/elec_basica/tema2/Paginas/Pagina4.htm
  • 4. Es un semiconductor puro. A temperatura ambiente se comporta como un aislante porque solo tiene unos pocos electrones libres y huecos debidos a la energía térmica. En un semiconductor intrínseco también hay flujos de electrones y huecos, aunque la corriente total resultante sea cero. Esto se debe a que por acción de la energía térmica se producen los electrones libres y los huecos por pares, por lo tanto hay tantos electrones libres como huecos con lo que la corriente total es cero. La tensión aplicada en la figura forzará a los electrones libres a circular hacia la derecha (del terminal negativo de la pila al positivo) y a los huecos hacia la izquierda.
  • 5.  Modelo de bandas de energía: Conducción intrínseca
  • 6.  Cuando los electrones libres llegan la extremo derecho del cristal, entran al conductor externo (normalmente un hilo de cobre) y circulan hacia el terminal positivo de la batería. Por otro lado, los electrones libres en el terminal negativo de la batería fluirían hacia el extremos izquierdo del cristal. Así entran en el cristal y se recombinan con los huecos que llegan al extremo izquierdo del cristal. Se produce un flujo estable de electrones libres y huecos dentro del semiconductor. (3) http://quintonochea.wikispaces.com/semiconductores1
  • 7.  Si un electrón de valencia se convierte en electrón de conducción deja una posición vacante, y si aplicamos un campo eléctrico al semiconductor, este “hueco” puede ser ocupado por otro electrón de valencia, que deja a su vez otro hueco. Este efecto es el de una carga +e moviéndose en dirección del campo eléctrico. A este proceso le llamamos ‘generación térmica de pares electrón- hueco’ (4) http://fisicauva.galeon.com/aficiones1925812.html
  • 8.  El silicio en su modelo bidimensional, Vemos como cada átomo de silicio se rodea de sus 4 vecinos próximos con lo que comparte sus electrones de valencia. A 0ºK todos los electrones hacen su papel de enlace y tienen energías correspondientes a la banda de valencia. Esta banda estará completa, mientras que la de conducción permanecerá vacía. Es cuando hablamos de que el conductor es un aislante perfecto.
  • 9.  El dopaje consiste en sustituir algunos átomos de silicio por átomos de otros elementos. A estos últimos se les conoce con el nombre de impurezas. Dependiendo del tipo de impureza con el que se dope al semiconductor puro o intrínseco aparecen dos clases de semiconductores.(5)  Semiconductor tipo P  Semiconductor tipo N Sentido del movimiento de un electrón y un hueco en el silicio. (5) http://www.ifent.org/lecciones/semiconductor/dopado.asp
  • 10.  Impurezas de valencia 5 (Arsénico, Antimonio, Fósforo). Tenemos un cristal de Silicio dopado con átomos de valencia 5  Los átomo de valencia 5 tienen un electrón de más, así con una temperatura no muy elevada (a temperatura ambiente por ejemplo), el 5º electrón se hace electrón libre. Esto es, como solo se pueden tener 8 electrones en la órbita de valencia, el átomo pentavalente suelta un electrón que será libre. (6) http://www.sc.ehu.es/sbweb/electronica/elec_basica/tema2/Paginas/Pagina5.htm
  • 11.  Impurezas de valencia 3 (Aluminio, Boro, Galio). Tenemos un cristal de Silicio dopado con átomos de valencia 3.  Los átomo de valencia 3 tienen un electrón de menos, entonces como nos falta un electrón tenemos un hueco. Esto es, ese átomo trivalente tiene 7 electrones en la orbita de valencia. Al átomo de valencia 3 se le llama "átomo trivalente" o "Aceptor".  A estas impurezas se les llama "Impurezas Aceptoras". Hay tantos huecos como impurezas de valencia 3 y sigue habiendo huecos de generación térmica (muy pocos). El número de huecos se llama p (huecos/m3). (7) (7) http://www.sc.ehu.es/sbweb/electronica/elec_basica/tema2 /Paginas/Pagina5.htm
  • 12.  Para los semiconductores del Grupo IV como Silicio, Germanio y Carburo de silicio, los dopantes más comunes son elementos del Grupo III o del Grupo V. Boro, Arsénico, Fósforo, y ocasionalmente Galio, son utilizados para dopar al Silicio. (8) http://es.wikipedia.org/wiki/Dopaje_(semiconductores) Ejemplo de dopaje de Silicio por el Fósforo (dopaje Tipo N). En el caso del Fósforo, se dona un electrón
  • 13.  El siguiente es un ejemplo de dopaje de Silicio por el Boro (P dopaje). En el caso del boro le falta un electrón y, por tanto, es donado un hueco de electrón.La cantidad de portadores mayoritarios será función directa de la cantidad de átomos de impurezas introducidos. En el doping tipo p, la creación de agujeros, es alcanzada mediante la incorporación en el silicio de átomos con 3 electrones de valencia, generalmente se utiliza boro.(9) (9) http://ecotecnologias.wordpress.com/tag/celda s-solares/
  • 14. En la producción de semiconductores, se denomina dopaje al proceso intencional de agregar impurezas en un semiconductor extremadamente puro (también referido como intrínseco) con el fin de cambiar sus propiedades eléctricas. Las impurezas utilizadas dependen del tipo de semiconductores a dopar. Un semiconductor es “intrínseco” cuando se encuentra en estado puro, o sea, que no contiene ninguna impureza, ni átomos de otro tipo dentro de su estructura. En ese caso, la cantidad de huecos que dejan los electrones en la banda de valencia al atravesar la banda prohibida será igual a la cantidad de electrones libres que se encuentran presentes en la banda de conducción
  • 15.  El siguiente es un ejemplo de dopaje de Silicio por el Boro (P dopaje). En el caso del boro le falta un electrón y, por tanto, es donado un hueco de electrón.
  • 16.  http://es.wikipedia.org/wiki/Semiconductor  http://www.monografias.com/trabajos11/semi/semi.shtml  http://www.asifunciona.com/fisica/ke_semiconductor/ke_ semiconductor_3.htm  http://www.etitudela.com/Electrotecnia/downloads/intro duccion.pdf  http://www.ifent.org/lecciones/semiconductor/default.asp