SlideShare una empresa de Scribd logo
1 de 18
Descargar para leer sin conexión
Composición de una planta
de generación térmica
La estructura básica y los componentes principales de una planta de generación térmica se muestran en
la figura 24.17, y se detallan y describen a continuación.
• Una enorme caldera (1) actúa como horno,
transfiriendo calor del combustible que se quema
a los tubos de agua S1, los cuales rodean por
completo las llamas. Una bomba P1 mantiene
el agua circulando en los tubos.
• Un tanque (2) que contiene agua y vapor a
alta presión produce el vapor requerido por las
turbinas. También recibe el agua suministrada
por la bomba P3 de alimentación de la caladera.
El vapor pasa rápidamente hacia la turbina de
alta presión AP después de haber pasado por el
supe calentador S2. El supercalentador,
compuesto de una serie de tubos que rodean
las llamas, eleva la temperatura del vapor a
unos 200 °C. Este incremento de temperatura
garantiza que el vapor está absolutamente seco
y eleva la eficiencia global de la estación.
• Una turbina de alta presión (AP) (3) convierte la
energía térmica en energía mecánica dejando que el
vapor se expanda conforme pasa a través de sus
aspas. Por consiguiente, la temperatura y presión a la
salida de la turbina son menores que a la entrada.
Para elevar la eficiencia térmica y evitar la
condensación prematura, el vapor pasa a través de
una recalentador S3, compuesto de un tercer juego de
tubos calentados.
• La turbina de mediana presión (MP) (4) es
similar a la de alta presión, excepto que es
más grande para que el vapor pueda
expandirse aún más.
• La turbina de baja presión (BP) (5) consta
de dos secciones izquierda y derecha
idénticas. Las secciones de la turbina extraen
la energía restante disponible del vapor (Fig.
24.18). El vapor que fluye hacia afuera de la
turbina de baja presión se expande en un
vacío casi perfecto creado por el condensador
(6).
• El condensador (6) hace que el vapor se
condense dejando que fluya a través de tubos
de enfriamiento S4. En los tubos fluye agua
fría de una fuente externa, como un río o lago,
la cual arrastra el calor. Éste es el vapor
condensado que crea el vacío.
Una bomba de condensado P2 extrae el vapor
condensado tibio y lo dirige a través de un
recalentador (7) hacia una bomba de agua de
alimentación (8).
• El recalentador (7) es un intercambiador de calor.
Recibe vapor caliente, purgado de la turbina de
alta presión (AP), para elevar la temperatura del
agua de alimentación. Estudios termodinámicos
indican que la eficiencia térmica global mejora
cuando algo de vapor es purgado de esta manera,
en lugar de dejarlo que siga su curso normal a
través de las tres turbinas.
• Los quemadores (9) suministran y controlan la
cantidad de gas, aceite o carbón inyectada a
la caldera. El carbón es pulverizado antes de
ser inyectado. Asimismo, un espeso aceite es
precalentado e inyectado como un chorro
atomizado para mejorar la superficie de contacto
(y la combustión) con el aire circundante.
• Un ventilador de tiro forzado (10) suministra
las enormes cantidades de aire necesarias
para la combustión (Fig. 24.19).
• Un ventilador de tiro inducido (11) conduce los
gases y otros productos de combustión hacia un
aparato de limpieza, y de allí a la chimenea y al
aire externo.
• El generador (G), directamente acoplado a las
tres turbinas, convierte la energía mecánica en
energía eléctrica.
En la práctica, una planta de vapor tiene cientos
de componentes y accesorios más para garantizar
una alta eficiencia, seguridad y economía. Por
ejemplo, válvulas de control regulan la cantidad
de vapor que fluye hacia las turbinas; complejos
purificadores de agua mantienen la limpieza y
composición química requeridas del agua de
alimentación, y bombas de aceite mantienen los
cojinetes adecuadamente lubricados. Sin
embargo, los componentes básicos que
acabamos de describir nos permiten entender la
operación y algunos de los problemas básicos de
una planta térmica.
Turbinas
Las turbinas de baja, mediana y alta presión poseen
una serie de aspas montadas en la flecha motriz (Fig.
24.18). El vapor es desviado por las aspas, con lo que
se produce un poderoso par o momento de torsión.
Las aspas están hechas de un acero especial para que
soporten la alta temperatura y las intensas fuerzas
centrífugas.
Las turbinas de AP, MP y BP están acopladas juntas
para propulsar un generador común. Sin embargo,
en algunas instalaciones grandes la turbina de
AP impulsa un generador en tanto que las de MP y
BP impulsan otro de la misma capacidad.
Condensador
Hemos visto que casi la mitad de la energía producida
en la caldera tiene que ser extraída del vapor cuando
éste sale hacia el condensador. Por consiguiente, se requieren
enormes cantidades de agua de enfriamiento
para eliminar el calor. Por lo general, la temperatura
del agua de enfriamiento se incrementa de 5 a 10 °C a
medida que fluye por los tubos del condensador. El vapor
condensado generalmente tiene una temperatura
entre 27 y 33° y la presión absoluta correspondiente
muy cerca del vacío de aproximadamente 5 kPa. La
temperatura del agua de enfriamiento es de sólo unos
cuantos grados por debajo de la temperatura de condensado
(vea la figura 24.20).
Torres de enfriamiento
En el caso de una planta térmica, el agua caliente de
enfriamiento que sale del condensador es canalizada a
la parte superior de una torre de enfriamiento (Fig.
24.21), donde se descompone en pequeñas gotas. Conforme
las gotas caen hacia el depósito abierto de abajo,
ocurre la evaporación y las gotas se enfrían. El agua fría
es bombeada del depósito y redistribuida a través del
condensador, donde otra vez elimina el calor del vapor
pequeña porción consumida debido a las pérdidas en
el motor y la bomba.
Bomba de alimentación de la caldera
Impulsa el agua hacia el tanque de alta presión. La alta contrapresión junto con el gran volumen de
agua que fluye a través de la bomba hacen que sea necesario impulsarla mediante un motor muy
poderoso. En plantas de vapor modernas la potencia de bombeo representa aproximadamente el 1
por ciento de la salida del generador. Aunque ésta parece una pérdida significativa, hay que
recordar que la energía consumida en la bomba se recupera más tarde, cuando el vapor a alta
presión fluye a través de las turbinas. Por consiguiente, la energía suministrada al motor de la
bomba de alimentación en realidad no se pierde, excepto por la 24.24 muestra este modelo que
produce 12 MW de potencia eléctrica. Con este modelo podemos estimar las características de
cualquier planta de potencia térmica. Por ejemplo, una planta de 480 MW (40 veces más poderosa
que el modelo) tiene las siguientes características aproximadas:
Salida de potencia
eléctrica 40 × 12 MW 480 MW
Consumo de carbón 40 × 1 kg/s 40 kg/s
(Fig. 24.25). Está equipada con un
sistema de limpieza de gas de combustión
con filtros de tela
(Fig. 24.26). Los filtros de tela actúan
como enormes aspiradoras para eliminar
partículas de la corriente de gas de
combustión de la caldera. El filtro de tela
para cada caldera se compone de 48 000
bolsas filtrantes, cada una de 15 m de
largo y 16 cm de diámetro.
(Fig. 24.27). Cuando una
caldera opera a plena
capacidad, las bolsas
capturan partículas de
polvo a razón de 28 kg/s.
Diagrama de flujo de energía para una planta de vapor
Las modernas plantas de generación térmicas son muy similares en todo el mundo porque todos los
Diseñadores hacen lo posible por conseguir una alta eficiencia al costo más bajo. Esto significa que los
materiales son forzados a los límites de seguridad en cuanto a temperatura, presión y fuerzas centrífugas.
Debido a que los mismos materiales están disponibles para todos, las plantas de vapor resultantes son
necesariamente similares.
La figura 24.22 muestra un conjunto de turbina-generador típico de 540 MW, y a figura 24.23 es una
vista del cuarto de control.
Plantas térmicas y medio ambiente
Los productos de combustión de las plantas de generación térmicas son un tema de preocupación
creciente, debido a su impacto en el ambiente.
El bióxido de carbono (CO2), el bióxido de azufre (SO2) y el agua son los principales productos de
combustión cuando se quema aceite, carbón o gas. El bióxido de carbono y el agua no producen
efectos ambientales inmediatos, pero el bióxido de azufre crea sustancias que producen lluvia ácida.
El polvo y la ceniza suelta son otros contaminantes que pueden alcanzar la atmósfera. El gas
natural produce sólo agua y sólo un reacomodo de los átomos, sin afectar de ninguna manera sus
núcleos. Una planta nuclear es idéntica a una térmica, excepto que la caldera es reemplazada por
un reactor nuclear. El reactor contiene el material fisionable que genera el calor. Así, una planta
nuclear contiene un generador síncrono, una turbina de vapor, un condensador, etc., similares a los
encontrados en una planta térmica convencional. La eficiencia total también es similar (entre 30 y
40 por ciento), y debe contar con un sistema de enfriamiento.
Del mismo modo, en la naturaleza se encuentran dos isótopos de uranio: uranio 238 (238U) y uranio 235
(235U). Cada uno contiene 92 protones, pero el 238U tiene 146 neutrones y el 235U tiene 143. El uranio
238 es muy común, mientras que el isótopo 235U es raro. El uranio 235 y el agua pesada merecen nuestra
atención porque ambos son esenciales para la operación de los reactores nucleares que estamos a punto
de estudiar.
Composición de un núcleo atómico; isótopos
El núcleo de un átomo contiene dos tipos de partículas: protones y neutrones. El protón tiene una
carga positiva, igual a la carga negativa de un electrón. El neutrón, como su nombre lo indica, no
tiene carga eléctrica. Por lo tanto, los neutrones no son atraídos ni repelidos por protones y
electrones.
La fuente de uranio
¿De dónde viene el uranio? Se obtiene del mineral encontrado en minas de uranio. Este mineral
contiene el compuesto U3O8 (3 átomos de uranio y 8 átomos de oxígeno). Sucede que el U3O8 en
realidad está compuesto de 238UO8 y 235UO8 en la proporción relativamente precisa de 1398:10.
El proceso de convertir mineral de uranio en estos derivados de uranio se muestra en una forma
sumamente simplificada en la figura 24.28.
Energía liberada por fisión atómica
Cuando el núcleo de un átomo se fisiona, se divide en dos. Por lo general, la masa total de los dos átomos
formados de este modo es menor que la del átomo original. Si existe una pérdida de masa, se libera
energía de acuerdo con la ecuación de Einstein:
Se libera una enorme cantidad de energía porque, de acuerdo con está fórmula, una pérdida de masa
de un solo gramo produce 9 3 1013 J, lo cual equivale al calor emitido por la combustión de 3 mil
toneladas de carbón. El uranio es uno de esos elementos que pierden masa cuando se fisionan. Sin
embargo, el uranio 235 es fisionable, mientras que el uranio 238 no lo es, por lo que se han construido
grandes plantas de separación para aislar moléculas que contienen 235U de aquellas que contienen
238U.
Cuando inicia la reacción en cadena, la temperatura aumenta con rapidez. Para mantenerla a un nivel
aceptable, tiene que fluir rápidamente un líquido o gas a través del reactor para absorber el calor. Este
refrigerante puede ser agua pesada, agua ordinaria, sodio líquido o un gas como helio o bióxido de
carbono. El refrigerante caliente se mueve en un circuito cerrado que incluye un intercambiador de calor.
Este último transfiere el calor a un generador de vapor que impulsa las turbinas (Fig. 24.29).
Tipos de reactores nucleares
Existen varios tipos de reactores, pero los siguientes son los más importantes:
1. Reactor de agua a presión (PWR, por sus siglas en inglés). Se utiliza agua como
refrigerante y se mantiene a una presión tan alta que no puede hervir y convertirse en vapor.
Se puede utilizar agua ordinaria, como en los reactores de agua ligera, o agua pesada, como
en los reactores CANDU.*
2. Reactores de agua hirviente (BWR, por sus siglas en inglés). El refrigerante en este reactor
es agua ordinaria que hierve a alta presión y libera vapor. Esto elimina la necesidad de un
intercambiador de calor, porque el vapor circula directamente a través de las turbinas. Sin
embargo, como en todos los reactores de agua liviana, se puede utilizar bióxido de uranio
enriquecido que contenga aproximadamente 3 por ciento de 235U.
3. Reactor de gas a alta temperatura (HTGR, por sus siglas en inglés). Este reactor utiliza un
refrigerante de gas inerte, como helio o bióxido de carbono.
4. Reactor de alimentador rápido (FBR, por sus siglas en inglés). Este reactor tiene la
extraordinaria capacidad de generar calor y crear combustible nuclear adicional mientras está en
operación.
Ejemplo de un reactor de agua ligera
Los reactores que utilizan agua ordinaria como moderador son similares a los que utilizan agua pesada,
pero el combustible de bióxido de uranio tiene que ser enriquecido. Enriquecimiento significa que los
haces de combustible contienen entre 2 y 4 por ciento de 235U, y que el resto es 238U. Esto permite
reducir el tamaño del reactor para una salida de potencia dada. Por otra parte, el reactor se tiene que
apagar aproximadamente una vez al año para reemplazar el combustible consumido.
Una planta de energía nuclear típica (Figs. 24.30 y 24.31) posee un reactor de agua ligera.

Más contenido relacionado

Similar a Presentación del capitulo 24 de redes eléctricas- Raquel Corrales.pdf

Ciclo combinado Huinala
Ciclo combinado HuinalaCiclo combinado Huinala
Ciclo combinado HuinalaMateoLeonidez
 
Resumen unidad 1
Resumen unidad 1Resumen unidad 1
Resumen unidad 1Edgar Ramos
 
Ciclo rankine regenerativo
Ciclo rankine regenerativoCiclo rankine regenerativo
Ciclo rankine regenerativoEldy Smith
 
ciclo de refrigeracion por comprecion de vapor
ciclo de refrigeracion por comprecion de vaporciclo de refrigeracion por comprecion de vapor
ciclo de refrigeracion por comprecion de vaporsantiago71424
 
Centrales termicas
Centrales termicasCentrales termicas
Centrales termicasRuth Angola
 
Tema 5-Introducción a los Motores Térmicos.ppt
Tema 5-Introducción a los Motores Térmicos.pptTema 5-Introducción a los Motores Térmicos.ppt
Tema 5-Introducción a los Motores Térmicos.pptJorgeTralleroAlastue
 
Centrales de energia no renovable 3º A_ 1ª parte
Centrales de energia no renovable 3º A_ 1ª parteCentrales de energia no renovable 3º A_ 1ª parte
Centrales de energia no renovable 3º A_ 1ª parteCovadonga Yugueros
 
Turbinas de vapor - presnentacion final
Turbinas de vapor - presnentacion finalTurbinas de vapor - presnentacion final
Turbinas de vapor - presnentacion finalMonica Solorzano
 
Capitulo 2
Capitulo 2Capitulo 2
Capitulo 2Alex HD
 
Unidad 1 coogeneracion
Unidad 1 coogeneracionUnidad 1 coogeneracion
Unidad 1 coogeneracionJoseffa15
 
Ciclos termodinámicos NUBH
Ciclos termodinámicos NUBHCiclos termodinámicos NUBH
Ciclos termodinámicos NUBHNuria Banda
 

Similar a Presentación del capitulo 24 de redes eléctricas- Raquel Corrales.pdf (20)

Ciclo combinado Huinala
Ciclo combinado HuinalaCiclo combinado Huinala
Ciclo combinado Huinala
 
Resumen unidad 1
Resumen unidad 1Resumen unidad 1
Resumen unidad 1
 
Bloque energia-iv
Bloque energia-ivBloque energia-iv
Bloque energia-iv
 
La energia
La energiaLa energia
La energia
 
Ciclo rankine regenerativo
Ciclo rankine regenerativoCiclo rankine regenerativo
Ciclo rankine regenerativo
 
Sistema circulacion-gases
Sistema circulacion-gasesSistema circulacion-gases
Sistema circulacion-gases
 
Presen
PresenPresen
Presen
 
ciclo de refrigeracion por comprecion de vapor
ciclo de refrigeracion por comprecion de vaporciclo de refrigeracion por comprecion de vapor
ciclo de refrigeracion por comprecion de vapor
 
Centrales termicas
Centrales termicasCentrales termicas
Centrales termicas
 
Calderas
CalderasCalderas
Calderas
 
Tema 5-Introducción a los Motores Térmicos.ppt
Tema 5-Introducción a los Motores Térmicos.pptTema 5-Introducción a los Motores Térmicos.ppt
Tema 5-Introducción a los Motores Térmicos.ppt
 
Calentadores
CalentadoresCalentadores
Calentadores
 
Exposición termodinámica2
Exposición termodinámica2Exposición termodinámica2
Exposición termodinámica2
 
Generadores de vapor
Generadores de vaporGeneradores de vapor
Generadores de vapor
 
Centrales de energia no renovable 3º A_ 1ª parte
Centrales de energia no renovable 3º A_ 1ª parteCentrales de energia no renovable 3º A_ 1ª parte
Centrales de energia no renovable 3º A_ 1ª parte
 
Turbinas de vapor - presnentacion final
Turbinas de vapor - presnentacion finalTurbinas de vapor - presnentacion final
Turbinas de vapor - presnentacion final
 
Capitulo 2
Capitulo 2Capitulo 2
Capitulo 2
 
Unidad 1 coogeneracion
Unidad 1 coogeneracionUnidad 1 coogeneracion
Unidad 1 coogeneracion
 
Centrales electricas
Centrales electricasCentrales electricas
Centrales electricas
 
Ciclos termodinámicos NUBH
Ciclos termodinámicos NUBHCiclos termodinámicos NUBH
Ciclos termodinámicos NUBH
 

Más de RaquelCorrales9

363507185-225444273-Solucionario-Maquinas-Electricas-y-Sistemas-de-Potencia-W...
363507185-225444273-Solucionario-Maquinas-Electricas-y-Sistemas-de-Potencia-W...363507185-225444273-Solucionario-Maquinas-Electricas-y-Sistemas-de-Potencia-W...
363507185-225444273-Solucionario-Maquinas-Electricas-y-Sistemas-de-Potencia-W...RaquelCorrales9
 
GACETA 3 DE DICIEMBRE DE 2022, 36,093 SECCION A (1).pdf
GACETA 3 DE DICIEMBRE DE 2022, 36,093 SECCION A (1).pdfGACETA 3 DE DICIEMBRE DE 2022, 36,093 SECCION A (1).pdf
GACETA 3 DE DICIEMBRE DE 2022, 36,093 SECCION A (1).pdfRaquelCorrales9
 
plan de visita de colegios tecnicos a ETI 2023 (1).pdf
plan de visita de colegios tecnicos a ETI 2023 (1).pdfplan de visita de colegios tecnicos a ETI 2023 (1).pdf
plan de visita de colegios tecnicos a ETI 2023 (1).pdfRaquelCorrales9
 
plan de visita de colegios tecnicos a ETI 2023 (2).pdf
plan de visita de colegios tecnicos a ETI 2023 (2).pdfplan de visita de colegios tecnicos a ETI 2023 (2).pdf
plan de visita de colegios tecnicos a ETI 2023 (2).pdfRaquelCorrales9
 
491278125-cuestionario-6.pdf
491278125-cuestionario-6.pdf491278125-cuestionario-6.pdf
491278125-cuestionario-6.pdfRaquelCorrales9
 
plan de visita de colegios tecnicos a ETI 2023 Saul y Abelardo.pdf
plan de visita de colegios tecnicos a ETI 2023 Saul y Abelardo.pdfplan de visita de colegios tecnicos a ETI 2023 Saul y Abelardo.pdf
plan de visita de colegios tecnicos a ETI 2023 Saul y Abelardo.pdfRaquelCorrales9
 

Más de RaquelCorrales9 (6)

363507185-225444273-Solucionario-Maquinas-Electricas-y-Sistemas-de-Potencia-W...
363507185-225444273-Solucionario-Maquinas-Electricas-y-Sistemas-de-Potencia-W...363507185-225444273-Solucionario-Maquinas-Electricas-y-Sistemas-de-Potencia-W...
363507185-225444273-Solucionario-Maquinas-Electricas-y-Sistemas-de-Potencia-W...
 
GACETA 3 DE DICIEMBRE DE 2022, 36,093 SECCION A (1).pdf
GACETA 3 DE DICIEMBRE DE 2022, 36,093 SECCION A (1).pdfGACETA 3 DE DICIEMBRE DE 2022, 36,093 SECCION A (1).pdf
GACETA 3 DE DICIEMBRE DE 2022, 36,093 SECCION A (1).pdf
 
plan de visita de colegios tecnicos a ETI 2023 (1).pdf
plan de visita de colegios tecnicos a ETI 2023 (1).pdfplan de visita de colegios tecnicos a ETI 2023 (1).pdf
plan de visita de colegios tecnicos a ETI 2023 (1).pdf
 
plan de visita de colegios tecnicos a ETI 2023 (2).pdf
plan de visita de colegios tecnicos a ETI 2023 (2).pdfplan de visita de colegios tecnicos a ETI 2023 (2).pdf
plan de visita de colegios tecnicos a ETI 2023 (2).pdf
 
491278125-cuestionario-6.pdf
491278125-cuestionario-6.pdf491278125-cuestionario-6.pdf
491278125-cuestionario-6.pdf
 
plan de visita de colegios tecnicos a ETI 2023 Saul y Abelardo.pdf
plan de visita de colegios tecnicos a ETI 2023 Saul y Abelardo.pdfplan de visita de colegios tecnicos a ETI 2023 Saul y Abelardo.pdf
plan de visita de colegios tecnicos a ETI 2023 Saul y Abelardo.pdf
 

Último

RETO MES DE ABRIL .............................docx
RETO MES DE ABRIL .............................docxRETO MES DE ABRIL .............................docx
RETO MES DE ABRIL .............................docxAna Fernandez
 
el CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyz
el CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyzel CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyz
el CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyzprofefilete
 
ACUERDO MINISTERIAL 078-ORGANISMOS ESCOLARES..pptx
ACUERDO MINISTERIAL 078-ORGANISMOS ESCOLARES..pptxACUERDO MINISTERIAL 078-ORGANISMOS ESCOLARES..pptx
ACUERDO MINISTERIAL 078-ORGANISMOS ESCOLARES..pptxzulyvero07
 
Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...
Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...
Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...Carlos Muñoz
 
codigos HTML para blogs y paginas web Karina
codigos HTML para blogs y paginas web Karinacodigos HTML para blogs y paginas web Karina
codigos HTML para blogs y paginas web Karinavergarakarina022
 
GLOSAS Y PALABRAS ACTO 2 DE ABRIL 2024.docx
GLOSAS  Y PALABRAS ACTO 2 DE ABRIL 2024.docxGLOSAS  Y PALABRAS ACTO 2 DE ABRIL 2024.docx
GLOSAS Y PALABRAS ACTO 2 DE ABRIL 2024.docxAleParedes11
 
Planificacion Anual 4to Grado Educacion Primaria 2024 Ccesa007.pdf
Planificacion Anual 4to Grado Educacion Primaria   2024   Ccesa007.pdfPlanificacion Anual 4to Grado Educacion Primaria   2024   Ccesa007.pdf
Planificacion Anual 4to Grado Educacion Primaria 2024 Ccesa007.pdfDemetrio Ccesa Rayme
 
CALENDARIZACION DE MAYO / RESPONSABILIDAD
CALENDARIZACION DE MAYO / RESPONSABILIDADCALENDARIZACION DE MAYO / RESPONSABILIDAD
CALENDARIZACION DE MAYO / RESPONSABILIDADauxsoporte
 
Identificación de componentes Hardware del PC
Identificación de componentes Hardware del PCIdentificación de componentes Hardware del PC
Identificación de componentes Hardware del PCCesarFernandez937857
 
La Función tecnológica del tutor.pptx
La  Función  tecnológica  del tutor.pptxLa  Función  tecnológica  del tutor.pptx
La Función tecnológica del tutor.pptxJunkotantik
 
RAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIA
RAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIARAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIA
RAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIACarlos Campaña Montenegro
 
SELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdf
SELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdfSELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdf
SELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdfAngélica Soledad Vega Ramírez
 
NARRACIONES SOBRE LA VIDA DEL GENERAL ELOY ALFARO
NARRACIONES SOBRE LA VIDA DEL GENERAL ELOY ALFARONARRACIONES SOBRE LA VIDA DEL GENERAL ELOY ALFARO
NARRACIONES SOBRE LA VIDA DEL GENERAL ELOY ALFAROJosé Luis Palma
 
Manual - ABAS II completo 263 hojas .pdf
Manual - ABAS II completo 263 hojas .pdfManual - ABAS II completo 263 hojas .pdf
Manual - ABAS II completo 263 hojas .pdfMaryRotonda1
 
Herramientas de Inteligencia Artificial.pdf
Herramientas de Inteligencia Artificial.pdfHerramientas de Inteligencia Artificial.pdf
Herramientas de Inteligencia Artificial.pdfMARIAPAULAMAHECHAMOR
 
SINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptx
SINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptxSINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptx
SINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptxlclcarmen
 
PRIMER SEMESTRE 2024 ASAMBLEA DEPARTAMENTAL.pptx
PRIMER SEMESTRE 2024 ASAMBLEA DEPARTAMENTAL.pptxPRIMER SEMESTRE 2024 ASAMBLEA DEPARTAMENTAL.pptx
PRIMER SEMESTRE 2024 ASAMBLEA DEPARTAMENTAL.pptxinformacionasapespu
 
La triple Naturaleza del Hombre estudio.
La triple Naturaleza del Hombre estudio.La triple Naturaleza del Hombre estudio.
La triple Naturaleza del Hombre estudio.amayarogel
 
TEMA 13 ESPAÑA EN DEMOCRACIA:DISTINTOS GOBIERNOS
TEMA 13 ESPAÑA EN DEMOCRACIA:DISTINTOS GOBIERNOSTEMA 13 ESPAÑA EN DEMOCRACIA:DISTINTOS GOBIERNOS
TEMA 13 ESPAÑA EN DEMOCRACIA:DISTINTOS GOBIERNOSjlorentemartos
 

Último (20)

RETO MES DE ABRIL .............................docx
RETO MES DE ABRIL .............................docxRETO MES DE ABRIL .............................docx
RETO MES DE ABRIL .............................docx
 
Repaso Pruebas CRECE PR 2024. Ciencia General
Repaso Pruebas CRECE PR 2024. Ciencia GeneralRepaso Pruebas CRECE PR 2024. Ciencia General
Repaso Pruebas CRECE PR 2024. Ciencia General
 
el CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyz
el CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyzel CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyz
el CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyz
 
ACUERDO MINISTERIAL 078-ORGANISMOS ESCOLARES..pptx
ACUERDO MINISTERIAL 078-ORGANISMOS ESCOLARES..pptxACUERDO MINISTERIAL 078-ORGANISMOS ESCOLARES..pptx
ACUERDO MINISTERIAL 078-ORGANISMOS ESCOLARES..pptx
 
Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...
Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...
Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...
 
codigos HTML para blogs y paginas web Karina
codigos HTML para blogs y paginas web Karinacodigos HTML para blogs y paginas web Karina
codigos HTML para blogs y paginas web Karina
 
GLOSAS Y PALABRAS ACTO 2 DE ABRIL 2024.docx
GLOSAS  Y PALABRAS ACTO 2 DE ABRIL 2024.docxGLOSAS  Y PALABRAS ACTO 2 DE ABRIL 2024.docx
GLOSAS Y PALABRAS ACTO 2 DE ABRIL 2024.docx
 
Planificacion Anual 4to Grado Educacion Primaria 2024 Ccesa007.pdf
Planificacion Anual 4to Grado Educacion Primaria   2024   Ccesa007.pdfPlanificacion Anual 4to Grado Educacion Primaria   2024   Ccesa007.pdf
Planificacion Anual 4to Grado Educacion Primaria 2024 Ccesa007.pdf
 
CALENDARIZACION DE MAYO / RESPONSABILIDAD
CALENDARIZACION DE MAYO / RESPONSABILIDADCALENDARIZACION DE MAYO / RESPONSABILIDAD
CALENDARIZACION DE MAYO / RESPONSABILIDAD
 
Identificación de componentes Hardware del PC
Identificación de componentes Hardware del PCIdentificación de componentes Hardware del PC
Identificación de componentes Hardware del PC
 
La Función tecnológica del tutor.pptx
La  Función  tecnológica  del tutor.pptxLa  Función  tecnológica  del tutor.pptx
La Función tecnológica del tutor.pptx
 
RAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIA
RAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIARAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIA
RAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIA
 
SELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdf
SELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdfSELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdf
SELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdf
 
NARRACIONES SOBRE LA VIDA DEL GENERAL ELOY ALFARO
NARRACIONES SOBRE LA VIDA DEL GENERAL ELOY ALFARONARRACIONES SOBRE LA VIDA DEL GENERAL ELOY ALFARO
NARRACIONES SOBRE LA VIDA DEL GENERAL ELOY ALFARO
 
Manual - ABAS II completo 263 hojas .pdf
Manual - ABAS II completo 263 hojas .pdfManual - ABAS II completo 263 hojas .pdf
Manual - ABAS II completo 263 hojas .pdf
 
Herramientas de Inteligencia Artificial.pdf
Herramientas de Inteligencia Artificial.pdfHerramientas de Inteligencia Artificial.pdf
Herramientas de Inteligencia Artificial.pdf
 
SINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptx
SINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptxSINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptx
SINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptx
 
PRIMER SEMESTRE 2024 ASAMBLEA DEPARTAMENTAL.pptx
PRIMER SEMESTRE 2024 ASAMBLEA DEPARTAMENTAL.pptxPRIMER SEMESTRE 2024 ASAMBLEA DEPARTAMENTAL.pptx
PRIMER SEMESTRE 2024 ASAMBLEA DEPARTAMENTAL.pptx
 
La triple Naturaleza del Hombre estudio.
La triple Naturaleza del Hombre estudio.La triple Naturaleza del Hombre estudio.
La triple Naturaleza del Hombre estudio.
 
TEMA 13 ESPAÑA EN DEMOCRACIA:DISTINTOS GOBIERNOS
TEMA 13 ESPAÑA EN DEMOCRACIA:DISTINTOS GOBIERNOSTEMA 13 ESPAÑA EN DEMOCRACIA:DISTINTOS GOBIERNOS
TEMA 13 ESPAÑA EN DEMOCRACIA:DISTINTOS GOBIERNOS
 

Presentación del capitulo 24 de redes eléctricas- Raquel Corrales.pdf

  • 1. Composición de una planta de generación térmica La estructura básica y los componentes principales de una planta de generación térmica se muestran en la figura 24.17, y se detallan y describen a continuación. • Una enorme caldera (1) actúa como horno, transfiriendo calor del combustible que se quema a los tubos de agua S1, los cuales rodean por completo las llamas. Una bomba P1 mantiene el agua circulando en los tubos. • Un tanque (2) que contiene agua y vapor a alta presión produce el vapor requerido por las turbinas. También recibe el agua suministrada por la bomba P3 de alimentación de la caladera. El vapor pasa rápidamente hacia la turbina de alta presión AP después de haber pasado por el supe calentador S2. El supercalentador, compuesto de una serie de tubos que rodean las llamas, eleva la temperatura del vapor a unos 200 °C. Este incremento de temperatura garantiza que el vapor está absolutamente seco y eleva la eficiencia global de la estación. • Una turbina de alta presión (AP) (3) convierte la energía térmica en energía mecánica dejando que el vapor se expanda conforme pasa a través de sus aspas. Por consiguiente, la temperatura y presión a la salida de la turbina son menores que a la entrada. Para elevar la eficiencia térmica y evitar la condensación prematura, el vapor pasa a través de una recalentador S3, compuesto de un tercer juego de tubos calentados.
  • 2. • La turbina de mediana presión (MP) (4) es similar a la de alta presión, excepto que es más grande para que el vapor pueda expandirse aún más. • La turbina de baja presión (BP) (5) consta de dos secciones izquierda y derecha idénticas. Las secciones de la turbina extraen la energía restante disponible del vapor (Fig. 24.18). El vapor que fluye hacia afuera de la turbina de baja presión se expande en un vacío casi perfecto creado por el condensador (6). • El condensador (6) hace que el vapor se condense dejando que fluya a través de tubos de enfriamiento S4. En los tubos fluye agua fría de una fuente externa, como un río o lago, la cual arrastra el calor. Éste es el vapor condensado que crea el vacío. Una bomba de condensado P2 extrae el vapor condensado tibio y lo dirige a través de un recalentador (7) hacia una bomba de agua de alimentación (8).
  • 3. • El recalentador (7) es un intercambiador de calor. Recibe vapor caliente, purgado de la turbina de alta presión (AP), para elevar la temperatura del agua de alimentación. Estudios termodinámicos indican que la eficiencia térmica global mejora cuando algo de vapor es purgado de esta manera, en lugar de dejarlo que siga su curso normal a través de las tres turbinas. • Los quemadores (9) suministran y controlan la cantidad de gas, aceite o carbón inyectada a la caldera. El carbón es pulverizado antes de ser inyectado. Asimismo, un espeso aceite es precalentado e inyectado como un chorro atomizado para mejorar la superficie de contacto (y la combustión) con el aire circundante. • Un ventilador de tiro forzado (10) suministra las enormes cantidades de aire necesarias para la combustión (Fig. 24.19).
  • 4. • Un ventilador de tiro inducido (11) conduce los gases y otros productos de combustión hacia un aparato de limpieza, y de allí a la chimenea y al aire externo. • El generador (G), directamente acoplado a las tres turbinas, convierte la energía mecánica en energía eléctrica. En la práctica, una planta de vapor tiene cientos de componentes y accesorios más para garantizar una alta eficiencia, seguridad y economía. Por ejemplo, válvulas de control regulan la cantidad de vapor que fluye hacia las turbinas; complejos purificadores de agua mantienen la limpieza y composición química requeridas del agua de alimentación, y bombas de aceite mantienen los cojinetes adecuadamente lubricados. Sin embargo, los componentes básicos que acabamos de describir nos permiten entender la operación y algunos de los problemas básicos de una planta térmica.
  • 5.
  • 6. Turbinas Las turbinas de baja, mediana y alta presión poseen una serie de aspas montadas en la flecha motriz (Fig. 24.18). El vapor es desviado por las aspas, con lo que se produce un poderoso par o momento de torsión. Las aspas están hechas de un acero especial para que soporten la alta temperatura y las intensas fuerzas centrífugas. Las turbinas de AP, MP y BP están acopladas juntas para propulsar un generador común. Sin embargo, en algunas instalaciones grandes la turbina de AP impulsa un generador en tanto que las de MP y BP impulsan otro de la misma capacidad.
  • 7. Condensador Hemos visto que casi la mitad de la energía producida en la caldera tiene que ser extraída del vapor cuando éste sale hacia el condensador. Por consiguiente, se requieren enormes cantidades de agua de enfriamiento para eliminar el calor. Por lo general, la temperatura del agua de enfriamiento se incrementa de 5 a 10 °C a medida que fluye por los tubos del condensador. El vapor condensado generalmente tiene una temperatura entre 27 y 33° y la presión absoluta correspondiente muy cerca del vacío de aproximadamente 5 kPa. La temperatura del agua de enfriamiento es de sólo unos cuantos grados por debajo de la temperatura de condensado (vea la figura 24.20).
  • 8. Torres de enfriamiento En el caso de una planta térmica, el agua caliente de enfriamiento que sale del condensador es canalizada a la parte superior de una torre de enfriamiento (Fig. 24.21), donde se descompone en pequeñas gotas. Conforme las gotas caen hacia el depósito abierto de abajo, ocurre la evaporación y las gotas se enfrían. El agua fría es bombeada del depósito y redistribuida a través del condensador, donde otra vez elimina el calor del vapor pequeña porción consumida debido a las pérdidas en el motor y la bomba.
  • 9. Bomba de alimentación de la caldera Impulsa el agua hacia el tanque de alta presión. La alta contrapresión junto con el gran volumen de agua que fluye a través de la bomba hacen que sea necesario impulsarla mediante un motor muy poderoso. En plantas de vapor modernas la potencia de bombeo representa aproximadamente el 1 por ciento de la salida del generador. Aunque ésta parece una pérdida significativa, hay que recordar que la energía consumida en la bomba se recupera más tarde, cuando el vapor a alta presión fluye a través de las turbinas. Por consiguiente, la energía suministrada al motor de la bomba de alimentación en realidad no se pierde, excepto por la 24.24 muestra este modelo que produce 12 MW de potencia eléctrica. Con este modelo podemos estimar las características de cualquier planta de potencia térmica. Por ejemplo, una planta de 480 MW (40 veces más poderosa que el modelo) tiene las siguientes características aproximadas: Salida de potencia eléctrica 40 × 12 MW 480 MW Consumo de carbón 40 × 1 kg/s 40 kg/s
  • 10. (Fig. 24.25). Está equipada con un sistema de limpieza de gas de combustión con filtros de tela (Fig. 24.26). Los filtros de tela actúan como enormes aspiradoras para eliminar partículas de la corriente de gas de combustión de la caldera. El filtro de tela para cada caldera se compone de 48 000 bolsas filtrantes, cada una de 15 m de largo y 16 cm de diámetro. (Fig. 24.27). Cuando una caldera opera a plena capacidad, las bolsas capturan partículas de polvo a razón de 28 kg/s.
  • 11. Diagrama de flujo de energía para una planta de vapor Las modernas plantas de generación térmicas son muy similares en todo el mundo porque todos los Diseñadores hacen lo posible por conseguir una alta eficiencia al costo más bajo. Esto significa que los materiales son forzados a los límites de seguridad en cuanto a temperatura, presión y fuerzas centrífugas. Debido a que los mismos materiales están disponibles para todos, las plantas de vapor resultantes son necesariamente similares. La figura 24.22 muestra un conjunto de turbina-generador típico de 540 MW, y a figura 24.23 es una vista del cuarto de control.
  • 12. Plantas térmicas y medio ambiente Los productos de combustión de las plantas de generación térmicas son un tema de preocupación creciente, debido a su impacto en el ambiente. El bióxido de carbono (CO2), el bióxido de azufre (SO2) y el agua son los principales productos de combustión cuando se quema aceite, carbón o gas. El bióxido de carbono y el agua no producen efectos ambientales inmediatos, pero el bióxido de azufre crea sustancias que producen lluvia ácida. El polvo y la ceniza suelta son otros contaminantes que pueden alcanzar la atmósfera. El gas natural produce sólo agua y sólo un reacomodo de los átomos, sin afectar de ninguna manera sus núcleos. Una planta nuclear es idéntica a una térmica, excepto que la caldera es reemplazada por un reactor nuclear. El reactor contiene el material fisionable que genera el calor. Así, una planta nuclear contiene un generador síncrono, una turbina de vapor, un condensador, etc., similares a los encontrados en una planta térmica convencional. La eficiencia total también es similar (entre 30 y 40 por ciento), y debe contar con un sistema de enfriamiento. Del mismo modo, en la naturaleza se encuentran dos isótopos de uranio: uranio 238 (238U) y uranio 235 (235U). Cada uno contiene 92 protones, pero el 238U tiene 146 neutrones y el 235U tiene 143. El uranio 238 es muy común, mientras que el isótopo 235U es raro. El uranio 235 y el agua pesada merecen nuestra atención porque ambos son esenciales para la operación de los reactores nucleares que estamos a punto de estudiar.
  • 13. Composición de un núcleo atómico; isótopos El núcleo de un átomo contiene dos tipos de partículas: protones y neutrones. El protón tiene una carga positiva, igual a la carga negativa de un electrón. El neutrón, como su nombre lo indica, no tiene carga eléctrica. Por lo tanto, los neutrones no son atraídos ni repelidos por protones y electrones.
  • 14. La fuente de uranio ¿De dónde viene el uranio? Se obtiene del mineral encontrado en minas de uranio. Este mineral contiene el compuesto U3O8 (3 átomos de uranio y 8 átomos de oxígeno). Sucede que el U3O8 en realidad está compuesto de 238UO8 y 235UO8 en la proporción relativamente precisa de 1398:10. El proceso de convertir mineral de uranio en estos derivados de uranio se muestra en una forma sumamente simplificada en la figura 24.28.
  • 15. Energía liberada por fisión atómica Cuando el núcleo de un átomo se fisiona, se divide en dos. Por lo general, la masa total de los dos átomos formados de este modo es menor que la del átomo original. Si existe una pérdida de masa, se libera energía de acuerdo con la ecuación de Einstein: Se libera una enorme cantidad de energía porque, de acuerdo con está fórmula, una pérdida de masa de un solo gramo produce 9 3 1013 J, lo cual equivale al calor emitido por la combustión de 3 mil toneladas de carbón. El uranio es uno de esos elementos que pierden masa cuando se fisionan. Sin embargo, el uranio 235 es fisionable, mientras que el uranio 238 no lo es, por lo que se han construido grandes plantas de separación para aislar moléculas que contienen 235U de aquellas que contienen 238U.
  • 16. Cuando inicia la reacción en cadena, la temperatura aumenta con rapidez. Para mantenerla a un nivel aceptable, tiene que fluir rápidamente un líquido o gas a través del reactor para absorber el calor. Este refrigerante puede ser agua pesada, agua ordinaria, sodio líquido o un gas como helio o bióxido de carbono. El refrigerante caliente se mueve en un circuito cerrado que incluye un intercambiador de calor. Este último transfiere el calor a un generador de vapor que impulsa las turbinas (Fig. 24.29).
  • 17. Tipos de reactores nucleares Existen varios tipos de reactores, pero los siguientes son los más importantes: 1. Reactor de agua a presión (PWR, por sus siglas en inglés). Se utiliza agua como refrigerante y se mantiene a una presión tan alta que no puede hervir y convertirse en vapor. Se puede utilizar agua ordinaria, como en los reactores de agua ligera, o agua pesada, como en los reactores CANDU.* 2. Reactores de agua hirviente (BWR, por sus siglas en inglés). El refrigerante en este reactor es agua ordinaria que hierve a alta presión y libera vapor. Esto elimina la necesidad de un intercambiador de calor, porque el vapor circula directamente a través de las turbinas. Sin embargo, como en todos los reactores de agua liviana, se puede utilizar bióxido de uranio enriquecido que contenga aproximadamente 3 por ciento de 235U. 3. Reactor de gas a alta temperatura (HTGR, por sus siglas en inglés). Este reactor utiliza un refrigerante de gas inerte, como helio o bióxido de carbono. 4. Reactor de alimentador rápido (FBR, por sus siglas en inglés). Este reactor tiene la extraordinaria capacidad de generar calor y crear combustible nuclear adicional mientras está en operación.
  • 18. Ejemplo de un reactor de agua ligera Los reactores que utilizan agua ordinaria como moderador son similares a los que utilizan agua pesada, pero el combustible de bióxido de uranio tiene que ser enriquecido. Enriquecimiento significa que los haces de combustible contienen entre 2 y 4 por ciento de 235U, y que el resto es 238U. Esto permite reducir el tamaño del reactor para una salida de potencia dada. Por otra parte, el reactor se tiene que apagar aproximadamente una vez al año para reemplazar el combustible consumido. Una planta de energía nuclear típica (Figs. 24.30 y 24.31) posee un reactor de agua ligera.