SlideShare una empresa de Scribd logo
1 de 35
Seguridad Informática y Criptografía
Material Docente de
Libre Distribución
Ultima actualización del archivo: 01/03/06
Este archivo tiene: 35 diapositivas
Dr. Jorge Ramió Aguirre
Universidad Politécnica de Madrid
Curso de Seguridad Informática y Criptografía © JRA
v 4.1
Capítulo 10
Introducción a la Cifra Moderna
Este archivo forma parte de un curso completo sobre Seguridad Informática y Criptografía. Se autoriza el
uso, reproducción en computador y su impresión en papel, sólo con fines docentes y/o personales,
respetando los créditos del autor. Queda prohibida su comercialización, excepto la edición en venta en el
Departamento de Publicaciones de la Escuela Universitaria de Informática de la Universidad Politécnica de
Madrid, España.
© Jorge Ramió Aguirre Madrid (España) 2006
Capítulo 10: Introducción a la Cifra Moderna Página 2
• Los criptosistemas modernos, cuya cifra en bits está orientada a todos
los caracteres ASCII o ANSI, usan por lo general una operación
algebraica en Zn, un cuerpo finito, sin que necesariamente este módulo
deba corresponder con el número de elementos del alfabeto o código
utilizado. Es más, nunca coinciden: siempre será mucho mayor el
cuerpo de trabajo que el alfabeto usado.
• Su fortaleza se debe basar en la imposibilidad computacional de
descubrir una clave secreta única, en tanto que el algoritmo de cifra es
(o al menos debería serlo) público.
• En la siguiente dirección web, encontrará un amplio compendio de
sistemas de cifra y criptografía.
Un par de ideas básicas
Conceptos elementales
http://en.wikipedia.org/wiki/Category:Cryptography
© Jorge Ramió Aguirre Madrid (España) 2006
Capítulo 10: Introducción a la Cifra Moderna Página 3
Clasificación de los criptosistemas
MÉTODOS DE CIFRA MODERNAMÉTODOS DE CIFRA MODERNA
CIFRADO EN FLUJO CIFRADO EN BLOQUE
A5; RC4
CLAVE SECRETACLAVE PÚBLICA
DES; T-DES; CAST;
IDEA; AES; RC5 ...EXPONENCIACIÓN SUMA/PRODUCTO
Cifrado propio de la
información en una
sesión en Internet o en
una red. También se
usa en cifrado local.
Uso en intercambio
de clave y en firma
digital.
CE: intercambio clave y firma
digital. Mochilas: protección de
SW mediante dispositivo HW.
Telefonía móvil,
Internet y WLAN.
y algunos
ejemplos...
RSA; ElGamal Curvas Elípticas/Mochilas
© Jorge Ramió Aguirre Madrid (España) 2006
Capítulo 10: Introducción a la Cifra Moderna Página 4
Usa el concepto de cifra propuesto por Vernam,
que cumple con las ideas de Shannon sobre
sistemas de cifra con secreto perfecto, esto es:
a) El espacio de las claves es igual o mayor que el
espacio de los mensajes.
b) Las claves deben ser equiprobables.
c) La secuencia de clave se usa una sola vez y luego
se destruye (sistema one-time pad).
Una duda: ¿Será posible satisfacer la condición a)?
Introducción al cifrado de flujo
© Jorge Ramió Aguirre Madrid (España) 2006
Capítulo 10: Introducción a la Cifra Moderna Página 5
¿Espacio de Claves ≥ Espacio de Mensajes?
1) La secuencia de bits de la clave deberá enviarse al
destinatario a través de un canal que sabemos es
inseguro (recuerde que aún no conoce el protocolo
de intercambio de clave de Diffie y Hellman).
2) Si la secuencia es “infinita”, desbordaríamos la
capacidad del canal de comunicaciones.
Espacio de claves y del mensaje
¿Qué solución damos
a este problema?
© Jorge Ramió Aguirre Madrid (España) 2006
Capítulo 10: Introducción a la Cifra Moderna Página 6
La solución está en generar una secuencia pseudoaleatoria
con un algoritmo determinístico a partir de una semilla de n
bits. Podremos generar así secuencias con períodos de 2n
bits, un valor ciertamente muy alto puesto que n debe ser
del orden de las centenas. Esta semilla es la que se enviará
al receptor mediante un sistema de cifra de clave pública y
un algoritmo de intercambio de clave que veremos en
próximos capítulos y así no sobrecargamos el canal.
El concepto de semilla en un generador
Si por un canal supuestamente seguro enviamos esa clave
secreta tan larga ... ¿por qué no enviamos directamente el
mensaje en claro y nos dejamos de historias? 
© Jorge Ramió Aguirre Madrid (España) 2006
Capítulo 10: Introducción a la Cifra Moderna Página 7
 El mensaje en claro se leerá bit a bit.
 Se realizará una operación de cifra, normalmente
la función XOR, con una secuencia cifrante de
bits Si que debe cumplir ciertas condiciones:
– Tener un período muy alto (ya no infinito)
– Tener propiedades pseudoaleatorias (ya no aleatorias)
XOR
Secuencia cifrante Si
Mensaje M
Bits del Criptograma
XOR Mensaje M
Secuencia cifrante Si
C C
Técnica de cifra en flujo
© Jorge Ramió Aguirre Madrid (España) 2006
Capítulo 10: Introducción a la Cifra Moderna Página 8
El mensaje se agrupa en bloques, por lo
general de 8 ó 16 bytes (64 ó 128 bits) antes
de aplicar el algoritmo de cifra a cada bloque
de forma independiente con la misma clave.
Introducción a la cifra en bloque
Cifrado con Clave Secreta
Hay algunos algoritmos muy conocidos por su uso en
aplicaciones bancarias (DES), correo electrónico (IDEA,
CAST), comercio electrónico (Triple DES) y el nuevo
estándar (AES Rijndael).
© Jorge Ramió Aguirre Madrid (España) 2006
Capítulo 10: Introducción a la Cifra Moderna Página 9
Si el bloque fuese muy pequeño, por ejemplo
uno o dos bytes, esto facilitaría un ataque por
estadísticas del lenguaje. Se trataría de un
cifrado por monogramas o digramas muy débil.
¿Qué tamaño de bloque usar?
Pero si el bloque fuese muy grande, por
ejemplo cientos de bytes, el sistema sería
lento en el tratamiento del texto en claro y
no sería bueno su rendimiento.
Los valores indicados de 64 y 128 bits son un término
medio que satisface ambas condicionantes: es la típica
situación de compromiso que tanto vemos en ingeniería.
© Jorge Ramió Aguirre Madrid (España) 2006
Capítulo 10: Introducción a la Cifra Moderna Página 10
a) Mala gestión de claves. Crece el número de claves
secretas en una proporción igual a n2
para un valor
n grande de usuarios lo que imposibilita usarlo .
b) Mala distribución de claves. No existe posibilidad
de enviar, de forma segura y eficiente, una clave a
través de un medio o canal inseguro .
c) No tiene firma digital. Aunque sí será posible
autenticar el mensaje mediante una marca, no es
posible firmar digitalmente el mensaje, al menos
en un sentido amplio y sencillo .
Tres debilidades en la cifra simétrica
© Jorge Ramió Aguirre Madrid (España) 2006
Capítulo 10: Introducción a la Cifra Moderna Página 11
a) Mala gestión de claves 
b) Mala distribución de claves 
c) No permite firma digital 
¿Tiene algo de bueno la cifra
en bloque con clave secreta?
Sí: la velocidad de cifra es muy alta  y por ello se usará
para realizar la función de cifra de la información. Además,
con claves de sólo unas centenas de bits obtendremos una
alta seguridad pues la no linealidad del algoritmo hace que
en la práctica el único ataque factible sea por fuerza bruta.
¿Por qué usamos entonces clave secreta?
© Jorge Ramió Aguirre Madrid (España) 2006
Capítulo 10: Introducción a la Cifra Moderna Página 12
• Comienza a ser ampliamente conocido a través de su
aplicación en los sistemas de correo electrónico seguro
(PGP y PEM) permitiendo cifrar e incluir una firma digital
adjunta al documento o e-mail enviado y también en los
navegadores Web.
• Cada usuario tendrá dos claves, una secreta o privada y
otra pública, inversas entre sí dentro de un cuerpo.
• Usan las funciones unidireccionales con trampa.
Cifrado asimétrico
© Jorge Ramió Aguirre Madrid (España) 2006
Capítulo 10: Introducción a la Cifra Moderna Página 13
Son funciones matemáticas de un solo sentido
(one-way functions) y que nos permiten usar la
función en sentido directo o de cálculo fácil para
cifrar y descifrar (usuarios legítimos) y fuerza el
sentido inverso o de cálculo difícil para aquellos
impostores, hackers, etc. que lo que desean es
atacar o criptoanalizar la cifra.
f (M) = C es siempre fácil.
f -1
(C) = M es difícil salvo que se tenga la trampa.
Funciones unidireccionales con trampa
© Jorge Ramió Aguirre Madrid (España) 2006
Capítulo 10: Introducción a la Cifra Moderna Página 14
Cálculo directo: producto de dos primos grandes p∗q = n
Cálculo inverso: factorización de número grande n = p∗q
Problema de la factorizaciónProblema de la factorización
Problema del logaritmo discretoProblema del logaritmo discreto
Cálculo directo: exponenciación discreta β = αx
mod n
Cálculo inverso: logaritmo discreto x = logα β mod n
Funciones con trampa más usadas
© Jorge Ramió Aguirre Madrid (España) 2006
Capítulo 10: Introducción a la Cifra Moderna Página 15
Problema de la mochilaProblema de la mochila
Cálculo directo: sumar elementos de mochila con trampa
Cálculo inverso: sumar elementos de mochila sin trampa
Problema de la raíz discretaProblema de la raíz discreta
Cálculo directo: cuadrado discreto x = a∗a mod n
Cálculo inverso: raíz cuadrada discreta a = √x mod n
Otras funciones con trampa
© Jorge Ramió Aguirre Madrid (España) 2006
Capítulo 10: Introducción a la Cifra Moderna Página 16
Claves: eB, nB, dBClaves: eB, nB, dB
Claves: eA, nA, dAClaves: eA, nA, dA
Benito Adela
C = EeA(N) mod nA
eB, nB: públicas
dB: privada
eA, nA: públicas
dA: privada
ESTOS SERÁN NUESTROS PROTAGONISTAS
Si Benito realiza la
operación con las
claves públicas de
Adela (eA, nA), la
información que se
transmite mantiene la
confidencialidad:
sólo ella puede verla.
Cifrado con clave pública de destino
eB y dB son
inversas dentro
de un cuerpo nB
eA y dA son
inversas dentro
de un cuerpo nA
Origen Destino
¿A qué es mucho más lógico y familiar usar estos nombres y no Alice y Bob?
© Jorge Ramió Aguirre Madrid (España) 2006
Capítulo 10: Introducción a la Cifra Moderna Página 17
Cifrado:
Benito envía un valor N cifrado a Adela
Claves: eB, nB, dB Claves: eA, nA, dA
Benito Adela
C = EeA(N) mod nA
Descifrado:
N = EdA[EeA(N)] mod nA
EdA y EeA son inversos
Se obtiene confidencialidad del mensaje
Operación de cifra con clave de destino
Claves públicas
Clave privada
© Jorge Ramió Aguirre Madrid (España) 2006
Capítulo 10: Introducción a la Cifra Moderna Página 18
Si en vez de utilizar la clave pública de destino, el
emisor usa su propia clave pública, la cifra no tiene
sentido bajo el punto de vista de sistemas de clave
pública ya que sólo él o ella sería capaz de descifrar el
criptograma (deshacer la operación de cifra) con su
propia clave privada.
¿Y si usamos la clave pública de origen?
Esto podría usarse para cifrar de forma
local uno o varios ficheros, por
ejemplo, pero para ello ya están los
sistemas de clave secreta, mucho más
rápidos y, por tanto, más eficientes.
© Jorge Ramió Aguirre Madrid (España) 2006
Capítulo 10: Introducción a la Cifra Moderna Página 19
Si ahora el emisor usa su clave privada en la cifra sobre
el mensaje, se obtiene una firma digital que le autentica
como emisor ante el destinatario y, además, a este último
le permitirá comprobar la integridad del mensaje.
¿Y si usamos la clave privada de origen?
Obviamente, el emisor nunca podrá realizar la cifra del
mensaje M con la clave privada del receptor.
Veamos antes un ejemplo de
algoritmo que usa un par de
claves entre dos usuarios...
© Jorge Ramió Aguirre Madrid (España) 2006
Capítulo 10: Introducción a la Cifra Moderna Página 20
PROTOCOLO: A envía a B un mensaje M
1 A pone el mensaje M en la caja, la cierra con su
llave azuly la envía a B.
2 B recibe la caja, la cierra con su llave roja y
envía a A la caja con las dos cerraduras.
3 A recibe la caja, quita su llave azul  y devuelve
a B la caja sólo con la cerradura de roja.
4 B recibe la caja, quita su cerradura roja  y
puede ver el mensaje M que A puso en su interior.
El algoritmo del mensaje en la caja
© Jorge Ramió Aguirre Madrid (España) 2006
Capítulo 10: Introducción a la Cifra Moderna Página 21
¿Va todo bien en el algoritmo de la caja?
Durante la transmisión, el mensaje está
protegido de cualquier intruso por lo
que existe integridad del mensaje y hay
protección contra una ataque pasivo.
Pero el usuario B no puede estar seguro
si quien le ha enviado el mensaje M es
el usuario A o un impostor. Por lo tanto
el algoritmo así implementado no nos
permite comprobar la autenticidad del
emisor pues no detecta la suplantación
de identidad. No obstante...
Modificando un poco el
algoritmo anterior, sí
podremos asegurar
tanto la integridad del
mensaje como la
autenticidad de emisor.
© Jorge Ramió Aguirre Madrid (España) 2006
Capítulo 10: Introducción a la Cifra Moderna Página 22
Claves: eB, nB, dBClaves: eB, nB, dB
Claves: eA, nA, dAClaves: eA, nA, dA
Benito Adela
C = EdB(N) mod nB
eB, nB: públicas
dB: privada
eA, nA: públicas
dA: privada
Si ahora Benito realiza
la operación de cifra con
su clave privada dB en el
cuerpo nB Adela será
capaz de comprobar esa
cifra ya que posee (entre
otras) la clave pública de
Benito. Comprueba así
tanto la autenticidad del
mensaje como del autor.
Cifrado con clave privada del origen
eB y dB son
inversas dentro
de un cuerpo nB
eA y dA son
inversas dentro
de un cuerpo nA
Origen Destino
© Jorge Ramió Aguirre Madrid (España) 2006
Capítulo 10: Introducción a la Cifra Moderna Página 23
Firma digital:
Benito firma un valor N que envía a Adela
Claves: eB, nB, dB Claves: eA, nA, dA
Benito Adela
C = EdB(N) mod nB
Comprobación:
N = EeB[EdB(N)] mod nB
EdB y EeB son inversos
Se comprueba la integridad del origen
Operación de cifra con clave de origen
Clave privada
Claves públicas
© Jorge Ramió Aguirre Madrid (España) 2006
Capítulo 10: Introducción a la Cifra Moderna Página 24
Uso de la criptografía asimétrica
• Estas dos operaciones de cifra son posibles debido a la
característica intrínseca de los sistemas de clave pública: el uso
de una clave privada (secreta) inversa de una pública.
¿Qué aplicación tendrán entonces los sistemas de criptografía de
clave pública o asimétrica?
• Usando la clave pública del destino se hará el intercambio de
claves de sesión de una cifra con sistemas simétricos (decenas a
centenas de bits).
• Usando la clave privada de origen, se firmará digitalmente un
resumen (centenas de bits) del mensaje obtenido con una
función hash.
• Observe que se hace hincapié en las “centenas de bits” dado que
estos sistemas son muy lentos comparados con los simétricos.
© Jorge Ramió Aguirre Madrid (España) 2006
Capítulo 10: Introducción a la Cifra Moderna Página 25
Gestión de claves
Clave Secreta Clave Pública
Hay que memorizar Sólo es necesario
un número muy alto memorizar la clave
de claves: → n2
. privada del emisor.
En cuanto a la gestión de claves, serán mucho más eficientes
los sistemas de cifra asimétricos pues los simétricos no
permiten una gestión lógica y eficiente de estas claves: en
los asimétricos sólo es necesario memorizar la frase o
palabra de paso para acceder a la clave privada.
Comparativa: la gestión de claves
© Jorge Ramió Aguirre Madrid (España) 2006
Capítulo 10: Introducción a la Cifra Moderna Página 26
Longitud y espacio de claves
Clave Secreta Clave Pública
Debido al tipo de Por el algoritmo usado
cifrador usado, la en la cifra, la clave
clave será del orden será del orden de miles
de centenas de bits. de bits.
En cuanto al espacio de claves, no son comparables los
sistemas simétricos con los asimétricos. Para atacar un
sistema asimétrico no se buscará en todo el espacio de
claves como debería hacerse en los sistemas simétricos.
≥ 128 ≥ 1.024
Comparativa: el espacio de claves
© Jorge Ramió Aguirre Madrid (España) 2006
Capítulo 10: Introducción a la Cifra Moderna Página 27
Vida de una clave
Clave Secreta Clave Pública
La duración es muy La duración de la clave
corta pues casi pública, que la entrega
siempre se usa como y gestiona un tercero,
clave de una sesión. suele ser larga.
En cuanto a la vida de una clave, en los sistemas
simétricos ésta es muchísimo menor que las usadas
en los asimétricos. La clave de sesión es aleatoria,
en cambio la asimétrica es propia del usuario.
Segundos
o minutos
Meses o
un año
Comparativa: la vida de las claves
© Jorge Ramió Aguirre Madrid (España) 2006
Capítulo 10: Introducción a la Cifra Moderna Página 28
Si en un sistema de clave secreta, ésta se usa como clave
de una sesión que dura muy poco tiempo...
y en este tiempo es imposible romperla...
¿para qué preocuparse entonces?
La confidencialidad de la información tiene
una caducidad. Si durante este tiempo
alguien puede tener el criptograma e intentar
un ataque por fuerza bruta, obtendrá la clave
(que es lo menos importante) ...
¡pero también el mensaje secreto!
Vida de la clave y principio de caducidad
... puede ser muy peligroso.
Lo mismo ocurrirá si usamos la cifra simétrica para proteger
algún archivo o archivos en nuestro computador.
© Jorge Ramió Aguirre Madrid (España) 2006
Capítulo 10: Introducción a la Cifra Moderna Página 29
Condiciones de la autenticidad:
a) El usuario A deberá protegerse ante mensajes
dirigidos a B que un tercer usuario desconocido C
introduce por éste. Es la suplantación de identidad o
problema de la autenticación del emisor.
b) El usuario A deberá protegerse ante mensajes
falsificados por B que asegura haberlos recibido
firmados por A. Es la falsificación de documento o
problema de la autenticación del mensaje.
El problema de la autenticación
© Jorge Ramió Aguirre Madrid (España) 2006
Capítulo 10: Introducción a la Cifra Moderna Página 30
Autenticación
Clave Secreta Clave Pública
Se puede autenticar Al haber una clave
el mensaje pero no pública y otra privada,
al emisor de forma se podrá autenticar el
sencilla y eficiente. mensaje y al emisor.
En cuanto a la autenticación, los sistemas simétricos tienen una
autenticación más pesada y con una tercera parte de confianza.
Los asimétricos permiten una firma digital verdadera, eficiente y
sencilla, en donde la tercera parte de confianza es sólo
presencial.
Comparativa: la autenticación de emisor
© Jorge Ramió Aguirre Madrid (España) 2006
Capítulo 10: Introducción a la Cifra Moderna Página 31
Velocidad de cifra
Clave Secreta Clave Pública
La velocidad de La velocidad de cifra
cifra es muy alta. es muy baja. Se usa
Es el algoritmo de para el intercambio de
cifra del mensaje. clave y la firma digital.
En cuanto a la velocidad de cifra, los
sistemas simétricos son de 100 a 1.000
veces más rápidos que los asimétricos.
En SW la velocidad de cifra es más
baja.
Cientos de
M Bytes/seg
en HW
Cientos de
K Bytes/seg
en HW
Comparativa: la velocidad de cifra
© Jorge Ramió Aguirre Madrid (España) 2006
Capítulo 10: Introducción a la Cifra Moderna Página 32
• Confidencialidad
• Autenticación parcial
• Sin firma digital
• Claves:
– Longitud pequeña
– Vida corta (sesión)
– Número elevado
• Velocidad alta
• Confidencialidad
• Autenticación total
• Con firma digital
• Claves:
– Longitud grande
– Vida larga
– Número reducido
• Velocidad baja
Resumen comparativo de estas cifras
Cifrado Simétrico Cifrado Asimétrico
© Jorge Ramió Aguirre Madrid (España) 2006
Capítulo 10: Introducción a la Cifra Moderna Página 33
 La criptografía simétrica o de clave secreta usa una única clave
para cifrar en emisión y descifrar en destino.
 La seguridad del sistema reside entonces en cuán segura
sea dicha clave.
 En la criptografía asimétrica cada usuario se crea un par de
claves llamadas pública y privada, inversas entre sí dentro de un
cuerpo finito, de forma que lo que hace una la otra lo deshace.
Para cifrar se usa, por ejemplo, la clave pública de destino y
para descifrar el destinatario hará uso de su clave privada.
 La seguridad del sistema reside ahora en la dificultad
computacional de encontrar la clave privada a partir de la
clave pública.
Seguridad en la cifra simétrica y asimétrica
Fin del capítulo
© Jorge Ramió Aguirre Madrid (España) 2006
Capítulo 10: Introducción a la Cifra Moderna Página 34
Cuestiones y ejercicios (1 de 2)
1. En un sistema de cifra se usa un cuerpo de trabajo n. ¿Cómo es el
tamaño de ese cuerpo comparado con el tamaño del alfabeto usado?
2. ¿Cómo se clasifican los criptosistemas en función del tratamiento
que hacemos del mensaje a cifrar?
3. ¿Cómo se clasifican los criptosistemas en función de tipo de clave
que se usa en ambos extremos, emisor y receptor?
4. ¿Por qué se dice que un sistema es simétrico y el otro asimétrico?
5. ¿Es posible cumplir 100% con la condición de cifrado de Vernam?
6. ¿Por qué en los cifradores de flujo se usa la misma función XOR en
el extremo emisor y en el extremo receptor? ¿Son inversas aquí las
claves usadas para cifrar y descifrar?
7. Nombre y comente algunas debilidades de los sistemas de cifra en
bloque con clave secreta.
© Jorge Ramió Aguirre Madrid (España) 2006
Capítulo 10: Introducción a la Cifra Moderna Página 35
Cuestiones y ejercicios (2 de 2)
8. Si ciframos un número con la clave pública del usuario receptor,
¿qué cree Ud. que estamos haciendo?
9. ¿Por qué decimos que en un sistema asimétrico la gestión de claves
es mucho mejor que en un sistema simétrico?
10. Nos entregan un certificado digital (certificación de clave pública)
de 512 bits. ¿Es hoy en día un valor adecuado? ¿Por qué sí o no?
11. ¿Por qué decimos que con un sistema asimétrico es muy fácil
generar una firma digital en emisión y comprobarla en destino?
12. Compare los sistemas simétricos y asimétricos en cuanto a su
velocidad de cifra.
13. ¿Qué es un cifrado híbrido? ¿Por qué y cómo se usa la cifra híbrida
en el intercambio de información segura por ejemplo en Internet?
14. ¿Qué relación hay entre vida de una clave y principio de caducidad?

Más contenido relacionado

La actualidad más candente

MéTodos De EncriptacióN
MéTodos De EncriptacióNMéTodos De EncriptacióN
MéTodos De EncriptacióNevelyn
 
Unidad 5 - Criptografía
Unidad 5 - CriptografíaUnidad 5 - Criptografía
Unidad 5 - Criptografíavverdu
 
Criptografía,victor mamani catachura,boreasH,matricial cesar
Criptografía,victor mamani catachura,boreasH,matricial cesarCriptografía,victor mamani catachura,boreasH,matricial cesar
Criptografía,victor mamani catachura,boreasH,matricial cesarvictor mamani
 
ENCRIPTACIÓN
ENCRIPTACIÓNENCRIPTACIÓN
ENCRIPTACIÓNiesr1sali
 
Encriptacion De Claves Publicas Y Privadas
Encriptacion De Claves Publicas Y PrivadasEncriptacion De Claves Publicas Y Privadas
Encriptacion De Claves Publicas Y PrivadasDaniel Yánez
 
EncriptacióN De Cadenas
EncriptacióN De CadenasEncriptacióN De Cadenas
EncriptacióN De Cadenasedith camino
 
2.3 criptografia
2.3 criptografia2.3 criptografia
2.3 criptografiajorgecan91
 
Criptografia simetrica
Criptografia simetricaCriptografia simetrica
Criptografia simetricaBaruch Ramos
 
Metodos De Encriptacion 1
Metodos De Encriptacion 1Metodos De Encriptacion 1
Metodos De Encriptacion 1IRIS
 
Métodos y técnicas de encriptación
Métodos y técnicas de encriptaciónMétodos y técnicas de encriptación
Métodos y técnicas de encriptaciónlacandymamy
 
Algoritmos De Cifrado Para Claves PúBlicas Y Privadas
Algoritmos De Cifrado Para Claves PúBlicas Y PrivadasAlgoritmos De Cifrado Para Claves PúBlicas Y Privadas
Algoritmos De Cifrado Para Claves PúBlicas Y Privadasalejandro
 
Criptografía
CriptografíaCriptografía
CriptografíaNoel Cruz
 
Criptografia simetrica
Criptografia simetricaCriptografia simetrica
Criptografia simetricaTensor
 
Criptografia simetrica
Criptografia simetricaCriptografia simetrica
Criptografia simetricaTensor
 
Ejercicios criptografía
Ejercicios criptografíaEjercicios criptografía
Ejercicios criptografíaAmador Aparicio
 

La actualidad más candente (20)

SILABO
SILABOSILABO
SILABO
 
MéTodos De EncriptacióN
MéTodos De EncriptacióNMéTodos De EncriptacióN
MéTodos De EncriptacióN
 
Unidad 5 - Criptografía
Unidad 5 - CriptografíaUnidad 5 - Criptografía
Unidad 5 - Criptografía
 
Criptografía,victor mamani catachura,boreasH,matricial cesar
Criptografía,victor mamani catachura,boreasH,matricial cesarCriptografía,victor mamani catachura,boreasH,matricial cesar
Criptografía,victor mamani catachura,boreasH,matricial cesar
 
cifrado de claves
cifrado de clavescifrado de claves
cifrado de claves
 
ENCRIPTACIÓN
ENCRIPTACIÓNENCRIPTACIÓN
ENCRIPTACIÓN
 
Encriptacion De Claves Publicas Y Privadas
Encriptacion De Claves Publicas Y PrivadasEncriptacion De Claves Publicas Y Privadas
Encriptacion De Claves Publicas Y Privadas
 
EncriptacióN De Cadenas
EncriptacióN De CadenasEncriptacióN De Cadenas
EncriptacióN De Cadenas
 
2.3 criptografia
2.3 criptografia2.3 criptografia
2.3 criptografia
 
Criptografia simetrica
Criptografia simetricaCriptografia simetrica
Criptografia simetrica
 
Metodos De Encriptacion 1
Metodos De Encriptacion 1Metodos De Encriptacion 1
Metodos De Encriptacion 1
 
16 autenticafirma
16 autenticafirma16 autenticafirma
16 autenticafirma
 
Métodos y técnicas de encriptación
Métodos y técnicas de encriptaciónMétodos y técnicas de encriptación
Métodos y técnicas de encriptación
 
Algoritmos De Cifrado Para Claves PúBlicas Y Privadas
Algoritmos De Cifrado Para Claves PúBlicas Y PrivadasAlgoritmos De Cifrado Para Claves PúBlicas Y Privadas
Algoritmos De Cifrado Para Claves PúBlicas Y Privadas
 
Criptografía
CriptografíaCriptografía
Criptografía
 
Criptografia simetrica
Criptografia simetricaCriptografia simetrica
Criptografia simetrica
 
Criptografia simetrica
Criptografia simetricaCriptografia simetrica
Criptografia simetrica
 
Ejercicios criptografía
Ejercicios criptografíaEjercicios criptografía
Ejercicios criptografía
 
Criptosistemas
CriptosistemasCriptosistemas
Criptosistemas
 
Siud04 121202120228-phpapp01
Siud04 121202120228-phpapp01Siud04 121202120228-phpapp01
Siud04 121202120228-phpapp01
 

Destacado (14)

14 cifraasimetrica
14 cifraasimetrica14 cifraasimetrica
14 cifraasimetrica
 
Archie
ArchieArchie
Archie
 
01 presentalibro
01 presentalibro01 presentalibro
01 presentalibro
 
Emily.d tudor slidshow
Emily.d tudor slidshowEmily.d tudor slidshow
Emily.d tudor slidshow
 
Megan tudor presentation
Megan tudor presentationMegan tudor presentation
Megan tudor presentation
 
07 teorianumeros
07 teorianumeros07 teorianumeros
07 teorianumeros
 
Jimmy
JimmyJimmy
Jimmy
 
20 curvaselipticas
20 curvaselipticas20 curvaselipticas
20 curvaselipticas
 
06 teoriainfo
06 teoriainfo06 teoriainfo
06 teoriainfo
 
12 cifrasimetrica
12 cifrasimetrica12 cifrasimetrica
12 cifrasimetrica
 
Cyber bullyingpro
Cyber bullyingproCyber bullyingpro
Cyber bullyingpro
 
Emily.s
Emily.sEmily.s
Emily.s
 
13 ciframochilas
13 ciframochilas13 ciframochilas
13 ciframochilas
 
Dewald
DewaldDewald
Dewald
 

Similar a 10 ciframoderna

MéTodos De EncriptacióN
MéTodos De EncriptacióNMéTodos De EncriptacióN
MéTodos De EncriptacióNErika
 
MéTodos De EncriptacióN Para Cifrado De Claves PúBlicas Y Privadas
MéTodos De EncriptacióN Para Cifrado De Claves PúBlicas Y PrivadasMéTodos De EncriptacióN Para Cifrado De Claves PúBlicas Y Privadas
MéTodos De EncriptacióN Para Cifrado De Claves PúBlicas Y PrivadasSebastian
 
Encriptación
EncriptaciónEncriptación
EncriptaciónESPE
 
Métodos de encriptación en vpn s
Métodos de encriptación en vpn sMétodos de encriptación en vpn s
Métodos de encriptación en vpn sespe
 
CRIPTOGRAFÍA
CRIPTOGRAFÍACRIPTOGRAFÍA
CRIPTOGRAFÍAfidsimmor
 
Encriptacion De Claves Publicas Y Claves Privadas
Encriptacion De Claves Publicas Y Claves PrivadasEncriptacion De Claves Publicas Y Claves Privadas
Encriptacion De Claves Publicas Y Claves Privadaschristian
 
Encriptacion De Claves Publicas Y Claves Privadas
Encriptacion De Claves Publicas Y Claves PrivadasEncriptacion De Claves Publicas Y Claves Privadas
Encriptacion De Claves Publicas Y Claves Privadaschristian
 
Yisenia
YiseniaYisenia
Yiseniayese
 
Presentación rossana
Presentación rossanaPresentación rossana
Presentación rossanarossana14
 
Encriptacion De Claves Publicas Y Privadas
Encriptacion De Claves Publicas Y PrivadasEncriptacion De Claves Publicas Y Privadas
Encriptacion De Claves Publicas Y PrivadasDaniel Yánez
 
Tema 2 - Introducción a la Criptografía
Tema 2 - Introducción a la CriptografíaTema 2 - Introducción a la Criptografía
Tema 2 - Introducción a la CriptografíaDaniel Pecos Martínez
 
Modulo II: Tecnología Criptográfica
Modulo II: Tecnología CriptográficaModulo II: Tecnología Criptográfica
Modulo II: Tecnología CriptográficaJuan Manuel García
 
Algoritmos de claves públicas y privadas
Algoritmos de claves públicas y privadasAlgoritmos de claves públicas y privadas
Algoritmos de claves públicas y privadasJohanna
 

Similar a 10 ciframoderna (20)

MéTodos De EncriptacióN
MéTodos De EncriptacióNMéTodos De EncriptacióN
MéTodos De EncriptacióN
 
Cifrado por RSA.
Cifrado por RSA.Cifrado por RSA.
Cifrado por RSA.
 
MéTodos De EncriptacióN Para Cifrado De Claves PúBlicas Y Privadas
MéTodos De EncriptacióN Para Cifrado De Claves PúBlicas Y PrivadasMéTodos De EncriptacióN Para Cifrado De Claves PúBlicas Y Privadas
MéTodos De EncriptacióN Para Cifrado De Claves PúBlicas Y Privadas
 
Criptogtafia
CriptogtafiaCriptogtafia
Criptogtafia
 
Encriptación
EncriptaciónEncriptación
Encriptación
 
Métodos de encriptación en vpn s
Métodos de encriptación en vpn sMétodos de encriptación en vpn s
Métodos de encriptación en vpn s
 
CRIPTOGRAFÍA
CRIPTOGRAFÍACRIPTOGRAFÍA
CRIPTOGRAFÍA
 
Encriptacion De Claves Publicas Y Claves Privadas
Encriptacion De Claves Publicas Y Claves PrivadasEncriptacion De Claves Publicas Y Claves Privadas
Encriptacion De Claves Publicas Y Claves Privadas
 
Encriptacion De Claves Publicas Y Claves Privadas
Encriptacion De Claves Publicas Y Claves PrivadasEncriptacion De Claves Publicas Y Claves Privadas
Encriptacion De Claves Publicas Y Claves Privadas
 
Yisenia
YiseniaYisenia
Yisenia
 
Aclarando dudas sobre RSA
Aclarando dudas sobre RSAAclarando dudas sobre RSA
Aclarando dudas sobre RSA
 
Presentación rossana
Presentación rossanaPresentación rossana
Presentación rossana
 
Encriptacion De Claves Publicas Y Privadas
Encriptacion De Claves Publicas Y PrivadasEncriptacion De Claves Publicas Y Privadas
Encriptacion De Claves Publicas Y Privadas
 
seguridad informatica
seguridad informaticaseguridad informatica
seguridad informatica
 
Tema 2 - Introducción a la Criptografía
Tema 2 - Introducción a la CriptografíaTema 2 - Introducción a la Criptografía
Tema 2 - Introducción a la Criptografía
 
Unidad 4 trabajo 6
Unidad 4 trabajo 6Unidad 4 trabajo 6
Unidad 4 trabajo 6
 
Rsa eddy montalvan
Rsa eddy montalvanRsa eddy montalvan
Rsa eddy montalvan
 
Cifrado por RSA.
Cifrado por RSA.Cifrado por RSA.
Cifrado por RSA.
 
Modulo II: Tecnología Criptográfica
Modulo II: Tecnología CriptográficaModulo II: Tecnología Criptográfica
Modulo II: Tecnología Criptográfica
 
Algoritmos de claves públicas y privadas
Algoritmos de claves públicas y privadasAlgoritmos de claves públicas y privadas
Algoritmos de claves públicas y privadas
 

Más de Roberto Moreno Doñoro (20)

21 bibsw tablasyotros
21 bibsw tablasyotros21 bibsw tablasyotros
21 bibsw tablasyotros
 
19 protocoloscripto
19 protocoloscripto19 protocoloscripto
19 protocoloscripto
 
18 correoseguro
18 correoseguro18 correoseguro
18 correoseguro
 
17 certdigitalespkcs
17 certdigitalespkcs17 certdigitalespkcs
17 certdigitalespkcs
 
11 cifraflujo
11 cifraflujo11 cifraflujo
11 cifraflujo
 
09 cifraclasica
09 cifraclasica09 cifraclasica
09 cifraclasica
 
08 compalgoritmos
08 compalgoritmos08 compalgoritmos
08 compalgoritmos
 
05 gestionseg
05 gestionseg05 gestionseg
05 gestionseg
 
04 calidadinfo
04 calidadinfo04 calidadinfo
04 calidadinfo
 
03 introseginfo
03 introseginfo03 introseginfo
03 introseginfo
 
Curso basico c sharp vii
Curso basico c sharp   viiCurso basico c sharp   vii
Curso basico c sharp vii
 
Curso basico c sharp iv
Curso basico c sharp   ivCurso basico c sharp   iv
Curso basico c sharp iv
 
Curso basico c sharp iii
Curso basico c sharp   iiiCurso basico c sharp   iii
Curso basico c sharp iii
 
Curso basico c sharp ii
Curso basico c sharp   iiCurso basico c sharp   ii
Curso basico c sharp ii
 
Curso basico c sharp
Curso basico c sharpCurso basico c sharp
Curso basico c sharp
 
Curso basico c sharp
Curso basico c sharpCurso basico c sharp
Curso basico c sharp
 
Clase xv
Clase xvClase xv
Clase xv
 
Clase xiv
Clase xivClase xiv
Clase xiv
 
Clase xiii
Clase xiiiClase xiii
Clase xiii
 
Clase xii
Clase xiiClase xii
Clase xii
 

Último

SELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdf
SELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdfSELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdf
SELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdfAngélica Soledad Vega Ramírez
 
Programacion Anual Matemática5 MPG 2024 Ccesa007.pdf
Programacion Anual Matemática5    MPG 2024  Ccesa007.pdfProgramacion Anual Matemática5    MPG 2024  Ccesa007.pdf
Programacion Anual Matemática5 MPG 2024 Ccesa007.pdfDemetrio Ccesa Rayme
 
ORGANIZACIÓN SOCIAL INCA EN EL TAHUANTINSUYO.pptx
ORGANIZACIÓN SOCIAL INCA EN EL TAHUANTINSUYO.pptxORGANIZACIÓN SOCIAL INCA EN EL TAHUANTINSUYO.pptx
ORGANIZACIÓN SOCIAL INCA EN EL TAHUANTINSUYO.pptxnandoapperscabanilla
 
Registro Auxiliar - Primaria 2024 (1).pptx
Registro Auxiliar - Primaria  2024 (1).pptxRegistro Auxiliar - Primaria  2024 (1).pptx
Registro Auxiliar - Primaria 2024 (1).pptxFelicitasAsuncionDia
 
Ejercicios de PROBLEMAS PAEV 6 GRADO 2024.pdf
Ejercicios de PROBLEMAS PAEV 6 GRADO 2024.pdfEjercicios de PROBLEMAS PAEV 6 GRADO 2024.pdf
Ejercicios de PROBLEMAS PAEV 6 GRADO 2024.pdfMaritzaRetamozoVera
 
LABERINTOS DE DISCIPLINAS DEL PENTATLÓN OLÍMPICO MODERNO. Por JAVIER SOLIS NO...
LABERINTOS DE DISCIPLINAS DEL PENTATLÓN OLÍMPICO MODERNO. Por JAVIER SOLIS NO...LABERINTOS DE DISCIPLINAS DEL PENTATLÓN OLÍMPICO MODERNO. Por JAVIER SOLIS NO...
LABERINTOS DE DISCIPLINAS DEL PENTATLÓN OLÍMPICO MODERNO. Por JAVIER SOLIS NO...JAVIER SOLIS NOYOLA
 
PIAR v 015. 2024 Plan Individual de ajustes razonables
PIAR v 015. 2024 Plan Individual de ajustes razonablesPIAR v 015. 2024 Plan Individual de ajustes razonables
PIAR v 015. 2024 Plan Individual de ajustes razonablesYanirisBarcelDelaHoz
 
Cuaderno de trabajo Matemática 3 tercer grado.pdf
Cuaderno de trabajo Matemática 3 tercer grado.pdfCuaderno de trabajo Matemática 3 tercer grado.pdf
Cuaderno de trabajo Matemática 3 tercer grado.pdfNancyLoaa
 
BIOMETANO SÍ, PERO NO ASÍ. LA NUEVA BURBUJA ENERGÉTICA
BIOMETANO SÍ, PERO NO ASÍ. LA NUEVA BURBUJA ENERGÉTICABIOMETANO SÍ, PERO NO ASÍ. LA NUEVA BURBUJA ENERGÉTICA
BIOMETANO SÍ, PERO NO ASÍ. LA NUEVA BURBUJA ENERGÉTICAÁngel Encinas
 
origen y desarrollo del ensayo literario
origen y desarrollo del ensayo literarioorigen y desarrollo del ensayo literario
origen y desarrollo del ensayo literarioELIASAURELIOCHAVEZCA1
 
Caja de herramientas de inteligencia artificial para la academia y la investi...
Caja de herramientas de inteligencia artificial para la academia y la investi...Caja de herramientas de inteligencia artificial para la academia y la investi...
Caja de herramientas de inteligencia artificial para la academia y la investi...Lourdes Feria
 
Dinámica florecillas a María en el mes d
Dinámica florecillas a María en el mes dDinámica florecillas a María en el mes d
Dinámica florecillas a María en el mes dstEphaniiie
 
Sesión de aprendizaje Planifica Textos argumentativo.docx
Sesión de aprendizaje Planifica Textos argumentativo.docxSesión de aprendizaje Planifica Textos argumentativo.docx
Sesión de aprendizaje Planifica Textos argumentativo.docxMaritzaRetamozoVera
 
MAYO 1 PROYECTO día de la madre el amor más grande
MAYO 1 PROYECTO día de la madre el amor más grandeMAYO 1 PROYECTO día de la madre el amor más grande
MAYO 1 PROYECTO día de la madre el amor más grandeMarjorie Burga
 
Programacion Anual Matemática4 MPG 2024 Ccesa007.pdf
Programacion Anual Matemática4    MPG 2024  Ccesa007.pdfProgramacion Anual Matemática4    MPG 2024  Ccesa007.pdf
Programacion Anual Matemática4 MPG 2024 Ccesa007.pdfDemetrio Ccesa Rayme
 
Imperialismo informal en Europa y el imperio
Imperialismo informal en Europa y el imperioImperialismo informal en Europa y el imperio
Imperialismo informal en Europa y el imperiomiralbaipiales2016
 
FORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURA
FORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURAFORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURA
FORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURAEl Fortí
 

Último (20)

SELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdf
SELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdfSELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdf
SELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdf
 
Programacion Anual Matemática5 MPG 2024 Ccesa007.pdf
Programacion Anual Matemática5    MPG 2024  Ccesa007.pdfProgramacion Anual Matemática5    MPG 2024  Ccesa007.pdf
Programacion Anual Matemática5 MPG 2024 Ccesa007.pdf
 
Medición del Movimiento Online 2024.pptx
Medición del Movimiento Online 2024.pptxMedición del Movimiento Online 2024.pptx
Medición del Movimiento Online 2024.pptx
 
ORGANIZACIÓN SOCIAL INCA EN EL TAHUANTINSUYO.pptx
ORGANIZACIÓN SOCIAL INCA EN EL TAHUANTINSUYO.pptxORGANIZACIÓN SOCIAL INCA EN EL TAHUANTINSUYO.pptx
ORGANIZACIÓN SOCIAL INCA EN EL TAHUANTINSUYO.pptx
 
Registro Auxiliar - Primaria 2024 (1).pptx
Registro Auxiliar - Primaria  2024 (1).pptxRegistro Auxiliar - Primaria  2024 (1).pptx
Registro Auxiliar - Primaria 2024 (1).pptx
 
Ejercicios de PROBLEMAS PAEV 6 GRADO 2024.pdf
Ejercicios de PROBLEMAS PAEV 6 GRADO 2024.pdfEjercicios de PROBLEMAS PAEV 6 GRADO 2024.pdf
Ejercicios de PROBLEMAS PAEV 6 GRADO 2024.pdf
 
LABERINTOS DE DISCIPLINAS DEL PENTATLÓN OLÍMPICO MODERNO. Por JAVIER SOLIS NO...
LABERINTOS DE DISCIPLINAS DEL PENTATLÓN OLÍMPICO MODERNO. Por JAVIER SOLIS NO...LABERINTOS DE DISCIPLINAS DEL PENTATLÓN OLÍMPICO MODERNO. Por JAVIER SOLIS NO...
LABERINTOS DE DISCIPLINAS DEL PENTATLÓN OLÍMPICO MODERNO. Por JAVIER SOLIS NO...
 
PIAR v 015. 2024 Plan Individual de ajustes razonables
PIAR v 015. 2024 Plan Individual de ajustes razonablesPIAR v 015. 2024 Plan Individual de ajustes razonables
PIAR v 015. 2024 Plan Individual de ajustes razonables
 
Sesión de clase: Fe contra todo pronóstico
Sesión de clase: Fe contra todo pronósticoSesión de clase: Fe contra todo pronóstico
Sesión de clase: Fe contra todo pronóstico
 
Cuaderno de trabajo Matemática 3 tercer grado.pdf
Cuaderno de trabajo Matemática 3 tercer grado.pdfCuaderno de trabajo Matemática 3 tercer grado.pdf
Cuaderno de trabajo Matemática 3 tercer grado.pdf
 
BIOMETANO SÍ, PERO NO ASÍ. LA NUEVA BURBUJA ENERGÉTICA
BIOMETANO SÍ, PERO NO ASÍ. LA NUEVA BURBUJA ENERGÉTICABIOMETANO SÍ, PERO NO ASÍ. LA NUEVA BURBUJA ENERGÉTICA
BIOMETANO SÍ, PERO NO ASÍ. LA NUEVA BURBUJA ENERGÉTICA
 
origen y desarrollo del ensayo literario
origen y desarrollo del ensayo literarioorigen y desarrollo del ensayo literario
origen y desarrollo del ensayo literario
 
Caja de herramientas de inteligencia artificial para la academia y la investi...
Caja de herramientas de inteligencia artificial para la academia y la investi...Caja de herramientas de inteligencia artificial para la academia y la investi...
Caja de herramientas de inteligencia artificial para la academia y la investi...
 
Dinámica florecillas a María en el mes d
Dinámica florecillas a María en el mes dDinámica florecillas a María en el mes d
Dinámica florecillas a María en el mes d
 
Sesión de aprendizaje Planifica Textos argumentativo.docx
Sesión de aprendizaje Planifica Textos argumentativo.docxSesión de aprendizaje Planifica Textos argumentativo.docx
Sesión de aprendizaje Planifica Textos argumentativo.docx
 
MAYO 1 PROYECTO día de la madre el amor más grande
MAYO 1 PROYECTO día de la madre el amor más grandeMAYO 1 PROYECTO día de la madre el amor más grande
MAYO 1 PROYECTO día de la madre el amor más grande
 
Presentacion Metodología de Enseñanza Multigrado
Presentacion Metodología de Enseñanza MultigradoPresentacion Metodología de Enseñanza Multigrado
Presentacion Metodología de Enseñanza Multigrado
 
Programacion Anual Matemática4 MPG 2024 Ccesa007.pdf
Programacion Anual Matemática4    MPG 2024  Ccesa007.pdfProgramacion Anual Matemática4    MPG 2024  Ccesa007.pdf
Programacion Anual Matemática4 MPG 2024 Ccesa007.pdf
 
Imperialismo informal en Europa y el imperio
Imperialismo informal en Europa y el imperioImperialismo informal en Europa y el imperio
Imperialismo informal en Europa y el imperio
 
FORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURA
FORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURAFORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURA
FORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURA
 

10 ciframoderna

  • 1. Seguridad Informática y Criptografía Material Docente de Libre Distribución Ultima actualización del archivo: 01/03/06 Este archivo tiene: 35 diapositivas Dr. Jorge Ramió Aguirre Universidad Politécnica de Madrid Curso de Seguridad Informática y Criptografía © JRA v 4.1 Capítulo 10 Introducción a la Cifra Moderna Este archivo forma parte de un curso completo sobre Seguridad Informática y Criptografía. Se autoriza el uso, reproducción en computador y su impresión en papel, sólo con fines docentes y/o personales, respetando los créditos del autor. Queda prohibida su comercialización, excepto la edición en venta en el Departamento de Publicaciones de la Escuela Universitaria de Informática de la Universidad Politécnica de Madrid, España.
  • 2. © Jorge Ramió Aguirre Madrid (España) 2006 Capítulo 10: Introducción a la Cifra Moderna Página 2 • Los criptosistemas modernos, cuya cifra en bits está orientada a todos los caracteres ASCII o ANSI, usan por lo general una operación algebraica en Zn, un cuerpo finito, sin que necesariamente este módulo deba corresponder con el número de elementos del alfabeto o código utilizado. Es más, nunca coinciden: siempre será mucho mayor el cuerpo de trabajo que el alfabeto usado. • Su fortaleza se debe basar en la imposibilidad computacional de descubrir una clave secreta única, en tanto que el algoritmo de cifra es (o al menos debería serlo) público. • En la siguiente dirección web, encontrará un amplio compendio de sistemas de cifra y criptografía. Un par de ideas básicas Conceptos elementales http://en.wikipedia.org/wiki/Category:Cryptography
  • 3. © Jorge Ramió Aguirre Madrid (España) 2006 Capítulo 10: Introducción a la Cifra Moderna Página 3 Clasificación de los criptosistemas MÉTODOS DE CIFRA MODERNAMÉTODOS DE CIFRA MODERNA CIFRADO EN FLUJO CIFRADO EN BLOQUE A5; RC4 CLAVE SECRETACLAVE PÚBLICA DES; T-DES; CAST; IDEA; AES; RC5 ...EXPONENCIACIÓN SUMA/PRODUCTO Cifrado propio de la información en una sesión en Internet o en una red. También se usa en cifrado local. Uso en intercambio de clave y en firma digital. CE: intercambio clave y firma digital. Mochilas: protección de SW mediante dispositivo HW. Telefonía móvil, Internet y WLAN. y algunos ejemplos... RSA; ElGamal Curvas Elípticas/Mochilas
  • 4. © Jorge Ramió Aguirre Madrid (España) 2006 Capítulo 10: Introducción a la Cifra Moderna Página 4 Usa el concepto de cifra propuesto por Vernam, que cumple con las ideas de Shannon sobre sistemas de cifra con secreto perfecto, esto es: a) El espacio de las claves es igual o mayor que el espacio de los mensajes. b) Las claves deben ser equiprobables. c) La secuencia de clave se usa una sola vez y luego se destruye (sistema one-time pad). Una duda: ¿Será posible satisfacer la condición a)? Introducción al cifrado de flujo
  • 5. © Jorge Ramió Aguirre Madrid (España) 2006 Capítulo 10: Introducción a la Cifra Moderna Página 5 ¿Espacio de Claves ≥ Espacio de Mensajes? 1) La secuencia de bits de la clave deberá enviarse al destinatario a través de un canal que sabemos es inseguro (recuerde que aún no conoce el protocolo de intercambio de clave de Diffie y Hellman). 2) Si la secuencia es “infinita”, desbordaríamos la capacidad del canal de comunicaciones. Espacio de claves y del mensaje ¿Qué solución damos a este problema?
  • 6. © Jorge Ramió Aguirre Madrid (España) 2006 Capítulo 10: Introducción a la Cifra Moderna Página 6 La solución está en generar una secuencia pseudoaleatoria con un algoritmo determinístico a partir de una semilla de n bits. Podremos generar así secuencias con períodos de 2n bits, un valor ciertamente muy alto puesto que n debe ser del orden de las centenas. Esta semilla es la que se enviará al receptor mediante un sistema de cifra de clave pública y un algoritmo de intercambio de clave que veremos en próximos capítulos y así no sobrecargamos el canal. El concepto de semilla en un generador Si por un canal supuestamente seguro enviamos esa clave secreta tan larga ... ¿por qué no enviamos directamente el mensaje en claro y nos dejamos de historias? 
  • 7. © Jorge Ramió Aguirre Madrid (España) 2006 Capítulo 10: Introducción a la Cifra Moderna Página 7  El mensaje en claro se leerá bit a bit.  Se realizará una operación de cifra, normalmente la función XOR, con una secuencia cifrante de bits Si que debe cumplir ciertas condiciones: – Tener un período muy alto (ya no infinito) – Tener propiedades pseudoaleatorias (ya no aleatorias) XOR Secuencia cifrante Si Mensaje M Bits del Criptograma XOR Mensaje M Secuencia cifrante Si C C Técnica de cifra en flujo
  • 8. © Jorge Ramió Aguirre Madrid (España) 2006 Capítulo 10: Introducción a la Cifra Moderna Página 8 El mensaje se agrupa en bloques, por lo general de 8 ó 16 bytes (64 ó 128 bits) antes de aplicar el algoritmo de cifra a cada bloque de forma independiente con la misma clave. Introducción a la cifra en bloque Cifrado con Clave Secreta Hay algunos algoritmos muy conocidos por su uso en aplicaciones bancarias (DES), correo electrónico (IDEA, CAST), comercio electrónico (Triple DES) y el nuevo estándar (AES Rijndael).
  • 9. © Jorge Ramió Aguirre Madrid (España) 2006 Capítulo 10: Introducción a la Cifra Moderna Página 9 Si el bloque fuese muy pequeño, por ejemplo uno o dos bytes, esto facilitaría un ataque por estadísticas del lenguaje. Se trataría de un cifrado por monogramas o digramas muy débil. ¿Qué tamaño de bloque usar? Pero si el bloque fuese muy grande, por ejemplo cientos de bytes, el sistema sería lento en el tratamiento del texto en claro y no sería bueno su rendimiento. Los valores indicados de 64 y 128 bits son un término medio que satisface ambas condicionantes: es la típica situación de compromiso que tanto vemos en ingeniería.
  • 10. © Jorge Ramió Aguirre Madrid (España) 2006 Capítulo 10: Introducción a la Cifra Moderna Página 10 a) Mala gestión de claves. Crece el número de claves secretas en una proporción igual a n2 para un valor n grande de usuarios lo que imposibilita usarlo . b) Mala distribución de claves. No existe posibilidad de enviar, de forma segura y eficiente, una clave a través de un medio o canal inseguro . c) No tiene firma digital. Aunque sí será posible autenticar el mensaje mediante una marca, no es posible firmar digitalmente el mensaje, al menos en un sentido amplio y sencillo . Tres debilidades en la cifra simétrica
  • 11. © Jorge Ramió Aguirre Madrid (España) 2006 Capítulo 10: Introducción a la Cifra Moderna Página 11 a) Mala gestión de claves  b) Mala distribución de claves  c) No permite firma digital  ¿Tiene algo de bueno la cifra en bloque con clave secreta? Sí: la velocidad de cifra es muy alta  y por ello se usará para realizar la función de cifra de la información. Además, con claves de sólo unas centenas de bits obtendremos una alta seguridad pues la no linealidad del algoritmo hace que en la práctica el único ataque factible sea por fuerza bruta. ¿Por qué usamos entonces clave secreta?
  • 12. © Jorge Ramió Aguirre Madrid (España) 2006 Capítulo 10: Introducción a la Cifra Moderna Página 12 • Comienza a ser ampliamente conocido a través de su aplicación en los sistemas de correo electrónico seguro (PGP y PEM) permitiendo cifrar e incluir una firma digital adjunta al documento o e-mail enviado y también en los navegadores Web. • Cada usuario tendrá dos claves, una secreta o privada y otra pública, inversas entre sí dentro de un cuerpo. • Usan las funciones unidireccionales con trampa. Cifrado asimétrico
  • 13. © Jorge Ramió Aguirre Madrid (España) 2006 Capítulo 10: Introducción a la Cifra Moderna Página 13 Son funciones matemáticas de un solo sentido (one-way functions) y que nos permiten usar la función en sentido directo o de cálculo fácil para cifrar y descifrar (usuarios legítimos) y fuerza el sentido inverso o de cálculo difícil para aquellos impostores, hackers, etc. que lo que desean es atacar o criptoanalizar la cifra. f (M) = C es siempre fácil. f -1 (C) = M es difícil salvo que se tenga la trampa. Funciones unidireccionales con trampa
  • 14. © Jorge Ramió Aguirre Madrid (España) 2006 Capítulo 10: Introducción a la Cifra Moderna Página 14 Cálculo directo: producto de dos primos grandes p∗q = n Cálculo inverso: factorización de número grande n = p∗q Problema de la factorizaciónProblema de la factorización Problema del logaritmo discretoProblema del logaritmo discreto Cálculo directo: exponenciación discreta β = αx mod n Cálculo inverso: logaritmo discreto x = logα β mod n Funciones con trampa más usadas
  • 15. © Jorge Ramió Aguirre Madrid (España) 2006 Capítulo 10: Introducción a la Cifra Moderna Página 15 Problema de la mochilaProblema de la mochila Cálculo directo: sumar elementos de mochila con trampa Cálculo inverso: sumar elementos de mochila sin trampa Problema de la raíz discretaProblema de la raíz discreta Cálculo directo: cuadrado discreto x = a∗a mod n Cálculo inverso: raíz cuadrada discreta a = √x mod n Otras funciones con trampa
  • 16. © Jorge Ramió Aguirre Madrid (España) 2006 Capítulo 10: Introducción a la Cifra Moderna Página 16 Claves: eB, nB, dBClaves: eB, nB, dB Claves: eA, nA, dAClaves: eA, nA, dA Benito Adela C = EeA(N) mod nA eB, nB: públicas dB: privada eA, nA: públicas dA: privada ESTOS SERÁN NUESTROS PROTAGONISTAS Si Benito realiza la operación con las claves públicas de Adela (eA, nA), la información que se transmite mantiene la confidencialidad: sólo ella puede verla. Cifrado con clave pública de destino eB y dB son inversas dentro de un cuerpo nB eA y dA son inversas dentro de un cuerpo nA Origen Destino ¿A qué es mucho más lógico y familiar usar estos nombres y no Alice y Bob?
  • 17. © Jorge Ramió Aguirre Madrid (España) 2006 Capítulo 10: Introducción a la Cifra Moderna Página 17 Cifrado: Benito envía un valor N cifrado a Adela Claves: eB, nB, dB Claves: eA, nA, dA Benito Adela C = EeA(N) mod nA Descifrado: N = EdA[EeA(N)] mod nA EdA y EeA son inversos Se obtiene confidencialidad del mensaje Operación de cifra con clave de destino Claves públicas Clave privada
  • 18. © Jorge Ramió Aguirre Madrid (España) 2006 Capítulo 10: Introducción a la Cifra Moderna Página 18 Si en vez de utilizar la clave pública de destino, el emisor usa su propia clave pública, la cifra no tiene sentido bajo el punto de vista de sistemas de clave pública ya que sólo él o ella sería capaz de descifrar el criptograma (deshacer la operación de cifra) con su propia clave privada. ¿Y si usamos la clave pública de origen? Esto podría usarse para cifrar de forma local uno o varios ficheros, por ejemplo, pero para ello ya están los sistemas de clave secreta, mucho más rápidos y, por tanto, más eficientes.
  • 19. © Jorge Ramió Aguirre Madrid (España) 2006 Capítulo 10: Introducción a la Cifra Moderna Página 19 Si ahora el emisor usa su clave privada en la cifra sobre el mensaje, se obtiene una firma digital que le autentica como emisor ante el destinatario y, además, a este último le permitirá comprobar la integridad del mensaje. ¿Y si usamos la clave privada de origen? Obviamente, el emisor nunca podrá realizar la cifra del mensaje M con la clave privada del receptor. Veamos antes un ejemplo de algoritmo que usa un par de claves entre dos usuarios...
  • 20. © Jorge Ramió Aguirre Madrid (España) 2006 Capítulo 10: Introducción a la Cifra Moderna Página 20 PROTOCOLO: A envía a B un mensaje M 1 A pone el mensaje M en la caja, la cierra con su llave azuly la envía a B. 2 B recibe la caja, la cierra con su llave roja y envía a A la caja con las dos cerraduras. 3 A recibe la caja, quita su llave azul  y devuelve a B la caja sólo con la cerradura de roja. 4 B recibe la caja, quita su cerradura roja  y puede ver el mensaje M que A puso en su interior. El algoritmo del mensaje en la caja
  • 21. © Jorge Ramió Aguirre Madrid (España) 2006 Capítulo 10: Introducción a la Cifra Moderna Página 21 ¿Va todo bien en el algoritmo de la caja? Durante la transmisión, el mensaje está protegido de cualquier intruso por lo que existe integridad del mensaje y hay protección contra una ataque pasivo. Pero el usuario B no puede estar seguro si quien le ha enviado el mensaje M es el usuario A o un impostor. Por lo tanto el algoritmo así implementado no nos permite comprobar la autenticidad del emisor pues no detecta la suplantación de identidad. No obstante... Modificando un poco el algoritmo anterior, sí podremos asegurar tanto la integridad del mensaje como la autenticidad de emisor.
  • 22. © Jorge Ramió Aguirre Madrid (España) 2006 Capítulo 10: Introducción a la Cifra Moderna Página 22 Claves: eB, nB, dBClaves: eB, nB, dB Claves: eA, nA, dAClaves: eA, nA, dA Benito Adela C = EdB(N) mod nB eB, nB: públicas dB: privada eA, nA: públicas dA: privada Si ahora Benito realiza la operación de cifra con su clave privada dB en el cuerpo nB Adela será capaz de comprobar esa cifra ya que posee (entre otras) la clave pública de Benito. Comprueba así tanto la autenticidad del mensaje como del autor. Cifrado con clave privada del origen eB y dB son inversas dentro de un cuerpo nB eA y dA son inversas dentro de un cuerpo nA Origen Destino
  • 23. © Jorge Ramió Aguirre Madrid (España) 2006 Capítulo 10: Introducción a la Cifra Moderna Página 23 Firma digital: Benito firma un valor N que envía a Adela Claves: eB, nB, dB Claves: eA, nA, dA Benito Adela C = EdB(N) mod nB Comprobación: N = EeB[EdB(N)] mod nB EdB y EeB son inversos Se comprueba la integridad del origen Operación de cifra con clave de origen Clave privada Claves públicas
  • 24. © Jorge Ramió Aguirre Madrid (España) 2006 Capítulo 10: Introducción a la Cifra Moderna Página 24 Uso de la criptografía asimétrica • Estas dos operaciones de cifra son posibles debido a la característica intrínseca de los sistemas de clave pública: el uso de una clave privada (secreta) inversa de una pública. ¿Qué aplicación tendrán entonces los sistemas de criptografía de clave pública o asimétrica? • Usando la clave pública del destino se hará el intercambio de claves de sesión de una cifra con sistemas simétricos (decenas a centenas de bits). • Usando la clave privada de origen, se firmará digitalmente un resumen (centenas de bits) del mensaje obtenido con una función hash. • Observe que se hace hincapié en las “centenas de bits” dado que estos sistemas son muy lentos comparados con los simétricos.
  • 25. © Jorge Ramió Aguirre Madrid (España) 2006 Capítulo 10: Introducción a la Cifra Moderna Página 25 Gestión de claves Clave Secreta Clave Pública Hay que memorizar Sólo es necesario un número muy alto memorizar la clave de claves: → n2 . privada del emisor. En cuanto a la gestión de claves, serán mucho más eficientes los sistemas de cifra asimétricos pues los simétricos no permiten una gestión lógica y eficiente de estas claves: en los asimétricos sólo es necesario memorizar la frase o palabra de paso para acceder a la clave privada. Comparativa: la gestión de claves
  • 26. © Jorge Ramió Aguirre Madrid (España) 2006 Capítulo 10: Introducción a la Cifra Moderna Página 26 Longitud y espacio de claves Clave Secreta Clave Pública Debido al tipo de Por el algoritmo usado cifrador usado, la en la cifra, la clave clave será del orden será del orden de miles de centenas de bits. de bits. En cuanto al espacio de claves, no son comparables los sistemas simétricos con los asimétricos. Para atacar un sistema asimétrico no se buscará en todo el espacio de claves como debería hacerse en los sistemas simétricos. ≥ 128 ≥ 1.024 Comparativa: el espacio de claves
  • 27. © Jorge Ramió Aguirre Madrid (España) 2006 Capítulo 10: Introducción a la Cifra Moderna Página 27 Vida de una clave Clave Secreta Clave Pública La duración es muy La duración de la clave corta pues casi pública, que la entrega siempre se usa como y gestiona un tercero, clave de una sesión. suele ser larga. En cuanto a la vida de una clave, en los sistemas simétricos ésta es muchísimo menor que las usadas en los asimétricos. La clave de sesión es aleatoria, en cambio la asimétrica es propia del usuario. Segundos o minutos Meses o un año Comparativa: la vida de las claves
  • 28. © Jorge Ramió Aguirre Madrid (España) 2006 Capítulo 10: Introducción a la Cifra Moderna Página 28 Si en un sistema de clave secreta, ésta se usa como clave de una sesión que dura muy poco tiempo... y en este tiempo es imposible romperla... ¿para qué preocuparse entonces? La confidencialidad de la información tiene una caducidad. Si durante este tiempo alguien puede tener el criptograma e intentar un ataque por fuerza bruta, obtendrá la clave (que es lo menos importante) ... ¡pero también el mensaje secreto! Vida de la clave y principio de caducidad ... puede ser muy peligroso. Lo mismo ocurrirá si usamos la cifra simétrica para proteger algún archivo o archivos en nuestro computador.
  • 29. © Jorge Ramió Aguirre Madrid (España) 2006 Capítulo 10: Introducción a la Cifra Moderna Página 29 Condiciones de la autenticidad: a) El usuario A deberá protegerse ante mensajes dirigidos a B que un tercer usuario desconocido C introduce por éste. Es la suplantación de identidad o problema de la autenticación del emisor. b) El usuario A deberá protegerse ante mensajes falsificados por B que asegura haberlos recibido firmados por A. Es la falsificación de documento o problema de la autenticación del mensaje. El problema de la autenticación
  • 30. © Jorge Ramió Aguirre Madrid (España) 2006 Capítulo 10: Introducción a la Cifra Moderna Página 30 Autenticación Clave Secreta Clave Pública Se puede autenticar Al haber una clave el mensaje pero no pública y otra privada, al emisor de forma se podrá autenticar el sencilla y eficiente. mensaje y al emisor. En cuanto a la autenticación, los sistemas simétricos tienen una autenticación más pesada y con una tercera parte de confianza. Los asimétricos permiten una firma digital verdadera, eficiente y sencilla, en donde la tercera parte de confianza es sólo presencial. Comparativa: la autenticación de emisor
  • 31. © Jorge Ramió Aguirre Madrid (España) 2006 Capítulo 10: Introducción a la Cifra Moderna Página 31 Velocidad de cifra Clave Secreta Clave Pública La velocidad de La velocidad de cifra cifra es muy alta. es muy baja. Se usa Es el algoritmo de para el intercambio de cifra del mensaje. clave y la firma digital. En cuanto a la velocidad de cifra, los sistemas simétricos son de 100 a 1.000 veces más rápidos que los asimétricos. En SW la velocidad de cifra es más baja. Cientos de M Bytes/seg en HW Cientos de K Bytes/seg en HW Comparativa: la velocidad de cifra
  • 32. © Jorge Ramió Aguirre Madrid (España) 2006 Capítulo 10: Introducción a la Cifra Moderna Página 32 • Confidencialidad • Autenticación parcial • Sin firma digital • Claves: – Longitud pequeña – Vida corta (sesión) – Número elevado • Velocidad alta • Confidencialidad • Autenticación total • Con firma digital • Claves: – Longitud grande – Vida larga – Número reducido • Velocidad baja Resumen comparativo de estas cifras Cifrado Simétrico Cifrado Asimétrico
  • 33. © Jorge Ramió Aguirre Madrid (España) 2006 Capítulo 10: Introducción a la Cifra Moderna Página 33  La criptografía simétrica o de clave secreta usa una única clave para cifrar en emisión y descifrar en destino.  La seguridad del sistema reside entonces en cuán segura sea dicha clave.  En la criptografía asimétrica cada usuario se crea un par de claves llamadas pública y privada, inversas entre sí dentro de un cuerpo finito, de forma que lo que hace una la otra lo deshace. Para cifrar se usa, por ejemplo, la clave pública de destino y para descifrar el destinatario hará uso de su clave privada.  La seguridad del sistema reside ahora en la dificultad computacional de encontrar la clave privada a partir de la clave pública. Seguridad en la cifra simétrica y asimétrica Fin del capítulo
  • 34. © Jorge Ramió Aguirre Madrid (España) 2006 Capítulo 10: Introducción a la Cifra Moderna Página 34 Cuestiones y ejercicios (1 de 2) 1. En un sistema de cifra se usa un cuerpo de trabajo n. ¿Cómo es el tamaño de ese cuerpo comparado con el tamaño del alfabeto usado? 2. ¿Cómo se clasifican los criptosistemas en función del tratamiento que hacemos del mensaje a cifrar? 3. ¿Cómo se clasifican los criptosistemas en función de tipo de clave que se usa en ambos extremos, emisor y receptor? 4. ¿Por qué se dice que un sistema es simétrico y el otro asimétrico? 5. ¿Es posible cumplir 100% con la condición de cifrado de Vernam? 6. ¿Por qué en los cifradores de flujo se usa la misma función XOR en el extremo emisor y en el extremo receptor? ¿Son inversas aquí las claves usadas para cifrar y descifrar? 7. Nombre y comente algunas debilidades de los sistemas de cifra en bloque con clave secreta.
  • 35. © Jorge Ramió Aguirre Madrid (España) 2006 Capítulo 10: Introducción a la Cifra Moderna Página 35 Cuestiones y ejercicios (2 de 2) 8. Si ciframos un número con la clave pública del usuario receptor, ¿qué cree Ud. que estamos haciendo? 9. ¿Por qué decimos que en un sistema asimétrico la gestión de claves es mucho mejor que en un sistema simétrico? 10. Nos entregan un certificado digital (certificación de clave pública) de 512 bits. ¿Es hoy en día un valor adecuado? ¿Por qué sí o no? 11. ¿Por qué decimos que con un sistema asimétrico es muy fácil generar una firma digital en emisión y comprobarla en destino? 12. Compare los sistemas simétricos y asimétricos en cuanto a su velocidad de cifra. 13. ¿Qué es un cifrado híbrido? ¿Por qué y cómo se usa la cifra híbrida en el intercambio de información segura por ejemplo en Internet? 14. ¿Qué relación hay entre vida de una clave y principio de caducidad?

Notas del editor

  1. NOTAS SOBRE EL TEMA:
  2. NOTAS SOBRE EL TEMA:
  3. NOTAS SOBRE EL TEMA:
  4. NOTAS SOBRE EL TEMA:
  5. NOTAS SOBRE EL TEMA:
  6. NOTAS SOBRE EL TEMA:
  7. NOTAS SOBRE EL TEMA:
  8. NOTAS SOBRE EL TEMA:
  9. NOTAS SOBRE EL TEMA:
  10. NOTAS SOBRE EL TEMA:
  11. NOTAS SOBRE EL TEMA:
  12. NOTAS SOBRE EL TEMA:
  13. NOTAS SOBRE EL TEMA:
  14. NOTAS SOBRE EL TEMA:
  15. NOTAS SOBRE EL TEMA:
  16. NOTAS SOBRE EL TEMA:
  17. NOTAS SOBRE EL TEMA:
  18. NOTAS SOBRE EL TEMA:
  19. NOTAS SOBRE EL TEMA:
  20. NOTAS SOBRE EL TEMA:
  21. NOTAS SOBRE EL TEMA:
  22. NOTAS SOBRE EL TEMA:
  23. NOTAS SOBRE EL TEMA:
  24. NOTAS SOBRE EL TEMA:
  25. NOTAS SOBRE EL TEMA:
  26. NOTAS SOBRE EL TEMA:
  27. NOTAS SOBRE EL TEMA:
  28. NOTAS SOBRE EL TEMA:
  29. NOTAS SOBRE EL TEMA:
  30. NOTAS SOBRE EL TEMA:
  31. NOTAS SOBRE EL TEMA:
  32. NOTAS SOBRE EL TEMA:
  33. NOTAS SOBRE EL TEMA:
  34. NOTAS SOBRE EL TEMA: