SlideShare una empresa de Scribd logo
1 de 127
MOTOR DIESEL
• El motor diésel se enciende mediante la
compresión, es decir, no necesita de una
bujía que genere la chispa, puesto que es
tanta la compresión que
• se ejerce que eleva la temperatura hasta el
punto necesario para realizar el encendido
del motor.
Ing. Stefania Amaya
VENTAJAS Y DESVENTAJAS
Mayor
rendimiento
térmico
Menor
consumo
Menos
contaminante
Mayor fuerza
de arrastre
• Torque
Ing. Stefania Amaya
Desventajas
Mantenimiento especializado
Peso
Ruido
Precio
PRINCIPIOS DE FUNCIONAMIENTO DEL MOTOR
DIÉSEL
• Ciclo Teórico
Ing. Stefania Amaya
• Ciclo Práctico
• Pérdidas de Bombeo
• Pérdidas de Calor
• Combustión no
isobárica
• Apertura de la válvula
de escape
COMBUSTIBLE
DIÉSEL
• Destilación y la purificación del petróleo
• Punto de ebullición de 250°C a 350°C
• Aceite – combustible.
• Debe ser inyectado a una presión mayor a 100
bares (bar)
• Se inflama a una temperatura de 280°C.
• El diésel comercializado en el país tiene 150 ppm
de azufre por debajo del límite máximo.
Ing. Stefania Amaya
PROPIEDADES DE LOS COMBUSTIBLES
Volatilidad
• Facilidad de cambio
de estado.
Valor Calorífico
• Operaciones de
Fletaje
Calidad de Ignición /
Número de cetano
• Factor influencia en
el arranque.
Viscosidad
• Inyección
atomizada de
combustible.
Fluidez a bajas
temperaturas
Contenido de azufre:
• Causa problemas de
corrosión y
desgaste de piezas
Contenido de agua y
sedimentos.
• Resultado de la
contaminación del
combustible
Ing. Stefania Amaya
EMISIÓN DE CONTAMINANTES.
• Entre los gases producidos en la combustión son los:
– Óxidos de Nitrógeno
– El monóxido de nitrógeno
– Hidrocarburos no quemados
– Óxidos de azufre
– Material particulado
Ing. Stefania Amaya
NORMA INEN 207:2002
Ing. Stefania Amaya
PRUEBAS DE DIAGNÓSTICO
• Medición de la Compresión
• Mide la cantidad de aire que los pistones están
comprimiendo.
• Para la prueba se lo realiza con el motor a temperatura de
trabajo.
• La lectura se va realizando de los cuatro cilindros.
• Compresiometro
• Escala de 0 a 1000 PSI
Ing. Stefania Amaya
PRUEBA DE VACÍO
• Mide la depresión existe en el
múltiple de admisión.
• La lectura inicial varia según la
altitud donde se encuentre.
Ing. Stefania Amaya
INTERPRETACIÓN DE MEDIDAS DE
VACUÓMETRO
Motor en
buenas
condiciones
Marcha lenta –
ralentí suave
De 432 a 559
mm Hg
Apretar y soltar
el acelerador
De 50 a 625
mmhg
Posibles fallas
Ralentí suave
Lectura estable,
pero es baja
Apretar y soltar
el acelerador
Salta de 0 a 560
mmhg
Desgaste de
anillos, pistones
y cilindros
Ing. Stefania Amaya
FACTORES DE ARRANQUE DEL MOTOR
DIESEL
Ing. Stefania Amaya
Temperatura del
aire al interior
del cilindro
Temperatura del
motor
Temperatura del
aire de admisión
Hermeticidad
Velocidad de
rotación
Forma de la cámara
de combustión
Volatilidad y
facilidad de
inflamado
Relación con el
número de cetano
Calidad de
Inyección
No tener la
hermeticidad
correcta o presión
de apretura
Dificulta la
evaporación
BUJÍAS DE PRECALENTAMIENTO
• Las bujías de precalentamiento - son
unas piezas metálicas con forma de
cilindro. Su aspecto se asemeja mucho
al de una bujía de un motor de
gasolina, pero en vez de tener un
electrodo en su punta, disponen de un
elemento calefactor.
Ing. Stefania Amaya
FALLAS DE BUJÍAS DE
PRECALENTAMIENTO
• Entre las fallas de las bujías de precalentamiento:
Ing. Stefania Amaya
Causa
• Al motor le cuesta
encender
Síntoma
• El tubo de escape
expulsa humo gris
o blanco.
Diagnóstico
• Revisión de la
resistencia de la
bujía de
precalentamiento .
Ing. Stefania Amaya
Mantenimiento
Mantenimiento
Preventivo
Inspecciones
programadas y
periódicas que se realiza
al vehículo para
garantizar la seguridad
Confiabilidad durante la
conducción
Menor costo de
reparación.
Predictivo
Es cuando se realiza un
diagnóstico o
mediciones que permiten
predecir si es necesario
alguna corrección.
Proactivo
Cambio o reemplazo de
elementos en función de
corto tiempo.
Correctivo
Es el que se realiza el
reemplazo de piezas que
dejan de funcionar
ELEMENTOS FIJOS DEL MOTOR
Ing. Stefania Amaya
CABEZOTE
• Se debe verificar que el cabezote no posee fisuras, además de ello entre el cabezote y
block disponemos de una junta la cual nos puede generar fallas.
Ing. Stefania Amaya
POSIBLES FALLAS DEL MOTOR DIÉSEL
Ing. Stefania Amaya
Posible Causa
No llega el
combustible
al motor
Sincronizació
n incorrecta
del motor
Comprobación
Tanque del
combustible
vació
Conexiones
obstruidas
Bomba de
inyección con
averías.
Solución
Revisión de
cañerías.
Estado de
bomba de
inyección.
Poner a punto
el motor,
revisar
manual
MOTOR NO ARRANCA
EL MOTOR ECHA HUMO POR EL
ESCAPE Y GENERA CARBONILLA
Suministro
excesivo
de diésel
Examinar bomba de inyección
Estanquidad del inyector
Bujía de precalentamiento con falla
Filtro de aire obstruido
Ing. Stefania Amaya
Ing. Stefania Amaya
• Obstrucción de la
válvula EGR
• Obstrucción del
múltiple de admisión.
• Ingreso menos flujo
de aire.
• No se genera una
combustión completa
• Filtro de aire
obstruido
Genera
Carbonilla
Excesivo
Golpeteo -
detonación
Aire en el
combustible
Purgar bomba
Filtro
Canalizaciones
e inyectores
Inyector
obstruido
Comprobar
funcionamiento
Poco
refrigerante
Bajo nivel de
aceite
Ing. Stefania Amaya
SISTEMA DE LUBRICACIÓN
Ing. Stefania Amaya
El sistema está formado, según la figura:
• El cárter (I)
• La bomba de aceite (B)
• Válvula limitadora de presión (V)
• Filtro de aceite (F)
• Tuberías (R)
• Radiador
• Elementos de control (M)
La función principal del sistema de lubricación de
un motor es filtrar, enfriar y ajustar la presión del
aceite para que el motor pueda funcionar en
perfectas condiciones.
CONSUMO EXCESIVO DE ACEITE
Ing. Stefania Amaya
Síntoma
El manómetro marca cero
o la lámpara indicadora
se enciende
Causas
Falta de Aceite en el
motor
Avería del
manómetro
Filtro obstruido
por suciedad
La bomba
posee mal
funcionamiento
Rotura del
árbol de
mando
Rancores con
juntas con
fugas
Avería interior
Ing. Stefania Amaya
Ing. Stefania Amaya
Síntoma
Poca presión en el
manómetro
Causas
Aceite diluido
Aceite muy caliente
Filtro obstruido por suciedad
Cojinetes desgastados
Piezas de la bomba desgastadas
Tubos o conductos desgastados
ACEITE EN EL REFRIGERANTE
Causas
Perdida de
hermeticidad
de la junta de
la culata
Falla de
enfriador de
aceite
Rotura en
conductos de
refrigeración
del block
Síntomas
Nivel de
aceite
aumenta.
Solución
Sustituir la
junta de
cabezote.
Revisar la
planitud del
cabezote.
Revisión del
enfriador de
aceite.
Ing. Stefania Amaya
SISTEMA DE REFRIGERACIÓN
Ing. Stefania Amaya
Este sistema consiste en un circuito de agua,
en contacto directo con las paredes de las
camisas y cámaras de combustión del
motor, que absorbe el calor radiado y lo
transporta a un depósito refrigerante donde
el líquido se enfría y vuelve al circuito para
cumplir nuevamente su misión refrigerante
donde el líquido se enfría y vuelve al circuito
para cumplir su misión refrigerante
Calentamiento
excesivo del
motor
Causas
Nivel bajo de refrigerante.
Radiador sucio por el exterior.
La correa del ventilador patina.
El termostato funciona mal
Radiador y camisas obstruidas
Bomba de agua obstruida
Ing. Stefania Amaya
AGUA
EN
EL
CÁRTER
Agrietamiento de
las camisas
Falla de los sellos
de camisas
(camisas
húmedas)
Rotura en
conductos de
refrigeración del
block
Causas
No se encuentra
el nivel del
refrigerante
adecuado.
Síntomas
Reparación
general del
motor
Solución
Ing. Stefania Amaya
UNIDAD 2.
SISTEMA DE
ALIMENTACIÓN
BOMBA DE INYECCIÓN
I N G . S T E FA N I A A M AYA
Ing. Stefania Amaya
SISTEMA DE ALIMENTACIÓN
• El sistema de alimentación se
subdivide en dos sistemas:
– Sistema de combustible: Su
función es suministrar el
combustible necesario, libre de
impurezas y humedad al sistema
de inyección.
– Sistema de inyección: Su función
es suministrar el combustible
dosificado, pulverizado, en forma
sincronizada a una presión
adecuada.
Ing. Stefania Amaya
Ing. Stefania Amaya
Inyección Directa
El inyector, asoma
en el centro de la
cámara de
combustión
Presión de
trabajo de: 131 a
304 bares
Es más
económico el
consumo de
diésel
Flujo de
Combustible
Circuito de baja
presión
Deposito de
combustible
Bomba de transferencia
/bomba de alimentación.
Presión media o de
transferencia
Filtro
Circuito de alta
presión
Bomba de
Inyección
Inyectores
Combustible
Pulverizado
Ing. Stefania Amaya
RETORNO
(exceso
de
combustible)
98 a 350 Bar
BOMBAS DE INYECCIÓN
Ing. Stefania Amaya
• Dosificar el
combustible
suministrado al motor
• Entregar el combustible
según el orden de
inyección del motor
• Sincronizar la entrega
de combustible.
BOMBAS DE INYECCIÓN EN LÍNEA
Ing. Stefania Amaya
Características
• Las bombas de inyección
en línea están instaladas
junto al motor
• Aplica para motores de
hasta 12 cilindros,
medianos y grandes
• Permite el aumento de
presión
• La bomba de inyección en
línea posee un embolo
por cada cilindro.
FUNCIONAMIENTO DE LA BOMBA
LINEAL
Ing. Stefania Amaya
Regulación
de entrada
El pistón se
encuentra en la
parte inferior
ingresando el
combustible
En la carrera de
ascenso el
combustible se
impulsa hacia el
inyector
La impulsión de
combustible se
lleva al cabo hasta
que el estriado
tallado llegue a la
lumbrera de
alimentación ,
permitiendo la
descarga.
Ing. Stefania Amaya
Lumbreras
CIRCUITO
DE
ALIMENTACIÓN
DE
COMBUSTIBLE
DE
LA
BOMBA
EN
LÍNEA
Depósito de
combustible
• Es un contenedor
seguro para
líquidos
inflamables
Bomba de
alimentación
• Asegura que la
bomba de
inyección dispone
en cualquier
momento del
combustible
Filtro de
combustible
• Protege a la bomba
de inyección y al
motor
• Este retiene
partículas hasta un
tamaño de sólo de
2um y especial el
agua.
Bomba de
Inyección
• Es el núcleo de la
instalación de
inyección. Esta
genera la alta
presión necesaria
para la inyección.
Regulador de
revoluciones
• Su función es
limitar el número
de revoluciones
finales del motor.
Porta Inyector
• El inyector conduce
el combustible
sometido a alta
presión a la cámara
de combustión.
Bujía
Incandescencia
Ing. Stefania Amaya
BOMBA DE ALIMENTACIÓN
Ing. Stefania Amaya
COMPONENTES
DE
LA
BOMBA
Aspira el
combustible del
depósito y lo lleva
a baja presión (8
bar)
La bomba de
transferencia y de
inyección trabaja
durante todo el
funcionamiento
del motor diésel
Dependiendo del
modelo la bomba
de alimentación
puede ser
mecánica o
eléctrica.
VÁLVULA DE ASPIRACIÓN
• La válvula de aspiración o de
descarga permite la entrada del
combustible hacia los
inyectores.
Ing. Stefania Amaya
ÁRBOL DE LEVAS
• Es un eje encargado de transmitir el
movimiento rotativo desde la distribución
a los componentes del regulador.
• Genera la alta presión gracias a sus levas.
El numero de levas es = al numero de
elementos=al número de cilindros del
motor.
Ing. Stefania Amaya
COMPONENTES
DE
LA
BOMBA
EL EMBOLO
El embolo es el
encargado de entregar la
cantidad de combustible
hacia el inyector
• El pistón de la bomba presenta una ranura longitudinal y
un rebaje con profundidad lateral.
• La cantidad de combustible puede ser inyectada
dependiendo la posición angular y altura de dicho hélix
• Depende de la posición del eje de levas (altura) y de la
cremallera (posición angular)
Ing. Stefania Amaya
COMPONENTES
DE
LA
BOMBA
VARILLA DE CONTROL - CREMALLERA
La varilla de control hace girar
todos lo émbolos para variar la
cantidad de combustible
• Permite el control de la
inyección de combustible que
sea igual en cada uno de los
cilindros.
Ing. Stefania Amaya
COMPONENTES
DE
LA
BOMBA
VÁLVULA
DE
PRESIÓN
Válvula de presión
Su función es separar el
circuito de alta presión
entre la tubería y el pistón
de la bomba y descargar
después de la inyección
Esta descarga permite un
cierre rápido y exacto del
inyector.
Durante el proceso de
alimentación la presión
existente en la cámara de
alta presión levanta el
asiento de la válvula.
Posterior a la inyección,
cae la presión en la cámara
de alta presión.
El resorte de la válvula de
presiona otra vez el cono
de la válvula de presión
contra el asiento.
Fallas
Al existir desgaste de este
componente, hará que el
motor tarde mucho en
arrancar.
Retraso de inyección o
inyección tardía, con la
consecuente pérdida de
potencia e incremento del
consumo de combustible.
El porta válvula, es
acomodar la válvula de
presión y realizar la
conexión de la bomba con
el inyector.
Ing. Stefania Amaya
REGULADOR
Los motores Diésel tienen un límite
de revoluciones que es controlable
a través de la regulación de
alimentación de combustible.
• Cada regulador tiene la tarea de
limitar el número final de las
revoluciones en los diferentes
regímenes del motor.
Ing. Stefania Amaya
COMPONENTES
DE
LA
BOMBA
REGULACIÓN MECÁNICA
• El principio del regulador mecánico se basa en la
ley de fuerza centrifuga. Al activar el pedal del
acelerador, el conductor define el número de
revoluciones (velocidad) deseado.
• Empieza a aumentar el número de revoluciones.
Debido al incremento de éste comienza a moverse
en el regulador los pesos centrífugos. Cuando el
número de revoluciones coincide con el definido
por el conductor, el regulador mantiene constante.
• Cuando las revoluciones exceden las definidas por
el conductor o diseño, las contrapesas posicionan
el mecanismo de inyección, los elemento de
inyección hacia posición de menor inyección o
nula inyección, hasta estabilizar o controlar las
revoluciones.
Ing. Stefania Amaya
REGULACIÓN ELECTRÓNICA-EDC
• La regulación permite la medición de señales
eléctricas, así como el procesamiento de datos
electrónicos, para tener otras magnitudes como
la temperatura del aire, combustible y otros
sensores.
• De esta manera se puede aprovechar mejor el
combustible y reducir aun mas las emisiones de
gases de escape.
• También permite el intercambio de datos con
otros sistemas electrónicos como, por ejemplo,
la regulación antideslizante de tracción (EBD)
Ing. Stefania Amaya
PIEZAS DE DESGASTE
• Existen otros componentes
adicionales con mayor
desgaste.
– Juego de empaques de la
bomba
– Juego de empaques de
regulador
– Juego de reparo de bomba de
alimentación
Ing. Stefania Amaya
Válvula y porta
válvula
Elemento
(cilindro y pistón)
Corona dentada
Resorte del
pistón
Rodillo Rodamiento Eje de comando
CLASIFICACIÓN DE LAS BOMBAS EN
LÍNEA
Ing. Stefania Amaya
Autos y
camionetas
Tractores y Camiones (2 ejes)
Camiones
( 3 ejes o más)
BOMBA EN LÍNEA PE – TIPO P
Características Es más robusta y genera alta presiones
Son utilizadas en motores de gran potencia.
Árbol de levas robusto y grande
Permite trabajar con presiones de impulsión de hasta 1300 Bar
Dispone de variador de avance
Esta bomba sirve para motores de 149 KW o 200 HP, de potencia
No posee ventana para calibrar.
Lubricación independiente
Trae bomba de cebado
Ing. Stefania Amaya
BOMBA EN LÍNEA PE – TIPO A
Características Utilizada en vehículos de capacidad baja, mediana y
mediana - alta
Pico más alta de inyección es de 750 bar
Puede llegar a tener hasta 12 cilindros.
Los primeros diseños necesitaban lubricación
independiente.
Ing. Stefania Amaya
Ing. Stefania Amaya
BOMBAS DE INYECCIÓN PF Y PFR
• NO disponen de árbol de levas propio. En
consecuencia el embolo es impulsado por el
árbol de levas del motor.
• La transmisión del movimiento ´propulsor se
hace con o sin rodillos. Generalmente la fijación
se hace directamente en el motor y su posición
depende de cada aplicación
• Estas bombas comúnmente son de un cilindro,
pero también hay versiones de 2,3 y 4 cilindros.
• Su aplicación es en motores estacionarios,
grupo generadores de energía, embarcaciones
pesqueras ,etc.
Ing. Stefania Amaya
FALLAS DE LAS BOMBAS LINEALES
EL
COMBUSTIBLE
NO LLEGA A
LA BOMBA
Cerrada la válvula del tanque de combustible.
Falta de combustible
Materia extraña en el tanque de combustible
Filtros tapados
Obstrucción de conductos
No trabaja bien la bomba
Ing. Stefania Amaya
Ing. Stefania Amaya
BOMBA DE INYECCIÓN ROTATIVA
El campo de aplicación y
el diseño de la bomba
viene determinados por
el régimen real, la
potencia y el tipo de
construcción del motor.
Son empleadas en
automóviles de turismo,
camiones, tractores y
motores estacionarios.
Su lubricación se realiza
mediante el mismo
combustible que inyecta.
Es compacta y menos
ruidosa que otro tipo de
bombas de inyección
Ing. Stefania Amaya
BOMBA ROTATIVA – CIRCUITO DE
ALIMENTACIÓN
Ing. Stefania Amaya
COMPONENTES DE BOMBA DE
INYECCIÓN ROTATIVA
Bomba
de
Alimentación
Tiene aletas integradas
con válvula reguladora
de presión.
Aspira el combustible
Produce presión en la
cámara interna de la
bomba
Ing. Stefania Amaya
Funcionamiento de la bomba de
alimentación
El eje de accionamiento
gira y hace girar al disco
de paletas, que está
fijado por la chaveta.
Con eso se genera una
fuerza centrífuga que
empuja las paletas hacia
fuera.
Las paletas acompañan
las paredes internas del
anillo excéntrico,jalando y
comprimiendo el diesel
que viene del tanque.
Permitiendo el ingreso a
la cámara.
El diésel es comprimido
hasta alcanzar la otra
cámara de la carcasa.
Y es inyectado en la
cámara de baja presión
de la bomba.
Ing. Stefania Amaya
Bomba de
Alta presión
Solo tiene un
elemento de
bombeo para todos
los cilindros.
Produce presión de
inyección.
Alimenta y
distribuye
combustible.
Ing. Stefania Amaya
Funcionamiento
de
bomba
de
alta
presión
El pistón distribuidor ejecuta un
movimiento rotativo y axial (de
vaivén)
Cuando el pistón regresa al PMI
libera la entrada del diésel en la
cámara de alta presión a través de
uno de los canales de alimentación.
El distribuidor avanza,
comprimiendo el combustible en la
cámara de alta presión
Hasta alcanzar el PMS, enviando el
combustible para uno de los
cilindros del motor, a través de la
porta válvula.
Ing. Stefania Amaya
Regulador
mecánico
de
rotación
La corredera de regulación
está unida a las palancas de
regulación, mediante un
perno esférico.
Es sobre estas palancas que
actúan la fuerza centrífuga de
las pesas centrifugas y resorte
de regulación.
Ing. Stefania Amaya
FUNCIONAMIENTO DEL
REGULADOR MECÁNICO
Conforme el conductor
pisa el pedal del
acelerador, el conjunto
de palancas se desplaza
hacia atrás, empujando
el taco regulador para
adelante.
El orificio de escape del
pistón distribuidor
permanece más tiempo
cerrado, prolongando la
inyección de
combustible.
U mayor volumen de
combustible aumenta la
potencia del motor,
además de la rotación y
la presión.
Con la reducción de la
rotación, el conjunto
regulador se mueve,
haciendo que el taco
retroceda.
El agujero permanece
menos tiempo cerrado,
reduciendo la cantidad
de combustible
inyectado.
Ing. Stefania Amaya
• Es un dispositivo eléctrico que detiene el
motor Diesel interrumpiendo la
alimentación de combustible.
Válvula electromagnética parada
Ing. Stefania Amaya
La corriente eléctrica
acciona el dispositivo de
parada de la bomba
• Cuando el conductor
gira la llave de
encendido.
El embolo sube, liberando
el paso del combustible
hacia dentro de la cámara
de alta presión.
Cuando la llavees girada en
el encendido cortando la
corriente eléctrica.
• El resorte empuja el
embolo para abajo,
cerrando el paso del
Diesel hacia dentro de la
cámara de alta presión.
Debido a su princiio de
trabajo de autoencendido,
el motor Diesel puede ser
detenido con la
interrupción de la
alimentación de
combustible.
Ing. Stefania Amaya
Avance de Inyección
Regula el inicio de la
inyección
dependiendo de la
rotación y en parte,
de la carga.
Ing. Stefania Amaya
Funcionamiento
Cuando la rotación aumenta,
crece también la presión interna
de la bomba.
El pistón de avance es empujado
para adelante, superando la
fuerza del resorte, desplazando
todo el conjunto.
Se avanza la posición de los
rodillos en relación a los relieves
de la pista del disco de levas.
Ing. Stefania Amaya
Válvula reguladora de
presión
El combustible se inyecta hacia el interior de la
bomba, a cada vuelta del eje de accionamiento
Cuando mayor la rotación, mayor será la cantidad de
Diesel inyectada en el interior de la bomba
distribuidora.
Como el volumen de combustible que entra es
mayor al volumen inyectado en el motor, es
necesario liberar el exceso.
Ing. Stefania Amaya
Cabezal
hidráulico -
Cabezote
Su función es producir alta
presión en el sistema y
distribuido el combustible
para los respectivos
inyectores, soportar los
racores y válvulas de
distribución.
Un anillo deslizante en el
elemento, comandado por el
regulador, cubre o libera el
orificio de escape.
•Comandando la cantidad de
combustible inyectado.
Ing. Stefania Amaya
COMPONENTES DE DESGASTE
Eje de
comando
Bomba
alimentadora
de paletas
Porta rodillo
Cabezal
hidráulico
Porta
válvulas
Pistón de
avance
Carcasa
Ing. Stefania Amaya
• En orden de importancia, los elementos de
mayor desgaste en las bombas rotativas
son:
• Juego de empaques
• Retenedor o sello de eje principal
• Juego de bocinas de eje principal
• Disco de levas
• Juego de rodillos
• Émbolo variador de avance
• Bomba de alimentación
• Regulador
• Tapón de cabezal hidráulico
• Cabezal hidráulico.
Ing. Stefania Amaya
BOMBA ROTATIVA AXIAL VE
Bombas
Rotativas
Son adecuadas para motores de hasta 6 cilindros
El diseño de la bomba depende del número de revoluciones nominal,
potencia y diseño del motor Diesel
Su aplicación es en vehículos de turismo (livianos), industriales,
tractores y motores estacionarios.
El motor Diesel acciona directamente la bomba de inyección rotativa.
El accionamiento ocurre a través de una correa dentada, piñón de
inserción, rueda dentada o cadena.
El movimiento de giro del eje de accionamiento se transmite por una
unidad de acoplamiento al pistón de la bomba.
Las bombas de inyección rotativas tienen un regulador de
revoluciones mecánica o electrónico y variador de avance integrado.
Poseen un solo elemento de alta presión para todos los cilindros.
Ing. Stefania Amaya
FUNCIONES DE LOS GRUPOS
• Aspira combustible
y produce presión
en la cámara
interna de la bomba
Bomba de
alimentación
con válvula
reguladora de
presión
Ing. Stefania Amaya
FUNCIONES DE LOS GRUPOS
• Produce presión de
inyección, alimenta
y distribuye
combustible.
Bomba de
alta presión
con
distribuidor
Ing. Stefania Amaya
FUNCIONES DE LOS GRUPOS
• Efectúa la regulación de la
rotación, modificando el
volumen de débito por
medio del dispositivo de
regulación en el rango de
regulación.
Regulador
mecánico
de
rotación
Ing. Stefania Amaya
FUNCIONES DE LOS GRUPOS
• Interrumpe
el débito de
combustible
Válvula
electromagnética
de parada
Ing. Stefania Amaya
FUNCIONES DE LOS GRUPOS
• Regula el inicio de
inyección
dependiendo de la
rotación y, en parte,
de la carga
Avance
de
inyección
Ing. Stefania Amaya
BOMBA ROTATIVAS VR DE ÉMBOLOS
RADIALES.
Unidades de
Control
Unidad de control
para el motor
Procesa todos los
datos del motor, y
sensores externos
Unidad de control
para la bomba.
Registra señales
de los sensores
internos.
Ángulo de
rotación
Temperatura de
combustible
Ing. Stefania Amaya
Temperatura del
aire aspirado
Número de
revoluciones del
motor
Presión de
sobrealimentación
Posición del pedal
del acelerador
Velocidad de la
marcha
Ing. Stefania Amaya
Funciones
Básica
Inyección de
combustible
Cantidad correcta
Aumento de presión
SISTEMA DE COMBUSTIBLE
• Se compone de dos partes el
sistema:
– Baja presión
• Depósito de combustible, tiene
que ser resistente a la corrosión y
continuar siendo estancos de
sobrepresión.
• Tubería, pueden ser de acero o
flexibles con armado de tejido de
acero que sean difícilmente
inflamables.
• Filtro de combustible, un filtrado
insuficiente puede conducir daños
a los componentes.
Ing. Stefania Amaya
• Alta presión
– Tubería de alta presión, conduce
desde la bomba de inyección a los
inyectores.
– Inyectores, montados en los port-
inyectores, inyectan el combustible
exactamente dosificando en el
cilindro del motor.
– El combustible excedente retorna con
presión reducida al depósito de
combustible.
Ing. Stefania Amaya
COMPONENTES
DE
BAJA
PRESIÓN
DE
LA
BOMBA
DE
INYECCIÓN
Bomba de alimentación
de aletas
Succiona el combustible
desde el déposito
Trasporta en cada vuelta
un caudal constante
Ing. Stefania Amaya
Válvula reguladora
de presión
Regula la presión de
combustible
La válvula abre
cuando aumenta
la presión de
combustible
Cierra cuando
disminuye dicha
presión
Ing. Stefania Amaya
Válvula de estrangulador
de rebose
Para refrigeración y ventilación de la
bomba, retorna el combustible al depósito.
Se encuentra atornillada al cuerpo de la
bomba.
El retorno calibrado facilita una purga de
aire automática de la bomba.
Ing. Stefania Amaya
• En la parte alta de presión tiene lugar,
además de la generación de alta
presión, también distribución y
dosificación de combustible con el
control del comienzo de alimentación,
siendo preciso para ello únicamente
un elemento actuador.
Ing. Stefania Amaya
COMPONENTES
DE
ALTA
PRESIÓN
DE
LA
BOMBA
DE
INYECCIÓN
GENERACIÓN DE ALTA PRESIÓN
MEDIANTE LA BOMBA DE ALETAS
La bomba es
propulsada por el eje
de accionamiento y
consta de:
Disco de
arrastre
Soporte de
rodillos
El émbolo de
suministro
Parte delantera
de cabezal.
Ing. Stefania Amaya
DISTRIBUCIÓN DE COMBUSTIBLE EN
EL CUERPO DISTRIBUIDOR
Ing. Stefania Amaya
Ing. Stefania Amaya
CUADRO
DE
DIFERENCIAS
LOCALIZACIÓN
DE
AVERÍAS
Humo Negro en el escape
Contiene carbón que no se a
quemado en el combustible
como resultado de una
combustión incompleta
La relación de aire-
combustible es demasiado
pequeña (mezcla rica)
Ing. Stefania Amaya
LOCALIZACIÓN
DE
AVERÍAS Humo Negro en el escape
Falla(síntoma)
• Humo a plenas cargas con velocidades altas y bajas y sin perdida de potencia.
Posibles Causas
• Caudal máximo del combustible de la bomba mal regulado.
Solución
• Quite la bomba y proceda a regular el caudal en el laboratorio de acuerdo a las
especificaciones del fabricante.
Ing. Stefania Amaya
LOCALIZACIÓN
DE
AVERÍAS
Humo Negro en el escape
Falla(síntoma)
• Humo a plena carga, con velocidades altas y medias y el motor mas silencioso que de costumbre.
• Humo a plena carga, principalmente a velocidades medias y bajas, el motor más ruidoso que de
costumbre.
Posibles Causas
• Avance retardado de la Inyección, o dispositivo de avance funciona mal.
• Avance de la inyección demasiado adelantado, dispositivo de avance funciona mal.
Solución
• Sincronizar el avance de acuerdo a las especificaciones del fabricante o repare el dispositivo de
arranque.
Ing. Stefania Amaya
LOCALIZACIÓN
DE
AVERÍAS Humo Negro en el escape
Falla(síntoma)
• Humo a plena carga y velocidades altas, funcionamiento con mayor velocidad
máxima que de costumbre.
Posibles Causas
• Regulador de la bomba mal regulado.
Solución
• Quite la bomba de inyección del motor y regule la velocidad máxima de corte de
caudal por el regulador de acuerdo a las especificaciones del fabricante.
Ing. Stefania Amaya
LOCALIZACIÓN
DE
AVERÍAS
Humo Negro en el escape
Falla(síntoma)
• Humo a cualquier
velocidad, acompañado
de arranque difícil.
Posibles Causas
• Perdida de compresión
en los cilindros del
motor.
Solución
Reparar el motor.
Ing. Stefania Amaya
LOCALIZACIÓN
DE
AVERÍAS
Humo Blanco en el escape
Arranque del motor
cuando es baja la
temperatura del ambiente
Combustible inyectado
posee temperatura
demasiada baja
El combustible no
quemado sale por el
escape en forma de vapor,
apareciendo como humo
blanco o azul.
Ing. Stefania Amaya
Humo
blanco
o
azulado
en
el
escape
Mal funcionamiento del
precalentamiento
Problema de arranque
Bujía de precalentamiento, no
trabaja en el tiempo
estipulado.
No existe quema de
combustible.
Quemado excesivo del aceite
Presencia de aceite en la
cámara de combustión, lo cual
se evapora.
Parte del combustible
también se expulsa sin
quemar
Puede ser anillos , válvulas.
Reparación del motor.
Presión de compresión baja
Tardará más tiempo que el
combustible alcance la
temperatura de combustión.
Combustible sin quemarse es
expulsado.
Agua mezclada con el
combustible
La temperatura de la cámara
de combustión es baja.
Ing. Stefania Amaya
LOCALIZACIÓN
DE
AVERÍAS
BOMBA – INYECTOR CUMMINS
La inyección Cummins se denominado
también inyector – bomba, en el cual la
bomba de inyección y el inyector están
integrados en un solo dispositivo para cada
cilindro.
El concepto PT se debe a las variables primarias que
afectan lacantidad de combustible dosificada de
inyectado por cada ciclo delpistón, estas variables
son la presión y tiempo, es decir, la presión de
combustible entregado a los inyectores y período
de tiempo en el cual el combustible entra en estos.
Ing. Stefania Amaya
El Sistema de combustible PT se ha
distinguido por más de 50 años por sus
características en los motores Cummins.
Alta presión de inyección.
Diseño muy simple.
Costo Efectivo.
Confiable.
Ing. Stefania Amaya
Funciones
de
la
bomba
A. Transferir el combustible del tanque de
almacenamiento de la unidad del motor.
Entregar una presión de riel a los inyectores.
Gobernar la velocidad mínima
Gobernar la velocidad máxima del motor.
Darle al operador de control de la salida de potencia y
velocidad del motor debajo de la velocidad gobernada.
Controlar las emisiones de humo durante la aceleración.
Paro del motor
Ing. Stefania Amaya
BOMBA DE COMBUSTIBLE
• Básicamente las bombas de
combustible, tanto PT- (tipo R)
“regulado por presión” como PT-
(tipo G) “controlado por gobernador
desempeñan las mismas funciones,
pero en una forma mecánica
diferente.
Ing. Stefania Amaya
Bomba de Combustible tipo G
• La bomba del tipo de engranes que absorbe el
combustible del tanque lo hace llegar a través
de la malla de filtro de la bomba hasta el
gobernador.
• El gobernador que controla la circulación de
combustible desde la bomba de engranes, así
como las velocidades máxima y mínima del
motor.
• El acelerador que suministra un control
manuela de la circulación de combustible hacia
los inyectores en todas las condiciones, dentro
de los rangos de operación.
BOMBA DE ENGRANAJES Y AMORTIGUADORES DE
PULSACIONES
Es impulsado por el eje
principal de la bomba y
contiene un solo juego de
engranes que absorben y
descargan combustible en
todo el sistema.
Un amortiguador de
pulsaciones montado en la
bomba de engranes contiene
un diafragma de acero que
absorbe las pulsaciones y
suaviza la circulación de
combustible por todo el
sistema.
Ing. Stefania Amaya
Acelerador
• El acelerador permite que el operador controle la velocidad
del motor entre la marcha mínima y las rpm gobernadas, de
acuerdo con las condiciones variables de velocidad y carga.
• Para funcionamiento a más de marcha mínima, el
combustible pasa a través del orificio del barril principal del
gobernador, hasta el agujero de aceleración en el eje.
Ing. Stefania Amaya
Válvula de control de aire - combustible
La válvula de control de aire-
combustible (AFC por sus siglas
en inglés) se utiliza en los
motores turbo cargados para
restringir el flujo y la presión
del combustible durante la
aceleración.
La AFC limita la cantidad de
combustible suministrado a los
inyectores de acuerdo con la
cantidad de aire que envía el
turbo cargador.
El control del flujo y presión del
combustible para los inyectores,
en esa forma, produce mejor
combustión, menor consumo
de combustible y menos humo
negro en el escape y mayor
torsión (par) a bajas velocidad
durante la aceleración.
Ing. Stefania Amaya
Gobernador
El Gobernador mecánico llamado algunas veces
gobernador automotriz, es accionado por un sistema
de resortes y contrapesos, y tiene dos funciones:
Mantener suficiente combustible para marcha
mínima (en vacío), cuando el acelerador está en la
posición de marcha mínima.
Corta el paso del combustible a los inyectores
cuando se excede de las revoluciones máximas
gobernadas.
Ing. Stefania Amaya
VÁLVULA DE PARO
• El combustible del acelerador se envía a través de la válvula de paro hasta el múltiple de
combustible en la culata de cilindros y a los inyectores. La válvula de paro se emplea para
cortar el combustible a los inyectores y hacer que se pare el motor; puede ser manual o
eléctrica.
Ing. Stefania Amaya
UNIDAD DE BOMBA - INYECTOR
Unidad
de
Bomba
–
Inyector
UI
Su misión es inyectar combustible.
Mediante una unidad de control, se
considera la cantidad exacta y la
presión necesaria.
En este sistema no se necesita
tuberías de alta presión.
Ing. Stefania Amaya
• Por cada
cilindro hay
una unidad de
bomba-
inyector
Montaje y
Accionamiento
• La activación
eléctrica, el
comienzo de
inyección y el
caudal
depende de la
velocidad del
émbolo de la
bomba.
Mediante el
árbol de levas
del motor es
accionado la
bomba –
inyector.
Ing. Stefania Amaya
Ing. Stefania Amaya
Electroválvula
Tiene la misión de determinar el momento
de inyección y duración de la inyección.
Ing. Stefania Amaya
FUNCIONAMIENTO
Ing. Stefania Amaya
Carrera de Aspiración
Carrera previa
Carrera de Suministro
Carrera Residual
CARRERA DE ASPIRACIÓN
• El combustible que se
encuentra
permanentemente bajo
sobrepresión fluye desde
la parte de baja presión de
la alimentación de
combustible.
Ing. Stefania Amaya
CARRERA
PREVIA
El émbolo
de la
bomba
toma giro
del árbol
de levas.
Ing. Stefania Amaya
ARRERA
DE
ALIMENTACIÓN
• La presión de
combustible en la
cámara de alta presión
aumenta debido al
movimiento del
émbolo de la bomba.
Debido a ello aumenta
también la presión en
el inyector.
• Presión de apertura
aprox. 300bar
Ing. Stefania Amaya
CARRERA
DE
RESIDUAL Se desconecta la
bobina del
electroimán.
La electroválvula se
abre después de un
breve tiempo de
retardo .
Entre la fase de
transición entre las
carreras alcanza la
presión punta.
Presión Aprox. 1800
a 2050 bar.
Al abrir la
electroválvula cae la
presión
rápidamente.
Ing. Stefania Amaya
ELECTROVÁLVULA DE ALTA PRESIÓN
Su misión es iniciar la
inyección en el momento
correcto y de garantizar una
dosificación exacta del
caudal a través de una
duración precisa de la
inyección.
Ing. Stefania Amaya
VARIADOR DE AVANCE
• El variador de avance es un dispositivo por medio del cual se logra modificar
automáticamente el calado de la bomba según la velocidad de giro del motor de
modo que cuanto mas de prisa gire este antes se produzca el punto de inicio de la
inyección para dar tiempo a que la combustión se produzca en el PMS del embolo del
motor.
Ing. Stefania Amaya
UNIDAD 3.
SOBREALIMENTACIÓN
I N G . S T E FA N I A A M AYA
Ing. Stefania Amaya
FUNDAMENTOS DE LA
SOBREALIMENTACIÓN
Ing. Stefania Amaya
Aumentar la cilindrada o lo que es lo mismo la capacidad de
absorción del motor.
Aumentar el régimen, incrementando el número de operaciones de
bombeo en un tiempo determinado.
Aumentar el llenado, favoreciendo el efecto de aspiración del
pistón durante su descenso.
En motores atmosféricos:
• El diámetro y recorrido de las válvulas de admisión
• Al ángulo del asiento de la válvula y su forma
• La presencia de una toma de aire dinámica.
Ing. Stefania Amaya
Sobrealimentación
Por
accionamient
o centrífugo
Turbocompresores
Geometría fija
Válvula
Wastegate
Geometría
Variable
Regulación de
presión en
forma:
Neumática
Eléctrica
Por
accionamient
o mecánico
Compresores
volumétricos
Compresor
roots
Compresor
lysholm
Compresor G
Comprex
Funciones
• En altitud, compensar
la disminución de la
densidad del aire.
• Incrementar la
cantidad de aire
suministrada al motor
para aumentar sus
prestaciones.
Ing. Stefania Amaya
La utilización de la
sobrealimentación
se fundamenta en
la mejora de la
combustión del
motor:
• Mayor llenado
de aire en los
cilindros
• Provocando un
aumento de
potencia
• Menor
consumo
específico
• Menor
contaminación
EL TURBOCOMPRESOR
La potencia de salida del motor
turboalimentado es entre un 40 y 50%
mayor que un motor atmosférico
similar sin aumentar su cilindrada.
• Los gases de escape impulsan una turbina, la cual
alcanza velocidades de rotación muy altas.
El turbo compresor se impulsa
mediante el flujo de gases de escape y
no se requiere potencia extra del
motor.
Una rueda del compresor se monta en
el extremo contrario del eje sobre el
que esta montada la turbina.
Ing. Stefania Amaya
TURBOCOMPRESOR
DE
GEOMETRÍA
FIJA
Turbina y compresor
conectados con un
solo eje(3)
Turbina(2), compresor
(1) posee álabes para
conseguir aumentar la
presión
Posee una válvula de
descarga wastegate(4),
se encarga de limitar
la presión de
sobrealimentación
desviando una
cantidad de gases
hacia el escape.
La carcasa del
compresor tiene el
mismo aspecto que la
turbina, pero en ella el
sentido de circulación
es opuesto.
•El aire ingresa en dirección
axial coincidente con el eje
del turbocompresor.
•Es acelerado hasta salir del
mismo por la cámara espiral
la cual aumenta su sección
en dirección del flujo.
Ing. Stefania Amaya
Los turbocompresores de
geometría variable tienen la
característica de que a bajas
revoluciones del motor se
nota su efecto, eliminando
el gran inconveniente de los
turbocompresores de
geometría fija.
Son los más implantados en
vehículos modernos.
Su funcionamiento es
similar a los de geometría
fija, pero con la salvedad de
que estos no necesitan de
una válvula de descarga,
puesto que el sistema
puede hacer disminuir el
giro de la turbina y, por
tanto, rebajar la presión a
los valores preestablecidos
en determinados modos de
funcionamiento del motor.
La gestión electrónica en
este caso es la encargada de
hacer disminuir o aumentar
la fuerza que ejercen los
gases de escape sobre la
turbina.
Con esto se consiguen
tiempos de respuesta del
turbo muy breves, además
de velocidad de gases alta y
un funcionamiento
progresivo de la turbina
desde bajos regímenes.
Ing. Stefania Amaya
TURBOCOMPRESOR
DE
GEOMETRÍA
VARIABLE
La turbina de escape del
turbocompresor una corona con
un número de álabes móviles en
su periferia.
La corona, a su vez, se encuentra
unida a una varilla y esta a una
cápsula neumática dividida en dos
cámaras.
Teniendo en cuenta que la presión
que ejercen los gases de escape
está relacionada con el número de
revoluciones del motor, se podrán
obtener diferentes regímenes de
funcionamiento de la turbina
según la orientación que tomen
las paletas o álabes móviles, es
decir, se variará la sección de paso
de los gases de escape.
Ing. Stefania Amaya
Al cerrarse los alabes y disminuir la sección entre ellos, la
velocidad de los gases de escape aumenta e influyen
con más fuerza en las paletas de rodete de la turbina,
logrando así la máxima compresión del aire a bajas
revoluciones (r.p.m.).
Cuando se incrementa la presión de soplado sobre el
colector de admisión y aumentan las revoluciones del
motor, es detectado por la capsula manométrica que
transforma ese movimiento empujando el sistema de
mando de los alabes para que éstos se abran y haciendo
disminuir los gases de escape que mueven la turbina.
SISTEMA DE INYECCIÓN
ELECTRÓNICA
• La regulación electrónica diésel
EDC, esta dividida entres
bloques:
Ing. Stefania Amaya
Sensores y
transmisores de
valores teóricos
para registrar las
condiciones de
servicio
Unidad de control
del motor y
unidad de control
de la bomba
(algoritmo de
regulación)
Elementos de
ajuste- Actuadores
para la
transformación de
señales.
Ing. Stefania Amaya
Ing. Stefania Amaya
CARACTERÍSTICAS COMUNES DE LOS
SISTEMAS EDC
• Inyección Directa.
• Cámara de combustión en el pistón.
• Aprovechamiento de los fenómenos de Squish y swirl.
• Presiones hasta de 2000 bar aprox.
• Forma de la toberas
Ing. Stefania Amaya
SISTEMA INYECTOR BOMBA
Ing. Stefania Amaya
La unidad de control es la encargada de activar cada
inyector mediante un sistema independiente para cada
uno de ellos, de modo que ejerce un mayor control sobre
la propia inyección logrando un mayor rendimiento y
potencia, además de un menor consumo.
El sistema de inyección de combustible HEUI es un
sistema de inyectores unitarios controlados
electrónicamente, que trabajan mediante presión
hidráulica utilizando el aceite lubricante del motor. Este
sistema funciona extrayendo el combustible del tanque a
través de una bomba de alta y baja presión, que al variar la
presión de aceite, controla la inyección de combustible de
manera independiente a la velocidad o posición del
cigüeñal del motor. La válvula de solenoide es accionada
por el flujo de aceite a alta presión, cuya fuerza es ejercida
en la parte superior del pistón del inyector.

Más contenido relacionado

Similar a Presentacion diesel.pptx

culata de un motor de combustión interna (1).pptx
culata de un motor de combustión interna (1).pptxculata de un motor de combustión interna (1).pptx
culata de un motor de combustión interna (1).pptxJNSiles1
 
Diagnostico y mantenimiento en los motores diesel
Diagnostico y mantenimiento en los motores dieselDiagnostico y mantenimiento en los motores diesel
Diagnostico y mantenimiento en los motores dieselgerardoaleximarinard
 
Diagnostico del motor: La compresión del motor
Diagnostico del motor: La compresión del motorDiagnostico del motor: La compresión del motor
Diagnostico del motor: La compresión del motorAutodiagnostico
 
B ombas de inyeccion cummins
B ombas de inyeccion cumminsB ombas de inyeccion cummins
B ombas de inyeccion cumminsFabian Ochoa
 
Conocimientos Tecnológicos exposicion miercoles.pptx
Conocimientos Tecnológicos exposicion miercoles.pptxConocimientos Tecnológicos exposicion miercoles.pptx
Conocimientos Tecnológicos exposicion miercoles.pptxStefanoArroyo
 
mot-7-culata-v.pdf
mot-7-culata-v.pdfmot-7-culata-v.pdf
mot-7-culata-v.pdfJNSiles1
 
Boletin-pro-800-inyeccion-riel-comun-diesel-final.pdf
Boletin-pro-800-inyeccion-riel-comun-diesel-final.pdfBoletin-pro-800-inyeccion-riel-comun-diesel-final.pdf
Boletin-pro-800-inyeccion-riel-comun-diesel-final.pdfViloMandes
 
Introducción motores.pptx
Introducción motores.pptxIntroducción motores.pptx
Introducción motores.pptxMecnicaLedesma
 
4 sistemas de enfriamiento
4 sistemas de enfriamiento4 sistemas de enfriamiento
4 sistemas de enfriamientoOmizz de Leo
 
4 sistemas de enfriamiento
4 sistemas de enfriamiento4 sistemas de enfriamiento
4 sistemas de enfriamientojoseitoaguilar
 
COMPONENTES DE UN AUTOMOVIL
COMPONENTES DE UN AUTOMOVIL COMPONENTES DE UN AUTOMOVIL
COMPONENTES DE UN AUTOMOVIL jeffersonlema
 

Similar a Presentacion diesel.pptx (20)

Clase 4. culata
Clase 4. culataClase 4. culata
Clase 4. culata
 
culata de un motor de combustión interna (1).pptx
culata de un motor de combustión interna (1).pptxculata de un motor de combustión interna (1).pptx
culata de un motor de combustión interna (1).pptx
 
SISTEMA DE CONBUSTIBLE.pptx
SISTEMA DE CONBUSTIBLE.pptxSISTEMA DE CONBUSTIBLE.pptx
SISTEMA DE CONBUSTIBLE.pptx
 
motores diesel - avansys
motores diesel - avansysmotores diesel - avansys
motores diesel - avansys
 
motores diesel - avansys
motores diesel - avansysmotores diesel - avansys
motores diesel - avansys
 
Diagnostico y mantenimiento en los motores diesel
Diagnostico y mantenimiento en los motores dieselDiagnostico y mantenimiento en los motores diesel
Diagnostico y mantenimiento en los motores diesel
 
Diagnostico del motor: La compresión del motor
Diagnostico del motor: La compresión del motorDiagnostico del motor: La compresión del motor
Diagnostico del motor: La compresión del motor
 
B ombas de inyeccion cummins
B ombas de inyeccion cumminsB ombas de inyeccion cummins
B ombas de inyeccion cummins
 
Mantenimiento motor diesel
Mantenimiento motor dieselMantenimiento motor diesel
Mantenimiento motor diesel
 
Conocimientos Tecnológicos exposicion miercoles.pptx
Conocimientos Tecnológicos exposicion miercoles.pptxConocimientos Tecnológicos exposicion miercoles.pptx
Conocimientos Tecnológicos exposicion miercoles.pptx
 
mot-7-culata-v.pdf
mot-7-culata-v.pdfmot-7-culata-v.pdf
mot-7-culata-v.pdf
 
Turbos
TurbosTurbos
Turbos
 
Boletin pro-800-inyeccion-riel-comun-diesel-final
Boletin pro-800-inyeccion-riel-comun-diesel-finalBoletin pro-800-inyeccion-riel-comun-diesel-final
Boletin pro-800-inyeccion-riel-comun-diesel-final
 
Boletin-pro-800-inyeccion-riel-comun-diesel-final.pdf
Boletin-pro-800-inyeccion-riel-comun-diesel-final.pdfBoletin-pro-800-inyeccion-riel-comun-diesel-final.pdf
Boletin-pro-800-inyeccion-riel-comun-diesel-final.pdf
 
Tipos de cabezas de un motor
Tipos de cabezas de un motorTipos de cabezas de un motor
Tipos de cabezas de un motor
 
Introducción motores.pptx
Introducción motores.pptxIntroducción motores.pptx
Introducción motores.pptx
 
MECANICA_I__II.pdf
MECANICA_I__II.pdfMECANICA_I__II.pdf
MECANICA_I__II.pdf
 
4 sistemas de enfriamiento
4 sistemas de enfriamiento4 sistemas de enfriamiento
4 sistemas de enfriamiento
 
4 sistemas de enfriamiento
4 sistemas de enfriamiento4 sistemas de enfriamiento
4 sistemas de enfriamiento
 
COMPONENTES DE UN AUTOMOVIL
COMPONENTES DE UN AUTOMOVIL COMPONENTES DE UN AUTOMOVIL
COMPONENTES DE UN AUTOMOVIL
 

Presentacion diesel.pptx

  • 1. MOTOR DIESEL • El motor diésel se enciende mediante la compresión, es decir, no necesita de una bujía que genere la chispa, puesto que es tanta la compresión que • se ejerce que eleva la temperatura hasta el punto necesario para realizar el encendido del motor. Ing. Stefania Amaya
  • 2. VENTAJAS Y DESVENTAJAS Mayor rendimiento térmico Menor consumo Menos contaminante Mayor fuerza de arrastre • Torque Ing. Stefania Amaya Desventajas Mantenimiento especializado Peso Ruido Precio
  • 3. PRINCIPIOS DE FUNCIONAMIENTO DEL MOTOR DIÉSEL • Ciclo Teórico Ing. Stefania Amaya • Ciclo Práctico • Pérdidas de Bombeo • Pérdidas de Calor • Combustión no isobárica • Apertura de la válvula de escape
  • 4. COMBUSTIBLE DIÉSEL • Destilación y la purificación del petróleo • Punto de ebullición de 250°C a 350°C • Aceite – combustible. • Debe ser inyectado a una presión mayor a 100 bares (bar) • Se inflama a una temperatura de 280°C. • El diésel comercializado en el país tiene 150 ppm de azufre por debajo del límite máximo. Ing. Stefania Amaya
  • 5. PROPIEDADES DE LOS COMBUSTIBLES Volatilidad • Facilidad de cambio de estado. Valor Calorífico • Operaciones de Fletaje Calidad de Ignición / Número de cetano • Factor influencia en el arranque. Viscosidad • Inyección atomizada de combustible. Fluidez a bajas temperaturas Contenido de azufre: • Causa problemas de corrosión y desgaste de piezas Contenido de agua y sedimentos. • Resultado de la contaminación del combustible Ing. Stefania Amaya
  • 6. EMISIÓN DE CONTAMINANTES. • Entre los gases producidos en la combustión son los: – Óxidos de Nitrógeno – El monóxido de nitrógeno – Hidrocarburos no quemados – Óxidos de azufre – Material particulado Ing. Stefania Amaya
  • 7. NORMA INEN 207:2002 Ing. Stefania Amaya
  • 8. PRUEBAS DE DIAGNÓSTICO • Medición de la Compresión • Mide la cantidad de aire que los pistones están comprimiendo. • Para la prueba se lo realiza con el motor a temperatura de trabajo. • La lectura se va realizando de los cuatro cilindros. • Compresiometro • Escala de 0 a 1000 PSI Ing. Stefania Amaya
  • 9. PRUEBA DE VACÍO • Mide la depresión existe en el múltiple de admisión. • La lectura inicial varia según la altitud donde se encuentre. Ing. Stefania Amaya
  • 10. INTERPRETACIÓN DE MEDIDAS DE VACUÓMETRO Motor en buenas condiciones Marcha lenta – ralentí suave De 432 a 559 mm Hg Apretar y soltar el acelerador De 50 a 625 mmhg Posibles fallas Ralentí suave Lectura estable, pero es baja Apretar y soltar el acelerador Salta de 0 a 560 mmhg Desgaste de anillos, pistones y cilindros Ing. Stefania Amaya
  • 11. FACTORES DE ARRANQUE DEL MOTOR DIESEL Ing. Stefania Amaya Temperatura del aire al interior del cilindro Temperatura del motor Temperatura del aire de admisión Hermeticidad Velocidad de rotación Forma de la cámara de combustión Volatilidad y facilidad de inflamado Relación con el número de cetano Calidad de Inyección No tener la hermeticidad correcta o presión de apretura Dificulta la evaporación
  • 12. BUJÍAS DE PRECALENTAMIENTO • Las bujías de precalentamiento - son unas piezas metálicas con forma de cilindro. Su aspecto se asemeja mucho al de una bujía de un motor de gasolina, pero en vez de tener un electrodo en su punta, disponen de un elemento calefactor. Ing. Stefania Amaya
  • 13. FALLAS DE BUJÍAS DE PRECALENTAMIENTO • Entre las fallas de las bujías de precalentamiento: Ing. Stefania Amaya Causa • Al motor le cuesta encender Síntoma • El tubo de escape expulsa humo gris o blanco. Diagnóstico • Revisión de la resistencia de la bujía de precalentamiento .
  • 14. Ing. Stefania Amaya Mantenimiento Mantenimiento Preventivo Inspecciones programadas y periódicas que se realiza al vehículo para garantizar la seguridad Confiabilidad durante la conducción Menor costo de reparación. Predictivo Es cuando se realiza un diagnóstico o mediciones que permiten predecir si es necesario alguna corrección. Proactivo Cambio o reemplazo de elementos en función de corto tiempo. Correctivo Es el que se realiza el reemplazo de piezas que dejan de funcionar
  • 15. ELEMENTOS FIJOS DEL MOTOR Ing. Stefania Amaya
  • 16. CABEZOTE • Se debe verificar que el cabezote no posee fisuras, además de ello entre el cabezote y block disponemos de una junta la cual nos puede generar fallas. Ing. Stefania Amaya
  • 17. POSIBLES FALLAS DEL MOTOR DIÉSEL Ing. Stefania Amaya Posible Causa No llega el combustible al motor Sincronizació n incorrecta del motor Comprobación Tanque del combustible vació Conexiones obstruidas Bomba de inyección con averías. Solución Revisión de cañerías. Estado de bomba de inyección. Poner a punto el motor, revisar manual MOTOR NO ARRANCA
  • 18. EL MOTOR ECHA HUMO POR EL ESCAPE Y GENERA CARBONILLA Suministro excesivo de diésel Examinar bomba de inyección Estanquidad del inyector Bujía de precalentamiento con falla Filtro de aire obstruido Ing. Stefania Amaya
  • 19. Ing. Stefania Amaya • Obstrucción de la válvula EGR • Obstrucción del múltiple de admisión. • Ingreso menos flujo de aire. • No se genera una combustión completa • Filtro de aire obstruido Genera Carbonilla
  • 20. Excesivo Golpeteo - detonación Aire en el combustible Purgar bomba Filtro Canalizaciones e inyectores Inyector obstruido Comprobar funcionamiento Poco refrigerante Bajo nivel de aceite Ing. Stefania Amaya
  • 21. SISTEMA DE LUBRICACIÓN Ing. Stefania Amaya El sistema está formado, según la figura: • El cárter (I) • La bomba de aceite (B) • Válvula limitadora de presión (V) • Filtro de aceite (F) • Tuberías (R) • Radiador • Elementos de control (M) La función principal del sistema de lubricación de un motor es filtrar, enfriar y ajustar la presión del aceite para que el motor pueda funcionar en perfectas condiciones.
  • 22. CONSUMO EXCESIVO DE ACEITE Ing. Stefania Amaya
  • 23. Síntoma El manómetro marca cero o la lámpara indicadora se enciende Causas Falta de Aceite en el motor Avería del manómetro Filtro obstruido por suciedad La bomba posee mal funcionamiento Rotura del árbol de mando Rancores con juntas con fugas Avería interior Ing. Stefania Amaya
  • 24. Ing. Stefania Amaya Síntoma Poca presión en el manómetro Causas Aceite diluido Aceite muy caliente Filtro obstruido por suciedad Cojinetes desgastados Piezas de la bomba desgastadas Tubos o conductos desgastados
  • 25. ACEITE EN EL REFRIGERANTE Causas Perdida de hermeticidad de la junta de la culata Falla de enfriador de aceite Rotura en conductos de refrigeración del block Síntomas Nivel de aceite aumenta. Solución Sustituir la junta de cabezote. Revisar la planitud del cabezote. Revisión del enfriador de aceite. Ing. Stefania Amaya
  • 26. SISTEMA DE REFRIGERACIÓN Ing. Stefania Amaya Este sistema consiste en un circuito de agua, en contacto directo con las paredes de las camisas y cámaras de combustión del motor, que absorbe el calor radiado y lo transporta a un depósito refrigerante donde el líquido se enfría y vuelve al circuito para cumplir nuevamente su misión refrigerante donde el líquido se enfría y vuelve al circuito para cumplir su misión refrigerante
  • 27. Calentamiento excesivo del motor Causas Nivel bajo de refrigerante. Radiador sucio por el exterior. La correa del ventilador patina. El termostato funciona mal Radiador y camisas obstruidas Bomba de agua obstruida Ing. Stefania Amaya
  • 28. AGUA EN EL CÁRTER Agrietamiento de las camisas Falla de los sellos de camisas (camisas húmedas) Rotura en conductos de refrigeración del block Causas No se encuentra el nivel del refrigerante adecuado. Síntomas Reparación general del motor Solución Ing. Stefania Amaya
  • 29. UNIDAD 2. SISTEMA DE ALIMENTACIÓN BOMBA DE INYECCIÓN I N G . S T E FA N I A A M AYA Ing. Stefania Amaya
  • 30. SISTEMA DE ALIMENTACIÓN • El sistema de alimentación se subdivide en dos sistemas: – Sistema de combustible: Su función es suministrar el combustible necesario, libre de impurezas y humedad al sistema de inyección. – Sistema de inyección: Su función es suministrar el combustible dosificado, pulverizado, en forma sincronizada a una presión adecuada. Ing. Stefania Amaya
  • 31. Ing. Stefania Amaya Inyección Directa El inyector, asoma en el centro de la cámara de combustión Presión de trabajo de: 131 a 304 bares Es más económico el consumo de diésel
  • 32. Flujo de Combustible Circuito de baja presión Deposito de combustible Bomba de transferencia /bomba de alimentación. Presión media o de transferencia Filtro Circuito de alta presión Bomba de Inyección Inyectores Combustible Pulverizado Ing. Stefania Amaya RETORNO (exceso de combustible) 98 a 350 Bar
  • 33. BOMBAS DE INYECCIÓN Ing. Stefania Amaya • Dosificar el combustible suministrado al motor • Entregar el combustible según el orden de inyección del motor • Sincronizar la entrega de combustible.
  • 34. BOMBAS DE INYECCIÓN EN LÍNEA Ing. Stefania Amaya Características • Las bombas de inyección en línea están instaladas junto al motor • Aplica para motores de hasta 12 cilindros, medianos y grandes • Permite el aumento de presión • La bomba de inyección en línea posee un embolo por cada cilindro.
  • 35. FUNCIONAMIENTO DE LA BOMBA LINEAL Ing. Stefania Amaya
  • 36. Regulación de entrada El pistón se encuentra en la parte inferior ingresando el combustible En la carrera de ascenso el combustible se impulsa hacia el inyector La impulsión de combustible se lleva al cabo hasta que el estriado tallado llegue a la lumbrera de alimentación , permitiendo la descarga. Ing. Stefania Amaya Lumbreras
  • 37. CIRCUITO DE ALIMENTACIÓN DE COMBUSTIBLE DE LA BOMBA EN LÍNEA Depósito de combustible • Es un contenedor seguro para líquidos inflamables Bomba de alimentación • Asegura que la bomba de inyección dispone en cualquier momento del combustible Filtro de combustible • Protege a la bomba de inyección y al motor • Este retiene partículas hasta un tamaño de sólo de 2um y especial el agua. Bomba de Inyección • Es el núcleo de la instalación de inyección. Esta genera la alta presión necesaria para la inyección. Regulador de revoluciones • Su función es limitar el número de revoluciones finales del motor. Porta Inyector • El inyector conduce el combustible sometido a alta presión a la cámara de combustión. Bujía Incandescencia Ing. Stefania Amaya
  • 38. BOMBA DE ALIMENTACIÓN Ing. Stefania Amaya COMPONENTES DE LA BOMBA Aspira el combustible del depósito y lo lleva a baja presión (8 bar) La bomba de transferencia y de inyección trabaja durante todo el funcionamiento del motor diésel Dependiendo del modelo la bomba de alimentación puede ser mecánica o eléctrica.
  • 39. VÁLVULA DE ASPIRACIÓN • La válvula de aspiración o de descarga permite la entrada del combustible hacia los inyectores. Ing. Stefania Amaya
  • 40. ÁRBOL DE LEVAS • Es un eje encargado de transmitir el movimiento rotativo desde la distribución a los componentes del regulador. • Genera la alta presión gracias a sus levas. El numero de levas es = al numero de elementos=al número de cilindros del motor. Ing. Stefania Amaya COMPONENTES DE LA BOMBA
  • 41. EL EMBOLO El embolo es el encargado de entregar la cantidad de combustible hacia el inyector • El pistón de la bomba presenta una ranura longitudinal y un rebaje con profundidad lateral. • La cantidad de combustible puede ser inyectada dependiendo la posición angular y altura de dicho hélix • Depende de la posición del eje de levas (altura) y de la cremallera (posición angular) Ing. Stefania Amaya COMPONENTES DE LA BOMBA
  • 42. VARILLA DE CONTROL - CREMALLERA La varilla de control hace girar todos lo émbolos para variar la cantidad de combustible • Permite el control de la inyección de combustible que sea igual en cada uno de los cilindros. Ing. Stefania Amaya COMPONENTES DE LA BOMBA
  • 43. VÁLVULA DE PRESIÓN Válvula de presión Su función es separar el circuito de alta presión entre la tubería y el pistón de la bomba y descargar después de la inyección Esta descarga permite un cierre rápido y exacto del inyector. Durante el proceso de alimentación la presión existente en la cámara de alta presión levanta el asiento de la válvula. Posterior a la inyección, cae la presión en la cámara de alta presión. El resorte de la válvula de presiona otra vez el cono de la válvula de presión contra el asiento. Fallas Al existir desgaste de este componente, hará que el motor tarde mucho en arrancar. Retraso de inyección o inyección tardía, con la consecuente pérdida de potencia e incremento del consumo de combustible. El porta válvula, es acomodar la válvula de presión y realizar la conexión de la bomba con el inyector. Ing. Stefania Amaya
  • 44. REGULADOR Los motores Diésel tienen un límite de revoluciones que es controlable a través de la regulación de alimentación de combustible. • Cada regulador tiene la tarea de limitar el número final de las revoluciones en los diferentes regímenes del motor. Ing. Stefania Amaya COMPONENTES DE LA BOMBA
  • 45. REGULACIÓN MECÁNICA • El principio del regulador mecánico se basa en la ley de fuerza centrifuga. Al activar el pedal del acelerador, el conductor define el número de revoluciones (velocidad) deseado. • Empieza a aumentar el número de revoluciones. Debido al incremento de éste comienza a moverse en el regulador los pesos centrífugos. Cuando el número de revoluciones coincide con el definido por el conductor, el regulador mantiene constante. • Cuando las revoluciones exceden las definidas por el conductor o diseño, las contrapesas posicionan el mecanismo de inyección, los elemento de inyección hacia posición de menor inyección o nula inyección, hasta estabilizar o controlar las revoluciones. Ing. Stefania Amaya
  • 46. REGULACIÓN ELECTRÓNICA-EDC • La regulación permite la medición de señales eléctricas, así como el procesamiento de datos electrónicos, para tener otras magnitudes como la temperatura del aire, combustible y otros sensores. • De esta manera se puede aprovechar mejor el combustible y reducir aun mas las emisiones de gases de escape. • También permite el intercambio de datos con otros sistemas electrónicos como, por ejemplo, la regulación antideslizante de tracción (EBD) Ing. Stefania Amaya
  • 47. PIEZAS DE DESGASTE • Existen otros componentes adicionales con mayor desgaste. – Juego de empaques de la bomba – Juego de empaques de regulador – Juego de reparo de bomba de alimentación Ing. Stefania Amaya Válvula y porta válvula Elemento (cilindro y pistón) Corona dentada Resorte del pistón Rodillo Rodamiento Eje de comando
  • 48. CLASIFICACIÓN DE LAS BOMBAS EN LÍNEA Ing. Stefania Amaya Autos y camionetas Tractores y Camiones (2 ejes) Camiones ( 3 ejes o más)
  • 49. BOMBA EN LÍNEA PE – TIPO P Características Es más robusta y genera alta presiones Son utilizadas en motores de gran potencia. Árbol de levas robusto y grande Permite trabajar con presiones de impulsión de hasta 1300 Bar Dispone de variador de avance Esta bomba sirve para motores de 149 KW o 200 HP, de potencia No posee ventana para calibrar. Lubricación independiente Trae bomba de cebado Ing. Stefania Amaya
  • 50. BOMBA EN LÍNEA PE – TIPO A Características Utilizada en vehículos de capacidad baja, mediana y mediana - alta Pico más alta de inyección es de 750 bar Puede llegar a tener hasta 12 cilindros. Los primeros diseños necesitaban lubricación independiente. Ing. Stefania Amaya
  • 52. BOMBAS DE INYECCIÓN PF Y PFR • NO disponen de árbol de levas propio. En consecuencia el embolo es impulsado por el árbol de levas del motor. • La transmisión del movimiento ´propulsor se hace con o sin rodillos. Generalmente la fijación se hace directamente en el motor y su posición depende de cada aplicación • Estas bombas comúnmente son de un cilindro, pero también hay versiones de 2,3 y 4 cilindros. • Su aplicación es en motores estacionarios, grupo generadores de energía, embarcaciones pesqueras ,etc. Ing. Stefania Amaya
  • 53. FALLAS DE LAS BOMBAS LINEALES EL COMBUSTIBLE NO LLEGA A LA BOMBA Cerrada la válvula del tanque de combustible. Falta de combustible Materia extraña en el tanque de combustible Filtros tapados Obstrucción de conductos No trabaja bien la bomba Ing. Stefania Amaya
  • 55. BOMBA DE INYECCIÓN ROTATIVA El campo de aplicación y el diseño de la bomba viene determinados por el régimen real, la potencia y el tipo de construcción del motor. Son empleadas en automóviles de turismo, camiones, tractores y motores estacionarios. Su lubricación se realiza mediante el mismo combustible que inyecta. Es compacta y menos ruidosa que otro tipo de bombas de inyección Ing. Stefania Amaya
  • 56. BOMBA ROTATIVA – CIRCUITO DE ALIMENTACIÓN Ing. Stefania Amaya
  • 57. COMPONENTES DE BOMBA DE INYECCIÓN ROTATIVA Bomba de Alimentación Tiene aletas integradas con válvula reguladora de presión. Aspira el combustible Produce presión en la cámara interna de la bomba Ing. Stefania Amaya
  • 58. Funcionamiento de la bomba de alimentación El eje de accionamiento gira y hace girar al disco de paletas, que está fijado por la chaveta. Con eso se genera una fuerza centrífuga que empuja las paletas hacia fuera. Las paletas acompañan las paredes internas del anillo excéntrico,jalando y comprimiendo el diesel que viene del tanque. Permitiendo el ingreso a la cámara. El diésel es comprimido hasta alcanzar la otra cámara de la carcasa. Y es inyectado en la cámara de baja presión de la bomba. Ing. Stefania Amaya
  • 59. Bomba de Alta presión Solo tiene un elemento de bombeo para todos los cilindros. Produce presión de inyección. Alimenta y distribuye combustible. Ing. Stefania Amaya
  • 60. Funcionamiento de bomba de alta presión El pistón distribuidor ejecuta un movimiento rotativo y axial (de vaivén) Cuando el pistón regresa al PMI libera la entrada del diésel en la cámara de alta presión a través de uno de los canales de alimentación. El distribuidor avanza, comprimiendo el combustible en la cámara de alta presión Hasta alcanzar el PMS, enviando el combustible para uno de los cilindros del motor, a través de la porta válvula. Ing. Stefania Amaya
  • 61. Regulador mecánico de rotación La corredera de regulación está unida a las palancas de regulación, mediante un perno esférico. Es sobre estas palancas que actúan la fuerza centrífuga de las pesas centrifugas y resorte de regulación. Ing. Stefania Amaya
  • 62. FUNCIONAMIENTO DEL REGULADOR MECÁNICO Conforme el conductor pisa el pedal del acelerador, el conjunto de palancas se desplaza hacia atrás, empujando el taco regulador para adelante. El orificio de escape del pistón distribuidor permanece más tiempo cerrado, prolongando la inyección de combustible. U mayor volumen de combustible aumenta la potencia del motor, además de la rotación y la presión. Con la reducción de la rotación, el conjunto regulador se mueve, haciendo que el taco retroceda. El agujero permanece menos tiempo cerrado, reduciendo la cantidad de combustible inyectado. Ing. Stefania Amaya
  • 63. • Es un dispositivo eléctrico que detiene el motor Diesel interrumpiendo la alimentación de combustible. Válvula electromagnética parada Ing. Stefania Amaya
  • 64. La corriente eléctrica acciona el dispositivo de parada de la bomba • Cuando el conductor gira la llave de encendido. El embolo sube, liberando el paso del combustible hacia dentro de la cámara de alta presión. Cuando la llavees girada en el encendido cortando la corriente eléctrica. • El resorte empuja el embolo para abajo, cerrando el paso del Diesel hacia dentro de la cámara de alta presión. Debido a su princiio de trabajo de autoencendido, el motor Diesel puede ser detenido con la interrupción de la alimentación de combustible. Ing. Stefania Amaya
  • 65. Avance de Inyección Regula el inicio de la inyección dependiendo de la rotación y en parte, de la carga. Ing. Stefania Amaya
  • 66. Funcionamiento Cuando la rotación aumenta, crece también la presión interna de la bomba. El pistón de avance es empujado para adelante, superando la fuerza del resorte, desplazando todo el conjunto. Se avanza la posición de los rodillos en relación a los relieves de la pista del disco de levas. Ing. Stefania Amaya
  • 67. Válvula reguladora de presión El combustible se inyecta hacia el interior de la bomba, a cada vuelta del eje de accionamiento Cuando mayor la rotación, mayor será la cantidad de Diesel inyectada en el interior de la bomba distribuidora. Como el volumen de combustible que entra es mayor al volumen inyectado en el motor, es necesario liberar el exceso. Ing. Stefania Amaya
  • 68. Cabezal hidráulico - Cabezote Su función es producir alta presión en el sistema y distribuido el combustible para los respectivos inyectores, soportar los racores y válvulas de distribución. Un anillo deslizante en el elemento, comandado por el regulador, cubre o libera el orificio de escape. •Comandando la cantidad de combustible inyectado. Ing. Stefania Amaya
  • 69. COMPONENTES DE DESGASTE Eje de comando Bomba alimentadora de paletas Porta rodillo Cabezal hidráulico Porta válvulas Pistón de avance Carcasa Ing. Stefania Amaya
  • 70. • En orden de importancia, los elementos de mayor desgaste en las bombas rotativas son: • Juego de empaques • Retenedor o sello de eje principal • Juego de bocinas de eje principal • Disco de levas • Juego de rodillos • Émbolo variador de avance • Bomba de alimentación • Regulador • Tapón de cabezal hidráulico • Cabezal hidráulico. Ing. Stefania Amaya
  • 71. BOMBA ROTATIVA AXIAL VE Bombas Rotativas Son adecuadas para motores de hasta 6 cilindros El diseño de la bomba depende del número de revoluciones nominal, potencia y diseño del motor Diesel Su aplicación es en vehículos de turismo (livianos), industriales, tractores y motores estacionarios. El motor Diesel acciona directamente la bomba de inyección rotativa. El accionamiento ocurre a través de una correa dentada, piñón de inserción, rueda dentada o cadena. El movimiento de giro del eje de accionamiento se transmite por una unidad de acoplamiento al pistón de la bomba. Las bombas de inyección rotativas tienen un regulador de revoluciones mecánica o electrónico y variador de avance integrado. Poseen un solo elemento de alta presión para todos los cilindros. Ing. Stefania Amaya
  • 72. FUNCIONES DE LOS GRUPOS • Aspira combustible y produce presión en la cámara interna de la bomba Bomba de alimentación con válvula reguladora de presión Ing. Stefania Amaya
  • 73. FUNCIONES DE LOS GRUPOS • Produce presión de inyección, alimenta y distribuye combustible. Bomba de alta presión con distribuidor Ing. Stefania Amaya
  • 74. FUNCIONES DE LOS GRUPOS • Efectúa la regulación de la rotación, modificando el volumen de débito por medio del dispositivo de regulación en el rango de regulación. Regulador mecánico de rotación Ing. Stefania Amaya
  • 75. FUNCIONES DE LOS GRUPOS • Interrumpe el débito de combustible Válvula electromagnética de parada Ing. Stefania Amaya
  • 76. FUNCIONES DE LOS GRUPOS • Regula el inicio de inyección dependiendo de la rotación y, en parte, de la carga Avance de inyección Ing. Stefania Amaya
  • 77. BOMBA ROTATIVAS VR DE ÉMBOLOS RADIALES. Unidades de Control Unidad de control para el motor Procesa todos los datos del motor, y sensores externos Unidad de control para la bomba. Registra señales de los sensores internos. Ángulo de rotación Temperatura de combustible Ing. Stefania Amaya Temperatura del aire aspirado Número de revoluciones del motor Presión de sobrealimentación Posición del pedal del acelerador Velocidad de la marcha
  • 78. Ing. Stefania Amaya Funciones Básica Inyección de combustible Cantidad correcta Aumento de presión
  • 79. SISTEMA DE COMBUSTIBLE • Se compone de dos partes el sistema: – Baja presión • Depósito de combustible, tiene que ser resistente a la corrosión y continuar siendo estancos de sobrepresión. • Tubería, pueden ser de acero o flexibles con armado de tejido de acero que sean difícilmente inflamables. • Filtro de combustible, un filtrado insuficiente puede conducir daños a los componentes. Ing. Stefania Amaya
  • 80. • Alta presión – Tubería de alta presión, conduce desde la bomba de inyección a los inyectores. – Inyectores, montados en los port- inyectores, inyectan el combustible exactamente dosificando en el cilindro del motor. – El combustible excedente retorna con presión reducida al depósito de combustible. Ing. Stefania Amaya
  • 81. COMPONENTES DE BAJA PRESIÓN DE LA BOMBA DE INYECCIÓN Bomba de alimentación de aletas Succiona el combustible desde el déposito Trasporta en cada vuelta un caudal constante Ing. Stefania Amaya
  • 82. Válvula reguladora de presión Regula la presión de combustible La válvula abre cuando aumenta la presión de combustible Cierra cuando disminuye dicha presión Ing. Stefania Amaya
  • 83. Válvula de estrangulador de rebose Para refrigeración y ventilación de la bomba, retorna el combustible al depósito. Se encuentra atornillada al cuerpo de la bomba. El retorno calibrado facilita una purga de aire automática de la bomba. Ing. Stefania Amaya
  • 84. • En la parte alta de presión tiene lugar, además de la generación de alta presión, también distribución y dosificación de combustible con el control del comienzo de alimentación, siendo preciso para ello únicamente un elemento actuador. Ing. Stefania Amaya COMPONENTES DE ALTA PRESIÓN DE LA BOMBA DE INYECCIÓN
  • 85. GENERACIÓN DE ALTA PRESIÓN MEDIANTE LA BOMBA DE ALETAS La bomba es propulsada por el eje de accionamiento y consta de: Disco de arrastre Soporte de rodillos El émbolo de suministro Parte delantera de cabezal. Ing. Stefania Amaya
  • 86. DISTRIBUCIÓN DE COMBUSTIBLE EN EL CUERPO DISTRIBUIDOR Ing. Stefania Amaya
  • 88. LOCALIZACIÓN DE AVERÍAS Humo Negro en el escape Contiene carbón que no se a quemado en el combustible como resultado de una combustión incompleta La relación de aire- combustible es demasiado pequeña (mezcla rica) Ing. Stefania Amaya
  • 89. LOCALIZACIÓN DE AVERÍAS Humo Negro en el escape Falla(síntoma) • Humo a plenas cargas con velocidades altas y bajas y sin perdida de potencia. Posibles Causas • Caudal máximo del combustible de la bomba mal regulado. Solución • Quite la bomba y proceda a regular el caudal en el laboratorio de acuerdo a las especificaciones del fabricante. Ing. Stefania Amaya
  • 90. LOCALIZACIÓN DE AVERÍAS Humo Negro en el escape Falla(síntoma) • Humo a plena carga, con velocidades altas y medias y el motor mas silencioso que de costumbre. • Humo a plena carga, principalmente a velocidades medias y bajas, el motor más ruidoso que de costumbre. Posibles Causas • Avance retardado de la Inyección, o dispositivo de avance funciona mal. • Avance de la inyección demasiado adelantado, dispositivo de avance funciona mal. Solución • Sincronizar el avance de acuerdo a las especificaciones del fabricante o repare el dispositivo de arranque. Ing. Stefania Amaya
  • 91. LOCALIZACIÓN DE AVERÍAS Humo Negro en el escape Falla(síntoma) • Humo a plena carga y velocidades altas, funcionamiento con mayor velocidad máxima que de costumbre. Posibles Causas • Regulador de la bomba mal regulado. Solución • Quite la bomba de inyección del motor y regule la velocidad máxima de corte de caudal por el regulador de acuerdo a las especificaciones del fabricante. Ing. Stefania Amaya
  • 92. LOCALIZACIÓN DE AVERÍAS Humo Negro en el escape Falla(síntoma) • Humo a cualquier velocidad, acompañado de arranque difícil. Posibles Causas • Perdida de compresión en los cilindros del motor. Solución Reparar el motor. Ing. Stefania Amaya
  • 93. LOCALIZACIÓN DE AVERÍAS Humo Blanco en el escape Arranque del motor cuando es baja la temperatura del ambiente Combustible inyectado posee temperatura demasiada baja El combustible no quemado sale por el escape en forma de vapor, apareciendo como humo blanco o azul. Ing. Stefania Amaya
  • 94. Humo blanco o azulado en el escape Mal funcionamiento del precalentamiento Problema de arranque Bujía de precalentamiento, no trabaja en el tiempo estipulado. No existe quema de combustible. Quemado excesivo del aceite Presencia de aceite en la cámara de combustión, lo cual se evapora. Parte del combustible también se expulsa sin quemar Puede ser anillos , válvulas. Reparación del motor. Presión de compresión baja Tardará más tiempo que el combustible alcance la temperatura de combustión. Combustible sin quemarse es expulsado. Agua mezclada con el combustible La temperatura de la cámara de combustión es baja. Ing. Stefania Amaya LOCALIZACIÓN DE AVERÍAS
  • 95. BOMBA – INYECTOR CUMMINS La inyección Cummins se denominado también inyector – bomba, en el cual la bomba de inyección y el inyector están integrados en un solo dispositivo para cada cilindro. El concepto PT se debe a las variables primarias que afectan lacantidad de combustible dosificada de inyectado por cada ciclo delpistón, estas variables son la presión y tiempo, es decir, la presión de combustible entregado a los inyectores y período de tiempo en el cual el combustible entra en estos. Ing. Stefania Amaya
  • 96. El Sistema de combustible PT se ha distinguido por más de 50 años por sus características en los motores Cummins. Alta presión de inyección. Diseño muy simple. Costo Efectivo. Confiable. Ing. Stefania Amaya
  • 97. Funciones de la bomba A. Transferir el combustible del tanque de almacenamiento de la unidad del motor. Entregar una presión de riel a los inyectores. Gobernar la velocidad mínima Gobernar la velocidad máxima del motor. Darle al operador de control de la salida de potencia y velocidad del motor debajo de la velocidad gobernada. Controlar las emisiones de humo durante la aceleración. Paro del motor Ing. Stefania Amaya
  • 98. BOMBA DE COMBUSTIBLE • Básicamente las bombas de combustible, tanto PT- (tipo R) “regulado por presión” como PT- (tipo G) “controlado por gobernador desempeñan las mismas funciones, pero en una forma mecánica diferente. Ing. Stefania Amaya Bomba de Combustible tipo G • La bomba del tipo de engranes que absorbe el combustible del tanque lo hace llegar a través de la malla de filtro de la bomba hasta el gobernador. • El gobernador que controla la circulación de combustible desde la bomba de engranes, así como las velocidades máxima y mínima del motor. • El acelerador que suministra un control manuela de la circulación de combustible hacia los inyectores en todas las condiciones, dentro de los rangos de operación.
  • 99. BOMBA DE ENGRANAJES Y AMORTIGUADORES DE PULSACIONES Es impulsado por el eje principal de la bomba y contiene un solo juego de engranes que absorben y descargan combustible en todo el sistema. Un amortiguador de pulsaciones montado en la bomba de engranes contiene un diafragma de acero que absorbe las pulsaciones y suaviza la circulación de combustible por todo el sistema. Ing. Stefania Amaya
  • 100. Acelerador • El acelerador permite que el operador controle la velocidad del motor entre la marcha mínima y las rpm gobernadas, de acuerdo con las condiciones variables de velocidad y carga. • Para funcionamiento a más de marcha mínima, el combustible pasa a través del orificio del barril principal del gobernador, hasta el agujero de aceleración en el eje. Ing. Stefania Amaya
  • 101. Válvula de control de aire - combustible La válvula de control de aire- combustible (AFC por sus siglas en inglés) se utiliza en los motores turbo cargados para restringir el flujo y la presión del combustible durante la aceleración. La AFC limita la cantidad de combustible suministrado a los inyectores de acuerdo con la cantidad de aire que envía el turbo cargador. El control del flujo y presión del combustible para los inyectores, en esa forma, produce mejor combustión, menor consumo de combustible y menos humo negro en el escape y mayor torsión (par) a bajas velocidad durante la aceleración. Ing. Stefania Amaya
  • 102. Gobernador El Gobernador mecánico llamado algunas veces gobernador automotriz, es accionado por un sistema de resortes y contrapesos, y tiene dos funciones: Mantener suficiente combustible para marcha mínima (en vacío), cuando el acelerador está en la posición de marcha mínima. Corta el paso del combustible a los inyectores cuando se excede de las revoluciones máximas gobernadas. Ing. Stefania Amaya
  • 103. VÁLVULA DE PARO • El combustible del acelerador se envía a través de la válvula de paro hasta el múltiple de combustible en la culata de cilindros y a los inyectores. La válvula de paro se emplea para cortar el combustible a los inyectores y hacer que se pare el motor; puede ser manual o eléctrica. Ing. Stefania Amaya
  • 104. UNIDAD DE BOMBA - INYECTOR Unidad de Bomba – Inyector UI Su misión es inyectar combustible. Mediante una unidad de control, se considera la cantidad exacta y la presión necesaria. En este sistema no se necesita tuberías de alta presión. Ing. Stefania Amaya
  • 105. • Por cada cilindro hay una unidad de bomba- inyector Montaje y Accionamiento • La activación eléctrica, el comienzo de inyección y el caudal depende de la velocidad del émbolo de la bomba. Mediante el árbol de levas del motor es accionado la bomba – inyector. Ing. Stefania Amaya
  • 107. Electroválvula Tiene la misión de determinar el momento de inyección y duración de la inyección. Ing. Stefania Amaya
  • 108. FUNCIONAMIENTO Ing. Stefania Amaya Carrera de Aspiración Carrera previa Carrera de Suministro Carrera Residual
  • 109. CARRERA DE ASPIRACIÓN • El combustible que se encuentra permanentemente bajo sobrepresión fluye desde la parte de baja presión de la alimentación de combustible. Ing. Stefania Amaya
  • 110. CARRERA PREVIA El émbolo de la bomba toma giro del árbol de levas. Ing. Stefania Amaya
  • 111. ARRERA DE ALIMENTACIÓN • La presión de combustible en la cámara de alta presión aumenta debido al movimiento del émbolo de la bomba. Debido a ello aumenta también la presión en el inyector. • Presión de apertura aprox. 300bar Ing. Stefania Amaya
  • 112. CARRERA DE RESIDUAL Se desconecta la bobina del electroimán. La electroválvula se abre después de un breve tiempo de retardo . Entre la fase de transición entre las carreras alcanza la presión punta. Presión Aprox. 1800 a 2050 bar. Al abrir la electroválvula cae la presión rápidamente. Ing. Stefania Amaya
  • 113. ELECTROVÁLVULA DE ALTA PRESIÓN Su misión es iniciar la inyección en el momento correcto y de garantizar una dosificación exacta del caudal a través de una duración precisa de la inyección. Ing. Stefania Amaya
  • 114. VARIADOR DE AVANCE • El variador de avance es un dispositivo por medio del cual se logra modificar automáticamente el calado de la bomba según la velocidad de giro del motor de modo que cuanto mas de prisa gire este antes se produzca el punto de inicio de la inyección para dar tiempo a que la combustión se produzca en el PMS del embolo del motor. Ing. Stefania Amaya
  • 115. UNIDAD 3. SOBREALIMENTACIÓN I N G . S T E FA N I A A M AYA Ing. Stefania Amaya
  • 116. FUNDAMENTOS DE LA SOBREALIMENTACIÓN Ing. Stefania Amaya Aumentar la cilindrada o lo que es lo mismo la capacidad de absorción del motor. Aumentar el régimen, incrementando el número de operaciones de bombeo en un tiempo determinado. Aumentar el llenado, favoreciendo el efecto de aspiración del pistón durante su descenso. En motores atmosféricos: • El diámetro y recorrido de las válvulas de admisión • Al ángulo del asiento de la válvula y su forma • La presencia de una toma de aire dinámica.
  • 117. Ing. Stefania Amaya Sobrealimentación Por accionamient o centrífugo Turbocompresores Geometría fija Válvula Wastegate Geometría Variable Regulación de presión en forma: Neumática Eléctrica Por accionamient o mecánico Compresores volumétricos Compresor roots Compresor lysholm Compresor G Comprex
  • 118. Funciones • En altitud, compensar la disminución de la densidad del aire. • Incrementar la cantidad de aire suministrada al motor para aumentar sus prestaciones. Ing. Stefania Amaya La utilización de la sobrealimentación se fundamenta en la mejora de la combustión del motor: • Mayor llenado de aire en los cilindros • Provocando un aumento de potencia • Menor consumo específico • Menor contaminación
  • 119. EL TURBOCOMPRESOR La potencia de salida del motor turboalimentado es entre un 40 y 50% mayor que un motor atmosférico similar sin aumentar su cilindrada. • Los gases de escape impulsan una turbina, la cual alcanza velocidades de rotación muy altas. El turbo compresor se impulsa mediante el flujo de gases de escape y no se requiere potencia extra del motor. Una rueda del compresor se monta en el extremo contrario del eje sobre el que esta montada la turbina. Ing. Stefania Amaya
  • 120. TURBOCOMPRESOR DE GEOMETRÍA FIJA Turbina y compresor conectados con un solo eje(3) Turbina(2), compresor (1) posee álabes para conseguir aumentar la presión Posee una válvula de descarga wastegate(4), se encarga de limitar la presión de sobrealimentación desviando una cantidad de gases hacia el escape. La carcasa del compresor tiene el mismo aspecto que la turbina, pero en ella el sentido de circulación es opuesto. •El aire ingresa en dirección axial coincidente con el eje del turbocompresor. •Es acelerado hasta salir del mismo por la cámara espiral la cual aumenta su sección en dirección del flujo. Ing. Stefania Amaya
  • 121. Los turbocompresores de geometría variable tienen la característica de que a bajas revoluciones del motor se nota su efecto, eliminando el gran inconveniente de los turbocompresores de geometría fija. Son los más implantados en vehículos modernos. Su funcionamiento es similar a los de geometría fija, pero con la salvedad de que estos no necesitan de una válvula de descarga, puesto que el sistema puede hacer disminuir el giro de la turbina y, por tanto, rebajar la presión a los valores preestablecidos en determinados modos de funcionamiento del motor. La gestión electrónica en este caso es la encargada de hacer disminuir o aumentar la fuerza que ejercen los gases de escape sobre la turbina. Con esto se consiguen tiempos de respuesta del turbo muy breves, además de velocidad de gases alta y un funcionamiento progresivo de la turbina desde bajos regímenes. Ing. Stefania Amaya TURBOCOMPRESOR DE GEOMETRÍA VARIABLE
  • 122. La turbina de escape del turbocompresor una corona con un número de álabes móviles en su periferia. La corona, a su vez, se encuentra unida a una varilla y esta a una cápsula neumática dividida en dos cámaras. Teniendo en cuenta que la presión que ejercen los gases de escape está relacionada con el número de revoluciones del motor, se podrán obtener diferentes regímenes de funcionamiento de la turbina según la orientación que tomen las paletas o álabes móviles, es decir, se variará la sección de paso de los gases de escape. Ing. Stefania Amaya Al cerrarse los alabes y disminuir la sección entre ellos, la velocidad de los gases de escape aumenta e influyen con más fuerza en las paletas de rodete de la turbina, logrando así la máxima compresión del aire a bajas revoluciones (r.p.m.). Cuando se incrementa la presión de soplado sobre el colector de admisión y aumentan las revoluciones del motor, es detectado por la capsula manométrica que transforma ese movimiento empujando el sistema de mando de los alabes para que éstos se abran y haciendo disminuir los gases de escape que mueven la turbina.
  • 123. SISTEMA DE INYECCIÓN ELECTRÓNICA • La regulación electrónica diésel EDC, esta dividida entres bloques: Ing. Stefania Amaya Sensores y transmisores de valores teóricos para registrar las condiciones de servicio Unidad de control del motor y unidad de control de la bomba (algoritmo de regulación) Elementos de ajuste- Actuadores para la transformación de señales.
  • 126. CARACTERÍSTICAS COMUNES DE LOS SISTEMAS EDC • Inyección Directa. • Cámara de combustión en el pistón. • Aprovechamiento de los fenómenos de Squish y swirl. • Presiones hasta de 2000 bar aprox. • Forma de la toberas Ing. Stefania Amaya
  • 127. SISTEMA INYECTOR BOMBA Ing. Stefania Amaya La unidad de control es la encargada de activar cada inyector mediante un sistema independiente para cada uno de ellos, de modo que ejerce un mayor control sobre la propia inyección logrando un mayor rendimiento y potencia, además de un menor consumo. El sistema de inyección de combustible HEUI es un sistema de inyectores unitarios controlados electrónicamente, que trabajan mediante presión hidráulica utilizando el aceite lubricante del motor. Este sistema funciona extrayendo el combustible del tanque a través de una bomba de alta y baja presión, que al variar la presión de aceite, controla la inyección de combustible de manera independiente a la velocidad o posición del cigüeñal del motor. La válvula de solenoide es accionada por el flujo de aceite a alta presión, cuya fuerza es ejercida en la parte superior del pistón del inyector.

Notas del editor

  1. Cuando la acumulación de carbonilla en la EGR es excesiva, puede darse el caso de que esta se quede atascada o de que no responda bien a los comandos de la ECU, ya que la suciedad puede hacer que no abra o cierre del todo. Además de que se nos encienda en el cuadro la pertinente luz de avería, puede dar lugar, especialmente si queda abierta, a una pérdida de potencia en el motor, tirones o dificultad de arranque en frío, además de mayor emisión de humos.
  2. La viscosidad del aceite es menor a la necesaria La temperatura del motor supera los 120ºC Pérdida de aceite a través de alguna junta Paso de aceite a la cámara de combustión por un mal cierre de los segmentos
  3. Su finalidad es suministrar el combustible necesario, en forma sincronizada y de presión determinada para el funcionamiento diésel.
  4. Cuando la leva gira, el resorte mantiene apretado el seguidor junto con el pistón copiando su perfil, de esta manera el pistón sube y baja constantemente. Cuando el pistón está en la posición mostrada se ha abierto el paso a la parte superior del pistón desde la cámara de alimentación visto en el punto anterior. En la carrera de ascenso el propio pistón cierra el paso al bloquear el conducto de entrada lateral y el combustible atrapado sobre su cabeza no tiene otra posibilidad que levantar la válvula de descarga y salir por el tubo al inyector. De esta forma se garantiza la presión adecuada para la formación del aerosol dentro del cilindro. En la próxima carrera de descenso se cierra la válvula de descarga, vuelve a descubrirse el agujero de entrada desde la cámara de alimentación y el ciclo se repite. En la figura figura 4 se muestra una animación del proceso.
  5. . La potencia de salida del motor turboalimentado es entre un 40 y un 50 % mayor que la de un motor atmosférico similar sin aumentar su cilindrada.