COASTAL CHEMICAL COMPANY                   Presenta          COMO MEJORARLA DESHIDRATACIÓN POR GLICOL       PROCEDIMIENTO...
CONTENIDOCÓMO MEJORAR LA DESHIDRATACIÓN POR GLICOL .................................................................. 1	  ...
Estimado cliente:Esperamos sinceramente que este folleto técnico le ayude a mejorar la eficiencia de su planta de glicol y...
CÓMO MEJORAR LA DESHIDRATACIÓN POR GLICOLSe pierden innecesariamente millones de dólares al año en altas pérdidas de glico...
FLUJO DE GLICOL. El glicol seco de baja concentración se bombea continuamente a la bandejasuperior del absorbedor. Conform...
PRESIÓN. A temperatura constante, el contenido de agua del gas de entrada aumenta conforme baja latemperatura. Sin embargo...
El uso de un buen lavador de entrada es esencial para la operación eficiente de una planta de glicol. Eldepurador puede se...
dificultad. Todos los compresores que toman gas de un deshidratador o que lo alimentan a éste, debentener atenuadores de p...
necesario ver que la válvula del gas de protección, la tubería y el orificio de control de flujo esténabiertos para pasar ...
de descenso. Coastal Chemical Company puede proveer inmediatamente todo tipo de empaque de torrerequerido para la planta d...
Una decoloración excesiva y una degradación muy lenta ocurrirán cuando la temperatura delrecalentador se mantiene la mayor...
agua adicional. Luego el gas pasa del purificador a la fosa de desechos. El glicol seco baja delrecalentador hacia el tanq...
El mantenimiento adecuado de la bomba reducirá los costos de operación. Cuando la bomba no estáfuncionando, toda la planta...
los sistemas de glicol, Coastal Chemical Company puede drenar el glicol, limpiar químicamente elsistema, y proveer nuevo g...
sumamente bajo, la cantidad requerida de neutralizador puede determinarse por filtración. En este caso,use la dosificación...
Puede usarse el siguiente procedimiento para determinar el mejor despumador y la dosificación correctapara controlar el pr...
EL USO DE PURIFICACIÓN POR CARBÓNEl carbón activado puede eliminar de manera efectiva la mayoría de los problemas de forma...
4. Las fugas mecánicas pueden reducirse manteniendo la bomba, las válvulas y otros aditamentos en   buenas condiciones.CÓM...
de 4 a 5 por ciento), usualmente significa que la velocidad de circulación del glicol es demasiadolenta y debe aumentarse ...
CÓMO SOLUCIONAR PROBLEMASLa capacidad de identificar y eliminar rápidamente costosos problemas operativos con frecuencia p...
1. Si la caída de presión a través del absorbedor excede alrededor de 15 psig, las bandejas                pueden estar su...
7. El pH del glicol debe controlarse para evitar corrosión del equipo. Algunas causas posibles para       un pH bajo ácido...
Costal chemical glycol dehydration
Costal chemical glycol dehydration
Costal chemical glycol dehydration
Costal chemical glycol dehydration
Costal chemical glycol dehydration
Costal chemical glycol dehydration
Costal chemical glycol dehydration
Costal chemical glycol dehydration
Costal chemical glycol dehydration
Costal chemical glycol dehydration
Costal chemical glycol dehydration
Costal chemical glycol dehydration
Costal chemical glycol dehydration
Costal chemical glycol dehydration
Costal chemical glycol dehydration
Costal chemical glycol dehydration
Costal chemical glycol dehydration
Costal chemical glycol dehydration
Costal chemical glycol dehydration
Costal chemical glycol dehydration
Próxima SlideShare
Cargando en…5
×

Costal chemical glycol dehydration

7.341 visualizaciones

Publicado el

Costal chemical glycol dehydration

Publicado en: Tecnología
0 comentarios
1 recomendación
Estadísticas
Notas
  • Sé el primero en comentar

Sin descargas
Visualizaciones
Visualizaciones totales
7.341
En SlideShare
0
De insertados
0
Número de insertados
954
Acciones
Compartido
0
Descargas
237
Comentarios
0
Recomendaciones
1
Insertados 0
No insertados

No hay notas en la diapositiva.

Costal chemical glycol dehydration

  1. 1. COASTAL CHEMICAL COMPANY Presenta COMO MEJORARLA DESHIDRATACIÓN POR GLICOL  PROCEDIMIENTOS DE MANTENIMIENTO   VARIABLES DE OPERACIÓN   SOLUCIÓN DE PROBLEMAS   CONSERVACIÓN DE REGISTROS   LIMPIEZA DEL SISTEMA   CUIDADO DEL GLICOL  DON BALLARD REIMPRESIÓN CORTESÍA DE:
  2. 2. CONTENIDOCÓMO MEJORAR LA DESHIDRATACIÓN POR GLICOL .................................................................. 1  ¿QUÉ ES LA DESHIDRATACIÓN DE GAS? ......................................................................................... 1  CÓMO FUNCIONA EL PROCESO .......................................................................................................... 1  EFECTO DE LAS VARIABLES DE OPERACIÓN ................................................................................. 2  CÓMO ELIMINAR LOS PROBLEMAS DE OPERACIÓN .................................................................... 3  CÓMO CUIDAR EL GLICOL................................................................................................................. 11  CÓMO MEJORAR LA FILTRACIÓN DE GLICOL .............................................................................. 13  EL USO DE PURIFICACIÓN POR CARBÓN ....................................................................................... 14  CÓMO REDUCIR LAS PÉRDIDAS DE GLICOL ................................................................................. 14  CÓMO LIMPIAR UN SISTEMA DE GLICOL ...................................................................................... 15  ANÁLISIS Y CONTROL DEL GLICOL ................................................................................................ 15  CÓMO SOLUCIONAR PROBLEMAS ................................................................................................... 17  CÓMO LLEVAR REGISTROS ............................................................................................................... 19  ¿QUIÉN ES RESPONSABLE? ................................................................................................................ 19  CÓMO ELEGIR UN PROVEEDOR DE GLICOL.................................................................................. 20  CÓMO MEJORAR EL PROCESO DE INYECCIÓN DE GLICOL....................................................... 20  CÓMO FUNCIONA EL PROCESO ........................................................................................................ 20  CÓMO MEJORAR LA INYECCIÓN...................................................................................................... 21  CÓMO EVITAR CONGELAMIENTOS ................................................................................................. 21  CÓMO MEJORAR LA SEPARACIÓN DE GLICOL-HIDROCARBUROS ......................................... 22  REFERENCIAS........................................................................................................................................ 23  APÉNDICE ............................................................................................................................................... 24   Fig. 1 – La cantidad de agua que es transportada por el gas natural a diversas temperaturas y presiones puede estimarse a partir de esta gráfica. Note la línea de formación de hidratos. (Cortesía de E.L. McCarthy, W. L. Boyd, L. S. Reid y AIME.) ...................................................................... 24   FIGURA 2 - EL ESQUEMA TÍPICO DE FLUJO PARA UNA PLANTA DE GLICOL MUESTRA EL USO DE UNA BOMBA DE GAS-GLICOL.............................................................................. 25   FIGURA 4 - PUNTOS DE ROCÍO DE EQUILIBRIO DEL AGUACON DIVERSAS CONCENTRACIONES DE TEG..................................................................................................... 27   FIGURA 5 - DEPRESIÓN CALCULADA DEL PUNTO DE ROCÍO VS RELACIÓN DE CIRCULACIÓN DEL TRIETILENGLICOL .................................................................................. 28   FIGURA 6 - SEPARADOR A BAJA TEMPERATURA CON INYECCIÓN DE GLICOL .......... 29   FIGURA 7 - TEMPERATURAS DE CRISTALIZACIÓN DEL ETILENGLICOL ACUOSO ..... 30   FIGURA 8 - TEMPERATURAS DE CRISTALIZACIÓN DEL DIETILENGLICOL ACUOSO . 31   FIGURA 9 - TEMPERATURAS DE EBULLICIÓN DEL ETILENGLICOL ACUOSO (760 MM) ........................................................................................................................................................... 32   FIGURA 10 - TEMPERATURAS DE EBULLICIÓN DEL DIETILENGLICOL ACUOSO (760 MM) .................................................................................................................................................. 33  REPORTE DE DESHIDRATACIÓN POR GLICOL.............................................................................. 34  SOLICITUD DE MUESTRA DE GLICOL ............................................................................................. 36  PRODUCTOS QUÍMICOS COASTAL................................................................................................... 37   i
  3. 3. Estimado cliente:Esperamos sinceramente que este folleto técnico le ayude a mejorar la eficiencia de su planta de glicol ya reducir los costos de operación. Éste contesta muchas preguntas que se han hecho acerca de esteproceso, y puede ser un excelente manual de operación para el personal de su planta.Nuestra compañía ofrece una línea completa de químicos para tratamiento de gas a precios competitivos.Tenemos cuatro centros de servicio ubicados estratégicamente con una capacidad total de almacén demás de 55,000 pies cuadrados (5110 m2) y más de 3,000,000 galones (11,356 m3) de capacidad dealmacenamiento de líquidos. Nuestro servicio telefónico las 24 horas y más de treinta camiones nospermiten surtir entregas inmediatas y preprogramadas.Coastal ofrece los siguientes beneficios, la mayoría de los cuales no pueden ser copiados por otrosproveedores. 1. Un seminario de capacitación a fondo para todos los operadores e ingenieros. 2. Un manual de operación completo. 3. Programas de conservación de registros. 4. Solución de problemas. 5. Análisis de glicol. 6. Conocimiento y equipo para limpiar químicamente sistemas de glicol. 7. Recuperación de glicol. 8. Diseño y operación de sistemas de purificación de carbón. 9. Almacén de productos relacionados como carbón, empaques de torre, neutralizadores de pH, despumadores, químicos limpiadores. 10. Seminarios de capacitación y folletos sobre procesos relacionados, como: a. Recuperación de Azufre Claus b. Endulzamiento con Aminas c. Deshidratación con Desecantes Sólidos Con frecuencia, al comprar glicoles se pone demasiado énfasis en el precio del glicol y poco o ningún énfasis en lo que cuesta usar el glicol en la planta. Con su paquete completo de servicios, Coastal Chemical Company ofrece los mayores beneficios por cada dólar gastado en glicol. Atentamente: Coastal Chemical Company División – Coastal, Inc. ii
  4. 4. CÓMO MEJORAR LA DESHIDRATACIÓN POR GLICOLSe pierden innecesariamente millones de dólares al año en altas pérdidas de glicol, paros excesivos delas plantas y cambio de equipo. Sin embargo, una planta de glicol, cuando está diseñada, operada ymantenida adecuadamente, brindará una operación a bajo costo, con poca dificultad y necesidad deatención. Esto puede hacerse entendiendo por completo los principios del proceso y las limitacionesfísicas del equipo. Con este conocimiento, más estas sugerencias de operación y mantenimiento, lamayoría de los problemas de la planta pueden ya sea evitarse o eliminarse rápidamente.¿QUÉ ES LA DESHIDRATACIÓN DE GAS?El vapor de agua es probablemente la impureza indeseable más común en una corriente de gas. Cuandoel gas es comprimido o enfriado, el vapor de agua se convierte a una fase líquida o sólida. El agualíquida puede acelerar la corrosión y reducir la eficiencia de transmisión del gas. El agua, en estadosólido, forma hidratos helados, los cuales pueden tapar válvulas, acoplamientos e incluso líneas de gas.Para evitar estas dificultades, parte del vapor de agua debe sacarse de la corriente de gas antes de que seatransportado en las líneas de transmisión.El gas se considera saturado con vapor de agua cuando viene de los pozos. La cantidad de agua llevadapor el gas a diversas presiones y temperaturas puede estimarse a partir de la Figura 1, la cual se basa enla correlación de McCarthy, Boyd y Reid. Esta gráfica además muestra una línea de formación dehidratos para el gas. A la izquierda de la línea, los hidratos sólidos se formarán cuando el gas saturado seenfría. Por ejemplo, puede esperarse que se formen hidratos a alrededor de 64ºF cuando la presión delgas es 1,000 psia y su gravedad específica es de alrededor de 0.65. El gas contiene 21 libras de agua porMMSCF a estas condiciones.Otro método útil de indicar el contenido de agua de cualquier gas es en términos del punto de rocío delagua. El punto de rocío se define como la temperatura a la cual el vapor empieza a condensarse enlíquido. Las especificaciones de las tuberías normalmente requieren que el gas no contenga más de 7libras de agua por MMSCF. Esto corresponde a un punto de rocío de alrededor de 32ºF a 1,000 psia. Porlo tanto, un gas a 100ºF y 1,000 psia debe tener una depresión del punto de rocío de alrededor de 68ºFpara cumplir con las especificaciones de la tubería. La depresión del punto de rocío es la diferencia en ºFentre la temperatura del gas de entrada y el punto de rocío del agua del gas de salida. La depresión delpunto de rocío se logra por deshidratación.La deshidratación es el proceso de sacar vapor de agua de la corriente de gas. Esto puede lograrse porvarios métodos, pero el proceso descrito en este trabajo se denomina absorción. En este proceso, unlíquido higroscópico se usa para eliminar vapor de agua del gas. El dietilenglicol y el trietilenglicol sonlos dos líquidos que se usan normalmente para la deshidratación de gases. El trietilenglicol es el favoritoy tiene las siguientes ventajas: 1. Se regenera más fácilmente a una solución del 98-99.5 por ciento en un purificador atmosférico debido a su alto punto de ebullición y otras propiedades físicas. Esto permite depresiónes del punto de rocío más altas en el rango de 80-140ºF. 2. Tiene una temperatura de descomposición teórica inicial de 404ºF, mientras que la temperatura del etilenglicol es de sólo 328ºF. 3. Las pérdidas por vaporización son menores. 4. Se requiere equipo de regeneración más simple. 5. Los costos principales de operación de deshidratación son menores que con el dietilenglicol.CÓMO FUNCIONA EL PROCESOFLUJO DE GAS. El gas húmedo pasa a través de un depurador de entrada para eliminar impurezaslíquidas y sólidas, y luego entra al fondo del absorbedor. (Vea la Figura 2). Éste fluye hacia arriba através de una cama empaquetada o a través de una serie de bandejas de válvulas o tapas burbujeantesllenas de glicol, donde se hace contacto estrecho. El gas suelta vapor de agua hacia el glicol y pasa através de un eliminador de neblina en la parte superior del absorbedor para retener todo líquidoarrastrado. El gas seco sale del absorbedor y fluye a través del enfriador de glicol (intercambiador decalor de glicol-gas) y hacia la línea de ventas. 1
  5. 5. FLUJO DE GLICOL. El glicol seco de baja concentración se bombea continuamente a la bandejasuperior del absorbedor. Conforme el glicol se mueve hacia abajo a través de los tubos de descenso debandeja en bandeja, absorbe el vapor de agua de la corriente de gas ascendente. El glicol rico en agua esremovido en el fondo de la torre y bombeado a través de un serpentín de precalentamiento grande en elacumulador (tanque de almacenamiento). Luego pasa a través de un filtro y entra a la parte superior deldepurador (columna de destilación) localizado arriba del recalentador.El vapor ascendente, generado en el recalentador, extrae el vapor de agua del glicol rico que fluye haciaabajo a través de la cama rellena del purificador. El glicol, llevado por el vapor ascendente, escondensado en la sección de reflujo en lo alto y se regresa al recalentador. El vapor no condensado dejala parte superior del purificador y es enviado a un pozo de desechos.El glicol regenerado se derrama sobre un rebosadero en el recalentador y baja hacia el acumulador.Luego es bombeado a la presión del absorbedor, pasa a través del enfriador de glicol y entra a la partesuperior del absorbedor para iniciar otro ciclo.EFECTO DE LAS VARIABLES DE OPERACIÓNHe aquí algunas variables que pueden afectar la eficiencia de un deshidratador de glicol.TEMPERATURA. La eficiencia de la planta es especialmente sensible a la temperatura del gas deentrada. A presión constante, el contenido de agua del gas de entrada aumenta conforme estatemperatura se eleva. Por ejemplo, a 1,000 psia, un gas a 80ºF retiene alrededor de 34 libras de agua porMMSCF mientras que un gas a 120ºF retendrá alrededor de 106 libras de agua por MMSCF. A latemperatura más alta, el glicol tendrá que extraer alrededor del triple de agua para cumplir con lasespecificaciones de la tubería. Las pérdidas por vaporización de glicol también serían mayores a latemperatura más alta.No se debe permitir que la temperatura de entrada aumente excesivamente cuando se usan calentadoresde línea para evitar la formación de hidratos durante el tiempo frío. Sin embargo, 50ºF se consideracomo la temperatura mínima de operación debido a que el glicol se vuelve muy viscoso e ineficiente, ytiene una mayor tendencia a hacer espuma a temperaturas menores.La temperatura del glicol seco que entra al absorbedor tiene un efecto significativo en la depresión delpunto de rocío del gas, y debe mantenerse a un mínimo para lograr una operación eficiente. Sinembargo, se debe mantener al menos 10ºF arriba de la temperatura del gas de entrada para evitarcondensación de hidrocarburos en el absorbedor y posterior formación de espuma. Usualmente ocurrenmayores pérdidas de glicol y humedad en el gas a ventas cuando la temperatura del glicol seco se vuelvedemasiado caliente.La temperatura y la presión del recalentador controlan la concentración del agua en el glicol. Con unapresión constante, la concentración del glicol aumenta con las temperaturas más altas del recalentador.El rango de temperaturas en el recalentador debe ser de 350ºF a 400ºF para el trietilenglicol. La máximaconcentración de glicol seco lograda en un recalentador convencional, sin gas de despojamiento, es dealrededor de 98,8 por ciento. La Figura 3 muestra las concentraciones de glicol que pueden obtenersecon diversas temperaturas del recalentador.La temperatura en la parte superior de la columna de destilación también es importante. El punto deebullición del agua es 212ºF y éste es alrededor de 546ºF para el trietilenglicol. La amplia diferencia enlos puntos de ebullición de estos dos componentes permite una separación fácil por destilaciónfraccional. Sin embargo, si la temperatura baja demasiado en la parte superior de la torre de destilación,el vapor de agua puede condensarse y regresarse al regenerador para inundar la columna de destilación yllenar el recalentador con líquidos excesivos. Demasiada circulación de glicol frío en el serpentín dereflujo en la columna de destilación a veces puede crear los mismos problemas.Una alta temperatura en la parte superior de la columna de destilación puede aumentar las pérdidas deglicol debido a vaporización excesiva. La temperatura recomendada en la parte superior de la columnade destilación debe ser de alrededor de 225ºF. Abajo de 220ºF existe la posibilidad de que el aguaempiece a condensarse y a regresarse a la columna de destilación. Cuando esta temperatura llega a 250ºFo más, las pérdidas de glicol por vaporización aumentan. Si hay un serpentín de reflujo de glicol fríodisponible, esta temperatura puede reducirse aumentando la cantidad de glicol que fluye a través delserpentín. 2
  6. 6. PRESIÓN. A temperatura constante, el contenido de agua del gas de entrada aumenta conforme baja latemperatura. Sin embargo, en el rango normal de operación, la presión de la planta de glicol no es unfactor muy crítico.CONCENTRACIÓN DE GLICOL. El grado de deshidratación que puede alcanzarse con glicol,depende principalmente de la cantidad de agua extraida en el recalentador. Mientras más seco sea elglicol que va al absorbedor, más eficiente será su poder de deshidratación. Por ejemplo, cuando latemperatura de contacto en el absorbedor es de 95ºF, una concentración de trietilenglicol seco de 99 porciento dará un punto de rocío del gas a ventas de -2ºF mientras que una concentración al 95% sólo daráun punto de rocío de 43ºF, si se logran las condiciones de equilibro (vea la Figura 4).PROPORCION DE LA CIRCULACIÓN DEL GLICOL. Cuando el número de bandejas delabsorbedor y la concentración del glicol son fijos, la depresión del punto de rocío de un gas saturado esfunción de la proporción de la circulación del glicol. La proporción de circulación mínima para asegurarun buen contacto de glicol-gas es de alrededor de dos galones (7.57 litros) de glicol por cada libra(0.45kg) de agua que se va a extraer. Siete galones es la proporción máxima aproximada. El nivelgeneral de operación en un deshidratador estándar es de alrededor de tres galones de glicol por libra deagua removida.La Figura 5 muestra que una depresión mayor del punto de rocío es más fácil de lograr aumentando laconcentración de glicol que aumentando la proporción de circulación del glicol. Una proporción decirculación excesiva, especialmente arriba de la capacidad de diseño, sobrecarga al recalentador y evitauna buena regeneración del glicol. Éste previene un contacto inadecuado de glicol-gas en el absorbedory aumenta los problemas de mantenimiento de la bomba. La proporción de circulación excesiva tambiénaumenta las pérdidas de glicol.La proporción de circulación del glicol puede determinarse contando el número de carreras por minutopara las bombas alimentadas con gas y/o glicol. Luego, la proporción puede establecerse consultando lagráfica de la bomba suministrada por el fabricante. Para bombas eléctricas, la proporción puedecalcularse cerrando la válvula manual de la línea de descarga de glicol del absorbedor y midiendo laaltura de acumulación por unidad de tiempo. Esta altura multiplicada por el área de la sección transversalinterior del absorbedor dará el volumen de glicol bombeado. Un registrador de flujo de glicol puedeusarse en sistemas más grandes.CÓMO ELIMINAR LOS PROBLEMAS DE OPERACIÓNDado que la mayoría de las dificultades de operación es causada por fallas mecánicas, es sumamenteimportante mantener a todo el equipo de la planta en buen estado de operación. He aquí algunassugerencias de operación y mantenimiento para ayudar a proporcionar una operación libre de problemas.DEPURADOR DE ENTRADA. Mientras más limpio sea el gas que entra al absorbedor, menosproblemas operativos habrá. Si no hubiera depurador, considere los problemas potenciales. El acarreo deagua líquida diluiría el glicol, reduciría la eficiencia del absorbedor, requeriría un ritmo mayor decirculación del glicol, aumentaría la carga de líquido-vapor en la columna de destilación, inundaría lacolumna de destilación y aumentaría enormemente la carga de calor del recalentador y losrequerimientos de gas combustible. Los resultados probablemente serían mayores pérdidas de glicol ygas a ventas húmedo. Si el agua contuviera sal y sólidos, éstos se depositarían en el recalentador paracontaminar las superficies de calentamiento y posiblemente harían que se quemaran.Si hubiera hidrocarburos líquidos, pararían a la columna de destilación y al recalentador. Las fraccionesmás ligeras pasarían a la parte alta como vapor y crearían un riesgo de incendio, si estuvieran presentesen grandes cantidades. Los hidrocarburos más pesados se recolectarían en la superficie del glicol en eltanque de almacenamiento y, si no se retiraran, finalmente desbordarían el sistema. La expansión delvapor de hidrocarburos puede inundar la columna de destilación y aumenta enormemente la carga decalor del recalentador y las pérdidas de glicol.El programa de control de corrosión de pozos debe planearse y coordinarse con cuidado para evitar lacontaminación del glicol. El fluido excesivo se transferirá a la planta si el depurador de entrada estásobrecargado. Por lo tanto, el gas de los pozos tratados debe ser pasado lentamente a través de un tanqueo sistema separador en la boca del pozo hasta que el inhibidor de corrosión y el transportador dedestilado puedan ser recolectados. No abra todos los pozos tratados al mismo tiempo. Esto mantendrá lostapones de líquido grandes fuera de las líneas de recolección que van a la planta. 3
  7. 7. El uso de un buen lavador de entrada es esencial para la operación eficiente de una planta de glicol. Eldepurador puede ser parte integral del absorbedor o un recipiente separado. Si es un recipiente separado,el depurador puede ser de dos fases para separar gas y líquido, o tres fases para separar gas,hidrocarburos y agua. Este recipiente debe ser lo suficientemente grande para remover todos los sólidosy líquidos libres y evitar que estas impurezas entren al sistema de glicol. Debe inspeccionarse porcompleto ocasionalmente para evitar malfuncionamiento.La línea de descarga de líquidos debe estar protegida contra el congelamiento durante el tiempo frío.Esto puede lograrse con un serpentín de calentamiento en el depurador o separador. Se bombea glicolcaliente a través de este serpentín. El flujo se dirige a través del serpentín por medio de válvulas debloqueo y derivación. Asegúrese de que estas válvulas estén puestas para la dirección de flujo deseada.Además del serpentín de calentamiento, se le puede poner al separador una cámara de calentamiento enel controlador de nivel de líquido, y en el tubo de nivel. La previsión para tiempo frío puede incluir unserpentín de calentamiento en el recalentador para calentar el gas de purga, el cual puede ser purgadohacia la línea de descarga de líquido del separador para mantener el líquido en movimiento y así éste nose congele. El separador debe ubicarse suficientemente cerca del absorbedor de forma que el gas nocondense más líquidos antes de que entre al absorbedor.Si a un separador adelante de la planta de glicol se le pone un cabezal de seguridad o una válvula dealivio de plena capacidad, usualmente debe instalarse una válvula de retención en la entrada alabsorbedor para proteger las partes internas de la torre.A veces, un extractor eficiente de neblina, el cual remueve todos los contaminantes mayores a unmicrón, se necesita entre el separador de entrada y la planta de glicol para limpiar el gas entrante. Esterecipiente es particularmente útil cuando hay parafina u otras impurezas en forma de vapor fino.Donde el gas se comprime justo antes de la deshidratación, un depurador tipo coalescente colocadoadelante del absorbedor asegurará la eliminación del aceite del compresor en forma de vapor. El aceitedel compresor y el destilado pesado pueden recubrir los empaques de la torre ya sea en el absorbedor oen la columna de destilación, y reducir su efectividad.ABSORBEDOR. Este recipiente contiene bandejas de burbujeo o válvulas o empaques para dar unbuen contacto gas-líquido. La limpieza es muy importante para evitar puntos de rocío altos del gas aventas por formación de espuma y/o poco contacto gas-líquido. Las bandejas o empaques obstruidostambién podrían aumentar las pérdidas de glicol.Durante el arranque de una planta, la presión en el absorbedor debe llevarse lentamente al rango deoperación y luego el glicol debe hacerse circular para alcanzar un nivel de líquido en todas las bandejas.Luego, la proporción del gas que va al absorbedor debe aumentarse lentamente hasta alcanzar el nivel deoperación.Si el gas entra al absorbedor antes de que las bandejas sean selladas con líquido, éste subirá a través delos tubos de descenso y de las tapas de burbujeo. Cuando existe esta condición y el glicol es bombeadohacia el absorbedor, el líquido tiene dificultad para sellar los tubos de descenso. Entonces, el líquido serállevado con la corriente de gas en lugar de fluir hacia el fondo del absorbedor.El flujo de gas debe aumentarse lentamente al cambiar de una proporción baja a una alta. Aumentosrápidos de gas a través del absorbedor pueden causar suficiente caída de presión a través de las bandejaspara romper los sellos de líquido y/o levantar el glicol de las bandejas, inundarán el extractor de neblinay aumentarán las pérdidas de glicol.Cuando se para la planta, el combustible hacia el recalentador debe cerrarse primero. Luego la bomba decirculación debe operar hasta que la temperatura del recalentador baje a aproximadamente 200ºF. Estaprecaución evitará la descomposición del glicol causada por sobrecalentamiento. Luego puede pararse laplanta reduciendo lentamente el flujo de gas para evitar impactos innecesarios en el absorbedor y en latubería. La planta debe despresurizarse lentamente para evitar una pérdida de glicol. El deshidratadordebe despresurizarse siempre desde el lado corriente abajo (salida del gas) del absorbedor.Un deshidratador instalado en el lado de descarga de una estación de compresores debe equiparse conuna válvula de retención en la línea de gas de entrada, localizada lo más cerca posible del absorbedor. Laexperiencia muestra que algo de glicol es succionado hacia esta línea cuando un compresor detona o separa. También se han causado daños internos al absorbedor a las bandejas y a la almohadilla de mallapor una falla del compresor. La instalación de una válvula de retención usualmente puede eliminar esta 4
  8. 8. dificultad. Todos los compresores que toman gas de un deshidratador o que lo alimentan a éste, debentener atenuadores de pulsación. La ausencia de este dispositivo de seguridad puede causar falla porfatiga de los instrumentos, bandejas, serpentines, almohadillas de malla y otras partes del deshidratador.La válvula de descarga de glicol y el controlador de nivel deben ajustarse por acción deestrangulamiento, para dar un flujo homogéneo del glicol hacia el regenerador. Esto evitará tapones quepodrían inundar al depurador y causar pérdidas excesivas de glicol.El absorbedor debe ser vertical para asegurar el flujo correcto de glicol en el recipiente y el contactoadecuado del glicol y del gas. A veces las bandejas y las tapas de burbujeo no sellan correctamentedespués del montaje y deben inspeccionarse si hay pérdidas muy altas de glicol. Los puertos deinspección en las bandejas pueden ser muy útiles al inspeccionar o limpiar el recipiente.Si se usa gas seco proveniente de una planta de glicol para levantamiento por gas, debe tenerse cuidadoen las dimensiones y en la operación de la planta, debido a una proporción de gas inestable requerido eneste servicio. Debe instalarse una válvula de contrapresión en la salida de gas del absorbedor que operaen un sistema de levantamiento por gas. Si esto no se hace, entonces una válvula corriente abajo delabsorbedor puede colocarse para evitar una sobrecarga repentina del absorbedor y para ayudar acontrolar el flujo de gas a través de la unidad. Una sobrecarga repentina del absorbedor puede romper lossellos de los tubos de descenso en un recipiente tipo bandeja y causar pérdida excesiva de glicol en elgas para venta.A veces los absorbedores necesitan aislarse cuando se colecta condensación excesiva de hidrocarburosligeros en las paredes del recipiente. Esto ocurre con frecuencia al deshidratar gases ricos y cálidos enclimas fríos. Estos hidrocarburos muy ligeros pueden causar inundación de la bandeja o formación deespuma en el absorbedor y pérdidas excesivas de glicol del regenerador.El eliminador de neblina debe recibir atención especial debido a que el arrastre de glicol y elarrugamiento de las paredes son difíciles de controlar de manera efectiva. El tipo y espesor de laalmohadilla de malla debe estudiarse con cuidado para minimizar las pérdidas de glicol. También debetenerse cuidado después de la instalación para evitar daño a la almohadilla de malla. La caída máxima depresión a través del contactor para evitar daño a la almohadilla de malla es alrededor de 15 psig.INTERCAMBIADOR DE CALOR DE GLICOL-GAS. La mayoría de las plantas están equipadas conun intercambiador de calor de glicol-gas, el cual usa el gas que sale del absorbedor para enfriar el glicolseco que entra al absorbedor. Este intercambiador puede ser un serpentín en la parte superior delabsorbedor o uno externo. Puede usarse un intercambiador enfriado con agua cuando deba evitarse elcalentamiento del gas. Este intercambiador puede acumular depósitos, como sal, sólidos, coque o goma,los cuales contaminan las superficies del intercambiador de calor. Estos depósitos pueden reducir lavelocidad de transferencia de calor y aumentar la temperatura del glicol seco. Esto aumentaría laspérdidas de glicol y haría la deshidratación más difícil. Por lo tanto, este recipiente debe inspeccionarseregularmente y limpiarse cuando sea necesario.TANQUE DE ALMACENAMIENTO DE GLICOL SECO O ACUMULADOR. Normalmente esterecipiente contiene un serpentín intercambiador de calor de glicol, el cual enfría el glicol que viene delrecalentador y precalienta el glicol rico que va al purificador. El glicol seco también es enfriado porradiación en la pared del tanque de almacenamiento. Por lo tanto, este acumulador normalmente no debeestar aislado. El enfriamiento de agua también puede usarse para ayudar a controlar la temperatura delglicol seco.En regeneradores convencionales, sin gas de despojamiento, el acumulador normalmente debe ventearsepara evitar captura de gas. Los vapores, atrapados en el tanque de almacenamiento, podrían hacer que labomba se bloqueara por vapor. Usualmente se proporciona una conexión en la parte superior del tanquede almacenamiento para venteo. La línea de venteo debe entubarse lejos del equipo de proceso, perousualmente no debe conectarse al venteo del purificador, porque esto podría hacer que el vapor de aguadiluyera el glicol concentrado.Algunas plantas están equipadas para proporcionar un gas de protección seco (que no sea oxígeno niaire) en el tanque de almacenamiento. Usualmente no es necesario conectar un venteo separado en estostanques de almacenamiento. El gas de protección se entuba normalmente hacia una conexión de venteoregular en la parte superior del tanque de almacenamiento. Si se usa un gas de protección, éstecomúnmente se toma de la línea de gas combustible. Cuando se usan protecciones de gas, puede ser 5
  9. 9. necesario ver que la válvula del gas de protección, la tubería y el orificio de control de flujo esténabiertos para pasar gas. Sólo se requiere un flujo muy ligero de gas para evitar que el vapor de aguagenerado en el recalentador contamine el glicol regenerado.Este recipiente debe inspeccionarse ocasionalmente para ver los depósitos de lodos e hidrocarburospesados no se acumulen en el fondo del recipiente. El serpentín intercambiador de calor también debemantenerse limpio para que se pueda hacer la transferencia de calor correcta. Esto además evitará lacorrosión. Si en este serpentín intercambiador de calor ocurre una fuga, el glicol rico en agua podríadiluir el glicol seco. Verifique el nivel del glicol en el tanque de almacenamiento y siempre mantenga unnivel en el tubo de nivel. Mantenga limpio el tubo de nivel para asegurar un nivel óptimo. Se debeagregar glicol conforme baje el nivel bombeado. Un registro de la cantidad de glicol agregado es muyútil. Asegúrese de que el tanque de almacenamiento no se llene demasiado.PURIFICADOR O COLUMNA DE DESTILACIÓN. Este recipiente generalmente es una columnaempacada localizada en la parte superior del recalentador para separar el agua y el glicol por destilaciónfraccional. El empaque usualmente es un asiento cerámico Intalox, pero pueden usarse anillos Pall deacero inoxidable 304 para evitar la ruptura. El purificador estándar usualmente tiene un condensadoratmosférico aleteado en la parte superior para enfriar los vapores de agua y recuperar el glicol arrastrado.El condensador atmosférico depende de la circulación de aire para enfriar los vapores calientes. Puedehaber mayores pérdidas de glicol en días sumamente calientes cuando el enfriamiento insuficiente en elcondensador causa una mala condensación. También puede haber altas pérdidas de glicol en días deviento sumamente fríos cuando la condensación excesiva (agua y glicol) sobrecarga el recalentador. Loslíquidos en exceso se derraman del venteo del purificador.Si se usa gas de despojamiento, normalmente se provee un serpertín de reflujo interno para enfriar losvapores. El reflujo para el purificador es más crítico cuando se usa gas de despojamiento para evitarpérdidas excesivas de glicol. Esto es debido a una cantidad mayor de vapor que sale del purificador, elcual llevará glicol. Un reflujo adecuado se obtiene haciendo pasar el glicol rico y frío del absorbedor através del serpentín del condensador en el purificador. Si se ajusta adecuadamente, puede proporcionaruna condensación uniforme durante todo el año.Una válvula manual en la tubería se proporciona para derivar el serpentín de reflujo. Bajo condicionesnormales, esta válvula se cerrará y el flujo total será a través del serpentín de reflujo. En una operaciónen clima frío, con temperaturas ambiente bajas extremas, esto podría producir demasiado reflujo y elregenerador podría sobrecargarse. En este caso, el recalentador puede no ser capaz de mantener latemperatura requerida. Con estas condiciones, el aire ambiental está proporcionando parte o todo elreflujo requerido. Por lo tanto, una parte o toda la solución de glicol rico debe derivar el serpentín dereflujo. Esto se hace abriendo la válvula manual hasta que el recalentador pueda mantener latemperatura. Esto reduce la cantidad de reflujo producido por el serpentín y reduce la carga en elrecalentador.A veces, puede generarse una fuga en el reflujo del glicol frío en la parte superior del purificador.Cuando esto ocurre, el glicol en exceso puede inundar el empaque de la torre en la columna dedestilación, afectar la operación de destilación y aumentar las pérdidas de glicol. Por esta razón, elserpentín de reflujo debe mantenerse adecuadamente.Un empaque roto, descascarado, puede causar que la solución forme espuma en el purificador y queaumenten las pérdidas de glicol. El empaque se rompe usualmente por movimiento excesivo de la camacausado cuando los hidrocarburos se expanden en el recalentador. El manejo poco cuidadoso al instalarel empaque también puede causar que se descascare. Conforme las partículas se desprenden, la caída depresión a través del purificador aumenta. Esto restringe el flujo de vapor y líquido, y causa que el glicolse filtre de la parte superior del purificador.Un empaque sucio, causado por depósitos de residuos de sal o hidrocarburos de alquitrán, tambiéncausará formación de espuma de la solución en el purificador y aumentará las pérdidas de glicol. Por lotanto, el empaque debe limpiarse o cambiarse cuando haya obstrucción o descarapelamiento. Debeusarse el mismo tamaño de empaque de torre para el reemplazo. El tamaño estándar es un asientocerámico Intalox de 1 pulgada o anillo Pall de acero inoxidable 304 de una pulgada. Cuando se usa gasde despojamiento y se pone un empaque de torre en el tubo de descenso entre al recalentador y el tanquede almacenamiento, deben tomarse provisiones para cambiar el empaque de la torre sin cortar en el tubo 6
  10. 10. de descenso. Coastal Chemical Company puede proveer inmediatamente todo tipo de empaque de torrerequerido para la planta de glicol.Durante relaciones de circulación bajos, el glicol rico puede encanalarse a través del empaque, causandoun mal contacto entre el líquido y los vapores calientes. Para evitar la canalización, puede ponerse unaplaca distribuidora justo debajo de la línea de alimentación del glicol rico para dispersar uniformementeel líquido.Un arrastre grande de hidrocarburos líquidos hacia el sistema de glicol puede ser muy problemático ypeligroso. Los hidrocarburos se expandirán en el recalentador, inundarán el purificador y aumentarán laspérdidas de glicol. Los vapores y/o líquidos de hidrocarburos pesados también podrían derramarse sobreel recalentador y crear un grave riesgo de incendio. Por lo tanto, los vapores que salen del venteo delpurificador deben entubarse lejos del equipo de proceso como una medida de seguridad.La línea de venteo debe inclinarse adecuadamente todo el tramo desde el purificador hasta el punto dedescarga para evitar que los líquidos condensados tapen la línea. Si la línea de venteo es demasiado largay va arriba del suelo, un venteo superior, en el punto a no más de veinte pies (6m) del purificador, debeinstalarse probablemente para permitir el escape de vapores en caso de congelamiento en la línea largade venteo. La tubería debe ser del mismo tamaño o más grande que la conexión del recipiente.En áreas donde hay posibilidad de clima frío, bajo cero, esta línea debe estar aislada del purificador alpunto de descarga para evitar congelamientos. Esto evitará que el vapor de agua se condense, se congeley tape la línea. Si ocurre congelamiento, el vapor de agua se expande en el recalentador puededescargarse hacia el tanque de almacenamiento y diluir el glicol seco. La presión causada por estosvapores atrapados además podría forzar al regenerador a arder.RECALENTADOR. Este recipiente proporciona calor para separar el glicol y el agua por destilaciónsimple. En los deshidratadores de campo, el recalentador generalmente está equipado con una cámara decombustión directa, que usa una porción del gas para combustible. Los deshidratadores en instalacionesde plantas grandes pueden usar aceite caliente o vapor de agua en el recalentador. En recalentadores decombustión directa, el elemento de calentamiento usualmente tiene forma de tubo en U y contiene uno omás quemadores. Debe estar diseñado con características mínimas para asegurar una larga vida del tuboy para evitar la descomposición del glicol causada por el sobrecalentamiento. El recalentador tambiénestá equipado generalmente con un controlador de seguridad por alta temperatura para apagar el sistemade gas combustible en caso de malfuncionamiento del controlador principal de temperatura.El flujo de calor de la cámara de combustión, una medida de la relación de transferencia de calor enBTU/H.R./SQ. FT., debe ser lo suficientemente alto para proporcionar una capacidad de calentamientoadecuada, pero suficientemente bajo para evitar la descomposición del glicol. Un flujo de calor excesivo,resultado de demasiado calor en un área pequeña, descompondrá térmicamente el glicol.Mantenga baja la flama del piloto, especialmente en recalentadores pequeños, para evitar ladescomposición del glicol y el quemado del tubo. Esto es particularmente importante en las unidadesmás pequeñas donde la flama del piloto puede proporcionar una parte sustancial del requerimiento totalde calor. La flama debe ajustarse correctamente para dar una flama larga, vibrante y con la puntaligeramente amarilla. Es posible obtener boquillas de gas que distribuyan la flama de forma másuniforme a lo largo del tubo, reduciendo así el flujo de calor del área más cercana a la boquilla sinreducir en realidad la energía calorífica total transferida. Esto evitará la incidencia directa y fuerte de laflama contra el tubo de humos.Un dispositivo de paro de la bomba puede evitar la circulación de glicol húmedo, causado por falla de laflama. Un sistema de ignición de chispa continua, o un encendedor de chispa para reencender el piloto siéste se apaga, también es útil. Limpie los orificios en los mezcladores de aire-gas y pilotos según serequiera para evitar fallas en los quemadores.Las siguientes temperaturas en el recalentador no deben excederse para evitar la degradación del glicol. TIPO DE GLICOL TEMPERATURA TEÓRICA DE DESCOMPOSICIÓN TÉRMICA Etileno 329ºF Dietileno 328ºF Trietileno 404ºF 7
  11. 11. Una decoloración excesiva y una degradación muy lenta ocurrirán cuando la temperatura delrecalentador se mantiene la mayor parte alrededor de 10ºF arriba de las temperaturas listadasanteriormente.Si en el tubo de humo hay coque, productos de alquitrán y/o depósito de sal, la relación de transferenciade calor se reduce y puede ocurrir una falla del tubo. Un sobrecalentamiento localizado, especialmentedonde se acumula la sal, descompondrá el glicol. Un análisis del glicol determinará las cantidades ytipos de estos contaminantes. Los depósitos de sal también pueden detectarse apagando el quemador enel recalentador en la noche y viendo debajo de la cámara de combustión. Una luz brillante y roja se veráen puntos sobre los tubos donde se hayan formado depósitos de sal. Estos depósitos pueden causar unquemado rápido del tubo de humo, particularmente si el separador de entrada de la planta es inadecuadoy una porción de agua salada entra al absorbedor.El coque y los productos de alquitrán presentes en el glicol circulante pueden extraerse mediante unabuena filtración. Se requiere equipo más elaborado para extraer la sal. Los contaminantes, que ya sedepositaron en el tubo de humo y otros equipos, pueden eliminarse con un trabajo de limpieza a fondo.Coastal Chemical ofrece este servicio. Esto ayudará a prolongar la vida del equipo.El proceso de calentamiento es controlado termostáticamente y es completamente automático. Sinembargo, la temperatura del recalentador debe verificarse ocasionalmente con un termómetro de pruebapara asegurarse de que se estén registrando lecturas reales. Si la temperatura fluctúa excesivamentecuando se opera abajo de la capacidad de diseño, reduzca la presión del gas combustible. Unatemperatura uniforme da una mejor operación del recalentador.Si la temperatura del recalentador no puede elevarse al valor deseado, puede ser necesario aumentar lapresión del gas combustible hasta alrededor de 30 psig. Si agua y/o hidrocarburos están entrando alrecalentador desde el absorbedor, puede ser imposible aumentar la temperatura hasta que se corrija esteproblema. Los orificios estándar provistos para los quemadores del recalentador están hechos para 1000-1100 BTU/SCF de gas. Si el valor del gas es menor a éste, puede ser necesario instalar un orificio másgrande o agrandar el orificio existente al siguiente tamaño más grande.Algunos incendios han sido causados por fugas en las líneas de gas cerca de la cámara de combustión.La mejor precaución es poner válvulas y reguladores en la línea de gas a una distancia máxima de lacámara de combustión. Otra medida efectiva es la adición de un arrestador de flama alrededor de lacámara de combustión. Si el arrestador de flama está diseñado adecuadamente, incluso fugas de gasseveras muy cercanas a la cámara de combustión no se prenderán.Durante el arranque de la planta, asegúrese de que la temperatura del recalentador aumente al nivel deoperación deseado antes de que fluya gas a través del absorbedor.El recalentador debe estar horizontal al ensamblarse. Una posición no horizontal puede causar unquemado del tubo de humo. Además, el recalentador deberá ubicarse suficientemente cerca delabsorbedor para evitar el enfriamiento excesivo del glicol seco en un clima frío. Esto evitarácondensación de hidrocarburos y altas pérdidas de glicol en el absorbedor.GAS DE DESPOJAMIENTO. Éste es un elemento opcional usado para lograr concentraciones muyaltas que no pueden obtenerse con regeneración normal. Éste proporcionará la depresión máxima delpunto de rocío y una mayor deshidratación. El gas de despojamiento se usa para eliminar agua residualdespués de que el glicol ha sido reconcentrado en el equipo de regeneración. Se usa para proporcionarcontacto estrecho entre el gas caliente y el glicol seco después de que la mayor cantidad de agua ha sidoextraída por destilación. Se han reportado concentraciones de glicol seco en el rango de 99.5 a 99.9 porciento y depresiones del punto de rocío de 140ºF y mayores.Hay varios métodos para introducir el gas de despojamiento al sistema. Un método es usar una bandejavertical o sección empacada en el tubo de descenso entre el recalentador y el tanque de almacenamiento,donde el gas seco extrae el agua adicional del glicol regenerado. El glicol del recalentador fluye haciaabajo a través de esta sección, hace contacto con el gas de despojamiento para eliminar el exceso de aguay va al tanque de almacenamiento.Otro método es usar rociadores de gas de despojamiento de glicol en el recalentador abajo del tubo dehumo. Conforme el glicol fluye a través del recalentador, se inyecta gas a este recipiente y es calentadopor el glicol. El gas de despojamiento hará contacto con el glicol en el recalentador y extraerá parte del 8
  12. 12. agua adicional. Luego el gas pasa del purificador a la fosa de desechos. El glicol seco baja delrecalentador hacia el tanque de almacenamiento.El gas del purificador para inyección normalmente se toma de la línea de gas combustible delrecalentador (si es gas deshidratado) a la presión del recipiente de goteo de combustible. No use aire nioxígeno. El gas de despojamiento usualmente es controlado por una válvula manual con un manómetropara indicar la relación de flujo a través de un orificio.La relación del gas de despojamiento variará de acuerdo con la concentración ligera deseada y el métodode contacto de glicol-gas. El valor de la proporción del gas de despojamiento requerido usualmente seráde 2 a 10 pies cúbicos estándar por galón de glicol que circula. La proporción del gas de despojamientono deberá subir tanto como para inundar el purificador y sacar glicol hacia la fosa. Cuando se usa gas dedespojamiento, es necesario proporcionar más reflujo en el purificador para evitar pérdidas excesivas deglicol. Esto usualmente se logra usando un serpentín condensador de glicol frío en el purificador.BOMBA DE CIRCULACIÓN. Este equipo se usa para mover glicol a través del sistema. Puedealimentarse con electricidad, gas, vapor de agua o gas y glicol, dependiendo de las condiciones deoperación de la ubicación de la planta. Comúnmente se usa la bomba de gas-glicol, un dispositivo muyversátil. Sus controles son durables, confiables y, si se ajustan adecuadamente, deben dar una operaciónlarga sin problemas.La bomba alimentada con gas-glicol utiliza el glicol rico a presión en el absorbedor para alimentar partede su energía de accionamiento requerida. Dado que la bomba no puede regresar más glicol del quebombeó, se necesita un volumen complementario para proporcionar la fuerza de accionamiento. Parasuministrar este volumen adicional, gas a presión del absorbedor se lleva con el glicol rico. A unapresión de operación de 1,000 psig en el absorbedor, el volumen de gas requerido es aproximadamente5.5 SCF por galón de glicol seco que circula.He aquí algunos consejos útiles de mantenimiento.El arranque cuidadoso de una bomba nueva puede ahorrar muchas preocupaciones y tiempoimproductivo. El sello de empaque de la bomba que se usa generalmente sólo se lubrica con el propioglicol. El empaque está seco cuando la bomba está nueva. Conforme absorbe el glicol, el empaque tiendea expandirse. Si se enroscó demasiado apretado, el empaque marcará el émbolo o bien el empaque sequemará.La bomba maneja un fluido que frecuentemente está sucio y es corrosivo. Esto puede llevar a corrosióndel cilindro, erosión del sello, daño del impulsor, desgaste del anillo o tapa de la bomba y válvulaspegadas o tapadas. Estas partes deben verificarse y mantenerse en una condición adecuada paramantener la bomba a su máxima eficiencia.El ajuste de la bomba debe ser acorde con el volumen del gas que se esté procesando. La velocidad debereducirse para proporciones bajas de gas, y aumentarse para proporciones altas. Estos ajustesproporcionales permiten un mayor tiempo de contacto de gas-glicol en el absorbedor.Cuando las válvulas de retención de la bomba se desgastan o se tapan, la bomba operará de formanormal, excepto que no irá fluido al absorbedor. En este caso, hasta un manómetro indicará un ciclo debombeo. La única evidencia de este tipo de falla es poca o ninguna depresión del punto de rocío. Unaforma segura de verificar el volumen que fluye es cerrar la válvula en la salida del absorbedor y calcularel flujo midiendo el aumento en el tubo de nivel (si se cuenta con uno) contra la cantidad bombeadanormalmente.Una de las fuentes más comunes de pérdida de glicol ocurre en el sello de empaque de la bomba. Si labomba deja escapar uno o dos cuartos de glicol por día, el empaque probablemente necesita serreemplazado. Ordinariamente, un ajuste no recuperará el sello. El empaque debe apretarse a manocuando se instale, y luego aflojarse una vuelta completa. Si el empaque se aprieta demasiado, lospistones pueden marcarse y requerir reemplazo.Generalmente, una proporción de circulación de glicol de 2-3 galones por libra de agua que se va aextraer es suficiente para proporcionar una deshidratación adecuada. Una proporción excesiva puedesobrecargar el recalentador y reducir la eficiencia de la deshidratación. La proporción debe verificarseregularmente cronometrando a la bomba para asegurarse de que está funcionando a la velocidadcorrecta. 9
  13. 13. El mantenimiento adecuado de la bomba reducirá los costos de operación. Cuando la bomba no estáfuncionando, toda la planta debe pararse debido a que el gas no puede secarse de forma efectiva sin unbuen flujo continuo de glicol en el absorbedor. Por lo tanto, deben tenerse a la mano partes de repuestopequeñas para evitar paros prolongados.Si hay insuficiente circulación de glicol, verifique si está tapado el filtro de succión de la bomba y/o abrala válvula de purga para eliminar bloqueo de aire. Los filtros de glicol deben limpiarse regularmente paraevitar desgaste de la bomba y otros problemas.Las bombas deben lubricarse según se requiera.Un fácil acceso a la bomba puede ahorrar tiempo y problemas al hacer reparaciones o reemplazos.La temperatura máxima de operación de la bomba está limitada por los sellos de anillo “O” ydeslizaderas en D de nylon móviles. Se recomienda una temperatura máxima de 200ºF. La vida delempaque se prolongará considerablemente si la temperatura se mantiene a un máximo de 150ºF. Por lotanto, se necesita suficiente intercambio de calor para mantener el glicol seco abajo de estastemperaturas cuando pasa a través de la bomba.La bomba usualmente es el dispositivo más trabajado y usado en exceso en el sistema de proceso delglicol. Frecuentemente, la planta de glicol contiene una segunda bomba de reserva para servicio, paraevitar paros cuando una bomba falla. Con frecuencia, el operador usa la segunda bomba para mandarmás glicol al absorbedor y evitar problemas de gas de ventas húmedo. Este procedimiento usualmentesólo aumenta el problema de operación. Las demás variables del proceso deben verificarse primero antesde usar una segunda bomba.Generalmente, se proporciona un manómetro en el lado de descarga de la bomba. También se proveeuna válvula entre el manómetro y la línea, de forma que el manómetro pueda aislarse. El manómetropuede usarse para ver que la bomba esté funcionando, viendo el “brinco” del medidor conforme el pistónde la bomba se mueve.Un manómetro usualmente contiene un elemento de tubo de Bourdon. La flexión o el movimiento deeste tubo indica la presión. El tubo de Bourdon se fatiga o falla si se somete a fluctuaciones continuas depresión en la descarga de la bomba. Debe de evitarse la presión en el manómetro, excepto cuando seprueba la unidad o para determinar la pérdida de glicol a partir de la falla del medidor.TANQUE DE EXPANSIÓN O SEPARADOR DE GLICOL-GAS. Éste es un dispositivo opcionalusado para recuperar el gas que sale de la bomba alimentada con glicol y los hidrocarburos gaseosos delglicol rico. El gas recuperado puede usarse como combustible para el recalentador y/o como gas dedespojamiento. Todo gas en exceso usualmente se descarga a través de una válvula de contrapresión. Eltanque de expansión mantendrá los hidrocarburos volátiles fuera del recalentador. Este separador de bajapresión puede localizarse entre la bomba y el serpentín de precalentamiento en el tanque dealmacenamiento. También puede colocarse entre el serpentín de precalentamiento y el purificador. Elseparador usualmente trabaja mejor en un rango de temperatura de 110ºF a 130ºF. Puede usarse unseparador de dos fases, con un tiempo de retención de al menos de cinco minutos, para extraer el gas.Si hay hidrocarburos líquidos en el glicol rico, debe usarse un separador de tres fases para eliminar estoslíquidos antes de que entren al purificador y al recalentador. Un tiempo de retención de líquidos de 20 a45 minutos, dependiendo del tipo de hidrocarburos y la cantidad de espuma, debe proporcionarse en esterecipiente. Este recipiente debe localizarse adelante o detrás del serpentín de precalentamiento en eltanque de almacenamiento, dependiendo del tipo de hidrocarburos presente.GAS DE PROTECCION. Ésta protección se proporciona para evitar que el aire haga contacto con elglicol en el recalentador y tanques de almacenamiento. Esto se hace purgando una cantidad pequeña degas a baja presión hacia el tanque de almacenamiento. El gas viene en tubo desde el tanque dealmacenamiento hacia el fondo del purificador y éste sube con el vapor de agua. La eliminación de aireayuda a evitar la descomposición del glicol por oxidación lenta. Además, iguala la presión entre elrecalentador y el tanque de almacenamiento para evitar la ruptura del sello líquido entre estos recipientesen caso de que haya una contrapresión excesiva en el recalentador.RECUPERADOR. Este recipiente purifica el glicol para su uso posterior mediante destilación al vacío.El glicol limpio es recuperado y todo el sedimento sucio se deja en el recipiente y luego se va al drenaje.Este dispositivo opcional normalmente se usa sólo en sistemas de glicol muy grandes. Para la mayoría de 10
  14. 14. los sistemas de glicol, Coastal Chemical Company puede drenar el glicol, limpiar químicamente elsistema, y proveer nuevo glicol.CÓMO CUIDAR EL GLICOLUsualmente ocurren problemas de operación y de corrosión cuando el glicol circulante se ensucia. Por lotanto, para obtener una vida larga sin problemas con el glicol, es necesario reconocer estos problemas ysaber cómo prevenirlos. Algunos de los problemas principales son: 1. Oxidación 5. Hidrocarburos 2. Descomposición térmica 6. Sedimentos 3. Control del pH 7. Formación de espuma 4. Contaminación con salOXIDACIÓN. El oxígeno entra al sistema con el gas entrante, a través de tanques de almacenamiento ocárcamos sin protección, o a través de los sellos de empaque de la bomba. El glicol se oxida fácilmenteen presencia del oxígeno y forma ácidos corrosivos.Para evitar la oxidación, los recipientes de proceso abiertos deben tener una protección de gas paramantener el aire fuera del sistema. También pueden usarse inhibidores de corrosión para prevenir lacorrosión. Los gases que contienen oxígeno pueden tratarse para minimizar la corrosión. Un método esinyectar una mezcla que contenga dos cuartos de una mezcla 50-50 de MEA y 33-1/3 por ciento dehidrazina en el glicol entre el absorbedor y el equipo de regeneración. De preferencia debe usarse unabomba de medición para dar una inyección continua y uniforme.DESCOMPOSICIÓN TÉRMICA. El calor excesivo, resultado de una de las siguientes condiciones,descompone el glicol y forma productos corrosivos.1. Una temperatura alta del recalentador, arriba del nivel de descomposición del glicol.2. Una relación alta del flujo de calor, a veces es usada por un ingeniero de diseño para mantener el bajo costo del calentador.3. Sobrecalentamiento localizado, causado por depósitos de sal o productos de alquitrán en los tubos de humo del recalentador, o por mala dirección de la flama en los tubos de humo (Vea otros comentarios en la sección del recalentador.)CONTROL DEL pH. Generalmente, el pH es una medida de la acidez o alcalinidad de un fluido, queusa una escala de 0-14. Los valores de pH de 0 a 7 indican que el fluido es ácido o corrosivo. Valores depH de 7 a 14 indican que el fluido es alcalino. Los valores de pH pueden determinarse con papel tornasolo equipo de prueba de pH. La muestra de glicol debe diluirse 50-50 con agua destilada antes de hacer laspruebas de pH, para obtener una lectura real. El medidor de pH debe calibrarse ocasionalmente paramantenerlo preciso. El pH del agua destilada también debe verificarse para ver que tenga un pH neutrode 7. El agua destilada contaminada altera los valores de pH.El glicol nuevo tiene aproximadamente un pH neutral de 7. Sin embargo, conforme el glicol se usa, elpH siempre se reducirá y se volverá ácido y corrosivo, a menos que se usen neutralizadores oamortiguadores de pH. El ritmo de corrosión del equipo aumenta rápidamente con una reducción del pHdel glicol. Los ácidos, que resultan de la oxidación del glicol, productos de descomposición térmica ogases ácidos recogidos de la corriente de gas, son los contaminantes corrosivos más problemáticos. UnpH bajo acelera la descomposición del glicol. Idealmente, el pH del glicol debe mantenerse a un nivel de7.0 a 7.5. Un pH arriba de 8.0 a 8.5 tiende a hacer que el glicol forme espuma y se emulsione.El pH debe verificarse con frecuencia para minimizar la corrosión. Puede usarse borax, etanolaminas(usualmente trietanolamina) u otros neutralizadores alcalinos para controlar el pH. La adición de estosneutralizadores debe hacerse con mucho cuidado. Éstos deben agregarse lenta y continuamente paramejores resultados. Una sobredosis de neutralizador usualmente precipitará todo residuo negrosuspendido en el glicol. Los residuos pueden asentarse y tapar el flujo de glicol en cualquier parte delsistema de circulación. Deben hacerse cambios frecuentes del elemento de filtro mientras que se esténagregando neutralizadores de pH.La cantidad de neutralizador que se tiene que agregar y la frecuencia de adición varían de una planta aotra. Normalmente, un cuarto (1/4) de libra de trietanolamina (TEA) por 100 galones de glicolusualmente es suficiente para aumentar el nivel de pH a un rango seguro. Cuando el pH del glicol es 11
  15. 15. sumamente bajo, la cantidad requerida de neutralizador puede determinarse por filtración. En este caso,use la dosificación recomendada para tratar el glicol seco y no el glicol rico, para mejores resultados. Letoma algún tiempo al neutralizador mezclarse por completo con todo el glicol en el sistema. Por lo tanto,el neutralizador debe agregarse lentamente para evitar una sobredosis. Le toma un tiempo al glicolobtener un pH bajo. Por lo tanto, toma varios días elevar el pH a un nivel seguro. Debe tomarse variasveces el pH cada vez que se agrega neutralizador.CONTAMINACIÓN CON SAL. Los depósitos de sal aceleran la corrosión del equipo, reducen latransferencia de calor en los tubos del recalentador y alteran las lecturas de gravedad específica cuandose usa un hidrómetro para determinar las concentraciones de glicol-agua. Este contaminanteproblemático no puede extraerse con regeneración normal. Por lo tanto, el arrastre de sal, ya sea entrozos o en neblina fina, debe evitarse con el uso de un purificador eficiente corriente arriba de la plantade glicol.HIDROCARBUROS. Los hidrocarburos líquidos, resultado del acarreo con el gas entrante o de lacondensación en el absorbedor, aumentan la formación de espuma del glicol, la degradación y laspérdidas. Éstos deben extraerse con un separador de glicol-gas y/o camas de carbón activado.RESIDUOS. Con frecuencia se forma en el glicol una acumulación de partículas sólidas ehidrocarburos de alquitrán. Estos residuos se suspenden en el glicol circulante, y al paso del tiempo, laacumulación se hace lo suficientemente grande para asentarse. Esta acción resulta en la formación deuna goma negra, pegajosa y abrasiva, la cual puede causar erosión de las bombas, válvulas y otrosequipos. Usualmente ocurre cuando el pH del glicol es bajo y se vuelve muy dura y quebradiza cuandose deposita en las bandejas del absorbedor, en el empaque del purificador y en otros lugares en el sistemade circulación. Una buena filtración de la solución evitará la acumulación de residuos.FORMACIÓN DE ESPUMA. La formación de espuma puede aumentar las pérdidas de glicol y reducirla capacidad de la planta. El glicol arrastrado será llevado sobre la parte superior del absorbedor con elgas para venta cuando la espuma estable se acumule en las bandejas. La formación de espuma tambiéncausa un escaso contacto entre el gas y el glicol; por lo tanto, se reduce la eficiencia del secado.Algunos promotores de la espuma son: 1. Líquidos de hidrocarburos 2. Inhibidores de corrosión de campo 3. Sal 4. Sólidos suspendidos finamente divididosLa turbulencia excesiva y velocidades altas de contacto de líquido a vapor usualmente causan que elglicol forme espuma. Esta condición puede ser causada por problemas químicos o mecánicos.La mejor cura para los problemas de formación de espuma es el cuidado adecuado del glicol. Lasmedidas más importantes en el programa son una limpieza efectiva del gas adelante del sistema de glicoly una buena filtración de la solución circulante. El uso de despumadores no resuelve el problema básico.Éste solo debe ser un control temporal hasta que puedan determinarse y eliminarse los promotores deespuma.El éxito de un despumador usualmente depende de cuándo y cómo se agregue. Algunos despumadores,cuando se agregan después de que se genera la espuma, actúan como buenos inhibidores, pero, cuandose agregan antes de la generación de espuma, actúan como buenos estabilizadores de espuma, lo queempeora aún más el problema. La mayoría de los despumadores son inactivados en unas cuantas horasbajo condiciones de alta temperatura y presión, y su efectividad puede ser disipada por el calor de lasolución de glicol. Por lo tanto, los despumadores generalmente deben agregarse de forma continua, gotaa gota, para mejores resultados. El uso de una bomba de alimentación química ayudará a medir eldespumante de manera precisa y dará una mejor dispersión en el glicol.Los despumadores solubles en agua a veces son más efectivos diluyéndolos antes de la adición alsistema. Los despumadores con solubilidad limitada deben agregarse mediante succión de bomba paraasegurar buena dispersión en el glicol. Si la formación de espuma no es un problema verdaderamenteserio, el despumador puede agregarse en porciones de 3 a 4 onzas cuando se requiera.La adición excesiva de despumador usualmente es peor que no agregarlo. Cantidades excesivasaumentan repentinamente el problema de la formación de espuma. 12
  16. 16. Puede usarse el siguiente procedimiento para determinar el mejor despumador y la dosificación correctapara controlar el problema de formación de espuma.No agregue despumadores al sistema de la planta sin experimentar con éstos en botellas de muestralimpias y pequeñas. No mezcle despumadores cuando haga pruebas de espuma. Si un despumador nohace el trabajo requerido, empiece con otra muestra de glicol para hacer la prueba de espuma en botella.Las muestras para la prueba de espuma deben tomarse del sistema de la planta en el punto donde ocurrala mayor formación de espuma.Vierta una cantidad medida (puede usarse una probeta graduada) de la muestra de glicol en una botellalimpia. Agregue alrededor de 5 ppm de despumador, tape la botella y luego agite la muestra variasveces. (Agite las botellas de muestra de la misma forma cada vez que haga la prueba, para mejoresresultados). Haga una inspección visual y estudie:1. Tipo de espuma-tamaño y consistencia de la burbuja.2. Tiempo requerido para que la espuma alcance una altura máxima, y registre la altura de la espuma.3. Tiempo para que la capa de espuma regrese al nivel del líquido.Siga agregando el mismo despumador, en pequeños incrementos, para ver si la espuma puede sercontrolada. Después de haber agregado aproximadamente 200-300 ppm de despumador, la espumausualmente se vuelve incontrolable. En este caso, el despumador debe desecharse.Una vez seleccionado el mejor despumador, mida lentamente la dosificación recomendada en el sistemade la planta en el punto donde ocurre la mayor cantidad de formación de espuma. El uso de una bombade alimentación continua usualmente ayuda a dar un mejor control de la espuma. Coastal tiene unlaboratorio moderno, totalmente equipado en las instalaciones de Abbeville para evaluar muestras deglicol.CÓMO MEJORAR LA FILTRACIÓN DE GLICOLLos filtros dan una mayor vida a las bombas, y evitan la acumulación de sólidos en el absorbedor y en elequipo de regeneración. Los sólidos que se asientan en las superficies metálicas frecuentementeproducen corrosión celular. Los filtros remueven los sólidos para eliminar así la incrustación, formaciónde espuma y obstrucción. El filtro debe diseñarse para remover todas las partículas sólidas mayores a 5micrones de tamaño. Deben ser capaces de operar a diferencias de hasta 20-25 psig sin pérdida de sello ocanalización de flujo. Una válvula de alivio interna con un ajuste de alrededor de 25 psig y manómetrosde presión diferencial son muy útiles. Deben instalarse nuevos elementos antes de que esta válvula dealivio se abra.Si el filtro está equipado con válvulas de bloqueo y de derivación, asegúrese de que la válvula dederivación se abra primero antes de que se cierren las válvulas de bloqueo, para evitar presión excesivaen la unidad. Si no está equipado con válvulas de bloqueo y de derivación, cierre la válvula de bloqueoen la línea de descarga de glicol del absorbedor antes de intentar cambiar elementos.Los filtros usualmente se ponen en la línea de glicol rico para mejores resultados, pero el glicol secotambién puede filtrarse para ayudar a mantener limpio el glicol. Pueden requerirse cambios frecuentes defiltro durante el arranque de la planta, o cuando se agregan neutralizadores para controlar el pH delglicol. Los nuevos elementos deben ponerse en un lugar seco y limpio, para conservarlos de la suciedady de la grasa.Consulte al fabricante de filtros para las instrucciones de instalación y de operación. Es importante sabercuándo y cómo cambiar los elementos para mantener el aire fuera del sistema de glicol. Debeinspeccionarse ocasionalmente si hay acumulación de oxidación y corrosión en las válvulas ymanómetros..Para determinar el uso correcto de elementos de filtro, córtelos hasta el centro e inspecciónelos. Si estántotalmente sucios, el filtro se está usando correctamente. Si el elemento está limpio por dentro, puedenecesitarse un elemento con un valor diferente de micrones. También es una buena práctica rascarocasionalmente algo de residuo de un elemento sucio y mandarlo analizar. Esto ayudará a establecer lostipos de contaminantes presentes. Un registro del número de elementos reemplazados establecerá lacantidad de contaminantes presentes. 13
  17. 17. EL USO DE PURIFICACIÓN POR CARBÓNEl carbón activado puede eliminar de manera efectiva la mayoría de los problemas de formación deespuma removiendo del glicol hidrocarburos, químicos bien tratados, aceites del compresor y otrasimpurezas problemáticas. Hay dos formas de lograr la purificación del glicol. Un método es usar dostorres de carbón instaladas en serie pero con tuberías puestas de forma que puedan aislarse de lacorriente o intercambiarse sin dificultad. Alrededor del dos por ciento del flujo total de glicol debe pasara través de las torres de carbón en plantas grandes, y las plantas pequeñas pueden usar purificación detoda la corriente. Cada cama de carbón debe dimensionarse para manejar dos galones de glicol por piecuadrado de área de sección transversal por minuto. Las dos torres deben tener una relación L/Daproximadamente entre 3:1 y 5:1, e incluso 10:1 en algunos casos.Las torres deben diseñarse para permitir el retrolavado con agua para eliminar el polvo después de que secarga el carbón. Para lograr esto, un colador de retención, con un tamaño de malla más pequeño que elcarbón, debe instalarse arriba de la cama de carbón entre el distribuidor de entrada de líquido y laboquilla de drene de agua de salida, para mantener el carbón en el recipiente. El distribuidor de líquidose necesita para evitar la canalización del glicol a través del carbón.El tamaño del colador y soporte para el fondo de las torres deben seleccionarse con cuidado para evitarobstrucción por carbón y para mantener el carbón en la torre. La boquilla de agua de entrada pararetrolavado debe colocarse debajo del colador en la parte inferior de la torre.La apariencia del glicol puede usarse generalmente para determinar cuándo el carbón necesitaregenerarse o reemplazarse. También puede usarse la caída de presión a través de la cama de carbón. Lacaída de presión normalmente a través de la cama de carbón es de sólo una o dos libras. Cuando la caídade presión alcanza entre 10 y 15 psig, el carbón usualmente está tapado por completo con impurezas.A veces puede usarse limpieza con vapor de agua para regenerar el carbón mediante la eliminación delas impurezas. Sin embargo, esto puede ser peligroso y ofrece sólo un éxito limitado. Coastal ChemicalCompany puede suministrar el carbón cuando se requiera. Contacte a Coastal Chemical Company paralos detalles completos de diseño y operación.Otro método de purificación es usar carbón activado en elementos, como el Peco-Char. Todos los tiposde carbón para filtro de glicol están disponibles en Coastal Chemical Company.Cualquiera de estos sistemas de purificación por carbón debe ponerse corriente abajo del filtro desólidos. Esto aumentará la vida y la eficiencia de adsorción del carbón.CÓMO REDUCIR LAS PÉRDIDAS DE GLICOLLa pérdida de glicol puede ser un problema de operación muy serio y costoso. Puede haber pérdidas porvaporización, acarreo y fugas mecánicas. La pérdida total de glicol de una unidad de deshidrataciónadecuadamente diseñada y mantenida no debe exceder 0.1 galones por MMSCF o alrededor de una librapor MMSCF de gas tratado. Sin embargo, no es nada raro ver pérdidas de glicol que van de uno a cuatrogalones por MMSCF o incluso mayores. Sin los controles adecuados, pueden usarse varios cientos dedólares al día de glicol en exceso. Algunas plantas de tamaño promedio pueden gastar más de $100,000al año en pérdidas excesivas de glicol, tiempo improductivo de la planta y desgaste de equipo.He aquí algunas formas de reducir las pérdidas de glicol.1. Una cierta cantidad de glicol siempre se va a evaporar en la corriente de gas para ventas. El enfriamiento adecuado del glicol seco antes de que entre al absorbedor minimizará estas pérdidas. Las prácticas adecuadas de diseño, operación y mantenimiento son esenciales. Con frecuencia, un tubo ciclónico PECO, colocado en la línea del gas para venta, puede pagarse rápidamente y ahorrar mucho dinero por la recuperación del glicol en exceso. El tubo ciclónico PECO además ayudará a evitar problemas corriente abajo de la planta de glicol.2. Casi todo el glicol arrastrado es removido por un extractor de neblina en la parte superior del absorbedor. Las velocidades excesivas del gas y la formación de espuma del glicol en el absorbedor aumentarán bruscamente las pérdidas.3. Las pérdidas por vaporización en el purificador pueden minimizarse con una buena condensación del glicol. El arrastre de glicol, o el acarreo mecánico, pueden reducirse con el mantenimiento adecuado del purificador y del recalentador. 14
  18. 18. 4. Las fugas mecánicas pueden reducirse manteniendo la bomba, las válvulas y otros aditamentos en buenas condiciones.CÓMO LIMPIAR UN SISTEMA DE GLICOLFrecuentemente se requiere limpieza química para limpiar por completo el sistema de glicol. Si se hacecorrectamente, esto puede ser muy benéfico para una buena operación de la planta. Si se hace mal, puedeser muy costoso. Un mal trabajo de limpieza puede crear problemas duraderos.He aquí algunas técnicas de limpiezas que pueden ser NOCIVAS:1. El uso de agua fría o caliente, con o sin jabones con alto contenido de detergente, hará poco bien a la limpieza del sistema. Los jabones con alto contenido de detergente pueden crear un serio problema dejando cantidades traza de jabón después del trabajo de limpieza. Incluso, esta cantidad de jabón dejada en el sistema puede hacer espuma de glicol durante mucho tiempo.2. La limpieza con vapor de agua no es muy efectiva y puede ser dañina y peligrosa. Tiende a endurecer los depósitos en el sistema y los hace casi imposibles de eliminar.3. La limpieza con ácido es buena para remover depósitos inorgánicos. Sin embargo, dado que la mayoría de los depósitos en el sistema de glicol son inorgánicos, la limpieza con ácido no es muy efectiva. Ésta puede crear fácilmente problemas adicionales en el sistema de glicol después del trabajo de limpieza.El limpiador del tipo más efectivo es una solución muy alcalina para uso rudo como Chemfoil GUC,disponible exclusivamente en Coastal Chemical Company. El procedimiento de limpieza debe permitirel tiempo adecuado para que circule la solución (en la concentración correcta). La solución debecalentarse a la temperatura correcta y bombearse a la velocidad correcta para resultados óptimos. Unatécnica en cascada puede usarse para ahorrar en el costo de químicos limpiadores. Coastal ChemicalCompany puede formular el tipo correcto de químicos limpiadores y puede manejar el trabajo completode limpieza de manera muy eficiente y efectiva cuando se requiera.ANÁLISIS Y CONTROL DEL GLICOLLos análisis del glicol son esenciales para una buena operación de la planta. Una información analítica ysignificativa ayuda a localizar altas pérdidas de glicol, formación de espuma, corrosión y otrosproblemas de operación. Ésta permite al operador evaluar el desempeño de la planta y hacer cambios enla operación para obtener la máxima eficiencia de secado.Una muestra de glicol primero debe inspeccionarse visualmente para identificar algunos de loscontaminantes. Por ejemplo:1. Un precipitado negro dividido finamente puede indicar la presencia de productos de corrosión del hierro.2. Una solución negra y viscosa puede contener hidrocarburos pesados de alquitrán.3. El olor característico de glicol descompuesto (un olor dulce y aromático) usualmente indica degradación térmica.4. Una muestra líquida en dos fases usualmente indica que el glicol está altamente contaminado con hidrocarburos.Las conclusiones visuales deben soportarse luego mediante análisis químicos. Deben tomarse muestrasde glicol seco y rico. Algunas de las pruebas de rutina que deben hacerse son los tipos y cantidades deglicol, por ciento de agua, determinación de hidrocarburos, análisis de sal, contenido de sólidos, pH,contenido de hierro, prueba de espuma y procedimiento de valoración para determinar la cantidad deneutralizador para regresar el pH a un nivel seguro. En el apéndice se incluye una hoja de solicitud demuestra de glicol. Coastal Chemical Company tiene un moderno laboratorio para análisis de glicolsignificativos y rápidos.Los resultados de las pruebas del glicol pueden usarse para ayudar a evitar y resolver problemas deoperación. He aquí algunos comentarios generales sobre los análisis del glicol.1. POR CIENTO EN PESO DE GLICOL. Éste establece la cantidad de glicol en la solución. El por ciento de glicol seco debe ser aproximadamente entre 98 y 99.5+. El contenido de glicol rico variará de 93 a 97 por ciento. Si el margen entre el contenido de glicol seco y rico es demasiado angosto (alrededor de 0.5 a 1.5 por ciento), usualmente significa que la velocidad de circulación del glicol es demasiado rápida, y debe reducirse para evitar problemas. Si el margen es demasiado amplio (arriba 15
  19. 19. de 4 a 5 por ciento), usualmente significa que la velocidad de circulación del glicol es demasiadolenta y debe aumentarse para evitar problemas.2. TIPOS Y CANTIDADES DE GLICOL. Si se usa trietilenglicol, la cantidad de otros glicoles, como monoetileno y dietileno, debe ser bastante pequeña. En este caso, si los porcentajes de otros glicoles (además del trietileno) empiezan a aumentar, usualmente significa que el glicol en el sistema se está degradando y descomponiendo. Esto podría causar problemas.3. CONTENIDO DE AGUA. Éste determina la cantidad de agua en las muestras. El contenido de agua en la muestra de glicol seco debe ser de preferencia menor a uno por ciento. Si este contenido de agua es mucho más alto que uno por ciento, significa que la temperatura del recalentador es demasiado baja o que ocurrió algún otro problema. El contenido de agua en la muestra de glicol rico usualmente no debe exceder más de cinco o seis por ciento. CONTENIDO DE HIDROCARBUROS. Éste muestra cuanto aceite, parafina o condensado hay en el glicol. El contenido de hidrocarburos en el glicol a veces será más alto, dado que algunos de los hidrocarburos no han sido expuestos a las altas temperaturas del recalentador y evaporados. Si el contenido de hidrocarburos sigue aumentando, como se discutió previamente, deben tomarse pasos correctivos para remover los hidrocarburos.4. CONTENIDO DE SAL. Éste muestra cuanta sal o cloruro está presente en el glicol. La solubilidad de la sal en soluciones de glicol disminuye con un aumento de temperatura, y, por lo tanto, se acumulará en el tubo de combustión del recalentador y reducirá la eficiencia de la transferencia de calor. Cuando el contenido de sal en el glicol llega a un valor entre 200 y 300 partes por millón (ppm), empezará a depositarse en el tubo de humo. Los límites de solubilidad de la sal en el trietilenglicol se alcanzan cuando el contenido de sal llega a un valor entre 500 y 700 ppm. Arriba de este nivel, la velocidad de sedimentación de la sal se acelerará rápidamente. Por lo tanto, debe inspeccionarse el tubo de humo antes de que falle. En una planta típica de glicol, la sal no puede extraerse del glicol una vez que entra al sistema. Por lo tanto, cuando el contenido de sal excede uno por ciento en peso, el glicol probablemente deba drenarse del sistema y regenerarse con el equipo adecuado para extraer la sal y otras impurezas. El sistema de glicol debe limpiarse por completo antes de que se agregue glicol nuevo. Coastal Chemical Company puede recuperar el glicol y limpiar el sistema de glicol. Como se discutió anteriormente, deben tomarse pasos correctivos para evitar el acarreo de sal hacia el sistema de glicol.5. CONTENIDO DE SÓLIDOS. Éste determina el contenido de sólidos suspendidos en el glicol. Cuando el contenido de sólidos llega a un valor entre 400 y 500 ppm, debe verificarse la técnica de filtración. Los elementos de filtro posiblemente tengan que cambiarse con más frecuencia y/o deba usarse un nuevo tipo de elemento para eliminar los sólidos.6. pH. Éste mide la corrosividad del glicol. La discusión previa sobre el pH debe estudiarse cuidadosamente.7. CANTIDAD DE NEUTRALIZADOR AGREGADO PARA AJUSTE DEL pH. Éste determina la cantidad de neutralizador que se necesita para controlar de manera segura el pH. Debe estudiarse cuidadosamente la discusión previa sobre pH.8. CONTENIDO DE HIERRO. Éste da una indicación de la cantidad de corrosión presente en el sistema de glicol. Cinco ppm de hierro usualmente es la cifra máxima para un sistema de glicol no corrosivo. Un contenido de hierro de 10-15 ppm indicaría que hay algunos productos de corrosión en el glicol. Los productos de corrosión, como el sulfuro de hierro, podrían estar llegando con el gas de entrada o podrían estarse formando en la planta en sí. El contenido de hierro usualmente no debe exceder 100 ppm.9. FORMACIÓN DE ESPUMA. Éste es una medida de la cantidad de espuma de glicol presente en el sistema. Cuando están presentes espumas altas y estables, usualmente ocurre gas para venta húmedo y altas pérdidas de glicol. 16
  20. 20. CÓMO SOLUCIONAR PROBLEMASLa capacidad de identificar y eliminar rápidamente costosos problemas operativos con frecuencia puedeahorrar miles de dólares. He aquí algunos consejos útiles para la solución de problemas.La indicación más obvia de un malfuncionamiento de la deshidratación por glicol es un alto contenidode agua o punto de rocío de la corriente de gas para venta de salida. En la mayoría de los casos, esto escausado por una velocidad inadecuada de circulación del glicol, o por una reconcentración ineficientedel glicol. Estos dos factores pueden ser causados por diversos problemas listados a continuación. 1. PUNTOS DE ROCÍO ALTOS DEL GAS A. Causa – inadecuada velocidad de circulación del gas. 1. Bomba alimentada con glicol. Cierre la válvula de descarga y vea si la bomba sigue operando; de ser así, la bomba necesita repararse. 2. Bomba accionada por gas o eléctrica. Verifique la circulación adecuada cerrando la descarga de glicol desde el absorbedor y cronometrando la velocidad de llenado en el tubo de nivel. 3. La bomba avanza pero no bombea. Verifique las válvulas para ver si están asentando adecuadamente. 4. Verifique si el colador de la succión de la bomba está obstruido. 5. Abra la válvula de purga para eliminar el “bloqueo de aire”. 6. Asegúrese de que el nivel de impulso sea suficientemente alto. B. Causa – reconcentración insuficiente de glicol. 1. Verifique la temperatura del recalentador con un termómetro de prueba y asegúrese de que la temperatura esté en el rango recomendado de 350ºF a 400ºF para el trietilenglicol. La temperatura puede aumentarse a cerca de 400ºF , si se necesita, para eliminar más agua del glicol. 2. Verifique si hay fuga de glicol rico y húmedo en el glicol seco y seco hacia el intercambiador de calor de glicol, en el acumulador. 3. Verifique el gas de despojamiento, si aplica, para asegurarse de que haya un flujo positivo de gas. Asegúrese de que el vapor de agua no esté regresando del recalentador hacia el acumulador. C. Causa – condiciones de operación diferentes a las de diseño. 1. Aumente la presión del absorbedor, si se necesita. Esto puede requerir la instalación de una válvula de contrapresión. 2. Reduzca la temperatura del gas, de ser posible. 3. Aumente la proporción de circulación del glicol, de ser posible. D. Causa – proporciones bajas de flujo de gas. 1. Si el absorbedor tiene acceso de entradas de hombre, proteja una porción de las bandejas de válvulas o tapas de burbujeo. 2. Agregue enfriamiento externo al glicol seco y equilibre la proporción de circulación del glicol para la proporción baja del gas. 3. Cambie a un absorbedor más pequeño diseñado para la proporción menor, si se necesita. 2. ALTA PÉRDIDA DE GLICOL A. Causa – formación de espuma 1. La formación de espuma usualmente es causada por la contaminación del glicol con sal, hidrocarburos, polvo, lodo e inhibidores de corrosión. Elimine la fuente de contaminación con una limpieza de gas efectiva adelante del absorbedor, filtración de sólidos y purificación con carbón mejoradas. B. Causa – velocidad excesiva en el absorbedor. 1. Reduzca la proporción de flujo del gas. 2. Aumente la presión en el absorbedor, de ser posible. C. Causa – bandejas obstruidas con lodo, residuos y otros contaminantes. 17
  21. 21. 1. Si la caída de presión a través del absorbedor excede alrededor de 15 psig, las bandejas pueden estar sucias y/o tapadas. Bandejas y/o tubos de descenso tapados usualmente evitan el flujo fácil de gas y glicol a través del absorbedor. Si el absorbedor tiene agujeros de acceso, la limpieza manual puede ser útil. Se recomienda la limpieza química, por nuestra compañía, si no se cuenta con agujeros para limpieza manual. D. Causa – pérdida de glicol fuera de la columna de destilación. 1. Asegúrese de que la válvula de gas de despojamiento esté abierta y el acumulador se ventee a la atmósfera. 2. Asegúrese de que el recalentador no esté sobrecargado con agua libre que entra con la corriente de gas. 3. Asegúrese de que los hidrocarburos en exceso se mantengan fuera del recalentador. 4. Cambie el empaque de la torre en la columna de destilación, si está contaminado o descascarado. 5. Si la temperatura del gas de salida del absorbedor excede la temperatura del gas de entrada en más de 20 a 30ºF, el glicol seco que está entrando a la parte superior del absorbedor puede estar demasiado caliente. Esto podría indicar un problema en el intercambiador de calor o una velocidad de circulación excesiva del glicol. 6. Si una bomba de glicol ha estado operando en un sistema limpio, es probable que no se requiera un servicio a fondo durante varios años. Usualmente sólo se requiere un cambio anual de empaques. Normalmente, la bomba no dejará de bombear a menos que alguna parte interna se haya doblado, desgastado o roto, o que un objeto extraño haya obstruido la bomba, o que el sistema haya perdido su glicol. Una bomba que ha estado operando sin glicol por algún tiempo debe verificarse antes de regresar a servicio normal. La bomba probablemente necesitará al menos nuevos anillos “O”. Es probable que también los cilindros y las bielas se hayan rayado por la “operación en seco”. He aquí algunos síntomas y causas típicos para la operación de una bomba Kimray. Éstos se presentan para ayudar a un diagnóstico preciso de problemas. Síntomas Causas1) La bomba no opera. 1) Una o más líneas de flujo hacia la bomba están completamente bloqueadas, o la presión del sistema es demasiado baja para bombas estándar.2) La bomba arranca y opera hasta que el 2) La línea de descarga de glicol húmedo hacia glicol regresa del absorbedor. Entonces la el recalentador está restringida. Un bomba se para o se desacelera manómetro instalado en la línea mostrará la apreciablemente y no opera a su velocidad restricción inmediatamente. nominal.3) La bomba opera hasta que la temperatura 3) La línea de succión es demasiado pequeña y del sistema es normal, y luego la bomba se un aumento en la temperatura y en el flujo acelera y cavita. de bombeo hace cavitar la bomba.4) La bomba opera o bombea en un lado 4) Una válvula de retención con fuga, un solamente. objeto extraño alojado debajo de una válvula de retención o un pistón con fuga.5) La bomba se para y deja salir gas excesivo 5) Busque astillas o virutas de metal debajo de de la descarga de glicol húmedo. las deslizaderas en D de la bomba.6) Velocidad errática de la bomba. La bomba 6) Las trampas en la tubería de alimentación de cambia de velocidad después de unos glicol húmedo mandan porciones pequeñas cuantos minutos. alternas de glicol y gas a la bomba.7) Pistón del piloto roto. 7) Glicol insuficiente hacia los puertos de las deslizaderas en D del Pistón Principal. Eleve el extremo de la válvula de control de la bomba para corregir. 18
  22. 22. 7. El pH del glicol debe controlarse para evitar corrosión del equipo. Algunas causas posibles para un pH bajo ácido son: a) Descomposición térmica, causada por una temperatura excesiva del recalentador (arriba de 404ºF), depósitos en el tubo de humo o un mal diseño del recalentador. b) Oxidación del glicol, causada por introducción de oxígeno en el glicol con el gas entrante, succionado a través de una bomba con fugas o a través de tanques de almacenamiento de glicol no protegidos. c) Recolección de gas ácido de la corriente de gas entrante. 8. La acumulación de sal y otros depósitos en el tubo de humos a veces puede detectarse oliendo los vapores del venteo de la destilación. Un olor a quemado que sale de estos vapores usualmente indica este tipo de degradación térmica. Otro método de detección es observar el color del glicol. Éste se oscurece rápidamente si se degrada. Estos métodos de detección pueden evitar una falla del tubo de humo. 9. El mantenimiento y producción de registros, junto con análisis del glicol seco y rico usado, pueden ser muy útiles para el solucionador de problemas. Un historial de los cambios de elemento de filtro, carbón, empaque de torre, y tubo de humo a veces puede ser muy revelador. La frecuencia de las reparaciones de la bomba y los trabajos de limpieza química también es benéfica. Con este tipo de conocimiento, el solucionador de problemas puede eliminar y prevenir rápidamente costosos problemas.CÓMO LLEVAR REGISTROSPueden usarse registros precisos para determinar la eficiencia de la planta y localizar problemas deoperación. Los registros pueden usarse particularmente para determinar excesos de costos. Estainformación también puede ser una directriz útil cuando ocurren problemas de operación. La forma deregistro de planta mostrada en el apéndice puede ser muy útil.¿QUIÉN ES RESPONSABLE?La utilidad y el éxito de la operación a bajo costo de una planta de glicol dependen principalmente deltrabajo en equipo del operador de la planta, del supervisor de campo, del ingeniero y del gerente. Cadauno debe tomar parte activa para ver que la planta opere eficientemente. Los deberes específicos debenasignarse y definirse claramente para que cada miembro pueda hacer bien su trabajo.La operación de la planta puede ser una rutina simple y continua, si se planea y se supervisaadecuadamente. El supervisor de campo y el operador de planta deben recibir capacitación sobre eltrabajo y seminarios educativos para ayudarles a entender por completo los principios del proceso y elequipo. Los materiales de capacitación deben ser completos y comprensibles. El capacitador debe tenerconocimiento técnico, experiencia y la capacidad de comunicarse de manera efectiva con los que recibenla capacitación. Debe ser capaz de motivarlos no sólo para aprender sino para poner este nuevoconocimiento en acción de manera rápida y fructífera. Un personal bien capacitado usualmente es máscooperador, hace mejor su trabajo y le ahorra más dinero a la compañía. El personal debe tener el tiempopara hacer bien su trabajo.Un buen programa de mantenimiento preventivo es una necesidad para mantener la planta operandoeficientemente. El mantenimiento debe ser continuo para resolver problemas pequeños antes de queocurran los grandes. Deben llevarse registros del mantenimiento para mostrar que todo el equipo está enbuenas condiciones de operación.Los ingenieros y el personal de campo deben tener a la mano copias de los dibujos de la planta, tamañosy valores nominales de los recipientes, manuales de arranque, gráficas de las bombas y demásinformación pertinente. Cada persona debe tener copias de los análisis del glicol y de los registros deoperación. Cada persona debe estudiar esta información rutinariamente, entenderla por completo yponerla en uso efectivo para mantener la planta bajo un estrecho control.Los ingenieros de diseño deben consultar con el personal de campo e incorporar sus ideas al diseño de laplanta. Ellos ven operar la planta diariamente, conocen las peculiaridades y los problemas, yseguramente están calificados para ofrecer sugerencias de diseño útiles. Los ingenieros de diseñotambién deben consultar con los fabricantes de los recipientes e incorporar todas las características 19

×