SlideShare una empresa de Scribd logo
1 de 135
CRSO Meeting, Portland, OR 7/10/07 NCRP 147 Shielding Calculations   Douglas J. Simpkin, Ph.D. Aurora St. Luke’s Medical Ctr Milwaukee, WI [email_address] http://www.geocities.com/djsimpkin/
Notes (1) ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Notes (2) ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
History ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
History –  NCRP/ AAPM Task Group 1992-2004 ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],Ben Archer, Linc Hubbard, Bob Dixon & I meet at Bob’s beach house (off season...)
NCRP-147 Cochairs ,[object Object],[object Object],[object Object],[object Object]
NCRP-147 Membership ,[object Object],[object Object],[object Object],[object Object]
NCRP-147 Membership ,[object Object],[object Object],[object Object],[object Object],[object Object]
NCRP-147 Consultants ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
History - NCRP Report #147   ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Who can do shielding calculations? ,[object Object],[object Object],[object Object]
Exponential Attenuation of  X rays ,[object Object],[object Object],Typical x-ray tech upon hearing that he/she’s still getting some dose in the control booth
Controlled & Uncontrolled Areas ,[object Object],[object Object]
Design Goal,  P ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Design Goal,  P
NCRP 0.25 mSv/y General Public Limit? NCRP-116 sayeth unto us: “ ...whenever the potential exists for exposure of an individual member of the public to exceed 25 percent of the annual effective dose limit as a result of irradiation attributable to a single site, the site operator should ensure that the annual exposure of the maximally exposed individual, from all man-made exposures (excepting that individual's medical exposure), does not exceed 1 mSv on a continuous basis. Alternatively, if such an assessment is not conducted, no single source or set of sources under one control should result in an individual being exposed to more than 0.25 mSv annually.”
Uncontrolled  P =0.1 mGy/y   will satisfy 0.25 mSv/y ,[object Object],[object Object],[object Object],[object Object],[object Object]
Uncontrolled  P =0.1 mGy/y   will satisfy 0.25 mSv/y ,[object Object],[object Object],[object Object]
Uncontrolled  P =0.1 mGy/y   will satisfy 0.25 mSv/y ,[object Object]
NCRP Statement 10 (2004) ,[object Object],[object Object]
Occupancy Factor,  T ,[object Object],[object Object],[object Object],[object Object]
Recommended Occupancy Factors
 
X-ray Beam Transmission ,[object Object],K(0) K(x) x Radiation Source Kerma detector
Transmission Data in NCRP-147 ,[object Object],[object Object],[object Object],[object Object],[object Object]
Archer Equation for Transmission Curves ,[object Object],x log B
Archer Equation for Transmission Curves ,[object Object],x log B Find HVL of curve here (once beam hardening has “straightened curve”)
Archer Equation for Transmission Curves ,[object Object],x log B
Workload,  W ,[object Object],[object Object],[object Object],[object Object],[object Object]
Workload,  W ,[object Object],[object Object],[object Object],[object Object]
Workload,  W ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Workload Survey ,[object Object],[object Object],[object Object],[object Object],[object Object]
Workload Distribution,  W(kVp) ,[object Object],[object Object]
Workload Distribution,  W(kVp) ,[object Object],[object Object]
General Radiographic Room Workload Distribution,  W(kVp) ,[object Object],[object Object],[object Object],Note: high kVp content of workload against chest bucky
General Radiographic Room Workload Distribution,  W(kVp) ,[object Object],[object Object],Note: very little high kVp content of workload against anything  but  chest bucky
Update on Workload Data ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Update on Workload Data ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Where in the occupied area do you calculate the kerma? 1.7 m = 5.6 ft 0.3 m = 1 ft 0.5 m = 1.6 ft To the closest sensitive organ!
Models for Diagnostic X-Ray Shielding Calculations Yes No
The Three Models for Diagnostic X-ray Shielding In NCRP 147 ,[object Object],[object Object],[object Object]
The Three Models In NCRP 147 ,[object Object]
1 st  principle extensions to NCRP 49 ,[object Object],[object Object],[object Object],[object Object],[object Object],Secondary radiation }
Primary, Scatter, and Leakage Must protect from scatter & leakage radiation primary scatter leakage Must protect from primary radiation
1 st  principle extensions to NCRP 49 ,[object Object],[object Object],[object Object],[object Object]
1 st  principle extensions to NCRP 49 ,[object Object],[object Object]
1 st  principle extensions to NCRP 49 ,[object Object],[object Object],[object Object]
Shielding = Rocket Science?
Primary Radiation Model ,[object Object],Primary Kerma at 1 m per workload
Unshielded Primary Beam Kerma ,[object Object],[object Object],[object Object]
Kerma Behind a Primary Barrier ,[object Object],[object Object]
Primary Radiation: The NCRP49 Model Barrier of thickness  x  decreases raw primary radiation kerma to  P/T x
Primary Radiation: A Realistic Model Primary radiation is significantly attenuated before reaching barrier Grid, cassette, supporting structures patient
Primary Radiation:   A Conservative, Realistic Model Even without the patient, primary radiation is  still  significantly attenuated before reaching barrier Grid, cassette, maybe supporting structures
Primary Radiation:   NCRP-147 Model Assume primary beam attenuation in image receptor is due to a pseudo-barrier whose equivalent thickness  x pre  gives same transmission as that seen for actual image receptors. Grid, cassette, maybe supporting structures x x pre } x tot  =  x  +  x pre No patient!
Needs validating for CR/DR image receptors
(Grid+cassette+support)
x pre  for Radiographic Room Workload Distributions ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Calculation of Primary Kerma ,[object Object],[object Object],[object Object],[object Object]
Scatter Radiation patient
Scaled Normalized Scatter Fraction K P 1 m K S 1 m 1 m 1 cm 2  area primary beam at 1 m 
Scaled Normalized Scatter Fraction '
Scatter Radiation ,[object Object],[object Object],[object Object],[object Object]
Leakage Radiation patient Radiation originating from x-ray tube focal spot but not emanating from the tube port
Leakage radiation ,[object Object],[object Object],[object Object]
Leakage radiation ,[object Object],[object Object]
Leakage radiation ,[object Object],[object Object],[object Object],[object Object],[object Object]
New Leakage Model ,[object Object],[object Object]
New Leakage Model ,[object Object],1 m 1 m “ unhoused” tube 1931 mGy/hr 1931 mGy/hr 1 m 1 m Tube operated at 150 kVp, 3.3 mA Tube housing = 2.32 mm Pb thick 1931 mGy/hr 100 mR/hr = 0.873 mGy/hr
New Leakage Model ,[object Object],[object Object],[object Object]
New Leakage Model ,[object Object],[object Object]
How far off is NCRP-49’s leakage model?
For single kVp operation ,[object Object],[object Object],[object Object]
Shielding Model No. 2 ,[object Object],[object Object],[object Object],[object Object],[object Object]
Shielding Model No. 2 ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Shielding Model No. 2 ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Cath Lab Example: Wall ,[object Object],[object Object],[object Object]
Cath Lab Example: Wall ,[object Object],[object Object]
B=0.0047 x =1.2 mm Pb
Example: Mammography Wall ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Requires 10 mm wallboard B =0.017
Example: Mammography Door ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
0.13
Shielding Model No. 3 for “Representative Rooms” ,[object Object]
Shielding Model No. 3 for “Representative Rooms” ,[object Object],[object Object],[object Object],[object Object],[object Object]
Representative Radiographic Room Chest Bucky wall primary Cross-table Lateral Wall primary  Chest Bucky wall secondary U =2% primary wall Secondary Barrier Secondary Barrier
Representative Radiographic Room Rad Room: Chest Bucky Rad Room: floor/ other barriers  applies to Over-table and Cross-table positions Cross-table Lateral Position  U =9% Over-table Position  U =89% shooting down at floor (Another primary wall gets  U =2% of the  floor/ other barrier  distribution; assume tube is centered over-table)
Representative Radiographic Room  The world’s smallest possible x-ray room!
“ Representative R&F Room” ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Chest Rad tube Cross-table Lateral Rad Tube Over-table Rad tube “ Representative R&F Room” Image Intensifier Under-table Fluoro Tube
“ Representative Room” Barrier Requirements ,[object Object],[object Object]
 
There are 12  NT/Pd 2  graphs ,[object Object],[object Object],[object Object],[object Object],[object Object]
 
(Error)… mea culpa
 
TO BE READ BY PHYSICISTS ONLY
From where is  d  measured?
Equivalency of Shielding Materials ,[object Object],[object Object],[object Object],[object Object]
Example: Radiographic Room N  = 113 pat/wk Slab on-grade Single story T=1, uncontrolled
Sample Rad Room Control Booth ,[object Object],[object Object],[object Object],[object Object]
Requires 0.67 mm = 1/38” Pb in wall/window
Example: Radiographic Room Doorway,  T =1/8, uncontrolled Chest bucky Tube directed at chest bucky
Sample Rad Room Room Door; Protect Corridor ,[object Object],[object Object],[object Object],[object Object]
Requires 0.28 mm Pb in door 155
Example: Radiographic Room Office,  T =1, uncontrolled Chest bucky Tube directed at chest bucky
Sample Rad Room Room Door; Protect Distant Office ,[object Object],[object Object],[object Object],[object Object]
Need 0.36 mm Pb in door, so the more-distant  T =1 office sets the requirement 237
Hate reading graphs? Like spreadsheets? The  NT/Pd 2  curves should be fit to a modification of the Archer model. 0.1 1.0 10.0 100.0 1000.0 NT/Pd 2 (mSv -1 m -2 ) 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 L e a d B a r r i e r T h i c k n e s s R e q u i r e m e n t ( m m ) 22.9 cm 30.5 cm 35.6 cm Cardiac Angiography Shielding Barrier Requirements Lead Image Intensifier Diameter:
Fits of the  NT/(Pd 2 )  Graphs ,[object Object],[object Object]
Fits of the  NT/(Pd 2 )  Graphs Required Pb thickness as a function of  NT/(Pd2)  for barriers around the representative R&F Room from NCRP-147 is shown. The curves are the fits to the modified Archer equation. The data points are the values used for the fits.  (Note that the solid curves in Figs. 4.5 to 4.8 of NCRP-147 show cubic-spline interpolations to these same data.) Maximum error The maximum deviation between the fitted value and the required thickness  x  is 0.026 mm Pb (for the “chest bucky secondary wall” in the representative R&F Room) and 1.7 mm concrete (for the “cross-table lateral wall” in the representative Radiographic Room).
CT Scanner Shielding: Overview ,[object Object],[object Object],[object Object],[object Object],[object Object]
CT Scanners: Estimate Unshielded Kerma ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
CT Scanners: Estimate Unshielded Kerma ,[object Object],[object Object],[object Object],[object Object],[object Object]
Estimate unshielded kerma around room Extrapolate scatter survey data to occupied area, then scale by # patients, # slices or length of patient imaged, and technique.
CT Scanners: Estimate Unshielded Kerma ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Unshielded Kerma from CTDI ,[object Object]
Unshielded Kerma from CTDI ,[object Object],[object Object]
Unshielded Kerma from DLP ,[object Object],[object Object],[object Object],[object Object],[object Object]
CT Scanner Example ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
CT Scanner Example ,[object Object],[object Object],[object Object]
CT Scanner Example ,[object Object],[object Object],[object Object],[object Object],[object Object],WATCH OUT ABOVE & BELOW!
 
 
CT Scanner in a Shielding Cave “ Normal” wall shielding to 7 ft CT Scanner ADD Pb to floor (~1/32”) typ 10 ft ADD Pb to ceiling (~1/32”) ADD Pb to wall above 7 ft (~1/32”)
Surveys ,[object Object],[object Object],[object Object]
Surveys For Voids ,[object Object],[object Object],[object Object],[object Object],[object Object]
Surveys For Voids ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Surveys For Adequacy ,[object Object],[object Object],[object Object],[object Object]
Conclusions I ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Conclusions II ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Conclusions III ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Conclusions IV ,[object Object],[object Object],[object Object],[object Object],[object Object]
Conclusions V ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Conclusions VI ,[object Object],[object Object],[object Object],[object Object]

Más contenido relacionado

La actualidad más candente

Dosimeter advancements
Dosimeter advancementsDosimeter advancements
Dosimeter advancementsDeepaknegi09
 
Digital Radiography PHYSICS
Digital Radiography PHYSICSDigital Radiography PHYSICS
Digital Radiography PHYSICSShubhankar Mitra
 
planning systems in radiotherapy
 planning systems in radiotherapy planning systems in radiotherapy
planning systems in radiotherapyfondas vakalis
 
Brachytherapy msc lecture sam copy
Brachytherapy msc lecture sam copyBrachytherapy msc lecture sam copy
Brachytherapy msc lecture sam copyAyodele Dinyo
 
Radiation protection, its hazards & aerb guidelines
Radiation protection, its hazards & aerb guidelinesRadiation protection, its hazards & aerb guidelines
Radiation protection, its hazards & aerb guidelinesDr. Bhaskar Jyoti Saikia
 
Radiation Protection in Diagnostic and Interventional Radiology, MDIRT Nchanj...
Radiation Protection in Diagnostic and Interventional Radiology, MDIRT Nchanj...Radiation Protection in Diagnostic and Interventional Radiology, MDIRT Nchanj...
Radiation Protection in Diagnostic and Interventional Radiology, MDIRT Nchanj...Nchanji Nkeh Keneth
 
Dosimetric errors of radiotherapy techniques involving small fields
Dosimetric errors of radiotherapy techniques involving small fieldsDosimetric errors of radiotherapy techniques involving small fields
Dosimetric errors of radiotherapy techniques involving small fieldsBiplab Sarkar
 
Radiation protection
Radiation protection Radiation protection
Radiation protection Varshu Goel
 
Brachytherapy dosimetry
Brachytherapy dosimetryBrachytherapy dosimetry
Brachytherapy dosimetrySabari Kumar
 
Radiation Protection Standards
Radiation Protection StandardsRadiation Protection Standards
Radiation Protection StandardsSubhash Verma
 
CT radiation dose concepts and radiation dose optimization- Avinesh Shrestha
CT radiation dose concepts and radiation dose optimization- Avinesh Shrestha CT radiation dose concepts and radiation dose optimization- Avinesh Shrestha
CT radiation dose concepts and radiation dose optimization- Avinesh Shrestha Avinesh Shrestha
 
Rad 206 p05 Fundamentals of Imaging - Fluoroscopy
Rad 206 p05 Fundamentals of Imaging - FluoroscopyRad 206 p05 Fundamentals of Imaging - Fluoroscopy
Rad 206 p05 Fundamentals of Imaging - Fluoroscopysehlawi
 
Image quality in nuclear medicine
Image quality in nuclear medicineImage quality in nuclear medicine
Image quality in nuclear medicineRad Tech
 
Sad calculations
Sad calculationsSad calculations
Sad calculationsCSULB
 

La actualidad más candente (20)

Icrp60
Icrp60Icrp60
Icrp60
 
OSLD Prsentation
OSLD PrsentationOSLD Prsentation
OSLD Prsentation
 
Radiation Protection
Radiation ProtectionRadiation Protection
Radiation Protection
 
Dosimeter advancements
Dosimeter advancementsDosimeter advancements
Dosimeter advancements
 
Digital Radiography PHYSICS
Digital Radiography PHYSICSDigital Radiography PHYSICS
Digital Radiography PHYSICS
 
planning systems in radiotherapy
 planning systems in radiotherapy planning systems in radiotherapy
planning systems in radiotherapy
 
Brachytherapy msc lecture sam copy
Brachytherapy msc lecture sam copyBrachytherapy msc lecture sam copy
Brachytherapy msc lecture sam copy
 
Radiation protection, its hazards & aerb guidelines
Radiation protection, its hazards & aerb guidelinesRadiation protection, its hazards & aerb guidelines
Radiation protection, its hazards & aerb guidelines
 
Radiation Protection in Diagnostic and Interventional Radiology, MDIRT Nchanj...
Radiation Protection in Diagnostic and Interventional Radiology, MDIRT Nchanj...Radiation Protection in Diagnostic and Interventional Radiology, MDIRT Nchanj...
Radiation Protection in Diagnostic and Interventional Radiology, MDIRT Nchanj...
 
21 Ex Qa
21 Ex Qa21 Ex Qa
21 Ex Qa
 
Dosimetric errors of radiotherapy techniques involving small fields
Dosimetric errors of radiotherapy techniques involving small fieldsDosimetric errors of radiotherapy techniques involving small fields
Dosimetric errors of radiotherapy techniques involving small fields
 
Radiation protection
Radiation protection Radiation protection
Radiation protection
 
EXTERNAL PHOTON BEAMS THERAPY (PART 2)
EXTERNAL PHOTON BEAMS THERAPY (PART 2)EXTERNAL PHOTON BEAMS THERAPY (PART 2)
EXTERNAL PHOTON BEAMS THERAPY (PART 2)
 
Brachytherapy dosimetry
Brachytherapy dosimetryBrachytherapy dosimetry
Brachytherapy dosimetry
 
Radiation Protection Standards
Radiation Protection StandardsRadiation Protection Standards
Radiation Protection Standards
 
CT radiation dose concepts and radiation dose optimization- Avinesh Shrestha
CT radiation dose concepts and radiation dose optimization- Avinesh Shrestha CT radiation dose concepts and radiation dose optimization- Avinesh Shrestha
CT radiation dose concepts and radiation dose optimization- Avinesh Shrestha
 
Rad 206 p05 Fundamentals of Imaging - Fluoroscopy
Rad 206 p05 Fundamentals of Imaging - FluoroscopyRad 206 p05 Fundamentals of Imaging - Fluoroscopy
Rad 206 p05 Fundamentals of Imaging - Fluoroscopy
 
Image quality in nuclear medicine
Image quality in nuclear medicineImage quality in nuclear medicine
Image quality in nuclear medicine
 
COMPUTED RADIOGRAPHY
COMPUTED RADIOGRAPHYCOMPUTED RADIOGRAPHY
COMPUTED RADIOGRAPHY
 
Sad calculations
Sad calculationsSad calculations
Sad calculations
 

Similar a Crso Simpkin Radiation Shielding Design

J0362069073
J0362069073J0362069073
J0362069073theijes
 
Imaging physics and limitations
Imaging physics and limitationsImaging physics and limitations
Imaging physics and limitationsRad Tech
 
Principle of Ultrasound Imaging
Principle of Ultrasound ImagingPrinciple of Ultrasound Imaging
Principle of Ultrasound Imagingothman alameen
 
basicsofultrasound-170807183128 (1).pdf
basicsofultrasound-170807183128 (1).pdfbasicsofultrasound-170807183128 (1).pdf
basicsofultrasound-170807183128 (1).pdflittlealphonsa
 
Ultrasound Physics Made easy - By Dr Chandni Wadhwani
Ultrasound Physics Made easy - By Dr Chandni WadhwaniUltrasound Physics Made easy - By Dr Chandni Wadhwani
Ultrasound Physics Made easy - By Dr Chandni WadhwaniChandni Wadhwani
 
basicsofultrasound-170807183128 (1).pdf
basicsofultrasound-170807183128 (1).pdfbasicsofultrasound-170807183128 (1).pdf
basicsofultrasound-170807183128 (1).pdfMohamedAli690824
 
CT Dose Issues.pptx on the factors to be considered on radiation protection
CT Dose Issues.pptx on the factors to be considered on radiation protectionCT Dose Issues.pptx on the factors to be considered on radiation protection
CT Dose Issues.pptx on the factors to be considered on radiation protectionsanyengere
 
Imaging technologies.ppt
Imaging technologies.pptImaging technologies.ppt
Imaging technologies.pptKaushikShah46
 
Diagnostic Reference Level in Lumbar Radiography in Abidjan, Côte d’ivoire
Diagnostic Reference Level in Lumbar Radiography in Abidjan, Côte d’ivoireDiagnostic Reference Level in Lumbar Radiography in Abidjan, Côte d’ivoire
Diagnostic Reference Level in Lumbar Radiography in Abidjan, Côte d’ivoiretheijes
 
Radiation protection (1)
Radiation protection (1)Radiation protection (1)
Radiation protection (1)PRAMODG11
 
Physics of Nuclear Medicine, SPECT and PET.ppt
Physics of Nuclear Medicine, SPECT and PET.pptPhysics of Nuclear Medicine, SPECT and PET.ppt
Physics of Nuclear Medicine, SPECT and PET.pptHassan Chattha
 
EDS softwares INCA and EDAX_EM forum_Yina Guo_May 2016
EDS softwares INCA and EDAX_EM forum_Yina Guo_May 2016EDS softwares INCA and EDAX_EM forum_Yina Guo_May 2016
EDS softwares INCA and EDAX_EM forum_Yina Guo_May 2016YinaGuo
 
Federico Capasso: Photonics as Design
Federico Capasso: Photonics as DesignFederico Capasso: Photonics as Design
Federico Capasso: Photonics as DesignShelby Roller
 
Mustafa_Thesis presentation
Mustafa_Thesis presentationMustafa_Thesis presentation
Mustafa_Thesis presentationMustafa Danpullo
 
PDF Mustafa_Thesis presentation
PDF Mustafa_Thesis presentationPDF Mustafa_Thesis presentation
PDF Mustafa_Thesis presentationMustafa Danpullo
 

Similar a Crso Simpkin Radiation Shielding Design (20)

J0362069073
J0362069073J0362069073
J0362069073
 
Imaging physics and limitations
Imaging physics and limitationsImaging physics and limitations
Imaging physics and limitations
 
Principle of Ultrasound Imaging
Principle of Ultrasound ImagingPrinciple of Ultrasound Imaging
Principle of Ultrasound Imaging
 
basicsofultrasound-170807183128 (1).pdf
basicsofultrasound-170807183128 (1).pdfbasicsofultrasound-170807183128 (1).pdf
basicsofultrasound-170807183128 (1).pdf
 
Ultrasound Physics Made easy - By Dr Chandni Wadhwani
Ultrasound Physics Made easy - By Dr Chandni WadhwaniUltrasound Physics Made easy - By Dr Chandni Wadhwani
Ultrasound Physics Made easy - By Dr Chandni Wadhwani
 
basicsofultrasound-170807183128 (1).pdf
basicsofultrasound-170807183128 (1).pdfbasicsofultrasound-170807183128 (1).pdf
basicsofultrasound-170807183128 (1).pdf
 
CT Dose Issues.pptx on the factors to be considered on radiation protection
CT Dose Issues.pptx on the factors to be considered on radiation protectionCT Dose Issues.pptx on the factors to be considered on radiation protection
CT Dose Issues.pptx on the factors to be considered on radiation protection
 
xrays basics.ppt
xrays basics.pptxrays basics.ppt
xrays basics.ppt
 
AWARNESS (1)
AWARNESS (1)AWARNESS (1)
AWARNESS (1)
 
Imaging technologies.ppt
Imaging technologies.pptImaging technologies.ppt
Imaging technologies.ppt
 
Diagnostic Reference Level in Lumbar Radiography in Abidjan, Côte d’ivoire
Diagnostic Reference Level in Lumbar Radiography in Abidjan, Côte d’ivoireDiagnostic Reference Level in Lumbar Radiography in Abidjan, Côte d’ivoire
Diagnostic Reference Level in Lumbar Radiography in Abidjan, Côte d’ivoire
 
Introductory lecture for Ultrasound Imaging
Introductory lecture for Ultrasound ImagingIntroductory lecture for Ultrasound Imaging
Introductory lecture for Ultrasound Imaging
 
Radiation protection (1)
Radiation protection (1)Radiation protection (1)
Radiation protection (1)
 
Physics of Nuclear Medicine, SPECT and PET.ppt
Physics of Nuclear Medicine, SPECT and PET.pptPhysics of Nuclear Medicine, SPECT and PET.ppt
Physics of Nuclear Medicine, SPECT and PET.ppt
 
EDS softwares INCA and EDAX_EM forum_Yina Guo_May 2016
EDS softwares INCA and EDAX_EM forum_Yina Guo_May 2016EDS softwares INCA and EDAX_EM forum_Yina Guo_May 2016
EDS softwares INCA and EDAX_EM forum_Yina Guo_May 2016
 
Federico Capasso: Photonics as Design
Federico Capasso: Photonics as DesignFederico Capasso: Photonics as Design
Federico Capasso: Photonics as Design
 
X ray generator basic
X ray generator basicX ray generator basic
X ray generator basic
 
Mustafa_Thesis presentation
Mustafa_Thesis presentationMustafa_Thesis presentation
Mustafa_Thesis presentation
 
PDF Mustafa_Thesis presentation
PDF Mustafa_Thesis presentationPDF Mustafa_Thesis presentation
PDF Mustafa_Thesis presentation
 
Radiosurgery Revised
Radiosurgery RevisedRadiosurgery Revised
Radiosurgery Revised
 

Más de Eduardo Medina Gironzini

Protección Radiológica en Radiología Intervencionista en niños
Protección Radiológica en Radiología Intervencionista en niñosProtección Radiológica en Radiología Intervencionista en niños
Protección Radiológica en Radiología Intervencionista en niñosEduardo Medina Gironzini
 
Aportes de la Sociedad Peruana de Radioprotección para mejorar la protección ...
Aportes de la Sociedad Peruana de Radioprotección para mejorar la protección ...Aportes de la Sociedad Peruana de Radioprotección para mejorar la protección ...
Aportes de la Sociedad Peruana de Radioprotección para mejorar la protección ...Eduardo Medina Gironzini
 
La Red Latinoamericana de Proteccion Radiologica en Medicina
La Red Latinoamericana de Proteccion Radiologica en MedicinaLa Red Latinoamericana de Proteccion Radiologica en Medicina
La Red Latinoamericana de Proteccion Radiologica en MedicinaEduardo Medina Gironzini
 
Historia y aportes de la FRALC para mejorar la protección radiológica en Amér...
Historia y aportes de la FRALC para mejorar la protección radiológica en Amér...Historia y aportes de la FRALC para mejorar la protección radiológica en Amér...
Historia y aportes de la FRALC para mejorar la protección radiológica en Amér...Eduardo Medina Gironzini
 
Herramientas y técnicas para la Gestión del Conocimiento Nuclear
Herramientas y técnicas para la Gestión del Conocimiento NuclearHerramientas y técnicas para la Gestión del Conocimiento Nuclear
Herramientas y técnicas para la Gestión del Conocimiento NuclearEduardo Medina Gironzini
 
Optimizar la protección radiológica del paciente o inferir riesgos de radiaci...
Optimizar la protección radiológica del paciente o inferir riesgos de radiaci...Optimizar la protección radiológica del paciente o inferir riesgos de radiaci...
Optimizar la protección radiológica del paciente o inferir riesgos de radiaci...Eduardo Medina Gironzini
 
Retos futuros en la Protección Radiológica del Paciente
Retos futuros en la Protección Radiológica del PacienteRetos futuros en la Protección Radiológica del Paciente
Retos futuros en la Protección Radiológica del PacienteEduardo Medina Gironzini
 
Registro de exposiciones médicas en América Latina: su importancia y la visió...
Registro de exposiciones médicas en América Latina: su importancia y la visió...Registro de exposiciones médicas en América Latina: su importancia y la visió...
Registro de exposiciones médicas en América Latina: su importancia y la visió...Eduardo Medina Gironzini
 
Protección Radiológica Operacional en PET/CT
Protección Radiológica Operacional en PET/CTProtección Radiológica Operacional en PET/CT
Protección Radiológica Operacional en PET/CTEduardo Medina Gironzini
 
Protección Radiológica en Radiología Pediátrica
Protección Radiológica en Radiología PediátricaProtección Radiológica en Radiología Pediátrica
Protección Radiológica en Radiología PediátricaEduardo Medina Gironzini
 
Requisitos de las Normas Básicas Internacionales de Seguridad en las Exposici...
Requisitos de las Normas Básicas Internacionales de Seguridad en las Exposici...Requisitos de las Normas Básicas Internacionales de Seguridad en las Exposici...
Requisitos de las Normas Básicas Internacionales de Seguridad en las Exposici...Eduardo Medina Gironzini
 
Protección Radiológica en Radiología Dental
Protección Radiológica en Radiología DentalProtección Radiológica en Radiología Dental
Protección Radiológica en Radiología DentalEduardo Medina Gironzini
 
Protección Radiológica del Paciente y Control de Calidad en Mamografía
Protección Radiológica del Paciente y Control de Calidad en MamografíaProtección Radiológica del Paciente y Control de Calidad en Mamografía
Protección Radiológica del Paciente y Control de Calidad en MamografíaEduardo Medina Gironzini
 
Diagnóstico y tratamiento de las lesiones producidas por exposición a radiaci...
Diagnóstico y tratamiento de las lesiones producidas por exposición a radiaci...Diagnóstico y tratamiento de las lesiones producidas por exposición a radiaci...
Diagnóstico y tratamiento de las lesiones producidas por exposición a radiaci...Eduardo Medina Gironzini
 
El principio de Justificación como humanización del sentido común. Un acercam...
El principio de Justificación como humanización del sentido común. Un acercam...El principio de Justificación como humanización del sentido común. Un acercam...
El principio de Justificación como humanización del sentido común. Un acercam...Eduardo Medina Gironzini
 
La Dosimetría de Estado Sólido aplicada en Física Médica y Protección Radioló...
La Dosimetría de Estado Sólido aplicada en Física Médica y Protección Radioló...La Dosimetría de Estado Sólido aplicada en Física Médica y Protección Radioló...
La Dosimetría de Estado Sólido aplicada en Física Médica y Protección Radioló...Eduardo Medina Gironzini
 
Optimización en Tomografía Computada mediante el uso de DRL y la importancia ...
Optimización en Tomografía Computada mediante el uso de DRL y la importancia ...Optimización en Tomografía Computada mediante el uso de DRL y la importancia ...
Optimización en Tomografía Computada mediante el uso de DRL y la importancia ...Eduardo Medina Gironzini
 
La Biodosimetría y sus aplicaciones en respuesta a emergencias radiológicas y...
La Biodosimetría y sus aplicaciones en respuesta a emergencias radiológicas y...La Biodosimetría y sus aplicaciones en respuesta a emergencias radiológicas y...
La Biodosimetría y sus aplicaciones en respuesta a emergencias radiológicas y...Eduardo Medina Gironzini
 
Los campos electromagnéticos (CEM) y su interacción con los seres vivos
Los campos electromagnéticos (CEM) y su interacción con los seres vivosLos campos electromagnéticos (CEM) y su interacción con los seres vivos
Los campos electromagnéticos (CEM) y su interacción con los seres vivosEduardo Medina Gironzini
 

Más de Eduardo Medina Gironzini (20)

29 años de la FRALC
29 años de la FRALC29 años de la FRALC
29 años de la FRALC
 
Protección Radiológica en Radiología Intervencionista en niños
Protección Radiológica en Radiología Intervencionista en niñosProtección Radiológica en Radiología Intervencionista en niños
Protección Radiológica en Radiología Intervencionista en niños
 
Aportes de la Sociedad Peruana de Radioprotección para mejorar la protección ...
Aportes de la Sociedad Peruana de Radioprotección para mejorar la protección ...Aportes de la Sociedad Peruana de Radioprotección para mejorar la protección ...
Aportes de la Sociedad Peruana de Radioprotección para mejorar la protección ...
 
La Red Latinoamericana de Proteccion Radiologica en Medicina
La Red Latinoamericana de Proteccion Radiologica en MedicinaLa Red Latinoamericana de Proteccion Radiologica en Medicina
La Red Latinoamericana de Proteccion Radiologica en Medicina
 
Historia y aportes de la FRALC para mejorar la protección radiológica en Amér...
Historia y aportes de la FRALC para mejorar la protección radiológica en Amér...Historia y aportes de la FRALC para mejorar la protección radiológica en Amér...
Historia y aportes de la FRALC para mejorar la protección radiológica en Amér...
 
Herramientas y técnicas para la Gestión del Conocimiento Nuclear
Herramientas y técnicas para la Gestión del Conocimiento NuclearHerramientas y técnicas para la Gestión del Conocimiento Nuclear
Herramientas y técnicas para la Gestión del Conocimiento Nuclear
 
Optimizar la protección radiológica del paciente o inferir riesgos de radiaci...
Optimizar la protección radiológica del paciente o inferir riesgos de radiaci...Optimizar la protección radiológica del paciente o inferir riesgos de radiaci...
Optimizar la protección radiológica del paciente o inferir riesgos de radiaci...
 
Retos futuros en la Protección Radiológica del Paciente
Retos futuros en la Protección Radiológica del PacienteRetos futuros en la Protección Radiológica del Paciente
Retos futuros en la Protección Radiológica del Paciente
 
Registro de exposiciones médicas en América Latina: su importancia y la visió...
Registro de exposiciones médicas en América Latina: su importancia y la visió...Registro de exposiciones médicas en América Latina: su importancia y la visió...
Registro de exposiciones médicas en América Latina: su importancia y la visió...
 
Protección Radiológica Operacional en PET/CT
Protección Radiológica Operacional en PET/CTProtección Radiológica Operacional en PET/CT
Protección Radiológica Operacional en PET/CT
 
Protección Radiológica en Radiología Pediátrica
Protección Radiológica en Radiología PediátricaProtección Radiológica en Radiología Pediátrica
Protección Radiológica en Radiología Pediátrica
 
Requisitos de las Normas Básicas Internacionales de Seguridad en las Exposici...
Requisitos de las Normas Básicas Internacionales de Seguridad en las Exposici...Requisitos de las Normas Básicas Internacionales de Seguridad en las Exposici...
Requisitos de las Normas Básicas Internacionales de Seguridad en las Exposici...
 
Protección Radiológica en Radiología Dental
Protección Radiológica en Radiología DentalProtección Radiológica en Radiología Dental
Protección Radiológica en Radiología Dental
 
Protección Radiológica del Paciente y Control de Calidad en Mamografía
Protección Radiológica del Paciente y Control de Calidad en MamografíaProtección Radiológica del Paciente y Control de Calidad en Mamografía
Protección Radiológica del Paciente y Control de Calidad en Mamografía
 
Diagnóstico y tratamiento de las lesiones producidas por exposición a radiaci...
Diagnóstico y tratamiento de las lesiones producidas por exposición a radiaci...Diagnóstico y tratamiento de las lesiones producidas por exposición a radiaci...
Diagnóstico y tratamiento de las lesiones producidas por exposición a radiaci...
 
El principio de Justificación como humanización del sentido común. Un acercam...
El principio de Justificación como humanización del sentido común. Un acercam...El principio de Justificación como humanización del sentido común. Un acercam...
El principio de Justificación como humanización del sentido común. Un acercam...
 
La Dosimetría de Estado Sólido aplicada en Física Médica y Protección Radioló...
La Dosimetría de Estado Sólido aplicada en Física Médica y Protección Radioló...La Dosimetría de Estado Sólido aplicada en Física Médica y Protección Radioló...
La Dosimetría de Estado Sólido aplicada en Física Médica y Protección Radioló...
 
Optimización en Tomografía Computada mediante el uso de DRL y la importancia ...
Optimización en Tomografía Computada mediante el uso de DRL y la importancia ...Optimización en Tomografía Computada mediante el uso de DRL y la importancia ...
Optimización en Tomografía Computada mediante el uso de DRL y la importancia ...
 
La Biodosimetría y sus aplicaciones en respuesta a emergencias radiológicas y...
La Biodosimetría y sus aplicaciones en respuesta a emergencias radiológicas y...La Biodosimetría y sus aplicaciones en respuesta a emergencias radiológicas y...
La Biodosimetría y sus aplicaciones en respuesta a emergencias radiológicas y...
 
Los campos electromagnéticos (CEM) y su interacción con los seres vivos
Los campos electromagnéticos (CEM) y su interacción con los seres vivosLos campos electromagnéticos (CEM) y su interacción con los seres vivos
Los campos electromagnéticos (CEM) y su interacción con los seres vivos
 

Crso Simpkin Radiation Shielding Design

  • 1. CRSO Meeting, Portland, OR 7/10/07 NCRP 147 Shielding Calculations Douglas J. Simpkin, Ph.D. Aurora St. Luke’s Medical Ctr Milwaukee, WI [email_address] http://www.geocities.com/djsimpkin/
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.
  • 8.
  • 9.
  • 10.
  • 11.
  • 12.
  • 13.
  • 14.
  • 16. NCRP 0.25 mSv/y General Public Limit? NCRP-116 sayeth unto us: “ ...whenever the potential exists for exposure of an individual member of the public to exceed 25 percent of the annual effective dose limit as a result of irradiation attributable to a single site, the site operator should ensure that the annual exposure of the maximally exposed individual, from all man-made exposures (excepting that individual's medical exposure), does not exceed 1 mSv on a continuous basis. Alternatively, if such an assessment is not conducted, no single source or set of sources under one control should result in an individual being exposed to more than 0.25 mSv annually.”
  • 17.
  • 18.
  • 19.
  • 20.
  • 21.
  • 23.  
  • 24.
  • 25.
  • 26.
  • 27.
  • 28.
  • 29.
  • 30.
  • 31.
  • 32.
  • 33.
  • 34.
  • 35.
  • 36.
  • 37.
  • 38.
  • 39. Where in the occupied area do you calculate the kerma? 1.7 m = 5.6 ft 0.3 m = 1 ft 0.5 m = 1.6 ft To the closest sensitive organ!
  • 40. Models for Diagnostic X-Ray Shielding Calculations Yes No
  • 41.
  • 42.
  • 43.
  • 44. Primary, Scatter, and Leakage Must protect from scatter & leakage radiation primary scatter leakage Must protect from primary radiation
  • 45.
  • 46.
  • 47.
  • 48. Shielding = Rocket Science?
  • 49.
  • 50.
  • 51.
  • 52. Primary Radiation: The NCRP49 Model Barrier of thickness x decreases raw primary radiation kerma to P/T x
  • 53. Primary Radiation: A Realistic Model Primary radiation is significantly attenuated before reaching barrier Grid, cassette, supporting structures patient
  • 54. Primary Radiation: A Conservative, Realistic Model Even without the patient, primary radiation is still significantly attenuated before reaching barrier Grid, cassette, maybe supporting structures
  • 55. Primary Radiation: NCRP-147 Model Assume primary beam attenuation in image receptor is due to a pseudo-barrier whose equivalent thickness x pre gives same transmission as that seen for actual image receptors. Grid, cassette, maybe supporting structures x x pre } x tot = x + x pre No patient!
  • 56. Needs validating for CR/DR image receptors
  • 58.
  • 59.
  • 61. Scaled Normalized Scatter Fraction K P 1 m K S 1 m 1 m 1 cm 2 area primary beam at 1 m 
  • 63.
  • 64. Leakage Radiation patient Radiation originating from x-ray tube focal spot but not emanating from the tube port
  • 65.
  • 66.
  • 67.
  • 68.
  • 69.
  • 70.
  • 71.
  • 72. How far off is NCRP-49’s leakage model?
  • 73.
  • 74.
  • 75.
  • 76.
  • 77.
  • 78.
  • 80.
  • 81. Requires 10 mm wallboard B =0.017
  • 82.
  • 83. 0.13
  • 84.
  • 85.
  • 86. Representative Radiographic Room Chest Bucky wall primary Cross-table Lateral Wall primary Chest Bucky wall secondary U =2% primary wall Secondary Barrier Secondary Barrier
  • 87. Representative Radiographic Room Rad Room: Chest Bucky Rad Room: floor/ other barriers applies to Over-table and Cross-table positions Cross-table Lateral Position U =9% Over-table Position U =89% shooting down at floor (Another primary wall gets U =2% of the floor/ other barrier distribution; assume tube is centered over-table)
  • 88. Representative Radiographic Room The world’s smallest possible x-ray room!
  • 89.
  • 90. Chest Rad tube Cross-table Lateral Rad Tube Over-table Rad tube “ Representative R&F Room” Image Intensifier Under-table Fluoro Tube
  • 91.
  • 92.  
  • 93.
  • 94.  
  • 96.  
  • 97. TO BE READ BY PHYSICISTS ONLY
  • 98. From where is d measured?
  • 99.
  • 100. Example: Radiographic Room N = 113 pat/wk Slab on-grade Single story T=1, uncontrolled
  • 101.
  • 102. Requires 0.67 mm = 1/38” Pb in wall/window
  • 103. Example: Radiographic Room Doorway, T =1/8, uncontrolled Chest bucky Tube directed at chest bucky
  • 104.
  • 105. Requires 0.28 mm Pb in door 155
  • 106. Example: Radiographic Room Office, T =1, uncontrolled Chest bucky Tube directed at chest bucky
  • 107.
  • 108. Need 0.36 mm Pb in door, so the more-distant T =1 office sets the requirement 237
  • 109. Hate reading graphs? Like spreadsheets? The NT/Pd 2 curves should be fit to a modification of the Archer model. 0.1 1.0 10.0 100.0 1000.0 NT/Pd 2 (mSv -1 m -2 ) 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 L e a d B a r r i e r T h i c k n e s s R e q u i r e m e n t ( m m ) 22.9 cm 30.5 cm 35.6 cm Cardiac Angiography Shielding Barrier Requirements Lead Image Intensifier Diameter:
  • 110.
  • 111. Fits of the NT/(Pd 2 ) Graphs Required Pb thickness as a function of NT/(Pd2) for barriers around the representative R&F Room from NCRP-147 is shown. The curves are the fits to the modified Archer equation. The data points are the values used for the fits. (Note that the solid curves in Figs. 4.5 to 4.8 of NCRP-147 show cubic-spline interpolations to these same data.) Maximum error The maximum deviation between the fitted value and the required thickness x is 0.026 mm Pb (for the “chest bucky secondary wall” in the representative R&F Room) and 1.7 mm concrete (for the “cross-table lateral wall” in the representative Radiographic Room).
  • 112.
  • 113.
  • 114.
  • 115. Estimate unshielded kerma around room Extrapolate scatter survey data to occupied area, then scale by # patients, # slices or length of patient imaged, and technique.
  • 116.
  • 117.
  • 118.
  • 119.
  • 120.
  • 121.
  • 122.
  • 123.  
  • 124.  
  • 125. CT Scanner in a Shielding Cave “ Normal” wall shielding to 7 ft CT Scanner ADD Pb to floor (~1/32”) typ 10 ft ADD Pb to ceiling (~1/32”) ADD Pb to wall above 7 ft (~1/32”)
  • 126.
  • 127.
  • 128.
  • 129.
  • 130.
  • 131.
  • 132.
  • 133.
  • 134.
  • 135.