SlideShare una empresa de Scribd logo
1 de 11
Descargar para leer sin conexión
República bolivariana de Venezuela
Ministerio del poder popular para la educación
I.U.P Santiago Mariño
Cátedra Interpretación de Perfiles
Professor Jonathan Giménez
Bachiller Maria Moran
Perfiles
Índice
Introducción
1. Agua de formación
2. Explicar el método de interpretación en formaciones limpias
3. Explicar el método de interpretación en formaciones arcillosas
4. Explicar el método SP
5. Métodos de distribución de arcillas
6. Como se realiza el cálculo de Vsh, porosidad. Y las fórmulas utilizadas
7. Propiedades nucleares de la roca
8. Perfil de Rayos Gamma
9. Aplicación del perfil de densidad
10.Aplicación del perfil neutrón
Bibliografía
Introducción
En la tubería de perforación se hace un muestreo que se hace de forma
directa, es decir, analizando muestras de creación o mediante el estudio
continuo del fluido de perforación y por la introducción mediante cables
con ductores eléctricos de mecanismos medidores de los diferentes
parámetros típicos de las formaciones atravesadas y de su contenido. De
estos procedimientos de muestreo, el que más importante avance
tecnológico hare portado es el originalmente conocido como registro
eléctrico. Actualmente se le ha agregado una serie de registros de otros
parámetros y se les nombra genéricamente registros geofísicos
Desarrollo
1. Agua de formación
es un término usado en la industria petrolera para describir el agua que se produce junto
con el petróleo y el gas. Los yacimientos de petróleo y gas tienen capas con agua natural
(agua formada) que yace debajo de los hidrocarburos. Los yacimientos petrolíferos
contienen generalmente grandes cantidades de agua, al contrario que los yacimientos de
gas. Para lograr una máxima recuperación de petróleo en los pozos, se inyecta agua
adicional dentro del pozo, que obliga al petróleo a salir a la superficie. Estas dos aguas, la
producida y la inyectada, acaban saliendo a la superficie junto con el petróleo y, a medida
que el pozo de petróleo se empobrece, la proporción de agua producida con el petróleo
aumenta..
2. Explicar el método de interpretación en formaciones limpias
Propiedades de las rocas y fluidos: porosidad total y efectiva, comparación con
coronas, permeabilidad, permeabilidad efectiva y relativa, resistividad de
soluciones, resistividad de las rocas, factor de formación, ecuación de archie,
saturación de agua
Es el término que describe la saturación
de agua, en la que toda el agua está entrampada entre granos en
una roca, o se
sostiene en los capilares a través de la presión capilar. La saturación de agua
irreducible, corresponde al agua que no se moverá, y la permeabilidad relativa
para el agua es igual a cero
3. Explicar el método de interpretación en formaciones arcillosas
Por su naturaleza las arcillas presentan una carga negativa en su superficie,
cuando la arcilla se encuentra inmersa en una solución acuosa, como ocurre de
manera natural en el yacimiento, los iones que balancean esa carga negativa
pueden intercambiarse con los de la solución acuosa, dando como resultado un
valor de CEC
La CEC es la responsable del exceso de conductividad que presentan las
formaciones arcillosas, por lo que su conocimiento y determinación son muy
importantes en la interpretación de algunos registros geofísicos. Como la
conductividad de la formación influye directamente en el cálculo de la
saturación de agua, es muy importante incluir la CEC como parámetro de
cálculo para determinar la saturación de agua en formaciones arcillosas.
Algunos autores ya han demostrado el efecto que tiene la CEC en la
conductividad de la formación y, por consecuencia, en el cálculo de la
saturación de agua; por lo que han desarrollado modelos de conductividad para
determinar la saturación de agua en formaciones arcillosas, basados en la
capacidad de intercambio catiónico. Estos modelos son los de Waxman – Smits
y Dos Aguas. Además del efecto que tiene la CEC en la conductividad de la
formación, este fenómeno también puede alterar la permeabilidad de la
formación y su porosidad efectiva, esta ´ultima debido a la presencia de una
capa de agua que está impregnada en la arcilla
4. Explicar el método SP
La curva del potencial espontaneo o SP (Spontaneus Potential) representa la
diferencia de potencial eléctrico entre un electrodo fijo en la superficie y otro
móvil dentro del pozo en función de la profundidad.
La escala del SP no tiene un valor ceso (0) absoluto, esto es debido a que
apenas se registran los cambios de potencial dentro del lodo al pasar la
herramienta de registro frente a diferentes capas
Como consecuencia se establece la circulación de corrientes eléctricas dentro
de la formación las cuales atraviesan el lodo dentro del pozo originando
deflexiones en la curva del SP.
En otras palabras; las deflexiones de la curva del SP resultan de las corrientes
eléctricas que fluyen en el lodo del pozo.
No existe ninguna corriente eléctrica dentro del pozo en el centro de una lutita,
debido a que esta es impermeable y en consecuencia la curva del SP es plana
llamándose "Línea – Base de Lutitas".
Por otro lado, en frente de formaciones permeables la curva muestra
deflexiones con respecto a la Línea – Base de Lutitas; en las capas gruesas
estas deflexiones tienden a alcanzar una curva esencialmente constante,
definiéndose así una línea de arena.
La deflexión puede ser a la izquierda (Negativa) o a la derecha (Positiva),
dependiendo principalmente de las salinidades relativas del agua de formación
y del filtrado del lodo.
Siendo de la siguiente manera:
 Si la salinidad del agua de formación es mayor a la del filtrado del lodo la
deflexión será hacia la izquierda.
 Si la salinidad del filtrado del lodo es mayor a la del agua de formación la
deflexión ser hacia la derecha
5. Métodos de distribución de arcillas
Las arcillas se derivan de su composición química, su estructura en láminas y
su tamaño. Los minerales de la arcilla poseen gran afinidad por el agua;
algunos la absorben fácilmente y pueden duplicar su tamaño estando
húmedas. La mayoría de los minerales de la arcilla tiene la habilidad de
absorber iones de una solución y liberar los iones cuando cambian las
condiciones.
Las moléculas de agua se atraen fuertemente a la superficie de las arcillas. Así,
cuando un poco de arcilla es añadida al agua, esta se distribuye uniformemente
a través del líquido. Esta propiedad comúnmente se utiliza en pinturas, para
distribuir los pigmentos (color) sobre la base de la pintura.
El proceso en que algunas arcillas absorben agua y se hinchan es reversible.
Las arcillas expansibles se expanden o contraen en respuesta a factores
ambientales, como la humedad y temperatura. Así, puede existir una diferencia
de casi un 100% entre una misma arcilla seca y húmeda.
Otra propiedad importante en las arcillas es la capacidad de intercambiar iones.
Los iones pueden ser atraídos hacia la superficie de las arcillas o ser
incorporado en su estructura. Por esto, las arcillas puedes ser importantes
agentes transportadores de contaminantes de un área a otra (en el caso de que
entren iones o moléculas como pesticidas).
Cuando la roca contenga mineral conductivo, la interpretación del registro debe
tomar en cuenta dicha conductividad.
Las arcillas y latitas no son raras, y contribuyen a la conductividad de la
formación. La latita muestra conductividad debido al electrolito que contiene y a
un proceso de intercambio de iones por medio del cual éstos se mueven bajo la
influencia de un campo eléctrico aplicado entre lugares de intercambio en la
superficie de las partículas de arcilla. El efecto de la arcillosidad en la
conductividad de la arena arcillosa es con frecuencia muy desproporcionado en
relación a la cantidad de lutita. El efecto real depende de la cantidad, tipo y
distribución relativa de las latitas y dela naturaleza y cantidades relativas de
aguas de formación .A través de los años, los investigadores han propuesto
varios modelos de interpretación para el caso de arenas arcillosas. En ciertos
casos el modelo se basa en la lutita presente en una geometría específica
dentro de una arena arcillosa; por ejemplo, la lutita puede estar presente en
forma de láminas delgadas entre las capas de la arena limpia, o como granos o
nódulos en la estructura de la matriz de arena; o puede encontrarse dispersa, a
través del sistema poroso, en forma de acumulaciones que se adhieren o
recubren los granos de arena
6. Como se realiza el cálculo de Vsh, porosidad. Y las fórmulas utilizadas
A continuación, se determina el Vsh (volumen de arcilla) de la roca. Se pueden
usar las siguientes ecuaciones (Dresser Atlas, 1979) para un registro de rayos
gamma, usando la ecuación para rocas cretácicas o consolidadas, o la de
rocas del terciario o no consolidadas.
Vsh clavier=1,7_(3,38-(IGR+0,7)
Vshclavier=volumen de la arcillaclavier
Vshestier=volumen de la arcilla estier
7. Propiedades nucleares de la roca
Los elementos #o los isótopos de losmismos elementos$ se convierten entr
e otras
pueden participar protones' neutrones' electrones ! otras partículas
elementales"
Las reacciones van acompañadas por la absorción o liberación de cantidades
enormes de energía
Las velocidades de reacción' por logeneral' no se ven afectadas por latemperat
ura' la presión o los catalizadores
La propiedad que poseen ciertas sustancias de desintegrarse a través de
emisiones de partículas invisibles llamadas alfábega' además de radiaciones
gamma se llaman
RADIACTVAS
por consiguiente algunas sustancias radiactivas emiten ,los tipos de
radiaciones en diferentes cantidades
8. Perfil de Rayos Gamma
Una medición común y de bajo costo de la emisión natural de rayos gamma
desde una formación. Los registros de rayos gamma resultan particularmente
útiles porque las lutitas y las areniscas habitualmente poseen caracteres únicos
diferentes de rayos gamma que pueden ser correlacionados fácilmente entre
pozos
La profundidad de investigación es de algunas pulgadas, de manera que el
registro normalmente mide la zona lavada. Las lutitas y las arcillas son
responsables de la mayor parte de la radioactividad natural, de manera que el
registro de rayos gamma a menudo es un buen indicador de este tipo de rocas.
No obstante, otras rocas también son radioactivas, especialmente algunos
carbonatos y las rocas ricas en contenido de feldespato. El registro se utiliza
además para la correlación entre pozos, para la correlación en profundidad
entre el agujero descubierto y el pozo entubado, y para la correlación en
profundidad entre las carreras de adquisición de registros. El registro de rayos
gamma fue el primer registro nuclear de pozo y se introdujo a fines de la
década de 1930
Los objetivos del registro Gamma Ray es discriminar entre reservorio y no-
reservorio, definir volumen de arcilla en el reservorio y estimar el nivel de
dolomitas de la roca reservorio
Es un método para medir naturalmente la radiación gamma de las rocas o
sedimentos en un pozo. La diferencia en la radioactividad hace posible
distinguir las formaciones arcillosas de las no arcillas. Los registros son
afectados por el diámetro del pozo así como por el fluido pero de todos modos
es más común utilizar este registro de forma cualitativa así que no amerita
hacer muchas correcciones. Un registro común de rayos gamma no distingue
los elementos radiactivos mientras que el gamma espectral si puede hacerlo
diferenciando las longitudes de onda de sus radiaciones gamma.
Los datos de gamma ray también ayudan a interpretar medioambientes de
depositación. Las discontinuidades pueden originar acumulación de nódulos
fosfáticos que pueden ser evidentes en el registro de gamma ray espectral
como un pico anómalo de Uranio.
9. Aplicación del perfil de densidad
Se basa en la medición de la densidad de la formación, por medio de la
atenuación de rayosgamma entre una fuente yun receptor. Posee unafuente de rayos
gamma, los cuales colisionan con losátomospresentesen la roca. La herramienta también
posee un receptorquemide los rayos gamma dispersosliberadosen lascolisiones. La
herramienta se llama FDC. Sirve para estimar la densidad delsistema roca – fluido (RHOB)
que posteriormente servirá para calcular la porosidad pordensidad(DPHI). Siel registro de
densidad esbajo indicaalta porosidad ysiesalto indica baja porosidad. Se lee de izquierda
a derecha ( La unidad de medida es gr/cm
,con un rango de valoresque va desde1.96 a 2.96gr/cm
10. Aplicación del perfil neutrón
El registro de doble neutrón espaciado DSN
Permite evaluar la
Porosidad de la formación midiendo el Índice de Hidrógeno (HI) del
Fluido en la formación. Así, en formaciones limpias cuyos poros
están llenos de agua o petróleo, el perfil Neutrónico nos da el valor
real del espacio poral lleno de fluidos. Las zonas gasíferas pueden
frecuentemente identificarse comparando el perfil neutrón con otro
de porosidad o con los valores de porosidad obtenidos de los
testigos o núcleos (Halliburton, 2007)
Principio físico. El neutrón es una partícula que tiene aproximadamente la
misma masa del protón, más no la misma carga eléctrica. Su tamaño pequeño
y neutralidad eléctrica le permite pasar fácilmente a través de la materia. Los
neutrones son producidos por fuentes químicas y fuentes pulsadas. Las
herramientas DSN usa una fuente química de neutrón usan una mezcla de
Americio y Berilio y permiten un flujo constante de 66 neutrones de rayos
gamma. El Americio 241 es el emisor de partículas alfa en las fuentes
estándares de americio y berilio usadas hoy. Estas fuentes deben
ser fuertemente protegidas cuando no están en uso. Una fuente radioactiva
colocada en la sonda emite continuamente neutrones de alta energía
(velocidad). Estos neutrones, al encontrarse con los núcleos del material de la
formación, chocan elásticamente a semejanza de bolas de billar y
en cada colisión, los neutrones pierden parte de su energía. La
cantidad de la energía perdida por un neutrón en cada colisión
depende de la masa relativa del núcleo con el cual choca, cuando
el neutrón choca con un núcleo de masa prácticamente igual como
el Hidrógeno ocurre la mayor pérdida de energía en cambio si choca con
núcleos pesados no provocan mucha pérdida de velocidad. De esta manera la
pérdida de velocidad dependerá principalmente de la cantidad de hidrógeno
de la formación (Halliburton, 2007).
Cuando la concentración de hidrógeno de la formación que rodea
a la fuente de neutrones es alta, la mayoría de los neutrones son
retardados y capturados a una corta distancia de la fuente. Por lo
contrario, si la concentración de hidrógeno es baja, los neutrones
viajan más lentos antes de ser capturados. Con la distancia de la 67
fuente al detector, comúnmente utilizada, a una mayor lectura
Corresponde una menor concentración de hidrógeno y viceversa
(Halliburton, 2007).
Aplicaciones El DSN permite evaluar la porosidad de la formación
Midiendo el índice de hidrógeno del fluido en la formación. En
Combinación con otros perfiles de porosidad se utilizan para la interpretación
de la litología
Bibliografía
Suelos expansibles (http://geology.com/articles/expansive-soil.shtml)
sisbib.unmsm.edu.pe/bibvirtualdata/Tesis/Basic/falla_ve/cap3
www.ingenieriadepetroleo.com/registros-electricos-sp-gr-ngs/

Más contenido relacionado

La actualidad más candente

1 4913539395186851921
1 49135393951868519211 4913539395186851921
1 4913539395186851921imiguel0
 
26228291 registro-o-perfilaje-de-pozos
26228291 registro-o-perfilaje-de-pozos26228291 registro-o-perfilaje-de-pozos
26228291 registro-o-perfilaje-de-pozosvlades3011
 
Modelación de la absorción y lixiviación de metales en presencia de ligandos ...
Modelación de la absorción y lixiviación de metales en presencia de ligandos ...Modelación de la absorción y lixiviación de metales en presencia de ligandos ...
Modelación de la absorción y lixiviación de metales en presencia de ligandos ...Felipe
 
Presentación porosidad
Presentación porosidadPresentación porosidad
Presentación porosidadUO
 
006.1.+propiedades+de+la+roca+yacimiento
006.1.+propiedades+de+la+roca+yacimiento006.1.+propiedades+de+la+roca+yacimiento
006.1.+propiedades+de+la+roca+yacimientoangelschettino
 
Registro laterolog y doble laterolog.
Registro laterolog y doble laterolog.Registro laterolog y doble laterolog.
Registro laterolog y doble laterolog.Manuel Hernandez
 
Desarrollo de la evaluación petrofísica en México y su futuro a través de la ...
Desarrollo de la evaluación petrofísica en México y su futuro a través de la ...Desarrollo de la evaluación petrofísica en México y su futuro a través de la ...
Desarrollo de la evaluación petrofísica en México y su futuro a través de la ...Academia de Ingeniería de México
 
DEPOSICION DE ARENA DE AGUAS PROFUNDAS
DEPOSICION DE ARENA DE AGUAS PROFUNDASDEPOSICION DE ARENA DE AGUAS PROFUNDAS
DEPOSICION DE ARENA DE AGUAS PROFUNDASIrlanda Gt
 
Caractristica de un yacimiento
Caractristica de un yacimientoCaractristica de un yacimiento
Caractristica de un yacimientojuliobarroso8
 
Biodisponibilidad de metales pesados en la cuenca alta del río Torres-Vizcarr...
Biodisponibilidad de metales pesados en la cuenca alta del río Torres-Vizcarr...Biodisponibilidad de metales pesados en la cuenca alta del río Torres-Vizcarr...
Biodisponibilidad de metales pesados en la cuenca alta del río Torres-Vizcarr...Sector Energía y Minas - INGEMMET
 
Registros de pozo_1.ppt;filename= utf-8''registros de pozo 1
Registros de pozo_1.ppt;filename= utf-8''registros de pozo 1Registros de pozo_1.ppt;filename= utf-8''registros de pozo 1
Registros de pozo_1.ppt;filename= utf-8''registros de pozo 1Alexander Mamani Cuiza
 
Propiedades ingenieriles de las rocas
Propiedades ingenieriles de las rocasPropiedades ingenieriles de las rocas
Propiedades ingenieriles de las rocasHEIDY RAMOS CACEREES
 

La actualidad más candente (20)

1 4913539395186851921
1 49135393951868519211 4913539395186851921
1 4913539395186851921
 
26228291 registro-o-perfilaje-de-pozos
26228291 registro-o-perfilaje-de-pozos26228291 registro-o-perfilaje-de-pozos
26228291 registro-o-perfilaje-de-pozos
 
Modelación de la absorción y lixiviación de metales en presencia de ligandos ...
Modelación de la absorción y lixiviación de metales en presencia de ligandos ...Modelación de la absorción y lixiviación de metales en presencia de ligandos ...
Modelación de la absorción y lixiviación de metales en presencia de ligandos ...
 
Tema viii inter_perfiles
Tema viii inter_perfilesTema viii inter_perfiles
Tema viii inter_perfiles
 
Presentación porosidad
Presentación porosidadPresentación porosidad
Presentación porosidad
 
006.1.+propiedades+de+la+roca+yacimiento
006.1.+propiedades+de+la+roca+yacimiento006.1.+propiedades+de+la+roca+yacimiento
006.1.+propiedades+de+la+roca+yacimiento
 
Registro laterolog y doble laterolog.
Registro laterolog y doble laterolog.Registro laterolog y doble laterolog.
Registro laterolog y doble laterolog.
 
Desarrollo de la evaluación petrofísica en México y su futuro a través de la ...
Desarrollo de la evaluación petrofísica en México y su futuro a través de la ...Desarrollo de la evaluación petrofísica en México y su futuro a través de la ...
Desarrollo de la evaluación petrofísica en México y su futuro a través de la ...
 
Flujos de agua en los macizos rocosos
Flujos de agua en los macizos rocososFlujos de agua en los macizos rocosos
Flujos de agua en los macizos rocosos
 
Propiedades fisicas y mec..de rocas
Propiedades fisicas y mec..de rocasPropiedades fisicas y mec..de rocas
Propiedades fisicas y mec..de rocas
 
DEPOSICION DE ARENA DE AGUAS PROFUNDAS
DEPOSICION DE ARENA DE AGUAS PROFUNDASDEPOSICION DE ARENA DE AGUAS PROFUNDAS
DEPOSICION DE ARENA DE AGUAS PROFUNDAS
 
Caractristica de un yacimiento
Caractristica de un yacimientoCaractristica de un yacimiento
Caractristica de un yacimiento
 
Característica de yacimiento
Característica de yacimientoCaracterística de yacimiento
Característica de yacimiento
 
RESISTIVIDAD
RESISTIVIDADRESISTIVIDAD
RESISTIVIDAD
 
Biodisponibilidad de metales pesados en la cuenca alta del río Torres-Vizcarr...
Biodisponibilidad de metales pesados en la cuenca alta del río Torres-Vizcarr...Biodisponibilidad de metales pesados en la cuenca alta del río Torres-Vizcarr...
Biodisponibilidad de metales pesados en la cuenca alta del río Torres-Vizcarr...
 
RAYOS GAMMA
RAYOS GAMMARAYOS GAMMA
RAYOS GAMMA
 
Registros de pozo_1.ppt;filename= utf-8''registros de pozo 1
Registros de pozo_1.ppt;filename= utf-8''registros de pozo 1Registros de pozo_1.ppt;filename= utf-8''registros de pozo 1
Registros de pozo_1.ppt;filename= utf-8''registros de pozo 1
 
Tema 6 determinación de litologia y porosidad
Tema 6 determinación de litologia y porosidadTema 6 determinación de litologia y porosidad
Tema 6 determinación de litologia y porosidad
 
Conceptos sedimentologicos
Conceptos sedimentologicosConceptos sedimentologicos
Conceptos sedimentologicos
 
Propiedades ingenieriles de las rocas
Propiedades ingenieriles de las rocasPropiedades ingenieriles de las rocas
Propiedades ingenieriles de las rocas
 

Similar a Maria moran 20% del 3 corte

Metodo del potencial espontaneo
Metodo del potencial espontaneoMetodo del potencial espontaneo
Metodo del potencial espontaneoAbelGomezSantiago
 
Registro SP (Potencial Espontaneo)
Registro SP (Potencial Espontaneo)Registro SP (Potencial Espontaneo)
Registro SP (Potencial Espontaneo)Osvaldo Rivera
 
Registros geofisicos
Registros geofisicosRegistros geofisicos
Registros geofisicosMiguel Alor
 
Especies de cristalizacion
Especies de cristalizacionEspecies de cristalizacion
Especies de cristalizacionIñaky Contreras
 
13 agua subterranea
13 agua subterranea13 agua subterranea
13 agua subterraneaJuan Soto
 
13 agua subterranea
13 agua subterranea13 agua subterranea
13 agua subterraneaJuan Soto
 
Abau setembro 2017 opcion A
Abau setembro 2017 opcion AAbau setembro 2017 opcion A
Abau setembro 2017 opcion Ajmsantaeufemia
 
64767740 flotacion-de-minerales
64767740 flotacion-de-minerales64767740 flotacion-de-minerales
64767740 flotacion-de-mineralesZathex Kaliz
 
Mediciones de resistividad naizuli
Mediciones de resistividad naizuliMediciones de resistividad naizuli
Mediciones de resistividad naizuliNaizuli Rodriguez
 
Práctico N° 5 - GLG211 - Luis Gunarch Navarro Flores.pdf
Práctico N° 5 - GLG211 - Luis Gunarch Navarro Flores.pdfPráctico N° 5 - GLG211 - Luis Gunarch Navarro Flores.pdf
Práctico N° 5 - GLG211 - Luis Gunarch Navarro Flores.pdfLuisGunarchNavarroFl
 
Calculo de Asentamiento.pptx
Calculo de Asentamiento.pptxCalculo de Asentamiento.pptx
Calculo de Asentamiento.pptxGaston Proaño
 
Evaluación petrofisica y análisis de datos sísmicos
Evaluación petrofisica y análisis de datos sísmicosEvaluación petrofisica y análisis de datos sísmicos
Evaluación petrofisica y análisis de datos sísmicosvalentina vergara usma
 
Apuntes de concentración de minerales i
Apuntes de concentración de minerales iApuntes de concentración de minerales i
Apuntes de concentración de minerales iFrans Santos Huaman
 

Similar a Maria moran 20% del 3 corte (20)

Raibelin 20% 3 corte
Raibelin 20% 3 corteRaibelin 20% 3 corte
Raibelin 20% 3 corte
 
Metodo del potencial espontaneo
Metodo del potencial espontaneoMetodo del potencial espontaneo
Metodo del potencial espontaneo
 
Registro SP (Potencial Espontaneo)
Registro SP (Potencial Espontaneo)Registro SP (Potencial Espontaneo)
Registro SP (Potencial Espontaneo)
 
Registros geofisicos
Registros geofisicosRegistros geofisicos
Registros geofisicos
 
EL AGUA
EL AGUAEL AGUA
EL AGUA
 
Especies de cristalizacion
Especies de cristalizacionEspecies de cristalizacion
Especies de cristalizacion
 
13 agua subterranea
13 agua subterranea13 agua subterranea
13 agua subterranea
 
13 agua subterranea
13 agua subterranea13 agua subterranea
13 agua subterranea
 
Abau setembro 2017 opcion A
Abau setembro 2017 opcion AAbau setembro 2017 opcion A
Abau setembro 2017 opcion A
 
Geologia2021
Geologia2021Geologia2021
Geologia2021
 
64767740 flotacion-de-minerales
64767740 flotacion-de-minerales64767740 flotacion-de-minerales
64767740 flotacion-de-minerales
 
Mediciones de resistividad naizuli
Mediciones de resistividad naizuliMediciones de resistividad naizuli
Mediciones de resistividad naizuli
 
Test lottman
Test lottmanTest lottman
Test lottman
 
Práctico N° 5 - GLG211 - Luis Gunarch Navarro Flores.pdf
Práctico N° 5 - GLG211 - Luis Gunarch Navarro Flores.pdfPráctico N° 5 - GLG211 - Luis Gunarch Navarro Flores.pdf
Práctico N° 5 - GLG211 - Luis Gunarch Navarro Flores.pdf
 
Calculo de Asentamiento.pptx
Calculo de Asentamiento.pptxCalculo de Asentamiento.pptx
Calculo de Asentamiento.pptx
 
Evaluación petrofisica y análisis de datos sísmicos
Evaluación petrofisica y análisis de datos sísmicosEvaluación petrofisica y análisis de datos sísmicos
Evaluación petrofisica y análisis de datos sísmicos
 
Conceptos basicos de hidra. fluvial
Conceptos basicos de hidra. fluvialConceptos basicos de hidra. fluvial
Conceptos basicos de hidra. fluvial
 
Conceptos en hidrogeologia
Conceptos en hidrogeologiaConceptos en hidrogeologia
Conceptos en hidrogeologia
 
Orientaciones geologia 14
Orientaciones geologia 14Orientaciones geologia 14
Orientaciones geologia 14
 
Apuntes de concentración de minerales i
Apuntes de concentración de minerales iApuntes de concentración de minerales i
Apuntes de concentración de minerales i
 

Más de raibelin urdaneta

Plan de negocios 20% del 3 corte
Plan de negocios 20% del 3 cortePlan de negocios 20% del 3 corte
Plan de negocios 20% del 3 corteraibelin urdaneta
 
Proceso de invacion rafael angel barrios
Proceso de invacion rafael angel barriosProceso de invacion rafael angel barrios
Proceso de invacion rafael angel barriosraibelin urdaneta
 
presentacionMultimediaCarlosAntequera
presentacionMultimediaCarlosAntequera presentacionMultimediaCarlosAntequera
presentacionMultimediaCarlosAntequera raibelin urdaneta
 

Más de raibelin urdaneta (7)

Plan de negocios 20% del 3 corte
Plan de negocios 20% del 3 cortePlan de negocios 20% del 3 corte
Plan de negocios 20% del 3 corte
 
Marianyi informatica
Marianyi informaticaMarianyi informatica
Marianyi informatica
 
Proceso de invacion rafael angel barrios
Proceso de invacion rafael angel barriosProceso de invacion rafael angel barrios
Proceso de invacion rafael angel barrios
 
Maria moran perfiles
Maria moran perfilesMaria moran perfiles
Maria moran perfiles
 
Perfil raibelin urdaneta 2
Perfil raibelin urdaneta 2Perfil raibelin urdaneta 2
Perfil raibelin urdaneta 2
 
Raibelin urdaneta perfiles
Raibelin urdaneta perfilesRaibelin urdaneta perfiles
Raibelin urdaneta perfiles
 
presentacionMultimediaCarlosAntequera
presentacionMultimediaCarlosAntequera presentacionMultimediaCarlosAntequera
presentacionMultimediaCarlosAntequera
 

Último

Quimica Raymond Chang 12va Edicion___pdf
Quimica Raymond Chang 12va Edicion___pdfQuimica Raymond Chang 12va Edicion___pdf
Quimica Raymond Chang 12va Edicion___pdfs7yl3dr4g0n01
 
NTP- Determinación de Cloruros en suelos y agregados (1) (1).pptx
NTP- Determinación de Cloruros  en suelos y agregados (1) (1).pptxNTP- Determinación de Cloruros  en suelos y agregados (1) (1).pptx
NTP- Determinación de Cloruros en suelos y agregados (1) (1).pptxBRAYANJOSEPTSANJINEZ
 
ANALISIS Y DISEÑO POR VIENTO, DE EDIFICIOS ALTOS, SEGUN ASCE-2016, LAURA RAMIREZ
ANALISIS Y DISEÑO POR VIENTO, DE EDIFICIOS ALTOS, SEGUN ASCE-2016, LAURA RAMIREZANALISIS Y DISEÑO POR VIENTO, DE EDIFICIOS ALTOS, SEGUN ASCE-2016, LAURA RAMIREZ
ANALISIS Y DISEÑO POR VIENTO, DE EDIFICIOS ALTOS, SEGUN ASCE-2016, LAURA RAMIREZgustavoiashalom
 
libro de ingeniería de petróleos y operaciones
libro de ingeniería de petróleos y operacioneslibro de ingeniería de petróleos y operaciones
libro de ingeniería de petróleos y operacionesRamon Bartolozzi
 
Gestion de proyectos para el control y seguimiento
Gestion de proyectos para el control  y seguimientoGestion de proyectos para el control  y seguimiento
Gestion de proyectos para el control y seguimientoMaxanMonplesi
 
Sistema de lubricación para motores de combustión interna
Sistema de lubricación para motores de combustión internaSistema de lubricación para motores de combustión interna
Sistema de lubricación para motores de combustión internamengual57
 
ingenieria grafica para la carrera de ingeniera .pptx
ingenieria grafica para la carrera de ingeniera .pptxingenieria grafica para la carrera de ingeniera .pptx
ingenieria grafica para la carrera de ingeniera .pptxjhorbycoralsanchez
 
JM HIDROGENO VERDE- OXI-HIDROGENO en calderas - julio 17 del 2023.pdf
JM HIDROGENO VERDE- OXI-HIDROGENO en calderas - julio 17 del 2023.pdfJM HIDROGENO VERDE- OXI-HIDROGENO en calderas - julio 17 del 2023.pdf
JM HIDROGENO VERDE- OXI-HIDROGENO en calderas - julio 17 del 2023.pdfMiguelArango21
 
Presentacion de la ganaderia en la región
Presentacion de la ganaderia en la regiónPresentacion de la ganaderia en la región
Presentacion de la ganaderia en la regiónmaz12629
 
APORTES A LA ARQUITECTURA DE WALTER GROPIUS Y FRANK LLOYD WRIGHT
APORTES A LA ARQUITECTURA DE WALTER GROPIUS Y FRANK LLOYD WRIGHTAPORTES A LA ARQUITECTURA DE WALTER GROPIUS Y FRANK LLOYD WRIGHT
APORTES A LA ARQUITECTURA DE WALTER GROPIUS Y FRANK LLOYD WRIGHTElisaLen4
 
MODIFICADO - CAPITULO II DISEÑO SISMORRESISTENTE DE VIGAS Y COLUMNAS.pdf
MODIFICADO - CAPITULO II DISEÑO SISMORRESISTENTE DE VIGAS Y COLUMNAS.pdfMODIFICADO - CAPITULO II DISEÑO SISMORRESISTENTE DE VIGAS Y COLUMNAS.pdf
MODIFICADO - CAPITULO II DISEÑO SISMORRESISTENTE DE VIGAS Y COLUMNAS.pdfvladimirpaucarmontes
 
tesis maíz univesidad catolica santa maria
tesis maíz univesidad catolica santa mariatesis maíz univesidad catolica santa maria
tesis maíz univesidad catolica santa mariasusafy7
 
nomenclatura de equipo electrico en subestaciones
nomenclatura de equipo electrico en subestacionesnomenclatura de equipo electrico en subestaciones
nomenclatura de equipo electrico en subestacionesCarlosMeraz16
 
QUIMICA GENERAL UNIVERSIDAD TECNOLOGICA DEL PERU
QUIMICA GENERAL UNIVERSIDAD TECNOLOGICA DEL PERUQUIMICA GENERAL UNIVERSIDAD TECNOLOGICA DEL PERU
QUIMICA GENERAL UNIVERSIDAD TECNOLOGICA DEL PERUManuelSosa83
 
DIAPOSITIVAS DE SEGURIDAD Y SALUD EN EL TRABAJO
DIAPOSITIVAS DE SEGURIDAD Y SALUD EN EL TRABAJODIAPOSITIVAS DE SEGURIDAD Y SALUD EN EL TRABAJO
DIAPOSITIVAS DE SEGURIDAD Y SALUD EN EL TRABAJOJimyAMoran
 
CALCULO DE ENGRANAJES RECTOS SB-2024.pptx
CALCULO DE ENGRANAJES RECTOS SB-2024.pptxCALCULO DE ENGRANAJES RECTOS SB-2024.pptx
CALCULO DE ENGRANAJES RECTOS SB-2024.pptxCarlosGabriel96
 
UNIDAD II 2.pdf ingenieria civil lima upn
UNIDAD  II 2.pdf ingenieria civil lima upnUNIDAD  II 2.pdf ingenieria civil lima upn
UNIDAD II 2.pdf ingenieria civil lima upnDayronCernaYupanquiy
 
TIPOS DE SOPORTES - CLASIFICACION IG.pdf
TIPOS DE SOPORTES - CLASIFICACION IG.pdfTIPOS DE SOPORTES - CLASIFICACION IG.pdf
TIPOS DE SOPORTES - CLASIFICACION IG.pdfssuser202b79
 
2. Cristaloquimica. ingenieria geologica
2. Cristaloquimica. ingenieria geologica2. Cristaloquimica. ingenieria geologica
2. Cristaloquimica. ingenieria geologicaJUDITHYEMELINHUARIPA
 
PERFORACIÓN Y VOLADURA EN MINERÍA APLICADO
PERFORACIÓN Y VOLADURA EN MINERÍA APLICADOPERFORACIÓN Y VOLADURA EN MINERÍA APLICADO
PERFORACIÓN Y VOLADURA EN MINERÍA APLICADOFritz Rebaza Latoche
 

Último (20)

Quimica Raymond Chang 12va Edicion___pdf
Quimica Raymond Chang 12va Edicion___pdfQuimica Raymond Chang 12va Edicion___pdf
Quimica Raymond Chang 12va Edicion___pdf
 
NTP- Determinación de Cloruros en suelos y agregados (1) (1).pptx
NTP- Determinación de Cloruros  en suelos y agregados (1) (1).pptxNTP- Determinación de Cloruros  en suelos y agregados (1) (1).pptx
NTP- Determinación de Cloruros en suelos y agregados (1) (1).pptx
 
ANALISIS Y DISEÑO POR VIENTO, DE EDIFICIOS ALTOS, SEGUN ASCE-2016, LAURA RAMIREZ
ANALISIS Y DISEÑO POR VIENTO, DE EDIFICIOS ALTOS, SEGUN ASCE-2016, LAURA RAMIREZANALISIS Y DISEÑO POR VIENTO, DE EDIFICIOS ALTOS, SEGUN ASCE-2016, LAURA RAMIREZ
ANALISIS Y DISEÑO POR VIENTO, DE EDIFICIOS ALTOS, SEGUN ASCE-2016, LAURA RAMIREZ
 
libro de ingeniería de petróleos y operaciones
libro de ingeniería de petróleos y operacioneslibro de ingeniería de petróleos y operaciones
libro de ingeniería de petróleos y operaciones
 
Gestion de proyectos para el control y seguimiento
Gestion de proyectos para el control  y seguimientoGestion de proyectos para el control  y seguimiento
Gestion de proyectos para el control y seguimiento
 
Sistema de lubricación para motores de combustión interna
Sistema de lubricación para motores de combustión internaSistema de lubricación para motores de combustión interna
Sistema de lubricación para motores de combustión interna
 
ingenieria grafica para la carrera de ingeniera .pptx
ingenieria grafica para la carrera de ingeniera .pptxingenieria grafica para la carrera de ingeniera .pptx
ingenieria grafica para la carrera de ingeniera .pptx
 
JM HIDROGENO VERDE- OXI-HIDROGENO en calderas - julio 17 del 2023.pdf
JM HIDROGENO VERDE- OXI-HIDROGENO en calderas - julio 17 del 2023.pdfJM HIDROGENO VERDE- OXI-HIDROGENO en calderas - julio 17 del 2023.pdf
JM HIDROGENO VERDE- OXI-HIDROGENO en calderas - julio 17 del 2023.pdf
 
Presentacion de la ganaderia en la región
Presentacion de la ganaderia en la regiónPresentacion de la ganaderia en la región
Presentacion de la ganaderia en la región
 
APORTES A LA ARQUITECTURA DE WALTER GROPIUS Y FRANK LLOYD WRIGHT
APORTES A LA ARQUITECTURA DE WALTER GROPIUS Y FRANK LLOYD WRIGHTAPORTES A LA ARQUITECTURA DE WALTER GROPIUS Y FRANK LLOYD WRIGHT
APORTES A LA ARQUITECTURA DE WALTER GROPIUS Y FRANK LLOYD WRIGHT
 
MODIFICADO - CAPITULO II DISEÑO SISMORRESISTENTE DE VIGAS Y COLUMNAS.pdf
MODIFICADO - CAPITULO II DISEÑO SISMORRESISTENTE DE VIGAS Y COLUMNAS.pdfMODIFICADO - CAPITULO II DISEÑO SISMORRESISTENTE DE VIGAS Y COLUMNAS.pdf
MODIFICADO - CAPITULO II DISEÑO SISMORRESISTENTE DE VIGAS Y COLUMNAS.pdf
 
tesis maíz univesidad catolica santa maria
tesis maíz univesidad catolica santa mariatesis maíz univesidad catolica santa maria
tesis maíz univesidad catolica santa maria
 
nomenclatura de equipo electrico en subestaciones
nomenclatura de equipo electrico en subestacionesnomenclatura de equipo electrico en subestaciones
nomenclatura de equipo electrico en subestaciones
 
QUIMICA GENERAL UNIVERSIDAD TECNOLOGICA DEL PERU
QUIMICA GENERAL UNIVERSIDAD TECNOLOGICA DEL PERUQUIMICA GENERAL UNIVERSIDAD TECNOLOGICA DEL PERU
QUIMICA GENERAL UNIVERSIDAD TECNOLOGICA DEL PERU
 
DIAPOSITIVAS DE SEGURIDAD Y SALUD EN EL TRABAJO
DIAPOSITIVAS DE SEGURIDAD Y SALUD EN EL TRABAJODIAPOSITIVAS DE SEGURIDAD Y SALUD EN EL TRABAJO
DIAPOSITIVAS DE SEGURIDAD Y SALUD EN EL TRABAJO
 
CALCULO DE ENGRANAJES RECTOS SB-2024.pptx
CALCULO DE ENGRANAJES RECTOS SB-2024.pptxCALCULO DE ENGRANAJES RECTOS SB-2024.pptx
CALCULO DE ENGRANAJES RECTOS SB-2024.pptx
 
UNIDAD II 2.pdf ingenieria civil lima upn
UNIDAD  II 2.pdf ingenieria civil lima upnUNIDAD  II 2.pdf ingenieria civil lima upn
UNIDAD II 2.pdf ingenieria civil lima upn
 
TIPOS DE SOPORTES - CLASIFICACION IG.pdf
TIPOS DE SOPORTES - CLASIFICACION IG.pdfTIPOS DE SOPORTES - CLASIFICACION IG.pdf
TIPOS DE SOPORTES - CLASIFICACION IG.pdf
 
2. Cristaloquimica. ingenieria geologica
2. Cristaloquimica. ingenieria geologica2. Cristaloquimica. ingenieria geologica
2. Cristaloquimica. ingenieria geologica
 
PERFORACIÓN Y VOLADURA EN MINERÍA APLICADO
PERFORACIÓN Y VOLADURA EN MINERÍA APLICADOPERFORACIÓN Y VOLADURA EN MINERÍA APLICADO
PERFORACIÓN Y VOLADURA EN MINERÍA APLICADO
 

Maria moran 20% del 3 corte

  • 1. República bolivariana de Venezuela Ministerio del poder popular para la educación I.U.P Santiago Mariño Cátedra Interpretación de Perfiles Professor Jonathan Giménez Bachiller Maria Moran Perfiles
  • 2. Índice Introducción 1. Agua de formación 2. Explicar el método de interpretación en formaciones limpias 3. Explicar el método de interpretación en formaciones arcillosas 4. Explicar el método SP 5. Métodos de distribución de arcillas 6. Como se realiza el cálculo de Vsh, porosidad. Y las fórmulas utilizadas 7. Propiedades nucleares de la roca 8. Perfil de Rayos Gamma 9. Aplicación del perfil de densidad 10.Aplicación del perfil neutrón Bibliografía
  • 3. Introducción En la tubería de perforación se hace un muestreo que se hace de forma directa, es decir, analizando muestras de creación o mediante el estudio continuo del fluido de perforación y por la introducción mediante cables con ductores eléctricos de mecanismos medidores de los diferentes parámetros típicos de las formaciones atravesadas y de su contenido. De estos procedimientos de muestreo, el que más importante avance tecnológico hare portado es el originalmente conocido como registro eléctrico. Actualmente se le ha agregado una serie de registros de otros parámetros y se les nombra genéricamente registros geofísicos
  • 4. Desarrollo 1. Agua de formación es un término usado en la industria petrolera para describir el agua que se produce junto con el petróleo y el gas. Los yacimientos de petróleo y gas tienen capas con agua natural (agua formada) que yace debajo de los hidrocarburos. Los yacimientos petrolíferos contienen generalmente grandes cantidades de agua, al contrario que los yacimientos de gas. Para lograr una máxima recuperación de petróleo en los pozos, se inyecta agua adicional dentro del pozo, que obliga al petróleo a salir a la superficie. Estas dos aguas, la producida y la inyectada, acaban saliendo a la superficie junto con el petróleo y, a medida que el pozo de petróleo se empobrece, la proporción de agua producida con el petróleo aumenta.. 2. Explicar el método de interpretación en formaciones limpias Propiedades de las rocas y fluidos: porosidad total y efectiva, comparación con coronas, permeabilidad, permeabilidad efectiva y relativa, resistividad de soluciones, resistividad de las rocas, factor de formación, ecuación de archie, saturación de agua Es el término que describe la saturación de agua, en la que toda el agua está entrampada entre granos en una roca, o se sostiene en los capilares a través de la presión capilar. La saturación de agua irreducible, corresponde al agua que no se moverá, y la permeabilidad relativa para el agua es igual a cero 3. Explicar el método de interpretación en formaciones arcillosas Por su naturaleza las arcillas presentan una carga negativa en su superficie, cuando la arcilla se encuentra inmersa en una solución acuosa, como ocurre de manera natural en el yacimiento, los iones que balancean esa carga negativa pueden intercambiarse con los de la solución acuosa, dando como resultado un valor de CEC La CEC es la responsable del exceso de conductividad que presentan las formaciones arcillosas, por lo que su conocimiento y determinación son muy importantes en la interpretación de algunos registros geofísicos. Como la conductividad de la formación influye directamente en el cálculo de la saturación de agua, es muy importante incluir la CEC como parámetro de cálculo para determinar la saturación de agua en formaciones arcillosas. Algunos autores ya han demostrado el efecto que tiene la CEC en la conductividad de la formación y, por consecuencia, en el cálculo de la saturación de agua; por lo que han desarrollado modelos de conductividad para determinar la saturación de agua en formaciones arcillosas, basados en la
  • 5. capacidad de intercambio catiónico. Estos modelos son los de Waxman – Smits y Dos Aguas. Además del efecto que tiene la CEC en la conductividad de la formación, este fenómeno también puede alterar la permeabilidad de la formación y su porosidad efectiva, esta ´ultima debido a la presencia de una capa de agua que está impregnada en la arcilla 4. Explicar el método SP La curva del potencial espontaneo o SP (Spontaneus Potential) representa la diferencia de potencial eléctrico entre un electrodo fijo en la superficie y otro móvil dentro del pozo en función de la profundidad. La escala del SP no tiene un valor ceso (0) absoluto, esto es debido a que apenas se registran los cambios de potencial dentro del lodo al pasar la herramienta de registro frente a diferentes capas Como consecuencia se establece la circulación de corrientes eléctricas dentro de la formación las cuales atraviesan el lodo dentro del pozo originando deflexiones en la curva del SP. En otras palabras; las deflexiones de la curva del SP resultan de las corrientes eléctricas que fluyen en el lodo del pozo. No existe ninguna corriente eléctrica dentro del pozo en el centro de una lutita, debido a que esta es impermeable y en consecuencia la curva del SP es plana llamándose "Línea – Base de Lutitas". Por otro lado, en frente de formaciones permeables la curva muestra deflexiones con respecto a la Línea – Base de Lutitas; en las capas gruesas estas deflexiones tienden a alcanzar una curva esencialmente constante, definiéndose así una línea de arena.
  • 6. La deflexión puede ser a la izquierda (Negativa) o a la derecha (Positiva), dependiendo principalmente de las salinidades relativas del agua de formación y del filtrado del lodo. Siendo de la siguiente manera:  Si la salinidad del agua de formación es mayor a la del filtrado del lodo la deflexión será hacia la izquierda.  Si la salinidad del filtrado del lodo es mayor a la del agua de formación la deflexión ser hacia la derecha 5. Métodos de distribución de arcillas Las arcillas se derivan de su composición química, su estructura en láminas y su tamaño. Los minerales de la arcilla poseen gran afinidad por el agua; algunos la absorben fácilmente y pueden duplicar su tamaño estando húmedas. La mayoría de los minerales de la arcilla tiene la habilidad de absorber iones de una solución y liberar los iones cuando cambian las condiciones. Las moléculas de agua se atraen fuertemente a la superficie de las arcillas. Así, cuando un poco de arcilla es añadida al agua, esta se distribuye uniformemente a través del líquido. Esta propiedad comúnmente se utiliza en pinturas, para distribuir los pigmentos (color) sobre la base de la pintura. El proceso en que algunas arcillas absorben agua y se hinchan es reversible. Las arcillas expansibles se expanden o contraen en respuesta a factores ambientales, como la humedad y temperatura. Así, puede existir una diferencia de casi un 100% entre una misma arcilla seca y húmeda. Otra propiedad importante en las arcillas es la capacidad de intercambiar iones. Los iones pueden ser atraídos hacia la superficie de las arcillas o ser incorporado en su estructura. Por esto, las arcillas puedes ser importantes agentes transportadores de contaminantes de un área a otra (en el caso de que entren iones o moléculas como pesticidas). Cuando la roca contenga mineral conductivo, la interpretación del registro debe tomar en cuenta dicha conductividad. Las arcillas y latitas no son raras, y contribuyen a la conductividad de la formación. La latita muestra conductividad debido al electrolito que contiene y a un proceso de intercambio de iones por medio del cual éstos se mueven bajo la influencia de un campo eléctrico aplicado entre lugares de intercambio en la superficie de las partículas de arcilla. El efecto de la arcillosidad en la conductividad de la arena arcillosa es con frecuencia muy desproporcionado en relación a la cantidad de lutita. El efecto real depende de la cantidad, tipo y distribución relativa de las latitas y dela naturaleza y cantidades relativas de aguas de formación .A través de los años, los investigadores han propuesto varios modelos de interpretación para el caso de arenas arcillosas. En ciertos casos el modelo se basa en la lutita presente en una geometría específica
  • 7. dentro de una arena arcillosa; por ejemplo, la lutita puede estar presente en forma de láminas delgadas entre las capas de la arena limpia, o como granos o nódulos en la estructura de la matriz de arena; o puede encontrarse dispersa, a través del sistema poroso, en forma de acumulaciones que se adhieren o recubren los granos de arena 6. Como se realiza el cálculo de Vsh, porosidad. Y las fórmulas utilizadas A continuación, se determina el Vsh (volumen de arcilla) de la roca. Se pueden usar las siguientes ecuaciones (Dresser Atlas, 1979) para un registro de rayos gamma, usando la ecuación para rocas cretácicas o consolidadas, o la de rocas del terciario o no consolidadas. Vsh clavier=1,7_(3,38-(IGR+0,7) Vshclavier=volumen de la arcillaclavier Vshestier=volumen de la arcilla estier 7. Propiedades nucleares de la roca Los elementos #o los isótopos de losmismos elementos$ se convierten entr e otras pueden participar protones' neutrones' electrones ! otras partículas elementales" Las reacciones van acompañadas por la absorción o liberación de cantidades enormes de energía Las velocidades de reacción' por logeneral' no se ven afectadas por latemperat ura' la presión o los catalizadores La propiedad que poseen ciertas sustancias de desintegrarse a través de emisiones de partículas invisibles llamadas alfábega' además de radiaciones gamma se llaman RADIACTVAS por consiguiente algunas sustancias radiactivas emiten ,los tipos de radiaciones en diferentes cantidades
  • 8. 8. Perfil de Rayos Gamma Una medición común y de bajo costo de la emisión natural de rayos gamma desde una formación. Los registros de rayos gamma resultan particularmente útiles porque las lutitas y las areniscas habitualmente poseen caracteres únicos diferentes de rayos gamma que pueden ser correlacionados fácilmente entre pozos La profundidad de investigación es de algunas pulgadas, de manera que el registro normalmente mide la zona lavada. Las lutitas y las arcillas son responsables de la mayor parte de la radioactividad natural, de manera que el registro de rayos gamma a menudo es un buen indicador de este tipo de rocas. No obstante, otras rocas también son radioactivas, especialmente algunos carbonatos y las rocas ricas en contenido de feldespato. El registro se utiliza además para la correlación entre pozos, para la correlación en profundidad entre el agujero descubierto y el pozo entubado, y para la correlación en profundidad entre las carreras de adquisición de registros. El registro de rayos gamma fue el primer registro nuclear de pozo y se introdujo a fines de la década de 1930 Los objetivos del registro Gamma Ray es discriminar entre reservorio y no- reservorio, definir volumen de arcilla en el reservorio y estimar el nivel de dolomitas de la roca reservorio Es un método para medir naturalmente la radiación gamma de las rocas o sedimentos en un pozo. La diferencia en la radioactividad hace posible distinguir las formaciones arcillosas de las no arcillas. Los registros son afectados por el diámetro del pozo así como por el fluido pero de todos modos es más común utilizar este registro de forma cualitativa así que no amerita hacer muchas correcciones. Un registro común de rayos gamma no distingue los elementos radiactivos mientras que el gamma espectral si puede hacerlo diferenciando las longitudes de onda de sus radiaciones gamma. Los datos de gamma ray también ayudan a interpretar medioambientes de depositación. Las discontinuidades pueden originar acumulación de nódulos fosfáticos que pueden ser evidentes en el registro de gamma ray espectral como un pico anómalo de Uranio.
  • 9. 9. Aplicación del perfil de densidad Se basa en la medición de la densidad de la formación, por medio de la atenuación de rayosgamma entre una fuente yun receptor. Posee unafuente de rayos gamma, los cuales colisionan con losátomospresentesen la roca. La herramienta también posee un receptorquemide los rayos gamma dispersosliberadosen lascolisiones. La herramienta se llama FDC. Sirve para estimar la densidad delsistema roca – fluido (RHOB) que posteriormente servirá para calcular la porosidad pordensidad(DPHI). Siel registro de densidad esbajo indicaalta porosidad ysiesalto indica baja porosidad. Se lee de izquierda a derecha ( La unidad de medida es gr/cm ,con un rango de valoresque va desde1.96 a 2.96gr/cm 10. Aplicación del perfil neutrón El registro de doble neutrón espaciado DSN Permite evaluar la Porosidad de la formación midiendo el Índice de Hidrógeno (HI) del Fluido en la formación. Así, en formaciones limpias cuyos poros están llenos de agua o petróleo, el perfil Neutrónico nos da el valor real del espacio poral lleno de fluidos. Las zonas gasíferas pueden frecuentemente identificarse comparando el perfil neutrón con otro de porosidad o con los valores de porosidad obtenidos de los testigos o núcleos (Halliburton, 2007) Principio físico. El neutrón es una partícula que tiene aproximadamente la misma masa del protón, más no la misma carga eléctrica. Su tamaño pequeño y neutralidad eléctrica le permite pasar fácilmente a través de la materia. Los neutrones son producidos por fuentes químicas y fuentes pulsadas. Las herramientas DSN usa una fuente química de neutrón usan una mezcla de Americio y Berilio y permiten un flujo constante de 66 neutrones de rayos gamma. El Americio 241 es el emisor de partículas alfa en las fuentes estándares de americio y berilio usadas hoy. Estas fuentes deben ser fuertemente protegidas cuando no están en uso. Una fuente radioactiva colocada en la sonda emite continuamente neutrones de alta energía (velocidad). Estos neutrones, al encontrarse con los núcleos del material de la
  • 10. formación, chocan elásticamente a semejanza de bolas de billar y en cada colisión, los neutrones pierden parte de su energía. La cantidad de la energía perdida por un neutrón en cada colisión depende de la masa relativa del núcleo con el cual choca, cuando el neutrón choca con un núcleo de masa prácticamente igual como el Hidrógeno ocurre la mayor pérdida de energía en cambio si choca con núcleos pesados no provocan mucha pérdida de velocidad. De esta manera la pérdida de velocidad dependerá principalmente de la cantidad de hidrógeno de la formación (Halliburton, 2007). Cuando la concentración de hidrógeno de la formación que rodea a la fuente de neutrones es alta, la mayoría de los neutrones son retardados y capturados a una corta distancia de la fuente. Por lo contrario, si la concentración de hidrógeno es baja, los neutrones viajan más lentos antes de ser capturados. Con la distancia de la 67 fuente al detector, comúnmente utilizada, a una mayor lectura Corresponde una menor concentración de hidrógeno y viceversa (Halliburton, 2007). Aplicaciones El DSN permite evaluar la porosidad de la formación Midiendo el índice de hidrógeno del fluido en la formación. En Combinación con otros perfiles de porosidad se utilizan para la interpretación de la litología