SlideShare una empresa de Scribd logo
1 de 7
Descargar para leer sin conexión
Ruiz JM, Ceballos L, Fuentes MY, Osorio R, Toledano M, García-Godoy F
Propiedades mecánicas de resinas compuestas modificadas o no con poliácidos
Propiedades mecánicas de resinas
compuestas modificadas o no con poliácidos
Ruiz JM* Ceballos L** Fuentes MY*** Osario R**** Toledano M****, , , , ,
García-Godoy F*****
RESUMEN
Objetivo: Determinar la resistencia a la flexión y el módulo de elasticidad de cinco resinas compuestas: Tetric
Ceram, Ecusit, Spectrum TPH, Filtek Z-250, Degufill mineral; y dos resinas modificadas con poliácidos: Luxat e
lonosit. Material y método: Se prepararon cinco muestras de cada material en un molde metálico rectangular
(22x2x2 mm). Las muestras fueron polimerizadas, primero en el centro y luego en ambos extremos con una lám-
para de luz halógena y después se conservaron en agua a 37° C durante 48 horas. Las muestras se pulieron para
eliminar la capa de resina superficial y se sometieron al ensayo de flexión en 3 puntos con una máquina de trac-
ción universal Instron con una velocidad de travesaño de 1mm/min. Los resultados (MPa) fueron analizados
mediante los tests de ANOVAy Student-Newman-Keuls (p<O.05). Resultados: La resistencia a la flexión y el
módulo de elasticidad de la resina compuesta modificada con poliácidos lonosit fueron significativamente meno-
res que los determinados para los demás materiales evaluados.
Palabras clave: Propiedades mecánicas, resistencia a la flexión, módulo de elasticidad, resina compuesta, resina
compuesta modificada con poliácido.
ABSTRACT
The aim of this study was to determine the flexural strength and modulus of elasticity of five resin composites:
Tetric Ceram, Ecusit, Spectrum TPH, Filtek Z-250, Degufillmineral; and two polyacid-modified resin composites:
Luxat e lonosit. Five rectangular specimens of each material were prepared (22x2x2 mm). They were light-cured,
first in the middle and after in both extremes, by means of a visible-light curing unit. The specimens were stored
in water at 37° C for 48 hours and ground to eliminate the resin layer inhibited by oxygen. Three-point bending
test was performed in an universal testing machine (Instron) at a cross-head speed of 1mm/min. Results were
expressed in MPa and analysed by ANOVAand Student-Newman-Keuls tests (p<O.05). Flexural strength and
modulus of elasticity of the polyacid-modified resin composite, lonosit, were significantly lower than the values
obtained for the rest of the materials evaluated.
Key words: Mechanical properties, flexural strength, modulus of elasticity, resin composite, polyacid-modified
resin composite
*
**
***
****
*****
Estudiante de la Facultad de Odontología y Becaria de Investigación del Plan Propio de la Universidad
de Granada.
Becaria Post-doctoral del Plan Propio de la Universidad de Granada, adscrita al Dpto. de Estomatología.
Licenciada en Odontología.
Profesor Titular de Materiales Odontológicos. Facultad de Odontología. Universidad de Granada.
Profesor y Director de Investigación del College of Dental Medicine, Nova Southeastern University,Fort
Lauderdale, FL, Estados Unidos.
RuizJM, Ceballos L, Fuentes MV,Osorio R, Toledano M, García-Godoy F. Propiedades mecánicas de resinas com-
puestas modificadas o no con poliácidos. Av. Odontoestomatol2003; 19-6: 291-297.
AVANCES EN ODONTOESTOMATOLOGÍA/291
AVANCES EN ODONTOESTOMATOLOGÍA
Vol. 19 - Núm. 6 - 2003
INTRODUCCIÓN
Las mejoras en las propiedades de las resinas com-
puestas han permitido que sean el material restaura-
dor actualmente más utilizado en dientes permanen-
tes. No obstante, la propiedad anticariogénica de los
cementos de ionómero de vidrio debido a la libera-
ción de flúor, y su capacidad para adherirse química-
mente al tejido dentario (1, 2, 3), hacen que estos
materiales sean aún muy atractivos para el clínico
(4). Sobre todo, si tenemos en cuenta que la caries
secundaria es el motivo principal para reemplazar las
restauraciones antiguas (5).
Sin embargo, los cementos de ionómero de vidrio
presentan algunas desventajas en comparación con
las resinas compuestas como son: un tiempo de tra-
bajo corto y un tiempo de fraguado largo, sorción y
solubilidad elevadas, peores propiedades estéticas
(3) y, fundamentalmente, una baja resistencia a la
fractura (4, 6, 7, 8) y al desgaste (7). Debido a estas
propiedades mecánicas deficientes, los cementos de
ionómero de vidrio no están indicados para ser utili-
zados en restauraciones sometidas a carga, como
son las de Clase I y 11 (4, 9).
Con el fin de conseguir un material con unas propie-
dades mecánicas similares a las de las resinas com-
puestas, pero manteniendo las características bene-
ficiosas de los cementos de ionómero de vidrio se
desarrollaron materiales híbridos: los cementos de
ionómero de vidrio modificados con resina y las resi-
nas modificadas con poliácidos, conocidas como
compómeros (8, 10, 11). Estos materiales estarían
indicados para pacientes con un alto riesgo de caries
y fueron diseñados para restaurar lesiones de Clase
1, 111y V (12).
Las magnitudes fundamentales para conocer la
resistencia a las fuerzas oclusales de un material
determinado son: la resistencia a la flexión, el módu-
lo de elasticidad y la resistencia a la fractura (13). Por
tanto, su cuantificación permite también predecir la
aparición de fracturas tanto en el propio material
como en los márgenes (14) de la restauración, o lo
que es lo mismo, la longevidad de la restauración
bajo condiciones clínicas simuladas (11).
Algunos trabajos han demostrado que las propieda-
292/AVANCES EN ODONTOESTOMATOLOGÍA
des físicas de estos materiales híbridos son muy
superiores a las de los cementos de ionómero de
vidrio, siendo, en el caso de algunas resinas modifi-
cadas con poliácidos comercializadas, ligeramente
inferiores a las de las resinas compuestas (9, 12) y,
en el caso de otras, prácticamente similares (12).
El objetivo del presente estudio fue evaluar el com-
portamiento mecánico, por medio de la determina-
ción de la resistencia y del módulo de elasticidad, de
cinco resinas compuestas y de dos resinas modifica-
das con poliácidos disponibles en el mercado.
MATERIAL Y MÉTODO
En el presente estudio se evaluaron cinco resinas
compuestas: Tetric Cera m (Vivadent, Liechtenstein),
Ecusit (DMG, Hamburgo, Alemania), Degufill mine-
ral (Degussa Dental GmbH, Hanau, Alemania),
Spectrum TPH (Dentsply-Detrey GmbH, Konstanz,
Alemania) y Filtek 2-250 (3M-ESPE, Sto Paul, MN,
EE.UU.); Y dos resinas modificadas con poliácidos:
Luxat (DMG, Hamburgo, Alemania) e lonosit-
Baseliner (DMG, Hamburgo, Alemania).
Las propiedades de flexión de los materiales se
determinaron mediante un test de flexión en tres
puntos de acuerdo con las normas ISO 4049 (15).
Se prepararon cinco barritas de cada material utili-
zando un molde rectangular metálico con las
siguientes dimensiones: 22 mm de longitud, 2 mm
de anchura y 2 mm de espesor. Los moldes se
colocaron sobre una loseta de vidrio y el material
de estudio se insertó procurando que no quedaran
burbujas de aire atrapadas en su interior. Sobre
éste se colocó una banda matriz de acetato y se
hizo presión con otra loseta de vidrio para conse-
guir una superficie lisa y un grosor homogéneo.
Los especímenes fueron polimerizados con una
lámpara de luz halógena (Spectrum 800, Dentsply.
Detrey Gmb H, Konstanz, Alemania), primero en el
centro y después en los extremos, teniendo cada
exposición una duración de 40 segundos. Cada
diez exposiciones se comprobó que la densidad de
potencia de la lámpara sobrepasase los 600
mw/cm2 con un radiómetro de curado que lleva
incorporado la lámpara.
Ruiz JM, CebaBas L, Fuentes MY, Osario R, Toledano M, García-Godoy F
Propiedades mecánicas de resinas compuestas modificadas o no con poliácidos
Los especímenes se conservaron en agua destilada a
3T C durante 48 horas y transcurrido ese tiempo se
pulieron con discos de carburo de silicio de 500 grit
para eliminar la capa de resina inhibida por oxígeno.
Las dimensiones de los especímenes fueron medi-
das de nuevo mediante un calibre digital (Mitutoyo,
Tokio, Japón).
Los especímenes fueron sometidos al ensayo de fle-
xión en tres puntos en una máquina de tracción uni-
versal Instron (Modelo 4411, Instron Corp., Cantan,
MA, EE.UU.) con una velocidad de travesaño de 1
mm/min. Durante el ensayo las barritas están apoya-
das en dos puntos. La carga se aplica en la superfi-
cie opuesta a los puntos de apoyo en un punto equi-
distante de los dos anteriores. En la zona cóncava se
producen fenómenos de compresión, mientras que
en la zona convexa se aprecian fenómenos de ten-
sión, hasta que se produce la fractura de la barrita.
Los resultados obtenidos se analizaron mediante el
test de ANOVA para determinar si las propiedades de
flexión dependían del material de estudio. El nivel de
significación establecido previamente fue de
p<0.05. Las comparaciones múltiples posteriores se
realizaron con el test de Student-Newman-Keuls.
Todos los datos se analizaron con el programa SPSS
10.0 para Windows software (SPSS Inc., Chicago, IL,
EE.UU.).
RESULTADOS
Las medias (x) y desviaciones típicas (dt) de los dis-
tintos materiales quedan reflejadas en la tabla 1.
El test de ANOVA puso de manifiesto la influencia del
material evaluado en las variables dependientes
resistencia a la flexión y módulo de elasticidad
(F=21.41, p<O.OOOl; F=8.21, p<O.OOl, respecti-
vamente). En el caso de la resistencia a la flexión, las
comparaciones múltiples con el test de Student-
Newman-Keuls permitieron ordenar los materiales
del siguiente modo: Spectrum TPH presentó unos
valores similares a los de Filtek Z-250 y Luxat, y
superiores a los de Ecusit, Degufill mineral, Tetric
Ceram e lonosit-Baseliner. Filtek Z-250, Luxat, Ecusit
y Degufill mineral mostraron una resistencia a la fle-
xión similar. Los valores obtenidos por Tetric Ceram
fueron similares a los de Luxat, Ecusit y Degufill,
pero significativamente inferiores a los de Spectrum
TPH y Filtek Z-250. La resina modificada con poliá-
cido lonosit-Baseliner presentó una resistencia a la
flexión significativamente más baja que la del resto
de los materiales.
En cuanto al módulo de elasticidad, la resina com-
puesta modificada con poliácidos, Luxat, fue el
material que presentó los valores más altos, siendo
similares a los de todas las resinas compuestas eva-
luadas, con excepción del Tetric Ceram. lonosit-
Baseliner presentó un módulo de elasticidad signifi-
cativamente más bajo que el del resto de los mate-
riales evaluados.
DISCUSiÓN
Se han descrito muchos métodos estáticos y diná-
micos para determinar las propiedades mecánicas
de los materiales resinosos (13). Dentro de los está-
ticos, el test de flexión en tres puntos descrito por la
ISO-4049 (15), es el más utilizado (13) y permite eva-
TABLA 1.- RESISTENCIA A LA FLEXIÓN Y MÓDULO DE ELASTICIDAD DE LOS DIFERENTES
MATERIALES EVALUADOS. MEDIAS (dt) EN MPa
SPECTRUMZ-250LUXATECUSITDEGUF/UT. CERAMLONOSIT140.1 a130.1 ab116.9 abc108.2 bc104.9 bc97.6 c33.1 d(18.7)(6.9)(16.6)(14.1 )(23.3)(9.5)(17.1)10972.0 a10874.3 ab12060.8 a9702.6 ab10069.8 ab8354.5 b4930.7 c(746.2)(1927.9)(2626.6)(2306.0)(1309.2)(1248.8)(975.5)
Medias con las mismas letras indican que no hay diferencias estadísticamente significativas (p>O.05).
AVANCES EN ODONTOESTOMATOLOGÍA/293
AVANCES EN ODONTOESTOMATOLOGÍA
Vol. 19 - Núm. 6 - 2003
luar simultáneamente la resistencia a la f1exión y el
módulo de elasticidad.
La resistencia a la f1exión se define como la carga
máxima a la que el material se fractura (11). En el
presente estudio, la resina compuesta híbrida
Spectrum TPH presentó la resistencia a la f1exión
más elevada. Este material ha demostrado un buen
comportamiento mecánico en otros estudios (16,
17), incluso cuando se ha comparado con resinas
compactables, cuyas propiedades mecánicas se
suponen mejores (17) por su mayor contenido en
relleno. Además, sus partículas son irregulares yeso
hace que la resistencia a la f1exión sea mejor que las
de los materiales que incorporan partículas redon-
das o pre-polimerizadas (16).
Las otras resinas compuestas evaluadas obtuvieron
valores ligeramente inferiores, en un rango que oscila
entre los 97.6 MPa y los 130.1 MPa, resultados que con-
cuerdan con lo publicado previamente (9, 14, 16, 18).
Los factores que más influyen en las propiedades
mecánicas de un material son su contenido en relle-
no, el tamaño de las partículas, su distribución y las
interacciones entre el relleno y la matriz (9, 14, 16,
19), siendo el contenido en volumen del relleno la
propiedad que más se correlaciona con la resistencia
del material, con su módulo de elasticidad, así como
con su resistencia a la fractura (11, 14). También se
ha descrito que los composites que incorporan f1úor
soluble, presentan una resistencia a la f1exión menor,
porque el f1úor se disuelve y quedan microporosida-
des que facilitan la propagación de cracks (9). Este
sería el caso del Tetric Ceram, que incorpora vidrio
de f1uorosilicato de aluminio y bario, y, sobre todo,
del Degufill mineral que tiene la propiedad, según
sus fabricantes, de liberar de forma inteligente f1uo-
ruro, así como iones calcio y fosfato, que aportarían
una protección del esmalte dental y reforzarían la
remineralización natural.
De acuerdo con la literatura, las propiedades mecáni-
cas de los materiales híbridos aumentan en relación a
su contenido resinoso (12, 20, 21). De este modo, las
más bajas corresponderían a los cementos de ionó-
mero de vidrio modificados con resina, serían mejores
en el caso de las resinas modificadas con poliácidos y
máximas para las resinas compuestas (9, 21).
294/AVANCES EN ODONTOESTOMATOLOGÍA
Sin embargo, en el presente trabajo las dos resinas
modificadas con poliácidos mostraron un comporta-
miento mecánico muy diferente. lonosit-Baseliner
mostró una resistencia a la f1exión muy inferior, acer-
cándose más los valores a los determinados en
cementos de ionómero modificados con resinas (12).
Sin embargo, la resistencia de Luxat fue similar a la
de las resinas compuestas evaluadas, tal y como han
determinado otros autores en el caso de otras resinas
modificadas con poliácidos comercializadas (12).
En estos materiales se combinan componentes del
cristal de polialquenoato típicos del cemento de
ionómero de vidrio, por ejemplo, cristales de f1uoro-
silicato, con sustancias polimerizables de las resinas
compuestas, como son los dimetacrilatos (22). De
este modo, contienen los componentes esenciales
de los cementos de ionómero de vidrio, pero falta su
reacción de fraguado ácido-base típica por la ausen-
cia de agua en su composición (3, 23). Las diferen-
cias obtenidas entre materiales del mismo tipo pue-
den deberse al grado en que han sido modificados
con componentes más parecidos a las resinas o a los
poliácidos. En ellonosit-Baseliner sólo una pequeña
porción de los grupos ácidos carboxílicos del ácido
poliacrílico ha sido reemplazada por grupos metil-
metacrilato lo que origina que se formen menos
enlaces covalentes tras la polimerización, dando
como resultado un material con propiedades más
parecidas a las de los cementos de ionómero de
vidrio, comparado con el Luxat (21).
La resistencia a la f1exión de los materiales se corre-
laciona con su módulo de elasticidad, de tal forma
que si la primera es alta el módulo de elasticidad lo
será también (12). Esta relación se cumple en el pre-
sente trabajo, puesto que lonosit-Baseliner, el mate-
rial con la resistencia a la f1exión más baja es también
el material con el menor módulo de elasticidad.
Similar situación acontece en el caso del Tetric
Ceram, que fue la resina compuesta con los valores
más bajos de ambas magnitudes. Los valores de
módulo de elasticidad determinados para el resto de
los materiales fueron prácticamente similares entre
si, lo que concuerda con lo descrito por Peutzfeldt
(20), quien encontró que las diferencias entre los
módulos de elasticidad de diferentes materiales eran
más pequeñas que entre los valores de resistencia a
la f1exión.
Ruiz JM, Ceballos L, Fuentes MY, Osario R, Toledano M, García-Godoy F
Propiedades mecánicas de resinas compuestas modificadas o no con poliácidos
El módulo de elasticidad describe la relación entre el
estrés y la deformación que un material sufre para
una carga determinada (24), es por tanto una medi-
da de la rigidez relativa de un material (13). Un mate-
rial más rígido requerirá una carga mayor para defor-
marse en el mismo grado que uno más elástico (24).
Idealmente, el módulo de elasticidad de los materia-
les ha de ser semejante al del tejido dentario. En las
restauraciones de Clase V los materiales tienen que
tener un módulo de elasticidad que les permita
deformarse durante la flexión del diente, mientras
que en las cavidades de Clase 11 el módulo de elasti-
cidad debe ser lo suficientemente alto como para
soportar las deformaciones y evitar la fractura de las
cúspides (25). Sin embargo, el diente está compues-
to fundamentalmente por esmalte y dentina, y
ambos tejidos tienen un comportamiento elástico
completamente diferente (24), por ello se asume que
los materiales que se utilicen para restaurar dientes
posteriores deben tener un módulo de elasticidad al
menos igual al de la dentina o mayor, que está deter-
minado en 18 GPa (26, 27). Además, cuanto menor
sea la diferencia entre el módulo de elasticidad del
material y la dentina, menor será la destrucción en la
interfase material-dentina. Por tanto, esta magnitud
juega un papel importante en la prevención de la
microfiltración, la caries secundaria y la pérdida de
las restauraciones (28, 29). Sin embargo, ninguno
de los materiales evaluados presentó un módulo de
elasticidad tan elevado como el determinado para la
dentina, lo que coincide con los resultados descritos
por otros autores (13, 16, 18, 24).
Las propiedades elásticas de un material van a con-
dicionar su indicación clínica, lo que justifica que
lonosit-Baseliner sea utilizado únicamente como
base cavitaria, con la ventaja de que su módulo de
elasticidad bajo compense mejor el estrés de poli-
merización. En el caso de Luxat, sus propiedades
mecánicas son similares a las de las resinas com-
puestas evaluadas, lo que permitiría su uso como
material restaurador en zonas sometidas a carga. Sin
embargo, es un material diseñado específicamente
para restauraciones de Clase IIIy V. La razón es que
existen otras propiedades de los materiales que hay
que considerar como, por ejemplo, la sorción y solu-
bilidad, que en el caso del Luxat es elevada compa-
rada con la de las resinas compuestas, lo que supon-
dría una mayor degradación del material con el tiem-
po y, por consiguiente, una reducción significativa de
sus propiedades mecánicas.
De acuerdo con los resultados de este trabajo, las
propiedades elásticas de los materiales estudiados
coinciden con las de otros materiales comercializa-
dos y previamente evaluados, sin que en ningún
caso, sean similares a las del tejido dentario que van
a reemplazar. Los dos materiales clasificados como
resinas compuestas modificadas con poliácidos pre-
sentaron un comportamiento mecánico completa-
mente diferente entre sí, siendo el del Luxat compa-
rable al de las resinas compuestas evaluadas.
AGRADECIMIENTOS
Al plan propio de la Universidad de Granada que
concedió las Becas de Iniciación a la Investigación y
la Beca Postdoctoral.
Los autores agradecen a Gertrudis Gómez-
Villaescusa su ayuda en la preparación de los especí-
menes. Este trabajo fue financiado por el Proyecto
de Investigación CICYT/FEDER MAT 2001-2843-
C02, RED CYTED VIII.J.
BIBLIOGRAFÍA
1. Swift EJ, Pawlus MA, Vargas MA. Shear bond
strengths of resin-modified glass-ionomer resto-
rative materials. Oper Dent 1995; 20: 138-43.
2. Woolford /VJ,Grieve AR. Release of fluorid from
glass polyalkenoate (ionomer) cement subjected
to radiant heat. J Dent 1995; 23: 233-7.
3. Kugel G. Direct and indirect adhesive restorative
materials: A review. Am J Dent 2000; 13: 35D-
40D.
4. Xie D, Brantley WA, Culbertson BM, Wang G.
Mechanical properties and microstructures of
glass-ionomer cements. Dent Mater 2000; 16:
129-38.
AVANCES EN ODONTOESTOMATOLOGÍA/295
AVANCES EN ODONTOESTOMATOLOGÍA
Vol. 19 - Núm. 6 - 2003
5. Mj6r IA,Moorhead JE, Dahl JE. Reasons for
replacement of restorations in permanent teeth
in general dental practice. Int Dent J 2000; 50:
360-6.
6. McKinney JE, Antonucci JM, Rupp NW Wear
and microhardness of glass-ionomer cements. J
Dent Res 1987; 66: 1134-9.
7. Croll TP. Glass ionomers for infants, children and
adolescents. J Am Dent Assoc 1990; 120: 65-8.
8. Sidhu S.K, Watson T.F. Resin-modified glass
ionomer materials. Am J Dent 1995; 8: No.1.
59-67.
9. lazzetti G, Burgess JO, Gardiner D. Selected
mechanical properties of fluoride-releasing res-
torative materials. Oper Dent 2001; 26: 21-6.
10. Iwami y, Yamamoto H, Sato W, Kawai K, Torii M,
Ebisu S. Weight change of various light-cured
restorative materials after water immersion. Oper
Dent 1998; 23: 132-7.
11. Gladys S, Van Meerbeek B, Braem M,
Lambrechts P,Vanherle G. Comparative physico-
mechanical characterization of new hybrid resto-
rative materials with conventional glass-ionomer
and resin composite restorative materials. J Dent
Res 1997; 76: 883-94.
12. Attin T, Vataschki M, Hellwig E. Properties of
resin-modified glass-ionomer restorative mate-
rials and two polyacid-modified resin composite
materials. Quintessence Int 1996; 27: 203-9.
13. Sabbagh J, Vreven J, Leloup G. Dynamic and
static moduli of elasticity of resin-based mate-
rials. Dent Mater 2002; 64-71.
14. Manhart J, Kunzelmann KH, Chen HY, Kickel R.
Mechanical properties and wear behavior of light-
cured packable composite resins. Dent Mater
2000; 16: 33-40.
15. ISO-4049, Resin-based filling materials (1988).
16. Kim KH, Ong JL, Ojuno O. The effect of filler
296/AVANCES EN ODONTOESTOMATOLOGÍA
loading and morphology on the mechanical pro-
perties of contemporary composites. J Prosthet
Dent 2002; 87: 642-9.
17. Cobb DS, MacGregor KM, Vargas MA, Denehy GE.
The physical properties of packable and conven-
tional posterior resin-based composites: a compa-
rison. J Am Dent Assoc 2000; 131: 1610-5.
18. Hasegawa T, Itoh K, Koike T, Yukitani W,
Hisamitsu H, Wakumoto S, Fujishima A. Effect of
mechanical properties of resin composites on
the efficacy of the dentin bonding system. Oper
Dent 1999; 24: 323-30.
19. Kalliyana Krishnan V, Yamuna V. Effect of initia-
tor concentration, exposure time and particle size
of the filler upon the mechanical properties of a
light-curing radiopaque dental composite. J Oral
Rehabil 1998; 25: 747-51.
20. Peutzfeldt A. Compomers and glass ionomers:
Bond strength to dentin and mechanical proper-
tieso Am J Dent 1996; 9: 259-63.
21. EI-Kalla IH, García-Godoy F. Mechanical proper-
ties of compomer restorative materials. Oper
Dent 1999; 24: 2-8.
22. Geurtsen W, Leyhausen G, García-Godoy F.
Effect of storage media on the fluoride relase and
surface microhardness of four polyacid-modified
composite resins ("compomers"). Dent Mater
1999; 15: 196-201.
23. McLean JW, Nicholson JW, Wilson AD. Proposed
nomenclature for glass-ionomer dental cements
and related materials. Quintessence Int 1994;
25: 587-9.
24. Abe y, Lambrechts P, Inoue S, Braem MJA,
Takeuchi M, Vanherle G, Van Meerbeek B.
Dynamic elastic modulus of "packable" compo-
sites. Dent Mater 2001; 17: 520-5.
25. Xu HHK, Smith DT, Jahanmir S, Romberg E,
Kelly JR, Thompson Vp, Rekow ED. Indentation
damage and mechanical properties of human
enamel and dentin. J Dent Res 1998; 77: 472-80.
Ruiz 1M, Ceballos L, Fuentes MY, Osario R, Toledano M, García-Godoy F
Propiedades mecánicas de resinas compuestas
modificadas o no con poliácidos
26. Craig GR, Peyton FA. Elastic and mechanical properties of
human dentin. J Dent Res 1958; 37: 710-8.
27. Willems G, Lambrechts P, Sraem M, Celis Jp, Vanherle G. A
classification of dental composites according to their morp-
hological and mechanical characteristics. Dent Mater 1992;
8: 310-9.
28. Montes MAJR, de Goes MF, Sernardi da Cunha MR, Soares
AS. A morphological and tensile bond strength evaluation of
an unfilled adhesive with low-viscositycomposites and a filled
adhesive in one and two coats. J Dent 2001; 29: 435-41.
29. Labella R, Lambrechts P, Van Meerbeek S, Vanherle G.
Polymerization shrinkage and elasticity of flowable composi-
tes and filled adhesives. Dent Mater 1999; 15: 128-37.
CORRESPONDENCIA
Dra. Laura Ceballos
C! Emperatriz Eugenia 19, 6°D
18003 Granada
e-mail: lauraceballos@hotmail.com
Tlf: 958372524

Más contenido relacionado

La actualidad más candente

Estudio tecnologico de los agregados fino y grueso
Estudio tecnologico de los agregados fino y gruesoEstudio tecnologico de los agregados fino y grueso
Estudio tecnologico de los agregados fino y gruesoDENIS TAS
 
Anteproyecto de tesis concreto reciclado
Anteproyecto de tesis concreto recicladoAnteproyecto de tesis concreto reciclado
Anteproyecto de tesis concreto recicladoMaría Laura Rosario
 
Durabilidad y-patologia-del-concreto-enrique-rivva-l
Durabilidad y-patologia-del-concreto-enrique-rivva-lDurabilidad y-patologia-del-concreto-enrique-rivva-l
Durabilidad y-patologia-del-concreto-enrique-rivva-lmariobariffo
 
Evaluación de la interface de adhesion entre poste de fibra de vidrio
Evaluación de la interface de adhesion entre poste de fibra de vidrioEvaluación de la interface de adhesion entre poste de fibra de vidrio
Evaluación de la interface de adhesion entre poste de fibra de vidriocasinegrita
 
La nanoestructura de los edificios y puentes
La nanoestructura de los edificios  y puentesLa nanoestructura de los edificios  y puentes
La nanoestructura de los edificios y puentesUTPL- BIOFARM
 
Caracterización de espumas de pizarra con adiciones de clínquer.pdf
Caracterización de espumas de pizarra con adiciones de clínquer.pdfCaracterización de espumas de pizarra con adiciones de clínquer.pdf
Caracterización de espumas de pizarra con adiciones de clínquer.pdfLuciana Boaventura Palhares
 
Evaluación de la textura de los alimentos
Evaluación de la textura de los alimentosEvaluación de la textura de los alimentos
Evaluación de la textura de los alimentosStephanie Melo Cruz
 
Pruebas mecánicas de firmeza
Pruebas mecánicas de firmezaPruebas mecánicas de firmeza
Pruebas mecánicas de firmezaElias rubio
 
Dialnet-ComportamientoEnEstadosFrescoYEndurecidoDeUnConcre-5129562.pdf
Dialnet-ComportamientoEnEstadosFrescoYEndurecidoDeUnConcre-5129562.pdfDialnet-ComportamientoEnEstadosFrescoYEndurecidoDeUnConcre-5129562.pdf
Dialnet-ComportamientoEnEstadosFrescoYEndurecidoDeUnConcre-5129562.pdfSheilaMaribelBlasLpe
 

La actualidad más candente (16)

Obtención de espumas a partir pizarra.pdf
Obtención de espumas a partir pizarra.pdfObtención de espumas a partir pizarra.pdf
Obtención de espumas a partir pizarra.pdf
 
Estudio tecnologico de los agregados fino y grueso
Estudio tecnologico de los agregados fino y gruesoEstudio tecnologico de los agregados fino y grueso
Estudio tecnologico de los agregados fino y grueso
 
Anteproyecto de tesis concreto reciclado
Anteproyecto de tesis concreto recicladoAnteproyecto de tesis concreto reciclado
Anteproyecto de tesis concreto reciclado
 
Fibras
FibrasFibras
Fibras
 
Durabilidad y-patologia-del-concreto-enrique-rivva-l
Durabilidad y-patologia-del-concreto-enrique-rivva-lDurabilidad y-patologia-del-concreto-enrique-rivva-l
Durabilidad y-patologia-del-concreto-enrique-rivva-l
 
Evaluación de la interface de adhesion entre poste de fibra de vidrio
Evaluación de la interface de adhesion entre poste de fibra de vidrioEvaluación de la interface de adhesion entre poste de fibra de vidrio
Evaluación de la interface de adhesion entre poste de fibra de vidrio
 
La nanoestructura de los edificios y puentes
La nanoestructura de los edificios  y puentesLa nanoestructura de los edificios  y puentes
La nanoestructura de los edificios y puentes
 
Caracterización de espumas de pizarra con adiciones de clínquer.pdf
Caracterización de espumas de pizarra con adiciones de clínquer.pdfCaracterización de espumas de pizarra con adiciones de clínquer.pdf
Caracterización de espumas de pizarra con adiciones de clínquer.pdf
 
Modulo I: Tecnología del concreto - 2015
Modulo I: Tecnología del concreto - 2015Modulo I: Tecnología del concreto - 2015
Modulo I: Tecnología del concreto - 2015
 
Composite 1
Composite 1Composite 1
Composite 1
 
Evaluación de la textura de los alimentos
Evaluación de la textura de los alimentosEvaluación de la textura de los alimentos
Evaluación de la textura de los alimentos
 
Propiedades del concreto
Propiedades del concretoPropiedades del concreto
Propiedades del concreto
 
Tecnologia del concreto
Tecnologia del concretoTecnologia del concreto
Tecnologia del concreto
 
Pruebas mecánicas de firmeza
Pruebas mecánicas de firmezaPruebas mecánicas de firmeza
Pruebas mecánicas de firmeza
 
Modulo IV: Tecnología del Concreto
Modulo IV: Tecnología del ConcretoModulo IV: Tecnología del Concreto
Modulo IV: Tecnología del Concreto
 
Dialnet-ComportamientoEnEstadosFrescoYEndurecidoDeUnConcre-5129562.pdf
Dialnet-ComportamientoEnEstadosFrescoYEndurecidoDeUnConcre-5129562.pdfDialnet-ComportamientoEnEstadosFrescoYEndurecidoDeUnConcre-5129562.pdf
Dialnet-ComportamientoEnEstadosFrescoYEndurecidoDeUnConcre-5129562.pdf
 

Similar a 50463526ea7cc7879d

19 articulo resistencia al desprendimiento de la resina al esmalte desprotein...
19 articulo resistencia al desprendimiento de la resina al esmalte desprotein...19 articulo resistencia al desprendimiento de la resina al esmalte desprotein...
19 articulo resistencia al desprendimiento de la resina al esmalte desprotein...Jacki Cervantes
 
Plantilla trabajo aplicaciones de materiales - Empaques de agua
Plantilla trabajo aplicaciones de materiales - Empaques de aguaPlantilla trabajo aplicaciones de materiales - Empaques de agua
Plantilla trabajo aplicaciones de materiales - Empaques de aguacvargas74
 
Dialnet estudio delaresistenciamecanicadematerialescompuest-3815124
Dialnet estudio delaresistenciamecanicadematerialescompuest-3815124Dialnet estudio delaresistenciamecanicadematerialescompuest-3815124
Dialnet estudio delaresistenciamecanicadematerialescompuest-3815124Janio Vera Garzon
 
Tecnicas De Cementacion Y Su Comportamiento Biomecanico
Tecnicas De Cementacion Y Su Comportamiento BiomecanicoTecnicas De Cementacion Y Su Comportamiento Biomecanico
Tecnicas De Cementacion Y Su Comportamiento Biomecanicoantonio candela
 
27 articulo evaluación de la integridad marginal de las resinas compuestas a ...
27 articulo evaluación de la integridad marginal de las resinas compuestas a ...27 articulo evaluación de la integridad marginal de las resinas compuestas a ...
27 articulo evaluación de la integridad marginal de las resinas compuestas a ...Jacki Cervantes
 
26 articulo adaptación de resinas bulk fill
26 articulo adaptación de resinas bulk fill26 articulo adaptación de resinas bulk fill
26 articulo adaptación de resinas bulk fillJacki Cervantes
 
CORROSION HELLEN GOMEZ
CORROSION HELLEN GOMEZCORROSION HELLEN GOMEZ
CORROSION HELLEN GOMEZHellen Gomez
 
CORROSION HELLEN GOMEZ
CORROSION HELLEN GOMEZCORROSION HELLEN GOMEZ
CORROSION HELLEN GOMEZHellen Gomez
 
2008 12 10 Iadr Talca 2008[1]
2008 12 10 Iadr Talca 2008[1]2008 12 10 Iadr Talca 2008[1]
2008 12 10 Iadr Talca 2008[1]yuritek
 

Similar a 50463526ea7cc7879d (20)

19 articulo resistencia al desprendimiento de la resina al esmalte desprotein...
19 articulo resistencia al desprendimiento de la resina al esmalte desprotein...19 articulo resistencia al desprendimiento de la resina al esmalte desprotein...
19 articulo resistencia al desprendimiento de la resina al esmalte desprotein...
 
Plantilla trabajo aplicaciones de materiales - Empaques de agua
Plantilla trabajo aplicaciones de materiales - Empaques de aguaPlantilla trabajo aplicaciones de materiales - Empaques de agua
Plantilla trabajo aplicaciones de materiales - Empaques de agua
 
Dialnet estudio delaresistenciamecanicadematerialescompuest-3815124
Dialnet estudio delaresistenciamecanicadematerialescompuest-3815124Dialnet estudio delaresistenciamecanicadematerialescompuest-3815124
Dialnet estudio delaresistenciamecanicadematerialescompuest-3815124
 
Tecnicas De Cementacion Y Su Comportamiento Biomecanico
Tecnicas De Cementacion Y Su Comportamiento BiomecanicoTecnicas De Cementacion Y Su Comportamiento Biomecanico
Tecnicas De Cementacion Y Su Comportamiento Biomecanico
 
Evaluacion de la resistencia a la fractura de premolares superiores restaurad...
Evaluacion de la resistencia a la fractura de premolares superiores restaurad...Evaluacion de la resistencia a la fractura de premolares superiores restaurad...
Evaluacion de la resistencia a la fractura de premolares superiores restaurad...
 
POLIMEROS REFORZADOS CON FIBRA
POLIMEROS REFORZADOS CON FIBRAPOLIMEROS REFORZADOS CON FIBRA
POLIMEROS REFORZADOS CON FIBRA
 
27 articulo evaluación de la integridad marginal de las resinas compuestas a ...
27 articulo evaluación de la integridad marginal de las resinas compuestas a ...27 articulo evaluación de la integridad marginal de las resinas compuestas a ...
27 articulo evaluación de la integridad marginal de las resinas compuestas a ...
 
26 articulo adaptación de resinas bulk fill
26 articulo adaptación de resinas bulk fill26 articulo adaptación de resinas bulk fill
26 articulo adaptación de resinas bulk fill
 
METODO DE ELEMENTOS FINITOS, ANALISIS DE PAPER
METODO DE ELEMENTOS FINITOS, ANALISIS DE PAPERMETODO DE ELEMENTOS FINITOS, ANALISIS DE PAPER
METODO DE ELEMENTOS FINITOS, ANALISIS DE PAPER
 
Unidad 1
Unidad 1Unidad 1
Unidad 1
 
Estructura de los materiales / Tecnología de Materiales
Estructura de los materiales / Tecnología de MaterialesEstructura de los materiales / Tecnología de Materiales
Estructura de los materiales / Tecnología de Materiales
 
Resinas
ResinasResinas
Resinas
 
CORROSION HELLEN GOMEZ
CORROSION HELLEN GOMEZCORROSION HELLEN GOMEZ
CORROSION HELLEN GOMEZ
 
CORROSION HELLEN GOMEZ
CORROSION HELLEN GOMEZCORROSION HELLEN GOMEZ
CORROSION HELLEN GOMEZ
 
Ejemplo_ productividad.pdf
Ejemplo_ productividad.pdfEjemplo_ productividad.pdf
Ejemplo_ productividad.pdf
 
Ergonomía
ErgonomíaErgonomía
Ergonomía
 
2008 12 10 Iadr Talca 2008[1]
2008 12 10 Iadr Talca 2008[1]2008 12 10 Iadr Talca 2008[1]
2008 12 10 Iadr Talca 2008[1]
 
Estructura investigacion
Estructura  investigacionEstructura  investigacion
Estructura investigacion
 
Ingeneria y ciencia de los materiales
Ingeneria y ciencia de los materialesIngeneria y ciencia de los materiales
Ingeneria y ciencia de los materiales
 
INFORME DE DISEÑO DE MORTERO
INFORME DE DISEÑO DE MORTEROINFORME DE DISEÑO DE MORTERO
INFORME DE DISEÑO DE MORTERO
 

Último

Heinsohn Privacidad y Ciberseguridad para el sector educativo
Heinsohn Privacidad y Ciberseguridad para el sector educativoHeinsohn Privacidad y Ciberseguridad para el sector educativo
Heinsohn Privacidad y Ciberseguridad para el sector educativoFundación YOD YOD
 
Identificación de componentes Hardware del PC
Identificación de componentes Hardware del PCIdentificación de componentes Hardware del PC
Identificación de componentes Hardware del PCCesarFernandez937857
 
TEMA 13 ESPAÑA EN DEMOCRACIA:DISTINTOS GOBIERNOS
TEMA 13 ESPAÑA EN DEMOCRACIA:DISTINTOS GOBIERNOSTEMA 13 ESPAÑA EN DEMOCRACIA:DISTINTOS GOBIERNOS
TEMA 13 ESPAÑA EN DEMOCRACIA:DISTINTOS GOBIERNOSjlorentemartos
 
GLOSAS Y PALABRAS ACTO 2 DE ABRIL 2024.docx
GLOSAS  Y PALABRAS ACTO 2 DE ABRIL 2024.docxGLOSAS  Y PALABRAS ACTO 2 DE ABRIL 2024.docx
GLOSAS Y PALABRAS ACTO 2 DE ABRIL 2024.docxAleParedes11
 
PRIMER SEMESTRE 2024 ASAMBLEA DEPARTAMENTAL.pptx
PRIMER SEMESTRE 2024 ASAMBLEA DEPARTAMENTAL.pptxPRIMER SEMESTRE 2024 ASAMBLEA DEPARTAMENTAL.pptx
PRIMER SEMESTRE 2024 ASAMBLEA DEPARTAMENTAL.pptxinformacionasapespu
 
Resolucion de Problemas en Educacion Inicial 5 años ED-2024 Ccesa007.pdf
Resolucion de Problemas en Educacion Inicial 5 años ED-2024 Ccesa007.pdfResolucion de Problemas en Educacion Inicial 5 años ED-2024 Ccesa007.pdf
Resolucion de Problemas en Educacion Inicial 5 años ED-2024 Ccesa007.pdfDemetrio Ccesa Rayme
 
2024 - Expo Visibles - Visibilidad Lesbica.pdf
2024 - Expo Visibles - Visibilidad Lesbica.pdf2024 - Expo Visibles - Visibilidad Lesbica.pdf
2024 - Expo Visibles - Visibilidad Lesbica.pdfBaker Publishing Company
 
cortes de luz abril 2024 en la provincia de tungurahua
cortes de luz abril 2024 en la provincia de tungurahuacortes de luz abril 2024 en la provincia de tungurahua
cortes de luz abril 2024 en la provincia de tungurahuaDANNYISAACCARVAJALGA
 
TIPOLOGÍA TEXTUAL- EXPOSICIÓN Y ARGUMENTACIÓN.pptx
TIPOLOGÍA TEXTUAL- EXPOSICIÓN Y ARGUMENTACIÓN.pptxTIPOLOGÍA TEXTUAL- EXPOSICIÓN Y ARGUMENTACIÓN.pptx
TIPOLOGÍA TEXTUAL- EXPOSICIÓN Y ARGUMENTACIÓN.pptxlclcarmen
 
texto argumentativo, ejemplos y ejercicios prácticos
texto argumentativo, ejemplos y ejercicios prácticostexto argumentativo, ejemplos y ejercicios prácticos
texto argumentativo, ejemplos y ejercicios prácticosisabeltrejoros
 
Lecciones 04 Esc. Sabática. Defendamos la verdad
Lecciones 04 Esc. Sabática. Defendamos la verdadLecciones 04 Esc. Sabática. Defendamos la verdad
Lecciones 04 Esc. Sabática. Defendamos la verdadAlejandrino Halire Ccahuana
 
OLIMPIADA DEL CONOCIMIENTO INFANTIL 2024.pptx
OLIMPIADA DEL CONOCIMIENTO INFANTIL 2024.pptxOLIMPIADA DEL CONOCIMIENTO INFANTIL 2024.pptx
OLIMPIADA DEL CONOCIMIENTO INFANTIL 2024.pptxjosetrinidadchavez
 
SELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdf
SELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdfSELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdf
SELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdfAngélica Soledad Vega Ramírez
 
Introducción:Los objetivos de Desarrollo Sostenible
Introducción:Los objetivos de Desarrollo SostenibleIntroducción:Los objetivos de Desarrollo Sostenible
Introducción:Los objetivos de Desarrollo SostenibleJonathanCovena1
 
Planificacion Anual 2do Grado Educacion Primaria 2024 Ccesa007.pdf
Planificacion Anual 2do Grado Educacion Primaria   2024   Ccesa007.pdfPlanificacion Anual 2do Grado Educacion Primaria   2024   Ccesa007.pdf
Planificacion Anual 2do Grado Educacion Primaria 2024 Ccesa007.pdfDemetrio Ccesa Rayme
 
Historia y técnica del collage en el arte
Historia y técnica del collage en el arteHistoria y técnica del collage en el arte
Historia y técnica del collage en el arteRaquel Martín Contreras
 
ACERTIJO DE LA BANDERA OLÍMPICA CON ECUACIONES DE LA CIRCUNFERENCIA. Por JAVI...
ACERTIJO DE LA BANDERA OLÍMPICA CON ECUACIONES DE LA CIRCUNFERENCIA. Por JAVI...ACERTIJO DE LA BANDERA OLÍMPICA CON ECUACIONES DE LA CIRCUNFERENCIA. Por JAVI...
ACERTIJO DE LA BANDERA OLÍMPICA CON ECUACIONES DE LA CIRCUNFERENCIA. Por JAVI...JAVIER SOLIS NOYOLA
 
el CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyz
el CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyzel CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyz
el CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyzprofefilete
 

Último (20)

Heinsohn Privacidad y Ciberseguridad para el sector educativo
Heinsohn Privacidad y Ciberseguridad para el sector educativoHeinsohn Privacidad y Ciberseguridad para el sector educativo
Heinsohn Privacidad y Ciberseguridad para el sector educativo
 
Identificación de componentes Hardware del PC
Identificación de componentes Hardware del PCIdentificación de componentes Hardware del PC
Identificación de componentes Hardware del PC
 
TEMA 13 ESPAÑA EN DEMOCRACIA:DISTINTOS GOBIERNOS
TEMA 13 ESPAÑA EN DEMOCRACIA:DISTINTOS GOBIERNOSTEMA 13 ESPAÑA EN DEMOCRACIA:DISTINTOS GOBIERNOS
TEMA 13 ESPAÑA EN DEMOCRACIA:DISTINTOS GOBIERNOS
 
GLOSAS Y PALABRAS ACTO 2 DE ABRIL 2024.docx
GLOSAS  Y PALABRAS ACTO 2 DE ABRIL 2024.docxGLOSAS  Y PALABRAS ACTO 2 DE ABRIL 2024.docx
GLOSAS Y PALABRAS ACTO 2 DE ABRIL 2024.docx
 
PRIMER SEMESTRE 2024 ASAMBLEA DEPARTAMENTAL.pptx
PRIMER SEMESTRE 2024 ASAMBLEA DEPARTAMENTAL.pptxPRIMER SEMESTRE 2024 ASAMBLEA DEPARTAMENTAL.pptx
PRIMER SEMESTRE 2024 ASAMBLEA DEPARTAMENTAL.pptx
 
Resolucion de Problemas en Educacion Inicial 5 años ED-2024 Ccesa007.pdf
Resolucion de Problemas en Educacion Inicial 5 años ED-2024 Ccesa007.pdfResolucion de Problemas en Educacion Inicial 5 años ED-2024 Ccesa007.pdf
Resolucion de Problemas en Educacion Inicial 5 años ED-2024 Ccesa007.pdf
 
2024 - Expo Visibles - Visibilidad Lesbica.pdf
2024 - Expo Visibles - Visibilidad Lesbica.pdf2024 - Expo Visibles - Visibilidad Lesbica.pdf
2024 - Expo Visibles - Visibilidad Lesbica.pdf
 
cortes de luz abril 2024 en la provincia de tungurahua
cortes de luz abril 2024 en la provincia de tungurahuacortes de luz abril 2024 en la provincia de tungurahua
cortes de luz abril 2024 en la provincia de tungurahua
 
TIPOLOGÍA TEXTUAL- EXPOSICIÓN Y ARGUMENTACIÓN.pptx
TIPOLOGÍA TEXTUAL- EXPOSICIÓN Y ARGUMENTACIÓN.pptxTIPOLOGÍA TEXTUAL- EXPOSICIÓN Y ARGUMENTACIÓN.pptx
TIPOLOGÍA TEXTUAL- EXPOSICIÓN Y ARGUMENTACIÓN.pptx
 
texto argumentativo, ejemplos y ejercicios prácticos
texto argumentativo, ejemplos y ejercicios prácticostexto argumentativo, ejemplos y ejercicios prácticos
texto argumentativo, ejemplos y ejercicios prácticos
 
Lecciones 04 Esc. Sabática. Defendamos la verdad
Lecciones 04 Esc. Sabática. Defendamos la verdadLecciones 04 Esc. Sabática. Defendamos la verdad
Lecciones 04 Esc. Sabática. Defendamos la verdad
 
OLIMPIADA DEL CONOCIMIENTO INFANTIL 2024.pptx
OLIMPIADA DEL CONOCIMIENTO INFANTIL 2024.pptxOLIMPIADA DEL CONOCIMIENTO INFANTIL 2024.pptx
OLIMPIADA DEL CONOCIMIENTO INFANTIL 2024.pptx
 
SELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdf
SELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdfSELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdf
SELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdf
 
Introducción:Los objetivos de Desarrollo Sostenible
Introducción:Los objetivos de Desarrollo SostenibleIntroducción:Los objetivos de Desarrollo Sostenible
Introducción:Los objetivos de Desarrollo Sostenible
 
Presentacion Metodología de Enseñanza Multigrado
Presentacion Metodología de Enseñanza MultigradoPresentacion Metodología de Enseñanza Multigrado
Presentacion Metodología de Enseñanza Multigrado
 
Planificacion Anual 2do Grado Educacion Primaria 2024 Ccesa007.pdf
Planificacion Anual 2do Grado Educacion Primaria   2024   Ccesa007.pdfPlanificacion Anual 2do Grado Educacion Primaria   2024   Ccesa007.pdf
Planificacion Anual 2do Grado Educacion Primaria 2024 Ccesa007.pdf
 
Repaso Pruebas CRECE PR 2024. Ciencia General
Repaso Pruebas CRECE PR 2024. Ciencia GeneralRepaso Pruebas CRECE PR 2024. Ciencia General
Repaso Pruebas CRECE PR 2024. Ciencia General
 
Historia y técnica del collage en el arte
Historia y técnica del collage en el arteHistoria y técnica del collage en el arte
Historia y técnica del collage en el arte
 
ACERTIJO DE LA BANDERA OLÍMPICA CON ECUACIONES DE LA CIRCUNFERENCIA. Por JAVI...
ACERTIJO DE LA BANDERA OLÍMPICA CON ECUACIONES DE LA CIRCUNFERENCIA. Por JAVI...ACERTIJO DE LA BANDERA OLÍMPICA CON ECUACIONES DE LA CIRCUNFERENCIA. Por JAVI...
ACERTIJO DE LA BANDERA OLÍMPICA CON ECUACIONES DE LA CIRCUNFERENCIA. Por JAVI...
 
el CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyz
el CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyzel CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyz
el CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyz
 

50463526ea7cc7879d

  • 1. Ruiz JM, Ceballos L, Fuentes MY, Osorio R, Toledano M, García-Godoy F Propiedades mecánicas de resinas compuestas modificadas o no con poliácidos Propiedades mecánicas de resinas compuestas modificadas o no con poliácidos Ruiz JM* Ceballos L** Fuentes MY*** Osario R**** Toledano M****, , , , , García-Godoy F***** RESUMEN Objetivo: Determinar la resistencia a la flexión y el módulo de elasticidad de cinco resinas compuestas: Tetric Ceram, Ecusit, Spectrum TPH, Filtek Z-250, Degufill mineral; y dos resinas modificadas con poliácidos: Luxat e lonosit. Material y método: Se prepararon cinco muestras de cada material en un molde metálico rectangular (22x2x2 mm). Las muestras fueron polimerizadas, primero en el centro y luego en ambos extremos con una lám- para de luz halógena y después se conservaron en agua a 37° C durante 48 horas. Las muestras se pulieron para eliminar la capa de resina superficial y se sometieron al ensayo de flexión en 3 puntos con una máquina de trac- ción universal Instron con una velocidad de travesaño de 1mm/min. Los resultados (MPa) fueron analizados mediante los tests de ANOVAy Student-Newman-Keuls (p<O.05). Resultados: La resistencia a la flexión y el módulo de elasticidad de la resina compuesta modificada con poliácidos lonosit fueron significativamente meno- res que los determinados para los demás materiales evaluados. Palabras clave: Propiedades mecánicas, resistencia a la flexión, módulo de elasticidad, resina compuesta, resina compuesta modificada con poliácido. ABSTRACT The aim of this study was to determine the flexural strength and modulus of elasticity of five resin composites: Tetric Ceram, Ecusit, Spectrum TPH, Filtek Z-250, Degufillmineral; and two polyacid-modified resin composites: Luxat e lonosit. Five rectangular specimens of each material were prepared (22x2x2 mm). They were light-cured, first in the middle and after in both extremes, by means of a visible-light curing unit. The specimens were stored in water at 37° C for 48 hours and ground to eliminate the resin layer inhibited by oxygen. Three-point bending test was performed in an universal testing machine (Instron) at a cross-head speed of 1mm/min. Results were expressed in MPa and analysed by ANOVAand Student-Newman-Keuls tests (p<O.05). Flexural strength and modulus of elasticity of the polyacid-modified resin composite, lonosit, were significantly lower than the values obtained for the rest of the materials evaluated. Key words: Mechanical properties, flexural strength, modulus of elasticity, resin composite, polyacid-modified resin composite * ** *** **** ***** Estudiante de la Facultad de Odontología y Becaria de Investigación del Plan Propio de la Universidad de Granada. Becaria Post-doctoral del Plan Propio de la Universidad de Granada, adscrita al Dpto. de Estomatología. Licenciada en Odontología. Profesor Titular de Materiales Odontológicos. Facultad de Odontología. Universidad de Granada. Profesor y Director de Investigación del College of Dental Medicine, Nova Southeastern University,Fort Lauderdale, FL, Estados Unidos. RuizJM, Ceballos L, Fuentes MV,Osorio R, Toledano M, García-Godoy F. Propiedades mecánicas de resinas com- puestas modificadas o no con poliácidos. Av. Odontoestomatol2003; 19-6: 291-297. AVANCES EN ODONTOESTOMATOLOGÍA/291
  • 2. AVANCES EN ODONTOESTOMATOLOGÍA Vol. 19 - Núm. 6 - 2003 INTRODUCCIÓN Las mejoras en las propiedades de las resinas com- puestas han permitido que sean el material restaura- dor actualmente más utilizado en dientes permanen- tes. No obstante, la propiedad anticariogénica de los cementos de ionómero de vidrio debido a la libera- ción de flúor, y su capacidad para adherirse química- mente al tejido dentario (1, 2, 3), hacen que estos materiales sean aún muy atractivos para el clínico (4). Sobre todo, si tenemos en cuenta que la caries secundaria es el motivo principal para reemplazar las restauraciones antiguas (5). Sin embargo, los cementos de ionómero de vidrio presentan algunas desventajas en comparación con las resinas compuestas como son: un tiempo de tra- bajo corto y un tiempo de fraguado largo, sorción y solubilidad elevadas, peores propiedades estéticas (3) y, fundamentalmente, una baja resistencia a la fractura (4, 6, 7, 8) y al desgaste (7). Debido a estas propiedades mecánicas deficientes, los cementos de ionómero de vidrio no están indicados para ser utili- zados en restauraciones sometidas a carga, como son las de Clase I y 11 (4, 9). Con el fin de conseguir un material con unas propie- dades mecánicas similares a las de las resinas com- puestas, pero manteniendo las características bene- ficiosas de los cementos de ionómero de vidrio se desarrollaron materiales híbridos: los cementos de ionómero de vidrio modificados con resina y las resi- nas modificadas con poliácidos, conocidas como compómeros (8, 10, 11). Estos materiales estarían indicados para pacientes con un alto riesgo de caries y fueron diseñados para restaurar lesiones de Clase 1, 111y V (12). Las magnitudes fundamentales para conocer la resistencia a las fuerzas oclusales de un material determinado son: la resistencia a la flexión, el módu- lo de elasticidad y la resistencia a la fractura (13). Por tanto, su cuantificación permite también predecir la aparición de fracturas tanto en el propio material como en los márgenes (14) de la restauración, o lo que es lo mismo, la longevidad de la restauración bajo condiciones clínicas simuladas (11). Algunos trabajos han demostrado que las propieda- 292/AVANCES EN ODONTOESTOMATOLOGÍA des físicas de estos materiales híbridos son muy superiores a las de los cementos de ionómero de vidrio, siendo, en el caso de algunas resinas modifi- cadas con poliácidos comercializadas, ligeramente inferiores a las de las resinas compuestas (9, 12) y, en el caso de otras, prácticamente similares (12). El objetivo del presente estudio fue evaluar el com- portamiento mecánico, por medio de la determina- ción de la resistencia y del módulo de elasticidad, de cinco resinas compuestas y de dos resinas modifica- das con poliácidos disponibles en el mercado. MATERIAL Y MÉTODO En el presente estudio se evaluaron cinco resinas compuestas: Tetric Cera m (Vivadent, Liechtenstein), Ecusit (DMG, Hamburgo, Alemania), Degufill mine- ral (Degussa Dental GmbH, Hanau, Alemania), Spectrum TPH (Dentsply-Detrey GmbH, Konstanz, Alemania) y Filtek 2-250 (3M-ESPE, Sto Paul, MN, EE.UU.); Y dos resinas modificadas con poliácidos: Luxat (DMG, Hamburgo, Alemania) e lonosit- Baseliner (DMG, Hamburgo, Alemania). Las propiedades de flexión de los materiales se determinaron mediante un test de flexión en tres puntos de acuerdo con las normas ISO 4049 (15). Se prepararon cinco barritas de cada material utili- zando un molde rectangular metálico con las siguientes dimensiones: 22 mm de longitud, 2 mm de anchura y 2 mm de espesor. Los moldes se colocaron sobre una loseta de vidrio y el material de estudio se insertó procurando que no quedaran burbujas de aire atrapadas en su interior. Sobre éste se colocó una banda matriz de acetato y se hizo presión con otra loseta de vidrio para conse- guir una superficie lisa y un grosor homogéneo. Los especímenes fueron polimerizados con una lámpara de luz halógena (Spectrum 800, Dentsply. Detrey Gmb H, Konstanz, Alemania), primero en el centro y después en los extremos, teniendo cada exposición una duración de 40 segundos. Cada diez exposiciones se comprobó que la densidad de potencia de la lámpara sobrepasase los 600 mw/cm2 con un radiómetro de curado que lleva incorporado la lámpara.
  • 3. Ruiz JM, CebaBas L, Fuentes MY, Osario R, Toledano M, García-Godoy F Propiedades mecánicas de resinas compuestas modificadas o no con poliácidos Los especímenes se conservaron en agua destilada a 3T C durante 48 horas y transcurrido ese tiempo se pulieron con discos de carburo de silicio de 500 grit para eliminar la capa de resina inhibida por oxígeno. Las dimensiones de los especímenes fueron medi- das de nuevo mediante un calibre digital (Mitutoyo, Tokio, Japón). Los especímenes fueron sometidos al ensayo de fle- xión en tres puntos en una máquina de tracción uni- versal Instron (Modelo 4411, Instron Corp., Cantan, MA, EE.UU.) con una velocidad de travesaño de 1 mm/min. Durante el ensayo las barritas están apoya- das en dos puntos. La carga se aplica en la superfi- cie opuesta a los puntos de apoyo en un punto equi- distante de los dos anteriores. En la zona cóncava se producen fenómenos de compresión, mientras que en la zona convexa se aprecian fenómenos de ten- sión, hasta que se produce la fractura de la barrita. Los resultados obtenidos se analizaron mediante el test de ANOVA para determinar si las propiedades de flexión dependían del material de estudio. El nivel de significación establecido previamente fue de p<0.05. Las comparaciones múltiples posteriores se realizaron con el test de Student-Newman-Keuls. Todos los datos se analizaron con el programa SPSS 10.0 para Windows software (SPSS Inc., Chicago, IL, EE.UU.). RESULTADOS Las medias (x) y desviaciones típicas (dt) de los dis- tintos materiales quedan reflejadas en la tabla 1. El test de ANOVA puso de manifiesto la influencia del material evaluado en las variables dependientes resistencia a la flexión y módulo de elasticidad (F=21.41, p<O.OOOl; F=8.21, p<O.OOl, respecti- vamente). En el caso de la resistencia a la flexión, las comparaciones múltiples con el test de Student- Newman-Keuls permitieron ordenar los materiales del siguiente modo: Spectrum TPH presentó unos valores similares a los de Filtek Z-250 y Luxat, y superiores a los de Ecusit, Degufill mineral, Tetric Ceram e lonosit-Baseliner. Filtek Z-250, Luxat, Ecusit y Degufill mineral mostraron una resistencia a la fle- xión similar. Los valores obtenidos por Tetric Ceram fueron similares a los de Luxat, Ecusit y Degufill, pero significativamente inferiores a los de Spectrum TPH y Filtek Z-250. La resina modificada con poliá- cido lonosit-Baseliner presentó una resistencia a la flexión significativamente más baja que la del resto de los materiales. En cuanto al módulo de elasticidad, la resina com- puesta modificada con poliácidos, Luxat, fue el material que presentó los valores más altos, siendo similares a los de todas las resinas compuestas eva- luadas, con excepción del Tetric Ceram. lonosit- Baseliner presentó un módulo de elasticidad signifi- cativamente más bajo que el del resto de los mate- riales evaluados. DISCUSiÓN Se han descrito muchos métodos estáticos y diná- micos para determinar las propiedades mecánicas de los materiales resinosos (13). Dentro de los está- ticos, el test de flexión en tres puntos descrito por la ISO-4049 (15), es el más utilizado (13) y permite eva- TABLA 1.- RESISTENCIA A LA FLEXIÓN Y MÓDULO DE ELASTICIDAD DE LOS DIFERENTES MATERIALES EVALUADOS. MEDIAS (dt) EN MPa SPECTRUMZ-250LUXATECUSITDEGUF/UT. CERAMLONOSIT140.1 a130.1 ab116.9 abc108.2 bc104.9 bc97.6 c33.1 d(18.7)(6.9)(16.6)(14.1 )(23.3)(9.5)(17.1)10972.0 a10874.3 ab12060.8 a9702.6 ab10069.8 ab8354.5 b4930.7 c(746.2)(1927.9)(2626.6)(2306.0)(1309.2)(1248.8)(975.5) Medias con las mismas letras indican que no hay diferencias estadísticamente significativas (p>O.05). AVANCES EN ODONTOESTOMATOLOGÍA/293
  • 4. AVANCES EN ODONTOESTOMATOLOGÍA Vol. 19 - Núm. 6 - 2003 luar simultáneamente la resistencia a la f1exión y el módulo de elasticidad. La resistencia a la f1exión se define como la carga máxima a la que el material se fractura (11). En el presente estudio, la resina compuesta híbrida Spectrum TPH presentó la resistencia a la f1exión más elevada. Este material ha demostrado un buen comportamiento mecánico en otros estudios (16, 17), incluso cuando se ha comparado con resinas compactables, cuyas propiedades mecánicas se suponen mejores (17) por su mayor contenido en relleno. Además, sus partículas son irregulares yeso hace que la resistencia a la f1exión sea mejor que las de los materiales que incorporan partículas redon- das o pre-polimerizadas (16). Las otras resinas compuestas evaluadas obtuvieron valores ligeramente inferiores, en un rango que oscila entre los 97.6 MPa y los 130.1 MPa, resultados que con- cuerdan con lo publicado previamente (9, 14, 16, 18). Los factores que más influyen en las propiedades mecánicas de un material son su contenido en relle- no, el tamaño de las partículas, su distribución y las interacciones entre el relleno y la matriz (9, 14, 16, 19), siendo el contenido en volumen del relleno la propiedad que más se correlaciona con la resistencia del material, con su módulo de elasticidad, así como con su resistencia a la fractura (11, 14). También se ha descrito que los composites que incorporan f1úor soluble, presentan una resistencia a la f1exión menor, porque el f1úor se disuelve y quedan microporosida- des que facilitan la propagación de cracks (9). Este sería el caso del Tetric Ceram, que incorpora vidrio de f1uorosilicato de aluminio y bario, y, sobre todo, del Degufill mineral que tiene la propiedad, según sus fabricantes, de liberar de forma inteligente f1uo- ruro, así como iones calcio y fosfato, que aportarían una protección del esmalte dental y reforzarían la remineralización natural. De acuerdo con la literatura, las propiedades mecáni- cas de los materiales híbridos aumentan en relación a su contenido resinoso (12, 20, 21). De este modo, las más bajas corresponderían a los cementos de ionó- mero de vidrio modificados con resina, serían mejores en el caso de las resinas modificadas con poliácidos y máximas para las resinas compuestas (9, 21). 294/AVANCES EN ODONTOESTOMATOLOGÍA Sin embargo, en el presente trabajo las dos resinas modificadas con poliácidos mostraron un comporta- miento mecánico muy diferente. lonosit-Baseliner mostró una resistencia a la f1exión muy inferior, acer- cándose más los valores a los determinados en cementos de ionómero modificados con resinas (12). Sin embargo, la resistencia de Luxat fue similar a la de las resinas compuestas evaluadas, tal y como han determinado otros autores en el caso de otras resinas modificadas con poliácidos comercializadas (12). En estos materiales se combinan componentes del cristal de polialquenoato típicos del cemento de ionómero de vidrio, por ejemplo, cristales de f1uoro- silicato, con sustancias polimerizables de las resinas compuestas, como son los dimetacrilatos (22). De este modo, contienen los componentes esenciales de los cementos de ionómero de vidrio, pero falta su reacción de fraguado ácido-base típica por la ausen- cia de agua en su composición (3, 23). Las diferen- cias obtenidas entre materiales del mismo tipo pue- den deberse al grado en que han sido modificados con componentes más parecidos a las resinas o a los poliácidos. En ellonosit-Baseliner sólo una pequeña porción de los grupos ácidos carboxílicos del ácido poliacrílico ha sido reemplazada por grupos metil- metacrilato lo que origina que se formen menos enlaces covalentes tras la polimerización, dando como resultado un material con propiedades más parecidas a las de los cementos de ionómero de vidrio, comparado con el Luxat (21). La resistencia a la f1exión de los materiales se corre- laciona con su módulo de elasticidad, de tal forma que si la primera es alta el módulo de elasticidad lo será también (12). Esta relación se cumple en el pre- sente trabajo, puesto que lonosit-Baseliner, el mate- rial con la resistencia a la f1exión más baja es también el material con el menor módulo de elasticidad. Similar situación acontece en el caso del Tetric Ceram, que fue la resina compuesta con los valores más bajos de ambas magnitudes. Los valores de módulo de elasticidad determinados para el resto de los materiales fueron prácticamente similares entre si, lo que concuerda con lo descrito por Peutzfeldt (20), quien encontró que las diferencias entre los módulos de elasticidad de diferentes materiales eran más pequeñas que entre los valores de resistencia a la f1exión.
  • 5. Ruiz JM, Ceballos L, Fuentes MY, Osario R, Toledano M, García-Godoy F Propiedades mecánicas de resinas compuestas modificadas o no con poliácidos El módulo de elasticidad describe la relación entre el estrés y la deformación que un material sufre para una carga determinada (24), es por tanto una medi- da de la rigidez relativa de un material (13). Un mate- rial más rígido requerirá una carga mayor para defor- marse en el mismo grado que uno más elástico (24). Idealmente, el módulo de elasticidad de los materia- les ha de ser semejante al del tejido dentario. En las restauraciones de Clase V los materiales tienen que tener un módulo de elasticidad que les permita deformarse durante la flexión del diente, mientras que en las cavidades de Clase 11 el módulo de elasti- cidad debe ser lo suficientemente alto como para soportar las deformaciones y evitar la fractura de las cúspides (25). Sin embargo, el diente está compues- to fundamentalmente por esmalte y dentina, y ambos tejidos tienen un comportamiento elástico completamente diferente (24), por ello se asume que los materiales que se utilicen para restaurar dientes posteriores deben tener un módulo de elasticidad al menos igual al de la dentina o mayor, que está deter- minado en 18 GPa (26, 27). Además, cuanto menor sea la diferencia entre el módulo de elasticidad del material y la dentina, menor será la destrucción en la interfase material-dentina. Por tanto, esta magnitud juega un papel importante en la prevención de la microfiltración, la caries secundaria y la pérdida de las restauraciones (28, 29). Sin embargo, ninguno de los materiales evaluados presentó un módulo de elasticidad tan elevado como el determinado para la dentina, lo que coincide con los resultados descritos por otros autores (13, 16, 18, 24). Las propiedades elásticas de un material van a con- dicionar su indicación clínica, lo que justifica que lonosit-Baseliner sea utilizado únicamente como base cavitaria, con la ventaja de que su módulo de elasticidad bajo compense mejor el estrés de poli- merización. En el caso de Luxat, sus propiedades mecánicas son similares a las de las resinas com- puestas evaluadas, lo que permitiría su uso como material restaurador en zonas sometidas a carga. Sin embargo, es un material diseñado específicamente para restauraciones de Clase IIIy V. La razón es que existen otras propiedades de los materiales que hay que considerar como, por ejemplo, la sorción y solu- bilidad, que en el caso del Luxat es elevada compa- rada con la de las resinas compuestas, lo que supon- dría una mayor degradación del material con el tiem- po y, por consiguiente, una reducción significativa de sus propiedades mecánicas. De acuerdo con los resultados de este trabajo, las propiedades elásticas de los materiales estudiados coinciden con las de otros materiales comercializa- dos y previamente evaluados, sin que en ningún caso, sean similares a las del tejido dentario que van a reemplazar. Los dos materiales clasificados como resinas compuestas modificadas con poliácidos pre- sentaron un comportamiento mecánico completa- mente diferente entre sí, siendo el del Luxat compa- rable al de las resinas compuestas evaluadas. AGRADECIMIENTOS Al plan propio de la Universidad de Granada que concedió las Becas de Iniciación a la Investigación y la Beca Postdoctoral. Los autores agradecen a Gertrudis Gómez- Villaescusa su ayuda en la preparación de los especí- menes. Este trabajo fue financiado por el Proyecto de Investigación CICYT/FEDER MAT 2001-2843- C02, RED CYTED VIII.J. BIBLIOGRAFÍA 1. Swift EJ, Pawlus MA, Vargas MA. Shear bond strengths of resin-modified glass-ionomer resto- rative materials. Oper Dent 1995; 20: 138-43. 2. Woolford /VJ,Grieve AR. Release of fluorid from glass polyalkenoate (ionomer) cement subjected to radiant heat. J Dent 1995; 23: 233-7. 3. Kugel G. Direct and indirect adhesive restorative materials: A review. Am J Dent 2000; 13: 35D- 40D. 4. Xie D, Brantley WA, Culbertson BM, Wang G. Mechanical properties and microstructures of glass-ionomer cements. Dent Mater 2000; 16: 129-38. AVANCES EN ODONTOESTOMATOLOGÍA/295
  • 6. AVANCES EN ODONTOESTOMATOLOGÍA Vol. 19 - Núm. 6 - 2003 5. Mj6r IA,Moorhead JE, Dahl JE. Reasons for replacement of restorations in permanent teeth in general dental practice. Int Dent J 2000; 50: 360-6. 6. McKinney JE, Antonucci JM, Rupp NW Wear and microhardness of glass-ionomer cements. J Dent Res 1987; 66: 1134-9. 7. Croll TP. Glass ionomers for infants, children and adolescents. J Am Dent Assoc 1990; 120: 65-8. 8. Sidhu S.K, Watson T.F. Resin-modified glass ionomer materials. Am J Dent 1995; 8: No.1. 59-67. 9. lazzetti G, Burgess JO, Gardiner D. Selected mechanical properties of fluoride-releasing res- torative materials. Oper Dent 2001; 26: 21-6. 10. Iwami y, Yamamoto H, Sato W, Kawai K, Torii M, Ebisu S. Weight change of various light-cured restorative materials after water immersion. Oper Dent 1998; 23: 132-7. 11. Gladys S, Van Meerbeek B, Braem M, Lambrechts P,Vanherle G. Comparative physico- mechanical characterization of new hybrid resto- rative materials with conventional glass-ionomer and resin composite restorative materials. J Dent Res 1997; 76: 883-94. 12. Attin T, Vataschki M, Hellwig E. Properties of resin-modified glass-ionomer restorative mate- rials and two polyacid-modified resin composite materials. Quintessence Int 1996; 27: 203-9. 13. Sabbagh J, Vreven J, Leloup G. Dynamic and static moduli of elasticity of resin-based mate- rials. Dent Mater 2002; 64-71. 14. Manhart J, Kunzelmann KH, Chen HY, Kickel R. Mechanical properties and wear behavior of light- cured packable composite resins. Dent Mater 2000; 16: 33-40. 15. ISO-4049, Resin-based filling materials (1988). 16. Kim KH, Ong JL, Ojuno O. The effect of filler 296/AVANCES EN ODONTOESTOMATOLOGÍA loading and morphology on the mechanical pro- perties of contemporary composites. J Prosthet Dent 2002; 87: 642-9. 17. Cobb DS, MacGregor KM, Vargas MA, Denehy GE. The physical properties of packable and conven- tional posterior resin-based composites: a compa- rison. J Am Dent Assoc 2000; 131: 1610-5. 18. Hasegawa T, Itoh K, Koike T, Yukitani W, Hisamitsu H, Wakumoto S, Fujishima A. Effect of mechanical properties of resin composites on the efficacy of the dentin bonding system. Oper Dent 1999; 24: 323-30. 19. Kalliyana Krishnan V, Yamuna V. Effect of initia- tor concentration, exposure time and particle size of the filler upon the mechanical properties of a light-curing radiopaque dental composite. J Oral Rehabil 1998; 25: 747-51. 20. Peutzfeldt A. Compomers and glass ionomers: Bond strength to dentin and mechanical proper- tieso Am J Dent 1996; 9: 259-63. 21. EI-Kalla IH, García-Godoy F. Mechanical proper- ties of compomer restorative materials. Oper Dent 1999; 24: 2-8. 22. Geurtsen W, Leyhausen G, García-Godoy F. Effect of storage media on the fluoride relase and surface microhardness of four polyacid-modified composite resins ("compomers"). Dent Mater 1999; 15: 196-201. 23. McLean JW, Nicholson JW, Wilson AD. Proposed nomenclature for glass-ionomer dental cements and related materials. Quintessence Int 1994; 25: 587-9. 24. Abe y, Lambrechts P, Inoue S, Braem MJA, Takeuchi M, Vanherle G, Van Meerbeek B. Dynamic elastic modulus of "packable" compo- sites. Dent Mater 2001; 17: 520-5. 25. Xu HHK, Smith DT, Jahanmir S, Romberg E, Kelly JR, Thompson Vp, Rekow ED. Indentation damage and mechanical properties of human enamel and dentin. J Dent Res 1998; 77: 472-80.
  • 7. Ruiz 1M, Ceballos L, Fuentes MY, Osario R, Toledano M, García-Godoy F Propiedades mecánicas de resinas compuestas modificadas o no con poliácidos 26. Craig GR, Peyton FA. Elastic and mechanical properties of human dentin. J Dent Res 1958; 37: 710-8. 27. Willems G, Lambrechts P, Sraem M, Celis Jp, Vanherle G. A classification of dental composites according to their morp- hological and mechanical characteristics. Dent Mater 1992; 8: 310-9. 28. Montes MAJR, de Goes MF, Sernardi da Cunha MR, Soares AS. A morphological and tensile bond strength evaluation of an unfilled adhesive with low-viscositycomposites and a filled adhesive in one and two coats. J Dent 2001; 29: 435-41. 29. Labella R, Lambrechts P, Van Meerbeek S, Vanherle G. Polymerization shrinkage and elasticity of flowable composi- tes and filled adhesives. Dent Mater 1999; 15: 128-37. CORRESPONDENCIA Dra. Laura Ceballos C! Emperatriz Eugenia 19, 6°D 18003 Granada e-mail: lauraceballos@hotmail.com Tlf: 958372524