SlideShare una empresa de Scribd logo
UNIVERSIDAD ALAS PERUANAS
FACULTAD DE INGENIERÍAS Y ARQUITECTURA
ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA
AMBIENTAL
“OPTIMIZACIÓN TÉCNICO – ECONÓMICO DEL TRATAMIENTO DE AGUAS
RESIDUALES INDUSTRIALES DEL EFLUENTE DE LA U.E.A. ORCOPAMPA
2016 - AREQUIPA”
PRESENTADO POR:
BEATRIZ AROTAYPE PATIÑO
PARA OPTAR EL GRADO
ACADÉMICO
DE INGENIERO AMBIENTAL
AREQUIPA – PERÚ
2016
ÍNDICE
DEDICATORIA
AGRADECIMIENTO
RESUMEN
ABSTRACT
ÍNDICE
CAPÍTULO I: DISEÑO DE LA INVESTIGACIÓN
1.1. Descripción de la Realidad Problemática.............................................. 11
1.2. Formulación del Problema..................................................................... 12
1.3. Justificación e importancia de la Investigación...................................... 13
1.4. Objetivo de la Investigación................................................................... 14
1.4.1. Objetivo General.......................................................................... 14
1.4.2. Objetivos Específicos .................................................................. 14
1.4.3. Hipótesis de la investigación ....................................................... 14
1.5. Variables e Indicadores......................................................................... 14
1.5.1. Variable Independiente ............................................................... 14
1.5.2. Variable Dependiente.................................................................. 14
1.5.3. Operacionalización de las variables............................................ 15
1.6. Tipo y Nivel de la Investigación ............................................................. 15
CAPÍTULO II: MARCO TEÓRICO
2.1. Antecedentes Teóricos de la Investigación ........................................... 16
2.2. Marco Legal .......................................................................................... 17
2.3. Marco Teórico........................................................................................ 18
2.3.1. Mineral del Oro............................................................................ 18
2.3.1.1. Propiedades físicas del Oro ............................................ 19
2.3.1.2. Cualidades químicas del oro........................................... 19
2.3.1.3. Extracción del oro y purificación...................................... 20
2.3.1.4. Ley del oro ...................................................................... 21
2.3.1.5. Explotación del Oro......................................................... 22
2.3.1.5.1. Tipos de explotación del Oro........................... 22
2.3.1.6. Técnicas de Extracción del Oro ..................................... 23
2.3.1.6.1. La extracción de oro en la cultura popular o
minería en pequeña escala............................. 25
2.3.1.7. Descripción del Proceso Metalúrgico del Oro ................ 25
2.3.1.8. Subprocesos del tratamiento en definiciones
operacionales ................................................................. 34
2.3.2. Propiedades del Hidróxido de Calcio (reactividad)...................... 38
2.3.1. Aplicaciones de la cal hidratada........................................ 39
2.3.2.1.1. Industria............................................................ 39
2.3.2.1.1.1. Industrias alimentarias................................... 39
2.3.2.1.1.2. Protección ambiental ..................................... 40
2.3.2.1.1.3. Remineralización de agua desalinizada ....... 40
2.3.2.1.1.4. Depuración de gases .................................... 40
2.3.2.1.1.5. Tratamiento de residuos ................................ 41
2.3.2.1.1.6. Tratamiento de suelos contaminados ............ 41
2.3.3. Sulfato de aluminio...................................................................... 41
2.3.3.1. Propiedad Floculante ..................................................... 42
2.3.3.2. Usos y aplicaciones del sulfato de aluminio ................... 42
2.3.4. Hipoclorito de Sodio .................................................................... 43
2.4. Marco Conceptual ................................................................................. 44
2.4.1. Aguas Residuales........................................................................ 44
2.4.2. Tratamiento Fisco y Químico Intensivo ...................................... 44
2.4.3. Prueba de Jarras......................................................................... 44
2.4.4. El Cloro puede ser usado como Hipoclorito de sodio.................. 44
2.4.5. Carga máxima permisible............................................................ 45
2.4.6. Cuerpo receptor o cuerpo de agua.............................................. 45
2.4.7. Efluente ....................................................................................... 45
2.4.8. Afluente ....................................................................................... 45
2.4.9. ECA (Estándar de Calidad Ambiental) ........................................ 45
CAPÍTULO III: PLANTEAMIENTO OPERACIONAL
3.1. Definiciones Operacionales .................................................................. 46
3.2. Universo y Muestra ............................................................................... 46
3.3. Método y diseño .................................................................................... 46
3.3.1. Método de la Investigación.......................................................... 46
3.3.2. Diseño de la Investigación .......................................................... 48
3.4. Técnica e Instrumentos de Verificación................................................. 51
3.5. Campo de Verificación .......................................................................... 52
3.6. Metodología de la Investigación. ........................................................... 52
3.7. Materiales y Equipos. ............................................................................ 53
CAPÍTULO IV: ANÁLISIS Y EVALUACIÓN DE RESULTADOS
4.1. Calidad del Efluente .............................................................................. 54
4.2. Determinación del Hidróxido de Calcio ................................................ 54
4.3. Determinación Del Sulfato De Aluminio ...............................................
4.4. Adición de la solución del Hipoclorito de Sodio.....................................
4.5. Gráficas de Relación .............................................................................
4.6. Análisis e Interpretación de Resultados ................................................
4.7. Prueba de Hipótesis ..............................................................................
4.8. Análisis Estadístico ...............................................................................
4.9. Costo beneficio......................................................................................
CONCLUSIONES
RECOMENDACIONES
BIBLIOGRAFÍA
ANEXOS
ÍNDICE DE TABLAS
Cuadro N°1: Operacionalización de variables.............................................. 15
Cuadro N°2: Propiedades Físicas del Oro ................................................... 19
Cuadro N°3: Operacionalización de variables.............................................. 47
Cuadro N°4: Operacionalización de variables.............................................. 49
Cuadro N°5: Comparación de costos del Floculante y la Cal....................... 50
Cuadro N°6: Costo Mensual del Tratamiento en Nazareno ........................ 50
Cuadro N°7: Calidad de Afluente ................................................................. 54
Cuadro N°8: Interpretación de Resultados .................................................. 57
Cuadro N°9: Interpretación de Resultados................................................... 60
Cuadro N°10: Interpretación de Resultados................................................. 62
Cuadro N°11: Interpretación de Resultados................................................. 64
Cuadro N°12: Interpretación de Resultados................................................. 66
Cuadro N°13: Interpretación de Resultados................................................. 70
Cuadro N°34: Cuadro Comparativo Costo año 2015 ................................... 95
Cuadro N°35: Cuadro Costos Prueba de Jarras ......................................... 95
Cuadro N°36: Cuadro Comparativo Costos Nazareno Vs. Prueba de Jarras. 95
ÍNDICE DE FIGURAS
Figura N° 1: Lingote de oro......................................................................... 21
Figura N° 2: Diagrama de Flujo................................................................... 33
Figura N° 3: Diagrama de Proceso ............................................................. 34
Figura N° 4: Fuerzas Actuantes en Sedimentación .................................... 37
Figura N° 5: Sistema de Tratamiento Nazareno ......................................... 49
Figura N° 6 : Cuadros comparativo de Cal y Floculante Año 2014-
2015........................................................................................ 47
ANEXOS
Cuadro N°14: Conductividad........................................................................ 72
Cuadro N°15: Potencial de Hidrógeno ......................................................... 73
Cuadro N°16: DBO5..................................................................................... 74
Cuadro N°17: DQO ...................................................................................... 75
Cuadro N°18: Aluminio................................................................................. 76
Cuadro N°19: Arsénico ................................................................................ 77
Cuadro N°20: Bario ...................................................................................... 78
Cuadro N°21: Berilio..................................................................................... 79
Cuadro N°22: Boro....................................................................................... 80
Cuadro N°23: Cadmio .................................................................................. 81
Cuadro N°24: Cobre..................................................................................... 82
Cuadro N°25: Cobalto .................................................................................. 83
Cuadro N°26: Cromo Total........................................................................... 84
Cuadro N°27: Hierro..................................................................................... 85
Cuadro N°28: Litio........................................................................................ 86
Cuadro N°29: Manganeso............................................................................ 87
Cuadro N°30: Níquel .................................................................................... 88
Cuadro N°31: Plomo .................................................................................... 89
Cuadro N°32: Selenio................................................................................... 90
Cuadro N°33: Zinc........................................................................................ 91
DEDICATORIA
A Dios por ser quien soy en la vida.
A mis padres: por su gran amor y apoyo
incondicional como muestra de gratitud, por la
invalorable ayuda en mi formación profesional y
logro de mis aspiraciones.
A mi hermano: por enseñarme a no rendirme
ante cualquier situación.
A mi hijo Fernando: por ser el motor y motivo de
hasta donde he llegado hasta ahora.
AGRADECIMIENTO
A Dios, por darme la fortaleza y sabiduría
A mi familia por su apoyo incondicional.
RESUMEN
La especial atención es Optimizar técnica y económicamente el tratamiento de
las aguas residuales industriales generadas de la U.E.A. Orcopampa, provincia
de Castilla. Para mejorar la calidad de las aguas vertidas al rio Orcopampa.
La tesis se centra en un caso de estudio particular de la U.E.A. Orcopampa,
que se encuentra realizando trabajos de explotación.
El presente proyecto se justifica porque permitiría la aplicación de un nuevo
proceso para el tratamiento de nuestros efluentes, siempre en cuando la
evaluación técnica-económica lo permita.
Finalmente, se presentan los esquemas de la optimización técnica y económica
que son efectivos y viables para el caso estudiado, así como los cálculos
necesarios para determinar los parámetros establecidos según la legislación
peruana.
ABSTRACT
Special attention is technically and economically optimize the treatment of
industrial wastewater generated from the U.E.A. Orcopampa province of
Castilla. To improve the quality of water discharged into the river Orcopampa.
The thesis focuses on a particular case study of the U.E.A. Orcopampa, which
he is doing work of exploitation.
This project is justified because it would allow the implementation of a new
process to treat our effluents, always when the technical - economic evaluation
permits.
Finally, schemes of technical and economic optimization that are effective and
viable for the case study and the calculations necessary to determine the
parameters established under Peruvian law are presented.
CAPÍTULO I
DISEÑO DE LA INVESTIGACIÓN
1.1. Descripción de la Realidad Problemática
En la actualidad existe una preocupación común entre el sector privado
como en el público, para el tratamiento de las aguas residuales, cuya
existencia se hace insostenible no solo para la tranquilidad de la
población si no que incide directamente en la salud humana, por el
entorno indeseable que se genera y también porque las actividades
productivas de alimentos sobre todo procedentes de las aguas
continentales y del mar se ven afectadas.
Asimismo el Perú es el primer productor de oro, zinc, estaño, plomo y
molibdeno en América Latina. La Cordillera de los Andes es la columna
vertebral de Perú y la principal fuente de depósitos minerales del mundo,
tiene un importante potencial geológico. Es el tercer país en el mundo en
reservas de oro, plata, cobre y zinc (US Geological Survey - USGS
figures).
El presente proyecto tiene como objetivo la realización de optimizar
técnica y económicamente el tratamiento de las aguas residuales
industriales de la U.E.A. Orcopampa, mediante una optimización del
sistema de tratamiento de las aguas residuales, a través, de la
determinación de parámetros de operación y la caracterización de las
cantidades de sustancias que se deben de combinar, junto con los
tiempos de residencia, así como también la identificación de los
procesos y operaciones que se pueden renovar con la finalidad de
optimizar los recursos disponibles de la planta.
El sistema de tratamiento de las aguas residuales industriales de una
empresa es un proceso físico químico que cuenta con unidades de
homogenización, coagulación, floculación, sedimentación y filtración que
permite eliminar sólidos en suspensión, sólidos disueltos y materia
orgánica.
Se espera que una vez concluida la aplicación de la optimización de la
remoción de la carga contaminante hasta alcanzar el valor establecido
en cumplimiento con la legislación ambiental de los ECA (estándar de
calidad ambiental) para poder descargar el agua residual industrial
tratada al cuerpo receptor de agua dulce, con lo cual la unidad de
tratamiento estará operando con la eficiencia requerida tal como indica
la literatura para el tipo de sistemas instalados en la planta
1.2. Formulación del Problema.
En los procesos metalúrgicos el requerimiento del agua es necesario,
posteriormente se convierte en efluentes que de acuerdo a la legislación
vigente antes del vertimiento al río se debe realizar el tratamiento como
agua residual industrial.
La U.E.A ORCOPAMPA se encuentra ubicado en el distrito de
Orcopampa, provincia de Castilla, departamento de Arequipa a una
distancia de 1350 Km de la ciudad de Lima, entre 3800 y 4500 m.s.n.m.
La Compañía de Minas Buenaventura, ha iniciado el proceso de
adecuación a los LMP y ECA, establecidos por la normatividad vigente,
implementando medidas preliminares de manejo ambiental tendientes a
controlar la calidad de sus efluentes y sus cuerpos receptores.
Las aguas de mina generadas en el Sector de Veta Nazareno, es de
carácter químicamente ácido, con valores promedio de 5,70 ppm. Los
parámetros críticos de mayor importancia son los sólidos suspendidos,
el hierro y el manganeso, los cuales deben ser reducidos en el
tratamiento. Presentan además caudales relativamente fluctuantes
durante la mayor parte del ciclo hidrológico.
Para el diseño y optimización de la planta de tratamiento se ha
considerado un estudio cuidadoso de ingeniería, basado en la
evaluación del comportamiento histórico de los parámetros críticos
antes mencionados, y en la selección apropiada de los procesos y
operaciones más adecuados y económicos, y sostenibles a través del
tiempo.
1.3. Justificación e importancia de la Investigación
Justificación
Las aguas residuales deben ser sometidas a un tratamiento previo, que
permitan el cumplimiento de ECA cumplir con la responsabilidad social-
ambiental, la política ambiental de la empresa al verter al cuerpo
receptor, según las disposiciones que dicte el Ministerio del Ambiente
para su implementación donde no cause perjuicio a otro uso en cantidad
o calidad del agua, no se afecte la conservación del ambiente acuático.
Importancia
El presente estudio de investigación pretende aportar al mejoramiento
de la dosis y el uso de insumos en el tratamiento de las aguas
residuales que se genera del proceso de metalúrgico, considerando el
cumplimiento de la calidad del agua tratada para el vertimiento en el río,
en los parámetros a medir.
1.4. Objetivo de la Investigación
1.4.1. Objetivo General
Optimizar técnica y económicamente el tratamiento de las aguas
residuales industriales generadas de la U.E.A. Orcopampa,
provincia de Castilla.
1.4.2. Objetivos Específicos
Evaluar los parámetros de las aguas residuales generadas del
proceso metalúrgico
- Determinar la dosis óptima del hidróxido de calcio
- Determinar la dosis óptima de sulfato de aluminio
- Evaluar remoción de los sólidos suspendidos
- Calcular el costo del tratamiento y comparar con el tratamiento
existente.
1.4.3. Hipótesis de la investigación.
La optimización del tratamiento de las aguas residuales
industriales de la U.E.A. Orcopampa permitirá la eficiencia en el
proceso de tratamiento de las aguas residuales y la disminución
de los costos operativos actuales.
1.5. Variables e Indicadores
1.5.1. Variable Independiente
Agua Residual Industrial Minera: Agua generada de los procesos
metalúrgicos en la obtención del oro.
1.5.2. Variable Dependiente
Tratamiento del Efluente: Optimizar el tratamiento para su
eficiencia y alcanzar el ECA según la legislación.
1.5.3. Operacionalización de las variables
Las variables a evaluar presentar indicadores medibles para el
análisis e interpretación:
CUADRO N°1
Operacionalización de variables
VARIABLE INDICADOR ESCALA
INDEPENDIENTE:
Efluente Ind.
Metalúrgico
- pH
- turbidez
- Solidos Totales
- Conductividad
- DQO
- DBO
- Metales Pesados
DEPENDIENTE:
Tratamiento del
Efluente
- Volumen
- Ph
- Dosis del floculante
- Dosis del Hidróxido
de Calcio
Fuente: Elaboración Propia
1.6. Tipo y Nivel de la Investigación
a) Tipo de Investigación: La investigación será del tipo aplicativa,
porque se escogerá dentro de las técnicas existentes para el
tratamiento de efluentes mineros y se ajustarán los parámetros para
encontrar las cantidades mínimas, pero efectivas de los productos
químicos a emplear.
b) Nivel de la Investigación: El nivel será descriptivo, porque se va
detallar una tecnología que permita el tratamiento de los efluentes
para adecuarlos a los ECAS
CAPÍTULO II
MARCO TEÓRICO
2.1. Antecedentes Teóricos de la Investigación
En el estudio de investigación “Propuesta de un modelo socio económico
de decisión de uso de aguas residuales tratadas en sustitución de agua
limpia para áreas verdes de la Universidad de Ingeniería”, se menciona
sobre la problemática y proyectos para resolver el problema de las
aguas residuales en lima metropolitana, el callao y resto del país 1.
En el proyecto “Optimización de la Planta de Tratamiento de Aguas
Residuales Industriales de una empresa Textil, para el Tratamientos de
Aguas residuales 2donde menciona el objetivo básico del tratamiento es
proteger la salud y promover el bienestar de los individuos miembros de
la sociedad. El retorno de las aguas residuales a nuestros ríos o lagos
nos convierte en usuarios directos o indirectos de las mismas, y a
medida que crece la población, aumenta la necesidad de proveer
sistemas de tratamiento o renovación que permitan eliminar los riesgos
para la salud y minimizar los daños al ambiente.
2.2. Marco Legal
1 http://cybertesis.uni.edu.pe/bitstream/uni/217/1/mendez_mf.pdf
Revisado [ Fecha 11 /10/15 Hora: 11:00 am ]
2 http://dspace.ups.edu.ec/bitstream/123456789/6215/1/UPS-GT000524.pdf
Revisado [ Fecha 12/10/15 Hora: 11:15 am ]
El marco legal que regula los recursos hídricos en el Perú es:
- Ley de Recursos Hídricos N° 29338 (2009) cuyos principios son:
Valoración del agua y de gestión integrada, prioridad de acceso al
agua, participación de la población y cultura, seguridad jurídica,
respeto del agua de las comunidades, principio sostenible,
descentralización de la gestión pública del agua, carácter precautorio,
eficiencia, gestión de cuencas y tutela jurídica. La ley establece la
existencia del Sistema Nacional de Gestión de Recursos Hídricos,
cuyo ente rector es la Autoridad Nacional del Agua (ANA). Además
establece los usos que se le puede dar a los recursos hídricos, los
derechos y licencias de uso, la protección del agua, los regímenes
económicos, la planificación del uso, la infraestructura hidráulica,
normatividad sobre el agua subterránea, las aguas amazónicas, los
fenómenos naturales, finalmente, las infracciones y sanciones.
- Reglamento de la Ley 29338 Decreto Supremo N 002-2008-MINAM
- Decreto supremo N° 002-2008-MINAM. Aprobación de los estándares
de calidad ambiental para agua y del anexo I, el cual establece el
nivel de concentración de elementos, parámetros físicos, químicos y
biológicos presentes en el agua con fin que no represente riesgo
significativo para la salud de las personas ni para el ambiente.
- Decreto supremo N° 023-2009-MINAM. Aprobación de las
disposiciones para la implementación de los estándares de
Nacionales de la Calidad Ambiental (ECA) para el agua, las cuales
constan se once estándares y dos disposiciones transitorias. Se
realiza en fin de la implementación del Decreto supremo N° 002-
2008-MINAN. 18 diciembre, 2009.
- Decreto supremo N° 001-2010-AG. Aprobación del reglamento de la
Ley de Recursos Hídricos N° 29338. tiene por objeto regular el uso y
gestión de los recursos hídricos que comprenden el agua continental:
superficial y subterránea, y los bienes asociados a esta; asimismo,
la actuación del Estado y los particulares en dicha gestión.
- Ley N° 26821: Aprobación de la Ley Orgánica para el
aprovechamiento sostenible de los recursos naturales. En esta ley se
hace mención sobre el aprovechamiento sostenible de los recursos
naturales, la función del estado en promover su aprovechamiento
sostenible, otorgamiento de los derechos sobre los recursos naturales
así como de las condiciones de su aprovechamiento. 26 junio, 1997.
2.3. Marco Teórico
2.3.1. Mineral del Oro
El oro es un elemento químico de número atómico 79, que está
ubicado en el grupo 11 de la tabla periódica. Es un metal precioso
blando de color amarillo. Su símbolo es Au (del latín aurum, ‘brillante
amanecer’).
Es un metal de transición blando, brillante, amarillo, pesado, maleable y
dúctil. El oro no reacciona con la mayoría de los productos químicos,
pero es sensible y soluble al cianuro, al mercurio, al agua regia, cloro y a
la lejía. Este metal se encuentra normalmente en estado puro, en forma
de pepitas y depósitos aluviales.
El oro es uno de los metales tradicionalmente empleados para acuñar
monedas; se utiliza en la joyería, la industria y la electrónica por su
resistencia a la corrosión. Se ha empleado como símbolo de pureza,
valor, realeza, etc. El principal objetivo de los alquimistas era producir
oro partiendo de otras sustancias como el plomo. Actualmente está
comprobado químicamente que es imposible convertir metales inferiores
en oro, de modo que la cantidad de oro que existe en el mundo es
constante.
2.3.1.1. Propiedades físicas del Oro
CUADRO N° 2
Propiedades Físicas del Oro
PROPIEDADES FISICAS UNIDADES
Densidad 19,300 kg por metro cúbico
Punto de fusión 1337.33 K (1064.18 °C).
Número atómico 79
Peso atómico: 197
Fuente: Elaboración propia
2.3.1.2. Cualidades químicas del oro
El oro es un elemento químico así que solo puede ser encontrado,
no fabricado. Es inerte, lo que significa que: es prácticamente inmune al
deterioro, no es muy útil en ningún proceso industrial o químico que lo
utilice y que es barato de almacenar durante largos periodos de tiempo.
Es notable por su rareza, densidad y su excelente conductividad
eléctrica.
El oro tiene una gran cantidad de usos industriales gracias de sus
cualidades físicas. Se utiliza en la industria odontológica y en la
fabricación de algunos productos electrónicos que necesitan contactos
de alta calidad no corrosivos.
Sin embargo, sus usos realmente prácticos son numéricamente
insignificantes. De todo el oro minado de la tierra, la mayor parte se
utiliza de estas tres maneras:
- Como adorno personal, donde su color y su relación con la riqueza
contribuyen a su uso en la fabricación de joyas. (En torno al 60% del
abastecimiento global).
- Como refugio público de riqueza, al respaldar los sistemas
monetarios. (En torno al 20% del abastecimiento global).
- Como refugio de riqueza privada (En torno al 15% del abastecimiento
global)
2.3.1.3. Extracción del oro y purificación
Dada la cualidad inerte del oro, alrededor de un 80% del metal en
mineral se encuentra en su estado elemental. Hay varios procesos para
extraerlo y luego purificarlo.
La amalgama es un proceso basado en mercurio que funciona por la
disposición del metal para ser disuelto en dicho elemento. El mercurio se
aplica al mineral, recoge el oro y la amalgama resultante se destila,
hirviendo el mercurio para deshacerse de él. El mercurio es altamente
tóxico y, por tanto, ecológicamente peligroso. El proceso industrial para
este tipo de extracción es costoso.
El proceso más importante para la extracción del oro es la cianuración (o
proceso de cianuro). El cianuro sódico en la presencia del aire provoca
que el oro entre en solución. Un mineral de buena calidad se deshace de
su oro en un proceso de filtración en tanques. Un mineral de calidad
inferior necesita pasar por el proceso de lixiviación, donde grandes pilas
de mineral son rociadas con solución de cianuro durante un periodo de
tiempo prolongado.
El oro relativamente bruto se purifica principalmente de dos maneras. El
primer estado de purificación más barato es el proceso Miller que utiliza
gas cloro y alcanza una purificación del 99,5%. Por otra parte está el
proceso más caro Wohlwill, que electroliza el oro hasta purezas del
99,99%.
Los lingotes de oro Good Delivery (la unidad principal de trading de oro,
ver imagen), tienen una pureza mínima del 99,5%.
Figura 1. Lingote de oro
2.3.1.4. Ley del oro
Minerales como la plata y el oro es común que se los clasifique
según su peso ley. Esto se refiere al grado de pureza del elemento. Por
ejemplo la plata, oro y platino son minerales nativos (es decir, están
formados por esos elementos: Ag, Au y Pt respectivamente). Sin
embargo estos minerales pueden tener impurezas (serán elementos
accesorios en su composición mineralógica) que hacen que baje su
pureza (Su peso ley será más bajo)
Por lo tanto cuanto mayor es el peso ley, más puro será el mineral; por
ende más caro saldrá.
La ley del oro es la indicación de la proporción de metal fino (puro) que
hay en una aleación. Cuando hablamos de “ley de 18 kilates” indicamos
que en cada 24 partes de oro hay 18 de fino y 6 de otros metales; por
ejemplo, plata o cobre.
La ley de 24 kilates quiere decir que las 24 partes son de oro; cuando la
ley es de 22, se indica que la aleación está formada por 22 partes de oro
y 2 partes de otros metales. En la ley de 12 kilates, habrá 12 partes de
oro y otras 12 de otro metal, o liga.
La ley, se puede expresar, tanto en kilates (medida de pureza), como en
milésimas; las milésimas nos indican el peso de oro que entra en 1000
unidades; por tanto, si la ley de un trozo de oro es de 850 milésimas,
significa que en 1000 gramos entran 850 gramos de oro fino y el resto de
otros metales; si la ley es de 916, en 1000 gramos entrarán 916 de oro
puro.
2.3.1.5. Explotación del Oro
2.3.1.5.1. Tipos de explotación del Oro
Esta puede ser pequeña, mediana y gran minería.3
1. Minería de superficie: La minería de superficie es el sector más
amplio de la minería, y se utiliza para más del 60% de los materiales
extraídos. Puede emplearse para cualquier material. Los distintos
tipos de mina de superficie tienen diferentes nombres, y, por lo
general, suelen estar asociados a determinados materiales extraídos.
Las minas a cielo abierto suelen ser de metales; en las explotaciones
al descubierto se suele extraer carbón; las canteras suelen dedicarse
a la extracción de materiales industriales y de construcción.
- Minas a cielo abierto
Son minas de superficie que adoptan la forma de grandes fosas en
terraza, cada vez más profundas y anchas. Los ejemplos clásicos de
minas a cielo abierto son las minas de diamantes de Sudáfrica, en las
que se explotan las chimeneas de kimberlita, depósitos de mineral en
forma cilíndrica que ascienden por la corteza terrestre. La extracción
empieza con la perforación y voladura de la roca.
- Explotaciones al descubierto
Las explotaciones al descubierto se emplean con frecuencia, aunque
no siempre, para extraer carbón y lignito. En el Reino Unido se
obtienen más de 10 millones de toneladas de carbón anuales en
explotaciones al descubierto. La principal diferencia entre estas
minas y las de cielo abierto es que el material de desecho extraído
para descubrir la veta de carbón, en lugar de transportarse a zonas
de vertido lejanas, se vuelve a dejar en la cavidad creada por la
explotación reciente.
3 http://www.eumed.net/libros-gratis/2009c/568/Tipos%20de%20explotacion.htm
Los placeres son depósitos de partículas minerales mezcladas con
arena o grava. Las minas de placer suelen estar situadas en los
lechos de los ríos o en sus proximidades.
- Minería subterránea:
La minería subterránea se puede subdividir en minería de roca
blanda y minería de roca dura. Los ingenieros de minas hablan de
roca “blanda” cuando no exige el empleo de explosivos en el proceso
de extracción. En otras palabras, las rocas blandas pueden cortarse
con las herramientas que proporciona la tecnología moderna.
La gran diferencia entre los tipos de explotación entre la gran
Minería, la mediana y la pequeña radica en sus costos de
producción.
2.3.1.6. Técnicas de Extracción del Oro
A. Bateo
Se utiliza un recipiente cóncavo de poca profundidad, similar a un
plato hondo de unos 25 a 35 centímetros de diámetro. Antiguamente
estos recipientes o bateas eran de metal, pero actualmente se usan
también de plástico, ya que con un detector de metales puede saberse
de antemano si el material contendrá oro o no.
El procedimiento consiste en llenar el recipiente con
la arena y gravilla que contiene oro, sumergirlo en agua y agitarlo. Como
el oro es más denso que la arena o la roca se asienta en el fondo.
El material generalmente se obtiene en las orillas de los arroyos o ríos
aprovechando la misma agua para separar el oro, pero también suelen
hallarse yacimientos en lechos de arroyos o ríos secos en cuyo caso es
necesaria una fuente auxiliar de agua.
Para determinar la riqueza en oro en los minerales de las vetas o filones,
se utiliza una pequeña batea de unos 20 centímetros de diámetro similar
a un cucharón, que en Chile y Argentina se suele llamar poruña; se
muele el mineral medianamente fino, se coloca un puñado en
la poruña, se agita con agua y el oro se asienta en el fondo. De esta
manera se puede calcular la cantidad de oro que contiene el mineral.
El bateo o panning es la técnica más sencilla para la búsqueda de oro, y
suele usarse en forma individual pero no es comercialmente viable para
extraer el oro de los grandes depósitos, salvo que los costos laborales
sean muy bajos. A menudo se comercializan como atracción turística en
las primeras compañías de oro.
B. Proceso con cianuro
La extracción de oro con cianuro se puede utilizar en zonas donde
se encuentran finas rocas que contienen oro. La solución de cianuro de
sodio se mezcla con rocas finas, que anteriormente se haya
comprobado que puedan contener oro y/o plata. Para lograr que se
separen de las rocas en forma de solución de cianuración del oro y/o
cianuración de plata, se le añade zinc a la solución, lo que precipita los
residuos de zinc y también metales deseados como el oro y la plata. Se
elimina el zinc con ácido nítrico o ácido sulfúrico, dejando la plata y/o
barras de oro, que generalmente se funden en lingotes que luego son
enviados a una refinería de metales para su transformación final con
agua regia a metales puros en 99,9999 %. Medgold fue una de las
primeras empresas en utilizar este método.
Avances en los años setenta han promovido el uso del carbón en la
extracción de oro de la solución de filtración. El oro es absorbido por la
matriz porosa del carbono. El carbón activo tiene una superficie interna
tan grande que quince gramos (media onza), podrían cubrir 18,000 m².
El oro puede ser separado del carbono mediante el uso de una solución
fuerte de alcohol, soda cáustica y cianuro. A esto se le conoce como
la elución o desorción. El oro se adhiere a lana de acero por medio de
electro-obtención. Unas resinas de oro específicas también pueden ser
utilizadas en lugar de carbón activo, o donde se requiere la separación
selectiva de oro, de cobre y de otros metales disueltos.
2.3.1.6.1. La extracción de oro en la cultura popular o
minería en pequeña escala
Los minerales extraídos de las vetas o filones que tienen
una buena concentración de oro, especialmente de partículas libres y
granuladas, se mezclan con agua y se muelen en unas piedras
llamadas quimbaletes, las que tienen una concavidad que permite
usarlas como un mortero. A continuación se agrega mercurio para formar
una amalgama con el oro, la que es separada del resto colándola a
través de una tela fina. Luego se refoga o quema la amalgama para
evaporar el mercurio, quedando el oro en forma de bolas, cuyo tamaño
depende de la cantidad de metal existente en el mineral. Este
procedimiento no solamente es nocivo para el minero que extrae el
material, quien aspira parte de los vapores del mercurio eliminado
durante el calentamiento, sino también para las zonas aledañas, pues el
mercurio evaporado se condensa contaminando tierras y aguas.4
Las grandes compañías de oro Barrick Gold, Goldcorp y Newmont Mining
Corporation son las tres empresas más grandes del mundo en minería de
oro.
2.3.1.7. Descripción del Proceso Metalúrgico del Oro
El Proceso metalúrgico se divide en:
- Sección de Pesaje y Almacenamiento
La Sección de Pesaje y Almacenamiento es la de control y recepción
de minerales auríferos y relave de amalgamación que se encarga de
cualificar, cuantificar, y almacenar el mineral para el cual se dispone de
una balanza electrónica de camiones de 60.0 TM, Mettler Toledo de
capacidad, ubicada en la zona de entrada de la Planta de Beneficio.
Los minerales con una granulometría mayor a ¾” pasa a la sección de
chancado para su fragmentación y posteriormente su respectivo
muestreo, y si el mineral es de granulometría menor a ¾” pasa directo a
la cancha de almacenamiento para su descarga, homogenización y
4 https://es.wikipedia.org/wiki/Miner%C3%ADa_del_oro
muestreo, y si es relave de amalgamación, después del pesado pasa a
la cancha de almacenamiento para su descarga y muestreo
- Sección de Chancado
La Sección de Chancado estará en la capacidad de proporcionar el
tonelaje requerido y contara con tres circuitos de chancado (Ver
Diagrama de flujos – capacidad 300TMD) que trabajan en paralelo, que
cuentan cada uno de ellos con una Chancadora de Quijada (chancado
primario) y una Chancadora Cónica (chancado secundario), estos
circuitos son alimentados con mineral grueso proveniente de las minas,
posteriormente reducidos a tamaños a -½” aproximadamente, serán
almacenados en tolvas con capacidad de acuerdo al circuito de
chancado, se utilizaran cedazos vibratorios de -3/4” y -1/2” para
clasificar el mineral.
Estos circuitos cuentan con fajas transportadoras (que transportan el
mineral) y cedazos vibratorios (que tamizan el mineral).
Esta etapa del proceso se realiza de manera independiente y está
adaptado a las características de acopio del mineral que proviene de
diferentes lugares.
El control de generación de emisiones de polvo en esta sección se
realiza mediante shutes cubiertos y colectores de polvo.
Circuito de Chancado Nº 01
Cuenta con 2 tolva de gruesos de 40 toneladas métricas de capacidad,
con una parrilla de 7” de abertura, la descarga pasa a una chancadora
de quijada marca COMESA de 10” x 21”, el producto del chancado
primario es transportado por una faja de 18” x 26 m que pasa por un
electroimán descarga en una zaranda vibratoria de 3” x 8” con una
malla de ½”, donde el Overzise que son los gruesos pasan a un
chancado secundario que está conformado por una Chancadora Cónica
Symons de 2’, y el Underzise que es el producto fino de esta va a una
faja de 16” x 12 metros y es el producto final 100% ½”, el mineral para
su respectivo muestreo, el producto de la Chancadora Symons de 2’
descarga en la faja transportadora de 16” x 12 m completándose así el
circuito cerrado.
Circuito de Chancado Nº 02
Este circuito cuenta con 4 tolvas de grueso de 15 toneladas métricas de
capacidad cada una, las cuales descargan a una faja transportadora de
15.5” x 9 m descargando a una chancadora de quijada 10” x 16”, el
producto de este chancado primario es transportado por una faja de 18”
x 26 m que pasa por un electroimán, hacia una zaranda vibratoria de 3”
x 8” con malla de ½” de abertura, el Overzise pasa a una chancadora
Symons de 2’ y el Underzise que es el fino será el producto final , el
producto del chancado secundario descarga en una faja de 15.5” x 15
m se une con los finos, completándose así el circuito.
Circuito de Chancado Nº 03
Este circuito cuenta con 2 tolvas de grueso de 15 toneladas métricas de
capacidad cada una, las cuales descargan a una faja transportadora de
15.5” x 9 m descargando a una chancadora de quijada 9” x 12”, el
producto de este chancado primario es transportado por una faja de 18”
x 26 m que pasa por un electroimán, hacia una zaranda vibratoria de 3”
x 6” con malla de de ½” de abertura, el Overzise pasa a una
chancadora Symons de 1.5’ y el Underzise que es el fino será el
producto final , el producto del chancado secundario descarga en una
faja de 15.5” x 15 m que a su vez se une con la faja 18” x 26 m,
completándose así el circuito cerrado.
- Sección de Molienda, Clasificación y Lixiviación
Sección Molienda y Clasificación
La Planta cuenta con una capacidad de 300 TM/día, tiene instalado un
molino de bolas de 6’ x 8’, un molino de bolas 6’ x 6’y un molino de
bolas 5’ x 8’.
La ley de cabeza varía de acuerdo al ingreso del mineral. La malla de
alimentación al molino es 100%-1/2”.
La descarga hacia la tolva de finos de capacidad de 150 TM, desde un
Tolvin de paso de capacidad 15 TM es por medio de una faja de 16” x
15 m. La carga saliente de la tolva de finos es transportada por una faja
de 15.5” x 15 m, hacia el molino de bolas primario de 6’ x 8’ marca
COMESA y la descarga de este con una densidad promedio de 1650 g/l
va hacia un cajón de bombeo el cual bombea la pulpa con una bomba
de pulpa de 4” x 3”, este alimenta al hidrociclón D-10, el Underflow
(gruesos) es descargado hacia el molino de bolas 6’ x 6’ para continuar
con la molienda secundaria, la descarga de este molino se junta en el
cajón de bombeo de la descarga del molino primario 6’ x 8’ cerrando el
circuito. El Overflow del hidrociclón (finos) es llevado hacia un cajón de
bombeo para ser bombeado por una bomba de pulpa de 3” x 3”hacia un
hidrociclón D-20 donde el Underflow (gruesos) descarga hacia el molino
de bolas 5’ x 8’ para continuar con la remolienda. El Overflow (fino) que
sal con una densidad promedio 1250 g/l y a 90% -malla200, pasa a los
tanques de lixiviación previo paso por una zaranda vibratoria de pulpa
para eliminar la materia orgánica que pudiera afectar el proceso. Los
reactivos usados son 2, el cianuro NaCN y la cal minera, estos son
adicionados en el molino primario, la fuerza del cianuro es de acuerdo a
la ley de cabeza y va de 0.05% a 0.08%, la cal regula el pH a 11. La
lixiviación de los valores Au, Ag empieza en los molinos, obteniéndose
un promedio de 60% de disolución.
Concentración Gravimétrica
La descarga del molino de bolas primario 6’ x 8’ COMESA, es
bombeada al hidrociclón D-10, aproximadamente un tercio de la carga
enviada al hidrociclón es desviada a la zaranda de alta frecuencia 8” x
9” donde los gruesos de la zaranda y del hidrociclón son descargados
al molino de bolas 6’ x 6’ COMESA y el fino de la zaranda son tratados
en un concentrador Falcón modelo SB-750. Las colas del Falcón son
devueltas al cajón de bomba, mientras que el concentrado gravimétrico
se almacena en un cono decantador para su posterior tratamiento. La
bomba envía la pulpa al hidrociclón D-10. Aproximadamente un tercio
de la carga enviada al hidrociclón es desviada a la zaranda de alta
frecuencia de 8” x 9” que efectúa un corte de aproximadamente 80%-65
malla.
Los concentrados se cosecha en sacos después de concluido cada
turno de trabajo, para enseguida ser muestreado, pesado, codificado y
precintado.
Cianuración
La pulpa fina que corresponde al Overflow del hidrociclón D-20 pasa a
un circuito de agitación mecánica compuesta por tanques de
dimensiones 24’ x 24’, todos estos tanques están colocados en serie
conformando así un circuito que permita agitar la pulpa en periodo de
60 horas aproximadamente.
Adsorción
La descarga del último tanque de Cianuración pasa al espesador de 50’
x 10’, el cual separa en dos productos, uno por rebose que es la
solución rica (Overflow), pasa al circuito de precipitación con polvo de
zinc (Merril Crow), y la descarga (Underflow) con una densidad de
1435g/l es bombeado con una bomba Peristáltica de 7.5 HP hacia un
circuito de seis tanques de adsorción de dimensiones 20’ x 20’, con la
ayuda de solución barren que se adiciona al primer tanque desde el
circuito Merril Crow se baja la densidad a 1350 g/l.
El carbón activado de agrega en contracorriente al avance del flujo
desde el ultimo tanque 20’ x 20’hasta donde se cosecha el carbón que
está listo para la desorción.
El tiempo de adsorción es de 8 horas aproximadamente y del último
tanque sale el relave general del proceso.
Merrill Crowe
La solución rica (pregman) con una ley promedio de 8 g Au/ m3 y 15 g
Ag/m3, una fuerza de cianuro de 0.075%, pasa a los clarificadores y
con la bomba de vacío pasa por la torre de vacío para eliminar el
oxígeno disuelto, con la bomba la solución ya desoxigenada es
bombeada a los filtros, antes de la bomba está el cono de alimentación
de reactivos, el polvo de zinc y el acetato de plomo, el precipitado se
queda en los filtros y la solución que pasa por los filtros, ya es una
solución barren, que es bombeada una parte hacia reservorios y la otra
hacia el primer tanque de adsorción para bajar la densidad a 1350 g/l.
- Desorción
El carbón extraído del primer tanque de adsorción será colocado en un
tanque cerrado (reactor)existente instalado de acuerdo a la capacidad
actual para el tratamiento del material, dicho carbón estará bajo la
acción de una solución recirculante compuesta de 10 % de alcohol, 0.1
% de cianuro y 2 % de soda caustica diluida todo en agua destilada a
temperatura de 80 °C, esta solución será alimentada por la parte
inferior del tanque y descargada por la parte superior del mismo en dos
reactores de capacidad de 2.1 TM, ubicado en la sección de desorción.
El carbón desorbido es llevado con agua hacia el reactor reactivador de
carbón ubicado en planta.
Posteriormente este carbón es muestreado, llenado en costales y
pesado.
- Reactivación del carbón
En la Planta de Beneficio de Minera Veta Dorada S.A.C. se utiliza los
tratamientos de reactivación Químicos y Térmicos con el fin de
regenerar el Carbón desorbido.
Reactivación Químico
El carbón desorbido es cargado hacia un reactor en un promedio de
2,500 Kg. (peso seco) y es lavado inicialmente con agua,
posteriormente con ácido clorhídrico o nítrico y finalmente con agua por
un lapso de 2 a 3 horas cada lavada. La función del ácido, es la de
remover el calcio y la sílice atrapadas por el carbón.
Una vez culminado este proceso, este carbón es llenado en costales y
queda listo para su uso en el proceso.
Reactivación Térmica
En la Planta de Beneficio de Minera Veta Dorada S.A.C. cuenta con un
equipo de Regeneración Térmica “OILON”, en el cual el carbón que
proviene del proceso de desorción es calentado a temperaturas que
oscilan entre 500 a 600 °C con el fin de eliminar alguna materia
orgánica cogida por el carbón en el proceso.
Posteriormente el carbón ya regenerado es tamizado para eliminar los
finos y es agregado nuevamente al proceso de Cianuración para
extraer los valores de oro que puedan contener.
- Electrodeposición
La solución producto de la desorción conforma dos circuitos con las
celdas electrolíticas con cátodos y ánodos, en el cátodo de lana de
acero se forma el precipitado de AU Ag Cu de donde serán
recuperados por disolución del fierro con ácido sulfúrico, enviándose a
fundición el producto sólido.
- Fundición
La Planta de Beneficio de Minera Veta Dorada S.A.C. Trabaja la fusión
del producto de la electrodeposición en crisoles a llama directa de gas
bajo una campana de extracción existente, instalación que opera a una
mayor capacidad instalada. En este proceso se utiliza fundentes que
generan una pequeña escoria y el metal líquido es vaciado en
lingoteras.
- Producto Final
Después de haber realizado el tratamiento del mineral en las
secciones de chancado y molienda, en la sección de adsorción se
obtiene el carbón activado cargado del metal valioso que es el oro. Las
concentraciones de oro con las que se obtiene los carbones en esta
etapa son de 3.5 gr de Oro por Kg. de carbón activado.
El producto final de la Planta de Beneficio de Minera Veta Dorada
S.A.C está constituido por el llamado “Oro Doré”. Dependiendo de la
demanda de los clientes se obtiene también como producto el oro
refinado.
Figura 2. Diagrama de Flujo
Fuente: Elaboración Propia
Figura 3. Diagrama del Proceso
Fuente: Elaboración propia
2.3.1.8. Subprocesos del tratamiento en definiciones
operacionales
Neutralización: Las aguas residuales deben
neutralizarse para ajustar su valor de pH. Solo mediante este proceso
podrán cumplir los requisitos de las distintas unidades de proceso que
conforman los sistemas de tratamiento de aguas residuales.
La neutralización puede utilizarse para el tratamiento de las aguas
residuales ácidas que contienen metales. La incorporación de un
reactivo alcalino aumenta el pH de los residuos ácidos. Esto forma un
precipitado que recoge los metales no deseados. El resultado es una
Neutralización
Agua Tratada
5ml
Na ClO
390 ppm
Al2 (SO4)3
Agua Residual
Ca (OH) 2 ppm
Desinfección
Sedimentació
n
Floculación
Coagulación
Decantación
solución inicial cuyo pH se ha ajustado dentro de un rango óptimo para
precipitar los metales como hidróxidos.
Decantación: La misión de la de la decantación es eliminar partículas,
ya sea por sedimentación o flotación, partículas que en el caso del
tratamiento del agua pueden proceder de sustancias disueltas, que por
la vía de la oxidación han pasado a insolubles ( es el caso del hierro y
manganeso disueltos, que por oxidación pasan a su estado oxidado
insoluble ) o por las propias partículas coloidales en suspensión
existentes en el agua bruta, la mayoría de las cuales por coagulación -
floculación han pasado a ser sedimentables. Otras sustancias disueltas
pueden quedar adheridas o adsorbidas por los coágulos-flóculos y son
eliminadas de esta forma.
Coagulación y Floculacion: Los procesos de coagulación y Floculacion
se empiezan para extraer del agua los sólidos que en ella se encuentran
suspendidos siempre que su rapidez natural de asentamiento sea muy
baja para proporcionar clarificación efectiva.
El proceso de Coagulación y Floculacion se usa para:
- Remoción de turbiedad orgánica o inorgánica que no puede
sedimentar rápidamente.
- Remoción de color verdadero y aparente.
- Eliminación de bacterias, virus y organismos patógenos susceptibles
de ser separados por coagulación.
- Destrucción de algas y plancton en general.
- Eliminación de substancias productoras del sabor y olor en algunos
casos de precipitados químicos suspendidos o compuestos
orgánicos en otros.
Es preciso distinguir los fenómenos que ocurren durante los procesos de
coagulación y floculación, los mismos que son:
Coagulación: Comienza en el mismo instante en el que se agrega los
coagulantes al agua y dura solamente fracciones de segundo.
Básicamente consiste en una serie de reacciones físicas y químicas
entre los coagulantes, la superficie de las partículas, la alcalinidad del
agua y el agua misma que provocan la desestabilización de las
partículas suspendidas, ósea la remoción de las fuerzas que las
mantienen separadas.
La coagulación requiere de compuestos químicos que son los
coagulantes. Los coagulantes se pueden clasificar en dos grupos: poli
electrolitos o ayudantes de coagulación y coagulantes metálicos.
Floculacion: Es el fenómeno por el cual las partículas ya
desestabilizadas chocan unas con otras para formar coágulos mayores.
La Floculacion es estimulada por un mezclado lento que junta poco a
poco los floculos, un mezclado demasiado intenso los rompe y
raramente se vuelven a formar en su tamaño y fuerzas óptimos.
Como se describió anteriormente la dosis del coagulante en un factor
que influye en el proceso de coagulación. Para determinar la dosis
óptima de coagulante se debe realizar el Sistema de Simulación del
proceso de coagulación (prueba de jarras)
Sedimentación: Es la eliminación de sólidos en el agua por
asentamiento gravitacional.
En la etapa de sedimentación actúan tres fuerzas que son: Fuerza
externas, Fuerzas de Empuje y Fuerzas de rozamiento.
Fuerza Externa: En una gran cantidad de los casos, como por ejemplo
en la sedimentación simple de partículas en suspensión de agua, la
fuerza externa es solo el peso propio .Sin embargo, deben considerarse
igualmente como fuerza externa las fuerzas de inercia, las que pueden
tener una acción preponderante en la separación.
Empuje: Es el peso del fluido desalojado, según el principio de
Arquímedes, esto ocurre porque el agua ofrece una fuerza opuesta al
peso) reacción del líquido).
Fuerza de Rozamiento: El rozamiento es un fenómeno físico que se
manifiesta como una resistencia que opone un cuerpo al movimiento de
otro que este en contacto con él, o al movimiento relativo de las
partículas en el interior de una material (líquido, gas).
Además de las fuerzas actuantes existen otros factores que se deben
tener presentes durante la operación, los mismos que son: Que el agua
al entrar en el tanque provoque a mínima turbulencia, el impedir
corrientes en corto circuito o directas entre la entrada y la salida y que el
efluente salga sin provocar disturbios para que no arrastre hacia fuera
del tanque el material sedimentado.
Figura N° 4
Fuerzas actuantes en Sedimentación
Fuente: Elaboración propia
Desinfección: Los procesos de sedimentación, coagulación remueven
con mayor o menor eficiencia, la mayoría de las bacterias y virus
presentes en el agua.
Desde este punto de vista pueden ser considerados como procesos
preparatorios para la desinfección pues cumplen dos objetivos:
- Disminuyen la carga bacteriana del agua.
- Hacen más eficientes los métodos de desinfección.
Mediante la desinfección se lora la destrucción de los organismos
causantes de enfermedades o patógenos presentes en ella dentro de
estos microorganismos se pueden mencionar: Bacterias, Protozoarios,
Virus, Trematodos.
Agua Tratada: Producto líquido que se obtiene al someter el agua de
cualquier sistema de abastecimiento a los tratamientos físicos y
químicos necesarios para su purificación.
2.3.2. Propiedades del Hidróxido de Calcio (reactividad)
Hidróxido de Calcio. Es un polvo blanco producido por la mezcla
de óxido de calcio ("cal") con agua. La intoxicación con hidróxido de
calcio ocurre cuando alguien ingiere esta sustancia.
Estado natural
El hidróxido de calcio es un polvo blanco que se obtiene por la
calcinación del carbonato cálcico:
CaCO3 (s) = CaO (s)+ CO2 (g)
CaO (s) + H2O = Ca(OH)2 (ac)
Es poco soluble en agua, su pH es alcalino, aproximadamente de 12.4,
lo que le permite ser un magnífico bactericida, hasta las esporas mueren
al ponerse en contacto con el elemento. Comúnmente se prepara con
suero fisiológico ó agua tratada, aunque puede utilizarse cualquier
presentación o marca comercial su fuente natural se relacionan a
continuación.
- Cemento
- Agua de cal
- Muchos disolventes y limpiadores industriales (cientos de miles de
productos de la construcción, raspadores de pisos, limpiadores de
ladrillos, productos endurecedores del cemento y muchos otros).
- Cal apagada5
2.3.2.1. Aplicaciones de la cal hidratada
La cal hidratada se emplea en:
2.3.2.1.1. Industria
5 http://www.ecured.cu/Hidr%C3%B3xido_de_Calcio
Metalúrgica: En la producción de magnesio se pueden
utilizar dos tipos de procesos de fabricación: proceso electrolítico o
proceso de reducción térmica, en el proceso electrolítico se utiliza cal
hidratada.
Química: En mezclas de pesticidas; en el proceso para la neutralización
de ácido sobrante, en la industria petrolera; en la manufactura de
aditivos para el petróleo crudo; en la industria petroquímica para la
manufactura de aceite sólido; en la manufactura de estereato de calcio;
como rellenante y como materia prima para la obtención de carbonato de
calcio precipitado (CCP ó PCC).
2.3.2.1.1.1. Industrias alimentarias:
Industria azucarera (en concreto en el azúcar de caña)
- Ostricultura
- Piscicultura
- Industria láctea
- Fabricación de colas y gelatinas
- Conservación de frutas y verduras: Para la eliminación del exceso
de CO2 en las cámaras de atmósfera controlada (AC) para la
conservación de frutas y verduras (también flores)
- Tratamiento del trigo y del maíz: Componente para la nixtamalización
del maíz para producir tortillas.
- Fabricación de la sal: Para librar una salmuera de carbonatos de
calcio y magnesio en la manufactura de sal de mesa.
- Para el procesamiento de agua para bebidas alcohólicas y
carbonatadas
2.3.2.1.1.2. Protección ambiental
a) Tratamiento de aguas potables (potabilización): Se emplea para
ablandar, purificar, eliminar turbiedad, neutralizar la acidez y eliminar
la sílice y otras impurezas con el fin de mejorar la calidad del agua
que consumen las personas.
b) Tratamiento de aguas residuales: La cal se utiliza, de manera muy
habitual, en los tratamientos convencionales químicos de aguas
residuales industriales, básicamente, de carácter inorgánico.
La cal es un álcali fácilmente disponible, que es utilizado ampliamente en
el tratamiento o línea de lodos en las plantas de depuración de aguas
residuales urbanas o en aguas industriales de carácter orgánico.
2.3.2.1.1.3. Remineralización de agua desalinizada:
La adición de cal permite realizar un acondicionamiento
del agua desalinizada que puede ir desde un ajuste de pH y reducción
de la agresividad, hasta la remineralización de las aguas por el aporte de
calcio. La cal es imprescindible para el tratamiento final de las aguas
procedentes de la desalinización del agua del mar puesto que aporta
uno de los compuestos nutricionales básicos - el calcio - y es necesaria
para el mantenimiento del equilibrio cal-carbónico, con el fin de evitar
incrustaciones o corrosiones.
2.3.2.1.1.4. Depuración de gases:
La cal, dependiendo del proceso, es el desulfurante más
rentable y natural que elimina el anhídrido sulfuroso y otros gases ácidos
(HCl, HF y NOx) de los humos industriales de incineradoras de residuos
sólidos urbanos, de centrales térmicas y de la industria en general. La
cal también se emplea para eliminar los compuestos orgánicos
persistentes (COP) como son dioxinas y furanos, y metales pesados de
incineradoras municipales e industriales.
2.3.2.1.1.5. Tratamiento de residuos:
La cal se emplea, además de como integrante de
diversos tratamientos químicos, como agente para prevenir los malos
olores y la contaminación de las aguas por la lixiviación.
2.3.2.1.1.6. Tratamiento de suelos contaminados:
Las técnicas empleadas en el tratamiento de suelos
contaminados se agrupan de la manera siguiente:
1. Fisicoquímicos
2. Estabilización - solidificación
3. Biológicos
4. Térmicos
En el tratamiento ó método físico-químico (que constituye un proceso de
transformación del residuo mediante la adición de una serie de
compuestos químicos para alcanzar el objetivo deseado), la cal se utiliza
en las técnicas de neutralización, precipitación y decloración. Con
respecto a la técnica de estabilización / solidificación (cuyo principal
objetivo es reducir la movilidad y solubilidad de contaminantes presentes
en el suelo, disminuyendo su toxicidad y eliminando su lixiviación), existe
una variante denominada “Solidificación con cal y materiales
puzolánicos”.6
2.3.3. Sulfato de aluminio
El sulfato de aluminio es una sal sólida y de color blanco.
Generalmente es usada en la industria como floculante en la purificación
de agua potable y en la industria del papel.
El sulfato de aluminio se obtiene al reaccionar un mineral alumínico
(caolín, bauxita, hidrato de aluminio) con ácido sulfúrico a temperaturas
elevadas; la reacción que se lleva a cabo es la siguiente:
Al2O3 + 3H2SO4 -------- > Al2(SO4) 3 + 3H2O
Una vez que se obtiene el sulfato de aluminio, este se tiene en dos
presentaciones: sólido y líquido, con dos especificaciones, estándar y
libre de fierro.
2.3.3.1. Propiedad Floculante
6 https://es.wikipedia.org/wiki/Hidr%C3%B3xido_de_calcio
Cuando el pH del agua es débilmente ácido, neutro o
débilmente alcalino, el aluminio precipita arrastrando las partículas en
suspensión, dejando el agua transparente. Esta propiedad es
comúnmente usada en piscinas y para tratamiento de aguas industriales
para evitar formación de gérmenes y algas.
2.3.3.2. Usos y aplicaciones del sulfato de aluminio
El sulfato de aluminio tiene las siguientes aplicaciones:
- Sulfato de aluminio en la industria de la Pulpa y Papel.- Ajuste de pH,
encolado (brea o cera) y ajuste de retención (fino, carga, pigmentos,
etc.) además de servir en el tratamiento de sus efluentes.
- Sulfato de aluminio para el tratamiento de aguas residuales: El sulfato
de aluminio es un producto económico y efectivo en la eliminación del
fósforo en las plantas de tratamiento de agua residual, tanto municipal
e industrial, y clarifica el agua al precipitar los sólidos suspendidos.
- Sulfato de aluminio para el tratamiento de agua potable: El sulfato de
aluminio permite clarificar el agua potable, ya que es un coagulante y
por ello sedimenta los sólidos en suspensión, los cuales por su tamaño
requerirán un tiempo muy largo para sedimentar.
- Sulfato de aluminio en la manufactura química: Se emplea en
producción de otras sales de aluminio.
- Sulfato de aluminio en la industria de jabones y grasas: Se emplea en
la producción de jabones de aluminio y grasas para usos industriales.
- Sulfato de aluminio en la industria del petróleo: Manufactura de
catalizadores sintéticos.
- Sulfato de aluminio en la industria de Farmacéutica: Como astringente
en la preparación de drogas y cosméticos.7
2.3.4. Hipoclorito de Sodio
7http://www.quiminet.com/articulos/el-sulfato-de-aluminio-y-sus-aplicaciones-en-la-industria-
27849.htm
El cloro, utilizado solo o en forma de hipoclorito sódico, actúa
como un potente desinfectante. Añadido al agua destruye rápidamente
las bacterias y otros microorganismos que pueda contener, lo que
garantiza su potabilidad y ayuda a eliminar sabores y olores.
El cloro, como tal o en forma de hipoclorito sódico, es el desinfectante
del agua más utilizado en el mundo por su efectividad, bajo coste y fácil
uso.
Según la Organización Mundial de la Salud: “La desinfección con cloro
es la mejor garantía del agua microbiológicamente potable”. Por sus
propiedades, el cloro es efectivo para combatir todo tipo de
microrganismos contenidos en el agua -incluyendo bacterias, virus,
hongos y levaduras- y las algas y limos que proliferan en el interior de
las tuberías de suministro y en los depósitos de almacenamiento.
Solo la cloración garantiza que el agua ya tratada se mantiene libre de
gérmenes durante su tránsito por tuberías y depósitos antes de llegar al
grifo, además de ser también el método más económico.
Por todo ello, la cloración es el método de potabilización del agua más
extendido en el planeta, como lo avala el hecho de que el 98% del agua
que se suministra en Europa occidental haya sido desinfectada con
cloro.
2.4. Marco Conceptual
2.4.1. Aguas Residuales
Las aguas de composición variada provenientes de las descargas
de usos municipales, industriales, comerciales, de servicios agrícolas,
pecuarios, domésticos, incluyendo fraccionamientos y en general de
cualquier otro uso, que hayan sufrido degradación en su calidad original.
2.4.2. Tratamiento Fisco y Químico Intensivo
Estas etapas comprenden lo que es la Clarificación, cuyas
operaciones son: Sedimentación, Coagulación/Floculacion y
Desinfección.
2.4.3. Prueba de Jarras
La prueba de jarras es un procedimiento común de laboratorio
para determinar la dosis óptima de coagulante para el agua potable o el
tratamiento de aguas residuales. Este método permite realizar ajustes en
el pH, las variaciones en las dosis de coagulante o polímero, alternando
velocidades de mezclado, a pequeña escala con el fin de predecir el
funcionamiento de una operación a gran escala de tratamiento. Una
prueba de jarras simula los procesos de coagulación- floculación –
sedimentación; que fomentan la eliminación de los coloides en
suspensión y materia orgánica que puede conducir a problemas de
turbidez, olor y sabor.
2.4.4. El Cloro puede ser usado como Hipoclorito de sodio:
Hipoclorito de sodio: El Hipoclorito de sodio o lejía representa
seguramente uno de los más potentes y eficaces germicidas de amplio
espectro descubiertos por el hombre, teniendo la capacidad de destruir
hasta el 99 % de los gérmenes, bacterias, virus, algas, huevos, esporas
y protozoos, si se respetan las condiciones de uso correctas, como la
concentración y el tiempo de contacto entre el desinfectante y el material
a tratar
2.4.5. Carga máxima permisible
Es el límite de carga que puede ser aceptado en la descarga a un
cuerpo receptor o a un sistema de alcantarillado.
2.4.6. Cuerpo receptor o cuerpo de agua
Es todo río, lago, laguna, aguas subterráneas, cauce, depósito de
agua, corriente, zona marina, estuarios, que sea susceptible de recibir
directa o indirectamente la descarga de aguas residuales.
2.4.7. Efluente
Líquido proveniente de un proceso de tratamiento, proceso
productivo o de una actividad.
2.4.8. Afluente
El concepto de afluente es habitual en la hidrología en referencia
al cuerpo de agua cuya desembocadura no se produce en el mar, sino
que lo hace en un río superior o de mayor importancia.
2.4.9. ECA (Estándar de Calidad Ambiental )
Que, el artículo 31° de la Ley Nº 28611, define al Estándar de
Calidad Ambiental (ECA) como la medida que establece el nivel de
concentración o del grado de elementos, sustancias o parámetros
físicos, químicos y biológicos, presentes en el aire, agua o suelo en su
condición de cuerpo receptor, que no representa riesgo significativo para
la salud de las personas ni al ambiente.
CAPÍTULO III
PLANTEAMIENTO OPERACIONAL
3.1. Definiciones Operacionales
3.2. Universo y Muestra
Universo: El análisis y estudio del tratamiento del agua residual generada
de los procesos metalúrgicos corresponde a U.E.A Orcopampa.
Muestra: Está conformada por el volumen de agua residual para el
tratamiento, aplicando la dosis óptima, la concentración del coagulante
requerido, así como la evaluación técnico – económico en la U.E.A.
Orcopampa.
3.3. Método y diseño
3.3.1. Método de la Investigación:
Para la investigación se aplica el método científico, complementado
con el enfoque sistémico, a través de:
- Investigación de Campo: Que permite la Identificación de la dosis
requerida de reactivos químicos para mejorar el tratamiento de las
aguas residuales industriales; a través de la Prueba de Jarras, para la
determinación de la cantidad de coagulante; así como la determinación
de la cantidad mínima de hidróxido del calcio para precipitar los
metales y corregir el Ph.
- Investigación experimental de laboratorio: Para las determinaciones de:
CUADRO N°3
Variables
Parámetros
Turbidez
Solidos Totales
Potencial de Hidrogeno
DQO
DBO5
Barrido Óptico de Metales
Fuente: Elaboración Propia
La investigación se realiza en los mismos lugares donde acontecen los
hechos, fenómenos o situaciones que se pretenden investigar.
La investigación de campo obliga al investigador a movilizarse al sitio o
escenario donde se ubica el objeto o sujeto motivo de la investigación que
aspira emprender.
En relación con esta definición, se puede afirmar que este trabajo de
investigación corresponde con dicho diseño, ya que la recopilación de la
información se realizara enmarcada dentro del ambiente específico en el
que se presenta el hecho a estudiar, a fin de dar una propuesta de
solución que se corresponda con el contexto y adecúe con las
posibilidades de implantación que se proporcionen de la comunidad.
3.3.2. Diseño de la Investigación:
Para el desarrollo del trabajo se empleó un diseño experimental,
que permitió la observación de la muestra, considerando:
Evaluación del efluente
- El sistema de Tratamiento de efluentes Nazareno se encuentra en el
Nivel. 3800 m.s.n.m., el efluente de interior de mina es evacuado a
través de 3 tubos, dos tubos de 4 pulg con un caudal de 16.0 Lt/seg y
11 Lt/seg el otro tubo es de 10 pulg que conduce un caudal de 37.1
Lt/seg.
- En sistema de Tratamiento de efluentes Nazareno tiene un tanque
reaccionador de 0.35 m3 y dos tanques de dosificación de lechada de
cal (mecánicos eléctricos) y sus capacidades son de 2 m3 c/u en donde
se prepara la lechada de cal a una concentración de 30.0 gr/Lt., el
caudal de dosificación de la lechada de cal es de 100 a 700 ml/seg
aproximadamente, esto varía de acuerdo al caudal de bombeo y pH que
presenta. La dosificación se controla mediante una válvula de 1pulg,
para posteriormente llega a la poza de sedimentación.
- Adicionalmente se cuenta con 1 cilindro de dosificación de floculante de
0.54 m3 a una concentración de 1gr/Lt. Y el caudal de dosificación es de
20 a 60 ml/seg. Dependiendo de la presencia de los sólidos.
- Una vez dosificados, estas aguas son conducidas por un canal donde
ingresan a dos pozas de sedimentación, que funcionan una a la vez, la
capacidad de la poza de sedimentación Nº 1 es de 6600 m3 y de la poza
de sedimentación Nº 2 de 7300 m3.
- Finalmente el efluente es vertido al cuerpo receptor (Río Chilcaymarca),
donde se tiene un punto de control denominado ECH-2.
El sistema de Tratamiento de la Planta Nazareno del área de recursos
hídricos se muestra a continuación:
Figura N° 5
Sistema de Tratamiento Nazareno
Fuente: Elaboración CMBSSA
Los resultados obtenidos de los parámetros según el laboratorio de la
empresa CMBSSA son los siguientes que se muestran en los 4 cuadros
siguientes junto con sus costos:
CUADRO N°4
Resultado de Parámetros Mes Enero 2015
ELEMENTOSMUESTRAS
1 ECH-2 0.29 <0.008 0.029 <0.0003 0.983 <0.0001 0.005 0.019 <0.0040.83 0.214 0.975 0.013 <0.001 0.03 0.028 9 <2.00 <10.00 2094 6.49 73.5
DQO
m
g/L
ConductividadµS/cm
pH.*Unidad
pH
Turbidez
Se
m
g/L
Zn
m
g/L
STS
m
g/L
DBO
m
g/L
Cd
m
g/L
Cu
m
g/LCo
m
g/LCrm
g/LFe
m
g/L
Lim
g/L
B
m
g/L
Código de
Servicio
Elemento
Unidad
M
n
m
g/L
Nim
g/L
Pb
m
g/L
N
Alm
g/L
Asm
g/L
Bam
g/L
Bem
g/L
Fuente: Empresa CMBSAA-Laboratorio
Cuadro4.1
Costo Mes de Enero 2015
2015 Nro. Dias
Floculante Polychem PA 8500 (Kg) Cal Viva (Kg)
Precio
Unitario $.
Kg
Consumo
Total Kg
Costo Total
$.
Precio
Unitario $.
Kg
Consumo
Total Kg
Costo Total
$.
Enero 31 5.80 37.2 215.76 0.25 4,110 1,027.50
Fuente: Empresa CMBSAA
CUADRO N°5
Resultado de Parámetros Mes Febrero 2015
MUESTRAS ELEMENTOS
1 ECH-2 0.40 1.0 1.01 <0.0003 0.983 <0.0068 0.040 0.78 <0.0500.83 0.540 0.1500 0.025 <0.0509 0.060 0.040 20 <8.00 <30.00 3094 14 80.5
Código de
Servicio
Elemento
Unidad
M
n
m
g/L
Nim
g/L
Pb
m
g/L
N
Alm
g/L
Asm
g/L
Bam
g/L
Bem
g/L
DQO
m
g/L
ConductividadµS/cm
pH.*Unidad
pH
Turbidez
Se
m
g/L
Zn
m
g/L
STS
m
g/L
DBO
m
g/L
Cd
m
g/L
Cu
m
g/LCo
m
g/LCrm
g/LFe
m
g/L
Lim
g/L
B
m
g/L
Fuente: Empresa CMBSAA-Laboratorio
Cuadro 5.1
Costo Mes de Febrero 2015
2015 Nro. Dias
Floculante Polychem PA 8500 (Kg) Cal Viva (Kg)
Precio
Unitario $.
Kg
Consumo
Total Kg
Costo Total
$.
Precio
Unitario $.
Kg
Consumo
Total Kg
Costo Total
$.
COSTO
TOTAL
Febrero 28 5.80 33.6 194.88 0.25 2,525 631.25 826.13
Fuente: Empresa CMBSAA
CUADRO N°6
Resultado de Parámetros Mes Marzo 2015
Fuente: Empresa CMBSAA-Laboratorio
Cuadro 6.1
Costo Mes de Marzo 2015
2015 Nro. Días
Floculante Polychem PA 8500 (Kg) Cal Viva (Kg)
Precio
Unitario $.
Kg
Consumo
Total Kg
Costo Total
$.
Precio
Unitario $.
Kg
Consumo
Total Kg
Costo Total
$.
COSTO
TOTAL
Marzo 31 5.80 49.6 287.68 0.25 8,265 2,066.25 2,353.93
Fuente: Empresa CMBSAA
ELEMENTOSMUESTRAS
1 ECH-2 0.60 2.0 1.01 <0.0010 0.970 <0.0055 0.045 0.88 <0.0600.90 0.670 0.1000 0.045 <0.0550 0.076 0.060 25 <10.00 <40.00 3054 14 90.5
DQO
m
g/L
ConductividadµS/cm
pH.*Unidad
pH
Turbidez
Se
m
g/L
Zn
m
g/L
STS
m
g/L
DBO
m
g/L
Cd
m
g/L
Cu
m
g/LCo
m
g/LCrm
g/LFe
m
g/L
Lim
g/L
B
m
g/L
Código de
Servicio
Elemento
Unidad
M
n
m
g/L
Nim
g/L
Pb
m
g/L
N
Alm
g/L
Asm
g/L
Bam
g/L
Bem
g/L
CUADRO N°7
Resultado de Parámetros Mes Abril 2015
Fuente: Empresa CMBSAA-Laboratorio
Cuadro 7.1
Costo Mes de Abril 2015
2015 Nro. Días
Floculante Polychem PA 8500 (Kg) Cal Viva (Kg)
Precio
Unitario $.
Kg
Consumo
Total Kg
Costo Total
$.
Precio
Unitario $.
Kg
Consumo
Total Kg
Costo Total
$.
COSTO
TOTAL
Abril 30 5.80 46.5 269.70 0.25 4,850 1,212.50 1,482.20
Fuente: Empresa CMBSA
ELEMENTOSMUESTRAS
1 ECH-2 0.50 2.0 10 <0.0020 0.970 <0.0060 0.055 0.90 <0.0700.90 0.670 0.1000 0.045 <0.0550 0.080 0.090 30 <20.00 <50.00 3080 13 89.5
DQO
m
g/L
ConductividadµS/cm
pH.*Unidad
pH
Turbidez
Se
m
g/L
Zn
m
g/L
STS
m
g/L
DBO
m
g/L
Cd
m
g/L
Cu
m
g/LCo
m
g/LCrm
g/LFe
m
g/L
Lim
g/L
B
m
g/L
Código de
Servicio
Elemento
Unidad
M
n
m
g/L
Nim
g/L
Pb
m
g/L
N
Alm
g/L
Asm
g/L
Bam
g/L
Bem
g/L
54
Evaluación económica de los resultados durante el año 2015 es la siguiente:
La Evaluación económica de la UEA de Orcopampa se puede ver en el
siguiente cuadro. A continuación de describe la comparación de costos del
Floculante y la Cal que se utilizó durante el año 2015.
CUADRO N°5
Comparación de costos del Floculante y la Cal-2015 Nazareno ECH-2
Fuente: Empresa CMBSAA
Enero 31 5.80 37.2 215.76 0.25 4,110 1,027.50 1,243.26
Febrero 28 5.80 33.6 194.88 0.25 2,525 631.25 826.13
Marzo 31 5.80 49.6 287.68 0.25 8,265 2,066.25 2,353.93
Abril 30 5.80 46.5 269.70 0.25 4,850 1,212.50 1,482.20
Mayo 31 5.80 40.6 235.48 0.25 5,370 1,342.50 1,577.98
Junio 30 5.80 39.0 226.20 0.25 8,825 2,206.25 2,432.45
Julio 31 5.80 40.8 236.64 0.25 7,371 1,842.75 2,079.39
Agosto 31 5.80 46.4 269.12 0.25 7,125 1,781.25 2,050.37
Setiembre 30 5.80 48.5 281.30 0.25 8,175 2,043.75 2,325.05
Octubre 31 5.80 36.7 212.86 0.25 5,375 1,343.75 1,556.61
Noviembre 30 5.80 39.8 230.84 0.25 6,300 1,575.00 1,805.84
Diciembre 31 5.80 38.2 221.56 0.25 8,825 2,206.25 2,427.81
5.80 496.9 2,882.02 0.25 77,116 19,279.00 22,161.02
5.80 41.4 240.17 0.25 6,426 1,606.58 1,846.75PROMEDIO
Precio
Unitario $.
Kg
Consumo
Total Kg
Costo Total
$.
Floculante Polychem PA 8500 (Kg)
Precio
Unitario $. Kg
Consumo
Total Kg
Costo Total
$.2015 Nro. Dias
Cal Viva (Kg)
COSTO
TOTAL
TOTAL
55
CUADRO N°6
Comparación Costo del Tratamiento 2014-2015 en Nazareno ECH-2
Fuente: Elaboración Propia
Figura N° 6
Cuadros comparativo de Cal y Floculante Año 2014- 2015
Fuente: Elaboración Propia
56
3.4. Técnica e Instrumentos de Verificación
Técnicas:
- Observación Directa: Participante, Estructurada
- Cuaderno de Campo
- Prueba de jarras
Instrumentos:
- Fotografías
- Material del laboratorio
- Informes del laboratorio acreditado con resultados del ECAS
3.5. Metodología de la Investigación.
La metodología que se va utilizar para la investigación de nuestro
proyecto de tesis será:
- Método de Investigación de Campo
- Investigación experimental de laboratorio
- Identificación de las dosis requeridas de reactivos químicos para
mejorar el tratamiento de las aguas residuales industriales
- Pruebas de jarras.
3.6. Materiales y Equipos
Se utilizaron las instalaciones del laboratorio de la U.E.A. Orcopampa
Materiales:
- Vasos de 500ml.
- Varillas de vidrio
- 4 Vasos de 100ml
- 1 Probeta de 100ml
57
- 1 Fiola
- 1 Luna de reloj
- 1 Espátula
- 1 Probeta de 50 ml
Equipos:
- 1 Balanza
- Tiras de pH
- Equipo de Prueba de jarras
Insumos:
- Hidróxido de Calcio
- Sulfato de Aluminio
- Hipoclorito de Sodio
3.7 DETERMINACIÓN DE DOSIS DE HIDRÓXIDO DE CALCIO
a) Determinar los parámetros iniciales del agua cruda como son
Turbiedad, pH, y solidos sedimentables
b) Llenar los cuatro vasos del equipo con 500 ml de la muestra de agua
cruda.
c) Agregar las diferentes dosis de cal (hidróxido de calcio) a cada jarra,
mover por 15 minutos y dejar reposar 20 minutos.
d) Observar y escoger la jarra que tenga el menor valor de turbidez y con
mayor porcentaje de precipitados.
3.6.1 PRUEBA DE JARRAS
a) Determinar el pH para escoger el coagulante optimo
b) Enrazar en cada jarra de 1 litro el agua tratada con hidróxido de calcio,
empleando la dosis optima anteriormente calculada
58
c) Preparar una solución de sulfato de aluminio patrón con una
concentración de 1500 ppm
d) Calcular con la fórmula de diluciones la cantidad de solución de sulfato
de aluminio que se debe agregar a cada jarra. Se consideró
concentraciones alrededor de los valores que se emplean a la fecha
en la planta
e) Proceder a una agitación rápida durante 5 minutos (mezcla rápida).
f) Cambiar a una agitación lenta durante 10 minutos (mezcla lenta).
g) Dejar en reposo durante un tiempo aproximado de 20 minutos.
h) Decantar el líquido sobrenadante con cuidado de no remover los
sólidos sedimentados
i) A esta solución medir otra vez los parámetros de turbiedad, pH, color.
59
CAPÍTULO IV
ANÁLISIS Y EVALUACIÓN DE RESULTADOS
4.1. CALIDAD DEL EFLUENTE
La Calidad del Afluente según el Tratamiento que le da la empresa
muestra los siguientes resultados:
CUADRO N° 7
Parámetros Unidad Nazareno Norma
Conductividad µS/cm 2094 2500 - 5000
Potencial de
Hidrogeno
Unidad
pH
8 6,5 – 8,5
DBO5 mg/L 9 15
DQO mg/L 20 40
Aluminio mg/L 0.29 5
Arsénico mg/L <0.008 0,1- 0,2
Bario mg/L 0.029 0,7
Berilio mg/L <0.0003 0,1- 0,1
Boro mg/L 0.983 1-5
Cadmio mg/L <0.0001 0,01-0,05
Cobre mg/L 0.005 0,2-0,5
Cobalto mg/L 0.019 0.05-1
Cromo Total mg/L <0.004 0,1-1
Hierro mg/L 0.83 5
Litio mg/L 0.214 2,5
Magnesio mg/L 0.002 250
Manganeso mg/L 0.975 0,2
Níquel mg/L 0.013 0,2-1
Plomo mg/L <0.001 0,05
Selenio mg/L 0.03 0,02 – 0,05
Zinc mg/L 0.028 2-24
Elaboración Propia
60
4.2. DETERMINACIÓN DEL HIDRÓXIDO DE CALCIO
Se colocó en cada jarra 500 ml la misma cantidad de agua cruda con
concentraciones de hidróxido de calcio diferentes que van en el siguiente
orden. Para saber la masa que se debe adicionar para obtener las dosis
antes mencionadas se usó la siguiente formula.
( )lsolucionV
solutomg
ppm =
Procedimiento:
1. Se pesó el hidróxido de calcio (CaO2H2) de acuerdo a los cálculos
realizados con la formula descrita anteriormente.
Figura 7: Preparación del Hidróxido de Calcio
Fuente: Elaboración propia
2. Se agregó el Hidróxido de calcio a las 4 jarras de 500 ml cada una.
Figura 8: Hidróxido de calcio en Jarras
61
Fuente: Elaboración propia
3. Se movió lentamente la solución por un periodo de 15 minutos.
Figura 9: Hidróxido de calcio en Jarras
Fuente: Elaboración propia
4. Se dejó sedimentar por un periodo de 20 minutos cada jarra.
Figura 10: Sedimentación
Fuente: Elaboración propia
62
CUADRO N° 8
RESULTADOS CONCENTRACION DE HIDROXIDO DE CALCIO
JARRA
CONCENTRACIÓN
DE Ca(OH)2 (ppm)
MASA DE
HIDRÓXIDO DE
CALCIO (CaO2H2)
(mg)
1 5 2,5
2 10 5
3 15 7,5
4 20 10
GRAFICO Nº 08
0.00
2.00
4.00
6.00
8.00
10.00
12.00
14.00
16.00
18.00
20.00
CONCENTRACIÓN DE Ca(OH)2
(ppm)
MASA DE HIDRÓXIDO DE
CALCIO (CaO2H2) (mg)
JARRA 1
JARRA 2
JARRA 3
JARRA 4
INTERPRETACIÓN: De las 4 Jarras se determinó la concentración
adecuada de Ca(OH)2 (ppm) 20 y masa de Hidróxido de Calcio (mg) 7,5.
63
CUADRO 9
RESULTADOS CONCENTRACION DEL PARAMETRO pH
PARÁMETROS JARRA 1 JARRA 2 JARRA 3 JARRA 4
Concentración
hidróxido calcio
10ppm 15 ppm 20 ppm 25 ppm
Ph 13 13 11 12
GRAFICO Nº 09
0
5
10
15
20
25
Concentraciòn hidróxido calcio Ph
JARRA 1
JARRA 2
JARRA 3
JARRA 4
Interpretación: Al hacer las diferentes pruebas se determinó que la
dosis efectiva es de 20 ppm de hidróxido de calcio, debido a que el
pH obtenido fue 11 y la turbidez fue la más baja.
64
4.3. DETERMINACIÓN DEL SULFATO DE ALUMINIO
Se añadió a cada jarra de 1000 ml que ya se encontraba con la solución
de hidróxido de calcio (5 Muestras) en la primera jarra de adiciono 10 ml
de la misma solución del sulfato de aluminio al 1%, en la segunda jarra
esta se adiciono 20 ml de la misma solución continuando así con las
demás jarras hasta 50 ml.
Para saber cuántos ml de la solución se deben adicionar para obtener
las dosis antes mencionadas se usó la siguiente formula.
2211 CVCV =
En Donde:
V1 Volumen 1
V2 Volumen 2 correspondiente al volumen que se desea obtener.
C1 Concentración 1 de la solución de la cual se parte
C2 Concentración 2 a la que se desea llegar
Conclusión: Usando la formula se determinó que la cantidad de sulfato
de aluminio adecuada es de 390 mg
Procedimiento:
1. Se preparó la solución de sulfato de aluminio
Fuente: Elaboración propia
65
2. Se adiciono la muestra preparada a cada vaso.
Figura 12. Adición de la muestra
Fuente: Elaboración propia
66
CUADRO 10
RESULTADOS CONCENTRACION DE ALUMINIO
JARRA
Concentración de
sulfato de aluminio
Al2(SO4)3 (ppm)
Volumen de solución sulfato
aluminio Al2(SO4)3 1500 ppm
patrón (ml)
1 310 207ml
2 340 227ml
3 375 250ml
4 400 500ml
GRAFICO Nº 10
0
50
100
150
200
250
300
350
400
450
500
Concentración de sulfato
de aluminio Al2(SO4)3 (ppm)
Volumen de solución sulfato
aluminio Al2(SO4)3 1500 ppm
patrón (ml)
JARRA 1
JARRA 2
JARRA 3
JARRA 4
Fuente: Elaboración propia
Interpretación: Al hacer las diferentes pruebas se determinó que la
dosis efectiva es de 375 ppm de Al2(SO4)3, para 250ml de muestra
preparada con Hidróxido de Calcio (CaO2H2).
67
CUADRO 11
RESULTADOS DE LOS PARAMETROS pH Y TURBIEDAD
PARÁMETROS JARRA 1 JARRA 2 JARRA 3 JARRA 4
Al2(SO4)3, 310 ppm 340ppm 375 ppm 390 pmm
pH 13 13 12 17
Turbiedad 83.5 82.3 60.9 70.3
Fuente: Elaboración propia
GRAFICO Nº 11
0.0
50.0
100.0
150.0
200.0
250.0
300.0
350.0
400.0
 Al2(SO4)3, pH Turbiedad
JARRA 1
JARRA 2
JARRA 3
JARRA 4
Fuente: Elaboración propia
Interpretación: Al hacer las diferentes pruebas se determinó que la
dosis efectiva es de la Jarra 3 donde se obtuvo los resultados
adecuados.
68
4.4. Adición de la solución del Hipoclorito de Sodio
Para bajar el nivel de pH se escogió el hipoclorito de sodio por sus
propiedades desinfectantes, disponibilidad en el mercado y bajo costo. Se
efectuó una híper- cloración adicionando 5ml de hipoclorito de calcio
Para saber la dosis de cloro a añadir se usó la siguiente formula
1
22
1
C
xCV
V =
En donde:
V1 = Volumen 1
V2= Volumen 2 correspondiente al volumen que se desea obtener
C1= Concentración 1 de la solución de la cual se parte
C2= Concentración 2 a la que se desea llegar
Partiendo de un solución al 5% de concentración se tiene
ppm
ppmmlx
V
50000
5500
1 =
mlV 05,01 =
Con lo cual se obtuvo 0,05 ml que son los que se añadió al agua cruda
transcurrido un tiempo mínimo de 30 minutos.
CONCLUSIÓN:
El pH bajo de 12 a 9.
69
CUADRO 12
RESULTADO FINAL DE LAS 4 JARRAS CON SUS RESPECTIVOS
PARAMETROS
PARAMETROS JARRA 1 JARRA 2 JARRA 3 JARRA 4
Cal 10ppm 15 ppm 20 ppm 25 ppm
Al2(SO4)3, 310 ppm 340ppm 375 ppm 390 ppm
Hipoclorito de
sodio
5ml 5ml 5ml 5ml
pH 12 11 9 14
Turbiedad 83.5 82.3 60.9 75.7
Fuente: Elaboración propia
GRAFICO Nº 12
0,00
50,00
100,00
150,00
200,00
250,00
300,00
350,00
400,00
Cal  Al2(SO4)3, Hipoclorito de
sodio
pH Turbiedad
JARRA 1
JARRA 2
JARRA 3
JARRA 4
Fuente: Elaboración propia
INTERPRETACIÓN: Una vez terminada la prueba de jarras y con los
datos obtenidos, se eligió que la dosis de la jarra 3 fue la más
conveniente.
70
Una vez determinadas las condiciones iniciales del agua cruda se realizó
la prueba de Jarras de la siguiente manera.
1. Se añadió a cada Jarra 1000 ml de agua cruda , en la primera jarra se
adiciono 10 ppm de la solución de Cal al 1 % , en la segunda jarra esta
vez se adiciono 15 ppm de la misma solución , continuando así hasta la
jarra 4 para saber cuántos ml de las solución se deben adicionar para
obtener las dosis antes mencionadas se usó la siguiente formula :
2211 CVCV =
En donde
Volumen 1
Volumen 2 correspondiente al volumen que se desea obtener
Concentración 1 de la solución de la cual se parte.
Concentración 2 a la que se desea llegar.
Partiendo de una solución al 1% y para conocer cuántas partes por
millón hay presentes se tiene:
ppm
Sulfatogr
x
Aguaml
Sulfatogr
alSolución 10000
1000000
10000
10000
10000
100
1
%1 ===
Para el primer caso de 2 ppm se tiene:
2211 CVCV =
mlV
ppmxmlppmxV
2.0
10000
2000
2100010000
1
1
==
=
2. Esto significa que para obtener una dosis de 2ppm se debe adicionar 0.2
ml de la solución al 1% en 1000ml de agua cruda, el mismo
procedimiento se realizó para las dosis restantes, los resultados
obtenidos fueron para la segunda jarra 0.3 ml, para la tercera 0.4 ml.
71
Figura 13.
3. Como segundo paso se añadió el Sulfato de Aluminio al 0.5% de
concentración, la dosis varía entre 0.1 a 0.3 ppm, para este caso se usó
0.1 ppm , así mismo usando la fórmula anterior se pudo determinar los
ml a dosificar , que para el caso de 0.1 ppm fue de 0.02 ml.
Figura 14
4. Para bajar el pH del agua se empleó el Hipoclorito de Sodio añadiendo
10ppm (1ml) a cada jarra.
5. Una vez colocado la cal el sulfato de aluminio y el hipoclorito de Sodio
se procedió a una agitación rápida (100 RPM) durante un minuto y luego
durante 15 minutos a una agitación lenta (40 RPM), luego de la agitación
se dejó sedimentar por 10 minutos.
72
Figura 15
6. A cada muestra de agua de las cuatro jarras se realizó análisis de
Turbiedad, DQO, DBO, pH, Conductividad y barrido óptico de metales,
para así determinar que dosis produjo los mejores resultados.
Los resultados que se obtuvieron con esta prueba se detallan en la
siguiente tabla
73
4.5. Análisis Comparativo de la Dosis Óptima Resultante y la de
Nazareno ECH-2.
Se demuestran los resultados con los siguientes cuadros y gráficos.
CUADRO Nº 13
Parámetros Nazareno
Prueba de
Jarras
Porcentaje
%
Conductividad 2094 730 83.760 29.200
Potencial de Hidrogeno
8 7 100.00 87.50
DBO5 9 5.8 60.00 38.67
DQO 20 10 50.00 25.00
Aluminio 0.29 0.069 5.80 1.38
Arsénico 0.008 0.01 0.80 1.00
Bario 0.029 0.2 2.90 20.00
Berilio 0.0003 0.001 0.03 0.10
Boro 0.983 0.313 98.30 31.30
Cadmio 0.0001 0.003 0.01 0.30
Cobre 0.0015 0.003 0.15 0.30
Cobalto 0.019 0.008 1.90 0.80
Cromo Total 0.004 0.009 0.40 0.90
Hierro 0.83 0.072 16.60 1.44
Litio 0.214 0.040 10.70 2.00
Manganeso 0.975 0.358 97.50 35.80
Níquel 0.013 0.018 1.30 1.80
Plomo 0.001 0.008 0.10 0.80
Selenio 0.03 0.01 3.00 1.00
Zinc 0.028 0.022 1.40 1.10
Fuente: Elaboración propia
74
GRÁFICO Nº 13
RESULTADOS DE LOS PARAMETROS NAZARENO ECH-2 VS
PRUEBA DE JARRAS
0,000
10,000
20,000
30,000
40,000
50,000
60,000
70,000
80,000
90,000
100,000
Conductividad
Poten,Hidrogeno
DBO5
DQO
Aluminio
Arsénico
Bario
Berilio
Boro
Cadmio
Cobre
Cobalto
CromoTotal
Hierro
Litio
Manganeso
Níquel
Plomo
Selenio
Zinc
Nazareno Prueba de Jarras
FUENTE: ELABORACION PROPIA
INTERPRETACIÓN: Se observa que la conductividad de Nazareno ECH-
2 es de 2094 (83.76%) pero con la prueba de jarras que se hizo bajo a
730 (29.20%).
75
4.6. Análisis Estadístico
- Con los resultados experimentales obtenidos se procedió a
construir tablas que relacionan los parámetros de turbidez,
conductividad , pH y metales pesados con las dosis de coagulante
aplicadas, ordenadas por los meses en que se realizaron los ensayos.
- Posteriormente se construyeron las tablas y gráficas respectivas
donde se relacionan las dosis óptimas con la dosis que emplea la
empresa.
- Se hallaron los porcentajes de remoción de turbiedad y color después
del tratamiento con Sulfato de Aluminio tipo B.
- Por último se tabularon los resultados obtenidos de una forma que se
relacionaran las condiciones iniciales y finales del agua (turbiedad-
color-pH) con las dosis óptimas de coagulante encontradas.
4.7. Análisis de los Costos Operativos Beneficio
La inversión siempre es un factor importante que es preciso tomar en
cuenta,
Insumos Químicos: Dentro de los insumos químicos se encuentra el,
Hidróxido de Calcio, Sulfato de Aluminio y el Hipoclorito de sodio, costos
que se determinaron a partir de las dosis obtenidas de las pruebas
experimentales.
1. Cal: Para los cálculos del costo de cal se tomó como referencia la dosis
de cal usada en el agua más turbia que fue de 10 ppm por presentar
menor pH.
xtml
m
Lt
diasmcal 3
3
1
1000
/22=
díaLtCal
ml
Lt
mlxCal
/22
1000
.1
22000
=
=
Con un costo de $ 0.15 por kg. se tiene:
76
3
3
/0005.50
/22//01.50
mCalCosto
diamdiaCalCosto
=
=
Cada metro cúbico de agua tendrá una inversión de $ 0.0005 por
concepto de cal.
2. Sulfato de Aluminio: De acuerdo a las pruebas experimentales la dosis
que produjo los mejores resultados fue de 5 ppm al 1% de
concentración en aguas más turbias y de 5 ppm al 1% de concentración
en aguas menos turbias , para el cálculo de los costos de sulfato de
aluminio se trabajó con la concentración del 5% . Con una producción
de 22 al día de agua se tiene :
( )
( )
( ) díaLtSOAl
ml
Lt
mlxSOAl
mlx
m
Lt
diaxmSOAl
/.2.2
1000
.1
2200
1.0
1
.1000
/22
342
342
3
3
342
=
=
=
Para 22m3 al día de agua se necesitara de 2,2 de Al2(SO4)3, teniendo
en consideración que el Kg de sulfato de aluminio cuesta $4.8 para
preparar 2,2 L de solución al 5% el costo será de $0.08
( )
( ) 3
342
3
342
/004.50
/22//08.50
mSOAlCosto
díamdíaSOAlCosto
=
=
El costo por m3 de agua coagulada será de $. 0.004.
3. Hipoclorito de Sodio: la dosis sobre la cual se realizó los cálculos fue de
6 ppm de cloro al 5% que comúnmente se encuentra en el mercado.
77
díamlNaClO
mlx
lm
Lt
xdíamNaClO
/2640
12.0
1000
/22 3
3
=
=
El costo por litro de cloro en el mercado se encuentra en $. 0.50.
3
3
/06.50
/22//3.1$.
5.506.2
mNaClOCosto
díamdíaNaClOCosto
LxNaClOCosto
=
=
=
Cada metro cúbico de agua tendrá una inversión de $0.06 por concepto
de hipoclorito de sodio
Una vez obtenidos todos los valores relacionados a los Costos de
Funcionamiento se procedió a realizar la sumatoria para saber cuál es el
costo por metro cúbico de agua tratada.
78
CUADRO N° 33
Cuadro Costos Floculante y Cal Viva Año 2015 Nazareno
CUADRO N° 34
Cuadro Costos Prueba de Jarras
CUADRO COSTOS
Sulfato de Aluminio(kg) Cal Viva (kg)
Nro.
Días
Precio
Unitario
$ kg.
Consumo
Total
Kg.
Costo
Total
Precio
Unitario
$ kg.
Consumo
Total
Kg.
Costo
Total
Enero 31 4.8 37.2 178.56 0.15 102 15.3
Febrero 28 4.8 33.6 161.28 0.15 91.2 13.68
Marzo 31 4.8 49.6 238.08 0.15 139.2 20.88
Abril 30 4.8 46.5 223.2 0.15 129.9 19.485
Mayo 31 4.8 40.6 194.88 0.15 112.2 16.83
Junio 30 4.8 39 187.2 0.15 107 16.11
Julio 31 4.8 40.8 195.84 0.15 112.8 16.92
Agosto 31 4.8 46.4 222.72 0.15 129.6 19.44
Septiembre 30 4.8 48.5 232.8 0.15 135.9 20.385
Octubre 31 4.8 36.7 176.16 0.15 100.5 15.075
Noviembre 30 4.8 39.8 191.04 0.15 109.8 16.47
Diciembre 31 4.8 38.2 183.36 0.15 105 15.75
TOTAL 496.9 2385.12 1.8 1375.5 206.325
Enero 31 5.80 37.2 215.76 0.25 4,110 1,027.50 1,243.26
Febrero 28 5.80 33.6 194.88 0.25 2,525 631.25 826.13
Marzo 31 5.80 49.6 287.68 0.25 8,265 2,066.25 2,353.93
Abril 30 5.80 46.5 269.70 0.25 4,850 1,212.50 1,482.20
Mayo 31 5.80 40.6 235.48 0.25 5,370 1,342.50 1,577.98
Junio 30 5.80 39.0 226.20 0.25 8,825 2,206.25 2,432.45
Julio 31 5.80 40.8 236.64 0.25 7,371 1,842.75 2,079.39
Agosto 31 5.80 46.4 269.12 0.25 7,125 1,781.25 2,050.37
Setiembre 30 5.80 48.5 281.30 0.25 8,175 2,043.75 2,325.05
Octubre 31 5.80 36.7 212.86 0.25 5,375 1,343.75 1,556.61
Noviembre 30 5.80 39.8 230.84 0.25 6,300 1,575.00 1,805.84
Diciembre 31 5.80 38.2 221.56 0.25 8,825 2,206.25 2,427.81
5.80 496.9 2,882.02 0.25 77,116 19,279.00 22,161.02
5.80 41.4 240.17 0.25 6,426 1,606.58 1,846.75PROMEDIO
Precio
Unitario $.
Kg
Consumo
Total Kg
Costo Total
$.
Floculante Polychem PA 8500 (Kg)
Precio
Unitario $. Kg
Consumo
Total Kg
Costo Total
$.2015 Nro. Dias
Cal Viva (Kg)
COSTO
TOTAL
TOTAL
79
CUADRO COMPARATIVO COSTOS NAZARENO VS PRUEBA DE
JARRAS
I
N
T
E
R
P
R
E
T
A
INTERPRETACIÓN: Cada metro cúbico obtenido tendrá un costo de $
1.71. Con lo cual se tiene un ahorro del 97% en comparación con el
costo de la planta actual de la UEA de Orcopampa.
80
CONCLUSIONES
• Se evaluó los parámetros de las aguas residuales generadas del proceso
metalúrgico.
• Se determinó la dosis óptima del hidróxido de calcio, siendo óptimo el
resultado con la prueba de jarras.
• Se determinó la dosis óptima de sulfato de aluminio, siendo óptimo el
resultado con la prueba de jarras.
• Se calculó el costo del tratamiento y comparo con el tratamiento existente,
siendo óptimo el resultado con la prueba de jarras.
81
RECOMENDACIONES
• Se recomienda realizar mantenimiento y calibración de los equipos
utilizados en el proceso de tratamiento de agua de una forma periódica por
personal especializado y así lograr mediciones de mayor confiabilidad.
• Es necesario realizar una inversión en equipos y material de laboratorio
dado que es necesario tener un buen control en el sector del agua que
garantice que el agua esté libre de impurezas que puedan tener efectos
adversos sobre la salud.
• Es recomendable que en posteriores análisis no se evalué solo los
parámetros de turbidez y pH en cuanto a la dosificación de coagulante sino
también parámetros como dureza que también afectan la cantidad de
coagulante en el momento del tratamiento de aguas.
• Para posteriores análisis es necesario la recolección de un mayor volumen
de agua cruda para la realización de los ensayos de una forma repetitiva y
así lograr una mayor confiabilidad en los resultados obtenidos.
• Se recomienda que en la Planta de Tratamiento de Agua de la UEA
Orcopampa se realicen ensayos periódicos con la prueba de jarras con el
fin de mejorar la cantidad de coagulante utilizada al dosificar el agua.
82
BIBLIOGRAFÍA
1. http://cybertesis.un.edu.pe/bitstream/uni/217/1/mendez_mf.pdf
2. http://dspace.ups.edu.ec/bitstream/123456789/6215/1/UPS-GT000524.pdf
3. http://www.monografias.com/trabajos89/extraccion-oro-mineria-cielo-
abierto-mca/extraccion-oro-mineria-cielo-abierto-mca.shtml#ixzz47byprxYC
5. http://es.slideshare.net/NELSHON/tratamiento-de-aguas-residuales-
fitorremediacion
6. http://www.siebec.com/+-Traitement-d-effluents-industriels-+.html?lang=es
7. http://es.slideshare.net/NELSHON/tratamiento-de-aguas-residuales-
fitorremediacion?
8. http://www.revistas.unal.edu.co/index.php/dyna/article/view/25636/39133
1. Autor: CEPIS Título: Operación y mantenimiento de plantas de tratamiento
de agua: manual de capacitación para operadores. Lima, CEPIS, 2002.
862 p. (OPS/CEPIS/PUB/02.76)
2. Tratamiento de aguas residuales – R. S. Ramalho
3. Mangini, S. P., Prendes, H., Amsler, M. L., & Huespe, J. (2003)
4. Borges, C. Determinación de parámetros de diseño de un tratamiento
físico químico de aguas residuales, Yucatan,1996.456pp.
5. Romero, J . Purificación de aguas residuales Editorial Escuela Colombiana
de Ingeniería, Colombia, 2000. 394 pp.
6. Seoanez, M. Ingeniería ambiental aplicada .Editorial Mundi Prensa .
Madrid, 1997.528 pp.
83
7. Osvaldo Aduvire Drenaje acido mina generación y tratamiento Instituto
Geológico y Minero de España Dirección de Recursos Minerales y
Geoambiente, Madrid, 2006 Pag.13.
8. República del Perú, Ministerio de Energía y Minas (2006), Guía Ambiental
para el Manejo de Drenaje Ácido de Minas.
9. Villachica, C. (2004), Proceso NCD, Caso Exitoso de Transferencia de
Tecnología Limpia Para el Tratamiento de Efluentes Ácidos de Mina.
10. Mangini, S. P., Prendes, H., Amsler, M. L., & Huespe, J. (2003)
11. Aduvire, O., Barettino, D., Llopis, L., Aduvire, H. (2002), Prevención de la
Formación y Tratamiento por métodos Pasivos de Aguas Ácidas de Minas
y Escombreras
12. Rodríguez, R., Estupiñán, M., Iglesias, M., Castillo, E. (2007), Evaluación
del riesgo ambiental de los pasivos ambientales de la cuenca alta del Río
Santa en el departamento de Ancash, Perú.
84
A N E X O S
CUADRO N° 14
En el siguiente cuadro se observa la diferencia de Nazareno ECH-2
con la Prueba de jarras que se realizo
Parámetros Unidad Nazareno %
Prueba de
Jarra
%
Conductividad µS/cm 2094 83.76 730 29.20
FUENTE: ELABORACION PROPIA
GRÁFICO N° 14
PARAMETRO CONDUCTIVIDAD NAZARENO VS PRUEBA DE
JARRAS
FUENTE: ELABORACION PROPIA
INTERPRETACIÓN: Se observa que la conductividad de Nazareno es de
2094 (83.76%) pero con la prueba de jarras que se hizo bajo a 730
(29.20%).
85
CUADRO Nº 15
En el siguiente cuadro se observa la diferencia de Nazareno ECH-2
con la Prueba de jarras que se realizo
Parámetros Unidad Nazareno %
Prueba de
Jarra
%
Potencial de
hidrógeno
µS/cm 8 100 7 87.50
Fuente: Elaboración propia
GRÁFICO Nº 15
PARAMETRO POTENCIAL DE HIDROGENO NAZARENO VS PRUEBA
DE JARRAS
Fuente: Elaboración propia
INTERPRETACIÓN: Se observa que el potencial de hidrogeno de
Nazareno es de 8 (100%) pero con la prueba de jarras que se hizo bajo
a 7 (87.50%).
86
CUADRO Nº 16
En el siguiente cuadro se observa la diferencia de Nazareno ECH-2
con la Prueba de jarras que se realizo
Parámetros Unidad Nazareno %
Prueba de
Jarra
%
DBO5 Mg/L 9 60.00 5,8 38.67
Fuente: Elaboración propia
GRÁFICO Nº 16
PARAMETRO DBO5 NAZARENO VS PRUEBA DE JARRAS
Fuente: Elaboración propia
INTERPRETACIÓN: Se observa que la DBO5 de Nazareno es de 9
(60.00%) pero con la prueba de jarras que se hizo bajo a 5.8 (38.67%).
87
CUADRO Nº17
En el siguiente cuadro se observa la diferencia de Nazareno ECH-2
con la Prueba de jarras que se realizo
Parámetros Unidad Nazareno %
Prueba de
Jarra
%
DQO Mg/L 20 50.00 10 25.00
Fuente: Elaboración propia
GRÁFICO Nº 17
PARAMETRO DQO NAZARENO VS PRUEBA DE JARRAS
Fuente: Elaboración propia
INTERPRETACIÓN: Se observa que la DQO de Nazareno es de 20
(50.00%) pero con la prueba de jarras que se hizo bajo a 10 (25.00%).
88
CUADRO Nº 18
En el siguiente cuadro se observa la diferencia de Nazareno ECH-2
con la Prueba de jarras que se realizo
Parámetros Unidad Nazareno % Prueba de
Jarra
%
ALUMINIO Mg/L 0.29 5.80 0.069 1.38
Fuente: Elaboración propia
GRÁFICO Nº 18
PARAMETRO ALUMINIO NAZARENO VS PRUEBA DE JARRAS
Fuente: Elaboración propia
INTERPRETACIÓN: Se observa que el aluminio de Nazareno es de 0.29
(5.80%) pero con la prueba de jarras que se hizo bajo a 0.069 (1.38%).
89
CUADRO Nº 19
En el siguiente cuadro se observa la diferencia de Nazareno ECH-2
con la Prueba de jarras que se realizo
Parámetros Unidad Nazareno %
Prueba de
Jarra
%
ARSÉNICO Mg/L 0.008 0.80 0.01 1.00
Fuente: Elaboración propia
GRÁFICO Nº 19
PARAMETRO ARSENICO NAZARENO VS PRUEBA DE JARRAS
Fuente: Elaboración propia
INTERPRETACIÓN: Se observa que el Arsénico de Nazareno es de
0.008 (0.80%) pero con la prueba de jarras que se hizo alta a 0.01
(1.00%).
90
CUADRO Nº 20
En el siguiente cuadro se observa la diferencia de Nazareno ECH-2
con la Prueba de jarras que se realizo
Parámetros Unidad Nazareno %
Prueba
de Jarra
%
BARIO Mg/L 0.029 2.90 0.2 20.00
Fuente: Elaboración propia
GRÁFICO Nº 20
PARAMETRO BARIO NAZARENO VS PRUEBA DE JARRAS
Fuente: Elaboración propia
INTERPRETACIÓN: Se observa que el Bario de Nazareno es de 0.029
(2.90%) pero con la prueba de jarras que se hizo alta a 0.20 (20.00%).
91
CUADRO Nº 21
En el siguiente cuadro se observa la diferencia de Nazareno ECH-2
con la Prueba de jarras que se realizo
Parámetros Unidad Nazareno %
Prueba
de Jarra
%
BERILIO Mg/L 0.0003 0.03 0.001 0.10
Fuente: Elaboración propia
GRÁFICO Nº 21
PARAMETRO BERILIO NAZARENO VS PRUEBA DE JARRAS
Fuente: Elaboración propia
INTERPRETACIÓN: Se observa que el Berilio de Nazareno es de 0.0003
(0.03) pero con la prueba de jarras que se hizo alta a 0.001(0.10%)
Arotaype patiño, beatriz optimización tecnicoéconomica del tratamiento de aguas residuales industriales
Arotaype patiño, beatriz optimización tecnicoéconomica del tratamiento de aguas residuales industriales
Arotaype patiño, beatriz optimización tecnicoéconomica del tratamiento de aguas residuales industriales
Arotaype patiño, beatriz optimización tecnicoéconomica del tratamiento de aguas residuales industriales
Arotaype patiño, beatriz optimización tecnicoéconomica del tratamiento de aguas residuales industriales
Arotaype patiño, beatriz optimización tecnicoéconomica del tratamiento de aguas residuales industriales
Arotaype patiño, beatriz optimización tecnicoéconomica del tratamiento de aguas residuales industriales
Arotaype patiño, beatriz optimización tecnicoéconomica del tratamiento de aguas residuales industriales
Arotaype patiño, beatriz optimización tecnicoéconomica del tratamiento de aguas residuales industriales
Arotaype patiño, beatriz optimización tecnicoéconomica del tratamiento de aguas residuales industriales
Arotaype patiño, beatriz optimización tecnicoéconomica del tratamiento de aguas residuales industriales
Arotaype patiño, beatriz optimización tecnicoéconomica del tratamiento de aguas residuales industriales
Arotaype patiño, beatriz optimización tecnicoéconomica del tratamiento de aguas residuales industriales
Arotaype patiño, beatriz optimización tecnicoéconomica del tratamiento de aguas residuales industriales
Arotaype patiño, beatriz optimización tecnicoéconomica del tratamiento de aguas residuales industriales
Arotaype patiño, beatriz optimización tecnicoéconomica del tratamiento de aguas residuales industriales
Arotaype patiño, beatriz optimización tecnicoéconomica del tratamiento de aguas residuales industriales
Arotaype patiño, beatriz optimización tecnicoéconomica del tratamiento de aguas residuales industriales
Arotaype patiño, beatriz optimización tecnicoéconomica del tratamiento de aguas residuales industriales
Arotaype patiño, beatriz optimización tecnicoéconomica del tratamiento de aguas residuales industriales
Arotaype patiño, beatriz optimización tecnicoéconomica del tratamiento de aguas residuales industriales
Arotaype patiño, beatriz optimización tecnicoéconomica del tratamiento de aguas residuales industriales
Arotaype patiño, beatriz optimización tecnicoéconomica del tratamiento de aguas residuales industriales
Arotaype patiño, beatriz optimización tecnicoéconomica del tratamiento de aguas residuales industriales
Arotaype patiño, beatriz optimización tecnicoéconomica del tratamiento de aguas residuales industriales

Más contenido relacionado

La actualidad más candente

-Estudio de impacto ambiental expost labores aéreas cia. ltda. pdf copy
-Estudio de impacto ambiental expost labores aéreas cia. ltda. pdf   copy-Estudio de impacto ambiental expost labores aéreas cia. ltda. pdf   copy
-Estudio de impacto ambiental expost labores aéreas cia. ltda. pdf copy
wmstr3
 
Proyecto tecnico y estudio de impacto ambiental del centro de gestion de resi...
Proyecto tecnico y estudio de impacto ambiental del centro de gestion de resi...Proyecto tecnico y estudio de impacto ambiental del centro de gestion de resi...
Proyecto tecnico y estudio de impacto ambiental del centro de gestion de resi...
Zero Zabor ingurumen babeserako elkartea
 
58184703 productividad-ganadera
58184703 productividad-ganadera58184703 productividad-ganadera
58184703 productividad-ganadera
HÉCTOR FABIÁN ESPÍNDOLA
 
protocolo para control y vigilancia fuentes fijas
protocolo para control y vigilancia fuentes fijasprotocolo para control y vigilancia fuentes fijas
protocolo para control y vigilancia fuentes fijas
Ambiental Natural
 
EsIA Alcantarillado La Tola
EsIA Alcantarillado La TolaEsIA Alcantarillado La Tola
EsIA Alcantarillado La Tola
Globalminoil
 
MANUAL DE AGUA SUBTERRÁNEA
MANUAL DE AGUA SUBTERRÁNEAMANUAL DE AGUA SUBTERRÁNEA
MANUAL DE AGUA SUBTERRÁNEA
NELSON J. NUÑEZ HERRERA
 
Diagnostico+de+la+infiltracion+y+permeabilidad+en+los+suelos (1)
Diagnostico+de+la+infiltracion+y+permeabilidad+en+los+suelos (1)Diagnostico+de+la+infiltracion+y+permeabilidad+en+los+suelos (1)
Diagnostico+de+la+infiltracion+y+permeabilidad+en+los+suelos (1)
tolijoel
 
Trabajo yd40
Trabajo yd40Trabajo yd40
Trabajo yd40
Eric Bernales Campos
 
Guía de Buenas Prácticas de Higiene y Buenas Prácticas Agrícolas
Guía de Buenas Prácticas de Higiene y Buenas Prácticas AgrícolasGuía de Buenas Prácticas de Higiene y Buenas Prácticas Agrícolas
Guía de Buenas Prácticas de Higiene y Buenas Prácticas Agrícolas
PMD12
 
10 manual-de-agua-subterranea-bajo
10 manual-de-agua-subterranea-bajo10 manual-de-agua-subterranea-bajo
10 manual-de-agua-subterranea-bajo
enriquesuare
 
70691648 norma-si-s-04-vigente-junio-2011
70691648 norma-si-s-04-vigente-junio-201170691648 norma-si-s-04-vigente-junio-2011
70691648 norma-si-s-04-vigente-junio-2011pedroramirez1
 

La actualidad más candente (13)

-Estudio de impacto ambiental expost labores aéreas cia. ltda. pdf copy
-Estudio de impacto ambiental expost labores aéreas cia. ltda. pdf   copy-Estudio de impacto ambiental expost labores aéreas cia. ltda. pdf   copy
-Estudio de impacto ambiental expost labores aéreas cia. ltda. pdf copy
 
Proyecto tecnico y estudio de impacto ambiental del centro de gestion de resi...
Proyecto tecnico y estudio de impacto ambiental del centro de gestion de resi...Proyecto tecnico y estudio de impacto ambiental del centro de gestion de resi...
Proyecto tecnico y estudio de impacto ambiental del centro de gestion de resi...
 
Final c c 10-08-2012
Final c c  10-08-2012Final c c  10-08-2012
Final c c 10-08-2012
 
58184703 productividad-ganadera
58184703 productividad-ganadera58184703 productividad-ganadera
58184703 productividad-ganadera
 
protocolo para control y vigilancia fuentes fijas
protocolo para control y vigilancia fuentes fijasprotocolo para control y vigilancia fuentes fijas
protocolo para control y vigilancia fuentes fijas
 
EsIA Alcantarillado La Tola
EsIA Alcantarillado La TolaEsIA Alcantarillado La Tola
EsIA Alcantarillado La Tola
 
MANUAL DE AGUA SUBTERRÁNEA
MANUAL DE AGUA SUBTERRÁNEAMANUAL DE AGUA SUBTERRÁNEA
MANUAL DE AGUA SUBTERRÁNEA
 
Diagnostico+de+la+infiltracion+y+permeabilidad+en+los+suelos (1)
Diagnostico+de+la+infiltracion+y+permeabilidad+en+los+suelos (1)Diagnostico+de+la+infiltracion+y+permeabilidad+en+los+suelos (1)
Diagnostico+de+la+infiltracion+y+permeabilidad+en+los+suelos (1)
 
Trabajo yd40
Trabajo yd40Trabajo yd40
Trabajo yd40
 
Guía de Buenas Prácticas de Higiene y Buenas Prácticas Agrícolas
Guía de Buenas Prácticas de Higiene y Buenas Prácticas AgrícolasGuía de Buenas Prácticas de Higiene y Buenas Prácticas Agrícolas
Guía de Buenas Prácticas de Higiene y Buenas Prácticas Agrícolas
 
A1
A1A1
A1
 
10 manual-de-agua-subterranea-bajo
10 manual-de-agua-subterranea-bajo10 manual-de-agua-subterranea-bajo
10 manual-de-agua-subterranea-bajo
 
70691648 norma-si-s-04-vigente-junio-2011
70691648 norma-si-s-04-vigente-junio-201170691648 norma-si-s-04-vigente-junio-2011
70691648 norma-si-s-04-vigente-junio-2011
 

Similar a Arotaype patiño, beatriz optimización tecnicoéconomica del tratamiento de aguas residuales industriales

Guias ensayos de geotecnia
Guias ensayos de geotecniaGuias ensayos de geotecnia
Guias ensayos de geotecnia
José Luis Gil Sosa
 
Energía de la biomasa
Energía de la biomasaEnergía de la biomasa
Energía de la biomasa
eHabilita
 
Estudio ambiental
Estudio ambientalEstudio ambiental
Estudio ambiental
nelcas16
 
documentos_10374_Energia_de_la_biomasa_07_b954457c.pdf
documentos_10374_Energia_de_la_biomasa_07_b954457c.pdfdocumentos_10374_Energia_de_la_biomasa_07_b954457c.pdf
documentos_10374_Energia_de_la_biomasa_07_b954457c.pdf
LuisPedrero3
 
Cd tesis control de fungosis de arveja lurdes trigoso pelaez 09102019
Cd tesis control de fungosis de arveja lurdes trigoso pelaez 09102019Cd tesis control de fungosis de arveja lurdes trigoso pelaez 09102019
Cd tesis control de fungosis de arveja lurdes trigoso pelaez 09102019
Merlin Pinedo
 
DISEÑO E IMPLEMENTACIÓN DE MÓDULOS EN PLATAFORMA MOODLE, PARA EL APOYO DE UN ...
DISEÑO E IMPLEMENTACIÓN DE MÓDULOS EN PLATAFORMA MOODLE, PARA EL APOYO DE UN ...DISEÑO E IMPLEMENTACIÓN DE MÓDULOS EN PLATAFORMA MOODLE, PARA EL APOYO DE UN ...
DISEÑO E IMPLEMENTACIÓN DE MÓDULOS EN PLATAFORMA MOODLE, PARA EL APOYO DE UN ...
Herman Alexi Villarroel Munizaga
 
Guia pml biodiesel
Guia pml biodieselGuia pml biodiesel
Guia pml biodieselup
 
Estudio y diseño definitivo para ingenio azucarero. msc. francisco martin armas
Estudio y diseño definitivo para ingenio azucarero. msc. francisco martin armasEstudio y diseño definitivo para ingenio azucarero. msc. francisco martin armas
Estudio y diseño definitivo para ingenio azucarero. msc. francisco martin armas
Francisco Martin Armas
 
Estudio y diseño definitivo para ingenio azucarero. msc. francisco martin armas
Estudio y diseño definitivo para ingenio azucarero. msc. francisco martin armasEstudio y diseño definitivo para ingenio azucarero. msc. francisco martin armas
Estudio y diseño definitivo para ingenio azucarero. msc. francisco martin armas
Francisco Martin
 
Valor económico del agua vertimento residual
Valor económico del agua vertimento residualValor económico del agua vertimento residual
Valor económico del agua vertimento residual
Jaime amambal
 
Guia estudios ambientales en infraestructuras terrestres fundicot
Guia estudios ambientales en infraestructuras terrestres fundicotGuia estudios ambientales en infraestructuras terrestres fundicot
Guia estudios ambientales en infraestructuras terrestres fundicot
Álvaro Santos Pérez
 
Memoria ambiental Enara-4
Memoria ambiental Enara-4Memoria ambiental Enara-4
Memoria ambiental Enara-4
Frackingezaraba
 
Minicentrales hidroelectricas
Minicentrales hidroelectricasMinicentrales hidroelectricas
Minicentrales hidroelectricas
jiron19
 
Plan de gestion, manejo y tratamiento de vertimientos liquidos mataderos
Plan de gestion, manejo y tratamiento de vertimientos liquidos mataderosPlan de gestion, manejo y tratamiento de vertimientos liquidos mataderos
Plan de gestion, manejo y tratamiento de vertimientos liquidos mataderos
Juan Carlos Bernate
 

Similar a Arotaype patiño, beatriz optimización tecnicoéconomica del tratamiento de aguas residuales industriales (20)

Idae, biomasa
Idae, biomasaIdae, biomasa
Idae, biomasa
 
Guias ensayos de geotecnia
Guias ensayos de geotecniaGuias ensayos de geotecnia
Guias ensayos de geotecnia
 
Energía de la biomasa
Energía de la biomasaEnergía de la biomasa
Energía de la biomasa
 
Estudio ambiental
Estudio ambientalEstudio ambiental
Estudio ambiental
 
Pdf
PdfPdf
Pdf
 
documentos_10374_Energia_de_la_biomasa_07_b954457c.pdf
documentos_10374_Energia_de_la_biomasa_07_b954457c.pdfdocumentos_10374_Energia_de_la_biomasa_07_b954457c.pdf
documentos_10374_Energia_de_la_biomasa_07_b954457c.pdf
 
Cd tesis control de fungosis de arveja lurdes trigoso pelaez 09102019
Cd tesis control de fungosis de arveja lurdes trigoso pelaez 09102019Cd tesis control de fungosis de arveja lurdes trigoso pelaez 09102019
Cd tesis control de fungosis de arveja lurdes trigoso pelaez 09102019
 
Minihidraulica pv
Minihidraulica pvMinihidraulica pv
Minihidraulica pv
 
DISEÑO E IMPLEMENTACIÓN DE MÓDULOS EN PLATAFORMA MOODLE, PARA EL APOYO DE UN ...
DISEÑO E IMPLEMENTACIÓN DE MÓDULOS EN PLATAFORMA MOODLE, PARA EL APOYO DE UN ...DISEÑO E IMPLEMENTACIÓN DE MÓDULOS EN PLATAFORMA MOODLE, PARA EL APOYO DE UN ...
DISEÑO E IMPLEMENTACIÓN DE MÓDULOS EN PLATAFORMA MOODLE, PARA EL APOYO DE UN ...
 
Guia pml biodiesel
Guia pml biodieselGuia pml biodiesel
Guia pml biodiesel
 
Estudio y diseño definitivo para ingenio azucarero. msc. francisco martin armas
Estudio y diseño definitivo para ingenio azucarero. msc. francisco martin armasEstudio y diseño definitivo para ingenio azucarero. msc. francisco martin armas
Estudio y diseño definitivo para ingenio azucarero. msc. francisco martin armas
 
Estudio y diseño definitivo para ingenio azucarero. msc. francisco martin armas
Estudio y diseño definitivo para ingenio azucarero. msc. francisco martin armasEstudio y diseño definitivo para ingenio azucarero. msc. francisco martin armas
Estudio y diseño definitivo para ingenio azucarero. msc. francisco martin armas
 
Valor económico del agua vertimento residual
Valor económico del agua vertimento residualValor económico del agua vertimento residual
Valor económico del agua vertimento residual
 
Guia estudios ambientales en infraestructuras terrestres fundicot
Guia estudios ambientales en infraestructuras terrestres fundicotGuia estudios ambientales en infraestructuras terrestres fundicot
Guia estudios ambientales en infraestructuras terrestres fundicot
 
Memoria ambiental Enara-4
Memoria ambiental Enara-4Memoria ambiental Enara-4
Memoria ambiental Enara-4
 
Cerron Mercado.pdf
Cerron Mercado.pdfCerron Mercado.pdf
Cerron Mercado.pdf
 
Pfc nuria simon_cid
Pfc nuria simon_cidPfc nuria simon_cid
Pfc nuria simon_cid
 
Minicentrales hidroelectricas
Minicentrales hidroelectricasMinicentrales hidroelectricas
Minicentrales hidroelectricas
 
Tesis4
Tesis4Tesis4
Tesis4
 
Plan de gestion, manejo y tratamiento de vertimientos liquidos mataderos
Plan de gestion, manejo y tratamiento de vertimientos liquidos mataderosPlan de gestion, manejo y tratamiento de vertimientos liquidos mataderos
Plan de gestion, manejo y tratamiento de vertimientos liquidos mataderos
 

Más de César Augusto Díaz Talavera

Buzuel y Gorodnov Fundamentos filosóficos del marxismo
Buzuel y Gorodnov Fundamentos filosóficos del marxismoBuzuel y Gorodnov Fundamentos filosóficos del marxismo
Buzuel y Gorodnov Fundamentos filosóficos del marxismo
César Augusto Díaz Talavera
 
Julio alvarez el marxismo leninismo como ciencia
Julio alvarez el marxismo leninismo como cienciaJulio alvarez el marxismo leninismo como ciencia
Julio alvarez el marxismo leninismo como ciencia
César Augusto Díaz Talavera
 
Castro, augusto filosofía y política en el perú
Castro, augusto filosofía  y política en el perúCastro, augusto filosofía  y política en el perú
Castro, augusto filosofía y política en el perú
César Augusto Díaz Talavera
 
How fascismworks,byjasonstanley,9 28-2017,ontario.alternativeradio
How fascismworks,byjasonstanley,9 28-2017,ontario.alternativeradioHow fascismworks,byjasonstanley,9 28-2017,ontario.alternativeradio
How fascismworks,byjasonstanley,9 28-2017,ontario.alternativeradio
César Augusto Díaz Talavera
 
Francois houtart deslegitimar el capitalismo, reconstruir la esperanza
Francois houtart  deslegitimar el capitalismo, reconstruir la esperanzaFrancois houtart  deslegitimar el capitalismo, reconstruir la esperanza
Francois houtart deslegitimar el capitalismo, reconstruir la esperanza
César Augusto Díaz Talavera
 
Cronología del indulto al expresidente alberto fujimori desde la perspectiva ...
Cronología del indulto al expresidente alberto fujimori desde la perspectiva ...Cronología del indulto al expresidente alberto fujimori desde la perspectiva ...
Cronología del indulto al expresidente alberto fujimori desde la perspectiva ...
César Augusto Díaz Talavera
 
Informe-sobre-el-indulto-a-fujimori-de-la-defensoría-del-pueblo-legis.pe
Informe-sobre-el-indulto-a-fujimori-de-la-defensoría-del-pueblo-legis.pe Informe-sobre-el-indulto-a-fujimori-de-la-defensoría-del-pueblo-legis.pe
Informe-sobre-el-indulto-a-fujimori-de-la-defensoría-del-pueblo-legis.pe
César Augusto Díaz Talavera
 
Charla de ergonomia, unsa2
Charla de ergonomia, unsa2Charla de ergonomia, unsa2
Charla de ergonomia, unsa2
César Augusto Díaz Talavera
 
Manejo de conflictos laborales ppt
Manejo de conflictos laborales pptManejo de conflictos laborales ppt
Manejo de conflictos laborales ppt
César Augusto Díaz Talavera
 
Diapositivas identificación y compromiso laboral con la empresa (1)
Diapositivas identificación y compromiso laboral con la empresa (1)Diapositivas identificación y compromiso laboral con la empresa (1)
Diapositivas identificación y compromiso laboral con la empresa (1)
César Augusto Díaz Talavera
 
Ssyma m01.01 manual del sistema integrado de gestión ssyma
Ssyma m01.01 manual del sistema integrado de gestión ssymaSsyma m01.01 manual del sistema integrado de gestión ssyma
Ssyma m01.01 manual del sistema integrado de gestión ssyma
César Augusto Díaz Talavera
 
Memoria descriptiva tratamiento de efluentes chipmo
Memoria descriptiva tratamiento de efluentes chipmoMemoria descriptiva tratamiento de efluentes chipmo
Memoria descriptiva tratamiento de efluentes chipmo
César Augusto Díaz Talavera
 
Tratamiento de agua con cal y sulfato de aluminio
Tratamiento de agua con cal y sulfato de aluminioTratamiento de agua con cal y sulfato de aluminio
Tratamiento de agua con cal y sulfato de aluminio
César Augusto Díaz Talavera
 
SINDICATO UNICO DE TRABAJADORES DE LA UNSA: ESTATUTO
SINDICATO UNICO DE TRABAJADORES DE LA UNSA: ESTATUTO SINDICATO UNICO DE TRABAJADORES DE LA UNSA: ESTATUTO
SINDICATO UNICO DE TRABAJADORES DE LA UNSA: ESTATUTO
César Augusto Díaz Talavera
 
D.s. 265 2016-ef.
D.s. 265 2016-ef.D.s. 265 2016-ef.
Estatuto sutunsa
Estatuto sutunsaEstatuto sutunsa
Reglamento de elecciones sutunsa 2015 2016-final
Reglamento de elecciones sutunsa 2015 2016-finalReglamento de elecciones sutunsa 2015 2016-final
Reglamento de elecciones sutunsa 2015 2016-final
César Augusto Díaz Talavera
 
Bullyn power point
Bullyn power pointBullyn power point
Bullyn power point
César Augusto Díaz Talavera
 
Comunismo cientifico
 Comunismo cientifico Comunismo cientifico
Comunismo cientifico
César Augusto Díaz Talavera
 
Normas Lninistas de vida del partido comunista
Normas Lninistas de vida del partido comunistaNormas Lninistas de vida del partido comunista
Normas Lninistas de vida del partido comunista
César Augusto Díaz Talavera
 

Más de César Augusto Díaz Talavera (20)

Buzuel y Gorodnov Fundamentos filosóficos del marxismo
Buzuel y Gorodnov Fundamentos filosóficos del marxismoBuzuel y Gorodnov Fundamentos filosóficos del marxismo
Buzuel y Gorodnov Fundamentos filosóficos del marxismo
 
Julio alvarez el marxismo leninismo como ciencia
Julio alvarez el marxismo leninismo como cienciaJulio alvarez el marxismo leninismo como ciencia
Julio alvarez el marxismo leninismo como ciencia
 
Castro, augusto filosofía y política en el perú
Castro, augusto filosofía  y política en el perúCastro, augusto filosofía  y política en el perú
Castro, augusto filosofía y política en el perú
 
How fascismworks,byjasonstanley,9 28-2017,ontario.alternativeradio
How fascismworks,byjasonstanley,9 28-2017,ontario.alternativeradioHow fascismworks,byjasonstanley,9 28-2017,ontario.alternativeradio
How fascismworks,byjasonstanley,9 28-2017,ontario.alternativeradio
 
Francois houtart deslegitimar el capitalismo, reconstruir la esperanza
Francois houtart  deslegitimar el capitalismo, reconstruir la esperanzaFrancois houtart  deslegitimar el capitalismo, reconstruir la esperanza
Francois houtart deslegitimar el capitalismo, reconstruir la esperanza
 
Cronología del indulto al expresidente alberto fujimori desde la perspectiva ...
Cronología del indulto al expresidente alberto fujimori desde la perspectiva ...Cronología del indulto al expresidente alberto fujimori desde la perspectiva ...
Cronología del indulto al expresidente alberto fujimori desde la perspectiva ...
 
Informe-sobre-el-indulto-a-fujimori-de-la-defensoría-del-pueblo-legis.pe
Informe-sobre-el-indulto-a-fujimori-de-la-defensoría-del-pueblo-legis.pe Informe-sobre-el-indulto-a-fujimori-de-la-defensoría-del-pueblo-legis.pe
Informe-sobre-el-indulto-a-fujimori-de-la-defensoría-del-pueblo-legis.pe
 
Charla de ergonomia, unsa2
Charla de ergonomia, unsa2Charla de ergonomia, unsa2
Charla de ergonomia, unsa2
 
Manejo de conflictos laborales ppt
Manejo de conflictos laborales pptManejo de conflictos laborales ppt
Manejo de conflictos laborales ppt
 
Diapositivas identificación y compromiso laboral con la empresa (1)
Diapositivas identificación y compromiso laboral con la empresa (1)Diapositivas identificación y compromiso laboral con la empresa (1)
Diapositivas identificación y compromiso laboral con la empresa (1)
 
Ssyma m01.01 manual del sistema integrado de gestión ssyma
Ssyma m01.01 manual del sistema integrado de gestión ssymaSsyma m01.01 manual del sistema integrado de gestión ssyma
Ssyma m01.01 manual del sistema integrado de gestión ssyma
 
Memoria descriptiva tratamiento de efluentes chipmo
Memoria descriptiva tratamiento de efluentes chipmoMemoria descriptiva tratamiento de efluentes chipmo
Memoria descriptiva tratamiento de efluentes chipmo
 
Tratamiento de agua con cal y sulfato de aluminio
Tratamiento de agua con cal y sulfato de aluminioTratamiento de agua con cal y sulfato de aluminio
Tratamiento de agua con cal y sulfato de aluminio
 
SINDICATO UNICO DE TRABAJADORES DE LA UNSA: ESTATUTO
SINDICATO UNICO DE TRABAJADORES DE LA UNSA: ESTATUTO SINDICATO UNICO DE TRABAJADORES DE LA UNSA: ESTATUTO
SINDICATO UNICO DE TRABAJADORES DE LA UNSA: ESTATUTO
 
D.s. 265 2016-ef.
D.s. 265 2016-ef.D.s. 265 2016-ef.
D.s. 265 2016-ef.
 
Estatuto sutunsa
Estatuto sutunsaEstatuto sutunsa
Estatuto sutunsa
 
Reglamento de elecciones sutunsa 2015 2016-final
Reglamento de elecciones sutunsa 2015 2016-finalReglamento de elecciones sutunsa 2015 2016-final
Reglamento de elecciones sutunsa 2015 2016-final
 
Bullyn power point
Bullyn power pointBullyn power point
Bullyn power point
 
Comunismo cientifico
 Comunismo cientifico Comunismo cientifico
Comunismo cientifico
 
Normas Lninistas de vida del partido comunista
Normas Lninistas de vida del partido comunistaNormas Lninistas de vida del partido comunista
Normas Lninistas de vida del partido comunista
 

Último

Edafología - Presentacion Orden Histosoles
Edafología - Presentacion Orden HistosolesEdafología - Presentacion Orden Histosoles
Edafología - Presentacion Orden Histosoles
FacundoPortela1
 
PLAN DE TRABAJO DE REFUERZO ESCOLAR 2024.pdf
PLAN DE TRABAJO DE REFUERZO ESCOLAR 2024.pdfPLAN DE TRABAJO DE REFUERZO ESCOLAR 2024.pdf
PLAN DE TRABAJO DE REFUERZO ESCOLAR 2024.pdf
MariaCortezRuiz
 
Seguridad en mineria los Controles criticos
Seguridad en mineria los Controles criticosSeguridad en mineria los Controles criticos
Seguridad en mineria los Controles criticos
Melvin191754
 
Siemens----Software---Simatic----HMI.pdf
Siemens----Software---Simatic----HMI.pdfSiemens----Software---Simatic----HMI.pdf
Siemens----Software---Simatic----HMI.pdf
RonaldRozoMora
 
SESION 1 - SESION INTRODUCTORIA - INTRODUCCIÓN A LA PERFORACIÓN Y VOLADURA DE...
SESION 1 - SESION INTRODUCTORIA - INTRODUCCIÓN A LA PERFORACIÓN Y VOLADURA DE...SESION 1 - SESION INTRODUCTORIA - INTRODUCCIÓN A LA PERFORACIÓN Y VOLADURA DE...
SESION 1 - SESION INTRODUCTORIA - INTRODUCCIÓN A LA PERFORACIÓN Y VOLADURA DE...
JhonatanOQuionesChoq
 
Dialnet-EnsenanzaDeLaModelacionMedianteEcuacionesDiferenci-9304821.pdf
Dialnet-EnsenanzaDeLaModelacionMedianteEcuacionesDiferenci-9304821.pdfDialnet-EnsenanzaDeLaModelacionMedianteEcuacionesDiferenci-9304821.pdf
Dialnet-EnsenanzaDeLaModelacionMedianteEcuacionesDiferenci-9304821.pdf
fernanroq11702
 
Una solucion saturada contiene la cantidad máxima de un soluto que se disuel...
Una solucion saturada contiene la cantidad máxima de un  soluto que se disuel...Una solucion saturada contiene la cantidad máxima de un  soluto que se disuel...
Una solucion saturada contiene la cantidad máxima de un soluto que se disuel...
leonpool521
 
Vehiculo para niños con paralisis cerebral
Vehiculo para niños con paralisis cerebralVehiculo para niños con paralisis cerebral
Vehiculo para niños con paralisis cerebral
everchanging2020
 
Joseph juran aportaciones al control de la calidad
Joseph juran aportaciones al control de la calidadJoseph juran aportaciones al control de la calidad
Joseph juran aportaciones al control de la calidad
KevinCabrera96
 
Desbalanceo Rotatorio cabeceo de flechas y elementos rotativos_GSV.pptx
Desbalanceo Rotatorio cabeceo de flechas y elementos rotativos_GSV.pptxDesbalanceo Rotatorio cabeceo de flechas y elementos rotativos_GSV.pptx
Desbalanceo Rotatorio cabeceo de flechas y elementos rotativos_GSV.pptx
ValGS2
 
IMPORTANCIA DE LOS LIPIDOS EN FARMACIA.pdf
IMPORTANCIA DE LOS LIPIDOS EN FARMACIA.pdfIMPORTANCIA DE LOS LIPIDOS EN FARMACIA.pdf
IMPORTANCIA DE LOS LIPIDOS EN FARMACIA.pdf
JonathanFernandoRodr
 
Distribución Muestral de Diferencia de Medias
Distribución Muestral de Diferencia de MediasDistribución Muestral de Diferencia de Medias
Distribución Muestral de Diferencia de Medias
arielemelec005
 
PLANIFICACION INDUSTRIAL ( Gantt-Pert-CPM ).docx
PLANIFICACION INDUSTRIAL ( Gantt-Pert-CPM ).docxPLANIFICACION INDUSTRIAL ( Gantt-Pert-CPM ).docx
PLANIFICACION INDUSTRIAL ( Gantt-Pert-CPM ).docx
Victor Manuel Rivera Guevara
 
Plan de Desarrollo Urbano de la Municipalidad Provincial de Ilo
Plan de Desarrollo Urbano de la Municipalidad Provincial de IloPlan de Desarrollo Urbano de la Municipalidad Provincial de Ilo
Plan de Desarrollo Urbano de la Municipalidad Provincial de Ilo
AlbertoRiveraPrado
 
Hidrostatica_e_Hidrodinamica.pdggggggggf
Hidrostatica_e_Hidrodinamica.pdggggggggfHidrostatica_e_Hidrodinamica.pdggggggggf
Hidrostatica_e_Hidrodinamica.pdggggggggf
JavierAlejosM
 
Flujograma de gestión de pedidos de usuarios.
Flujograma de gestión de pedidos de usuarios.Flujograma de gestión de pedidos de usuarios.
Flujograma de gestión de pedidos de usuarios.
thatycameron2004
 
Diagrama de flujo "Resolución de problemas".pdf
Diagrama de flujo "Resolución de problemas".pdfDiagrama de flujo "Resolución de problemas".pdf
Diagrama de flujo "Resolución de problemas".pdf
joseabachesoto
 
PRESENTACION REUNION DEL COMITE DE SEGURIDAD
PRESENTACION REUNION DEL COMITE DE SEGURIDADPRESENTACION REUNION DEL COMITE DE SEGURIDAD
PRESENTACION REUNION DEL COMITE DE SEGURIDAD
mirellamilagrosvf
 
NORMATIVA AMERICANA ASME B30.5-2021 ESPAÑOL
NORMATIVA AMERICANA ASME B30.5-2021 ESPAÑOLNORMATIVA AMERICANA ASME B30.5-2021 ESPAÑOL
NORMATIVA AMERICANA ASME B30.5-2021 ESPAÑOL
Pol Peña Quispe
 
libro conabilidad financiera, 5ta edicion.pdf
libro conabilidad financiera, 5ta edicion.pdflibro conabilidad financiera, 5ta edicion.pdf
libro conabilidad financiera, 5ta edicion.pdf
MiriamAquino27
 

Último (20)

Edafología - Presentacion Orden Histosoles
Edafología - Presentacion Orden HistosolesEdafología - Presentacion Orden Histosoles
Edafología - Presentacion Orden Histosoles
 
PLAN DE TRABAJO DE REFUERZO ESCOLAR 2024.pdf
PLAN DE TRABAJO DE REFUERZO ESCOLAR 2024.pdfPLAN DE TRABAJO DE REFUERZO ESCOLAR 2024.pdf
PLAN DE TRABAJO DE REFUERZO ESCOLAR 2024.pdf
 
Seguridad en mineria los Controles criticos
Seguridad en mineria los Controles criticosSeguridad en mineria los Controles criticos
Seguridad en mineria los Controles criticos
 
Siemens----Software---Simatic----HMI.pdf
Siemens----Software---Simatic----HMI.pdfSiemens----Software---Simatic----HMI.pdf
Siemens----Software---Simatic----HMI.pdf
 
SESION 1 - SESION INTRODUCTORIA - INTRODUCCIÓN A LA PERFORACIÓN Y VOLADURA DE...
SESION 1 - SESION INTRODUCTORIA - INTRODUCCIÓN A LA PERFORACIÓN Y VOLADURA DE...SESION 1 - SESION INTRODUCTORIA - INTRODUCCIÓN A LA PERFORACIÓN Y VOLADURA DE...
SESION 1 - SESION INTRODUCTORIA - INTRODUCCIÓN A LA PERFORACIÓN Y VOLADURA DE...
 
Dialnet-EnsenanzaDeLaModelacionMedianteEcuacionesDiferenci-9304821.pdf
Dialnet-EnsenanzaDeLaModelacionMedianteEcuacionesDiferenci-9304821.pdfDialnet-EnsenanzaDeLaModelacionMedianteEcuacionesDiferenci-9304821.pdf
Dialnet-EnsenanzaDeLaModelacionMedianteEcuacionesDiferenci-9304821.pdf
 
Una solucion saturada contiene la cantidad máxima de un soluto que se disuel...
Una solucion saturada contiene la cantidad máxima de un  soluto que se disuel...Una solucion saturada contiene la cantidad máxima de un  soluto que se disuel...
Una solucion saturada contiene la cantidad máxima de un soluto que se disuel...
 
Vehiculo para niños con paralisis cerebral
Vehiculo para niños con paralisis cerebralVehiculo para niños con paralisis cerebral
Vehiculo para niños con paralisis cerebral
 
Joseph juran aportaciones al control de la calidad
Joseph juran aportaciones al control de la calidadJoseph juran aportaciones al control de la calidad
Joseph juran aportaciones al control de la calidad
 
Desbalanceo Rotatorio cabeceo de flechas y elementos rotativos_GSV.pptx
Desbalanceo Rotatorio cabeceo de flechas y elementos rotativos_GSV.pptxDesbalanceo Rotatorio cabeceo de flechas y elementos rotativos_GSV.pptx
Desbalanceo Rotatorio cabeceo de flechas y elementos rotativos_GSV.pptx
 
IMPORTANCIA DE LOS LIPIDOS EN FARMACIA.pdf
IMPORTANCIA DE LOS LIPIDOS EN FARMACIA.pdfIMPORTANCIA DE LOS LIPIDOS EN FARMACIA.pdf
IMPORTANCIA DE LOS LIPIDOS EN FARMACIA.pdf
 
Distribución Muestral de Diferencia de Medias
Distribución Muestral de Diferencia de MediasDistribución Muestral de Diferencia de Medias
Distribución Muestral de Diferencia de Medias
 
PLANIFICACION INDUSTRIAL ( Gantt-Pert-CPM ).docx
PLANIFICACION INDUSTRIAL ( Gantt-Pert-CPM ).docxPLANIFICACION INDUSTRIAL ( Gantt-Pert-CPM ).docx
PLANIFICACION INDUSTRIAL ( Gantt-Pert-CPM ).docx
 
Plan de Desarrollo Urbano de la Municipalidad Provincial de Ilo
Plan de Desarrollo Urbano de la Municipalidad Provincial de IloPlan de Desarrollo Urbano de la Municipalidad Provincial de Ilo
Plan de Desarrollo Urbano de la Municipalidad Provincial de Ilo
 
Hidrostatica_e_Hidrodinamica.pdggggggggf
Hidrostatica_e_Hidrodinamica.pdggggggggfHidrostatica_e_Hidrodinamica.pdggggggggf
Hidrostatica_e_Hidrodinamica.pdggggggggf
 
Flujograma de gestión de pedidos de usuarios.
Flujograma de gestión de pedidos de usuarios.Flujograma de gestión de pedidos de usuarios.
Flujograma de gestión de pedidos de usuarios.
 
Diagrama de flujo "Resolución de problemas".pdf
Diagrama de flujo "Resolución de problemas".pdfDiagrama de flujo "Resolución de problemas".pdf
Diagrama de flujo "Resolución de problemas".pdf
 
PRESENTACION REUNION DEL COMITE DE SEGURIDAD
PRESENTACION REUNION DEL COMITE DE SEGURIDADPRESENTACION REUNION DEL COMITE DE SEGURIDAD
PRESENTACION REUNION DEL COMITE DE SEGURIDAD
 
NORMATIVA AMERICANA ASME B30.5-2021 ESPAÑOL
NORMATIVA AMERICANA ASME B30.5-2021 ESPAÑOLNORMATIVA AMERICANA ASME B30.5-2021 ESPAÑOL
NORMATIVA AMERICANA ASME B30.5-2021 ESPAÑOL
 
libro conabilidad financiera, 5ta edicion.pdf
libro conabilidad financiera, 5ta edicion.pdflibro conabilidad financiera, 5ta edicion.pdf
libro conabilidad financiera, 5ta edicion.pdf
 

Arotaype patiño, beatriz optimización tecnicoéconomica del tratamiento de aguas residuales industriales

  • 1. UNIVERSIDAD ALAS PERUANAS FACULTAD DE INGENIERÍAS Y ARQUITECTURA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA AMBIENTAL “OPTIMIZACIÓN TÉCNICO – ECONÓMICO DEL TRATAMIENTO DE AGUAS RESIDUALES INDUSTRIALES DEL EFLUENTE DE LA U.E.A. ORCOPAMPA 2016 - AREQUIPA” PRESENTADO POR: BEATRIZ AROTAYPE PATIÑO PARA OPTAR EL GRADO ACADÉMICO DE INGENIERO AMBIENTAL AREQUIPA – PERÚ 2016 ÍNDICE
  • 2. DEDICATORIA AGRADECIMIENTO RESUMEN ABSTRACT ÍNDICE CAPÍTULO I: DISEÑO DE LA INVESTIGACIÓN 1.1. Descripción de la Realidad Problemática.............................................. 11 1.2. Formulación del Problema..................................................................... 12 1.3. Justificación e importancia de la Investigación...................................... 13 1.4. Objetivo de la Investigación................................................................... 14 1.4.1. Objetivo General.......................................................................... 14 1.4.2. Objetivos Específicos .................................................................. 14 1.4.3. Hipótesis de la investigación ....................................................... 14 1.5. Variables e Indicadores......................................................................... 14 1.5.1. Variable Independiente ............................................................... 14 1.5.2. Variable Dependiente.................................................................. 14 1.5.3. Operacionalización de las variables............................................ 15 1.6. Tipo y Nivel de la Investigación ............................................................. 15 CAPÍTULO II: MARCO TEÓRICO 2.1. Antecedentes Teóricos de la Investigación ........................................... 16 2.2. Marco Legal .......................................................................................... 17 2.3. Marco Teórico........................................................................................ 18 2.3.1. Mineral del Oro............................................................................ 18 2.3.1.1. Propiedades físicas del Oro ............................................ 19 2.3.1.2. Cualidades químicas del oro........................................... 19 2.3.1.3. Extracción del oro y purificación...................................... 20 2.3.1.4. Ley del oro ...................................................................... 21 2.3.1.5. Explotación del Oro......................................................... 22 2.3.1.5.1. Tipos de explotación del Oro........................... 22 2.3.1.6. Técnicas de Extracción del Oro ..................................... 23 2.3.1.6.1. La extracción de oro en la cultura popular o minería en pequeña escala............................. 25
  • 3. 2.3.1.7. Descripción del Proceso Metalúrgico del Oro ................ 25 2.3.1.8. Subprocesos del tratamiento en definiciones operacionales ................................................................. 34 2.3.2. Propiedades del Hidróxido de Calcio (reactividad)...................... 38 2.3.1. Aplicaciones de la cal hidratada........................................ 39 2.3.2.1.1. Industria............................................................ 39 2.3.2.1.1.1. Industrias alimentarias................................... 39 2.3.2.1.1.2. Protección ambiental ..................................... 40 2.3.2.1.1.3. Remineralización de agua desalinizada ....... 40 2.3.2.1.1.4. Depuración de gases .................................... 40 2.3.2.1.1.5. Tratamiento de residuos ................................ 41 2.3.2.1.1.6. Tratamiento de suelos contaminados ............ 41 2.3.3. Sulfato de aluminio...................................................................... 41 2.3.3.1. Propiedad Floculante ..................................................... 42 2.3.3.2. Usos y aplicaciones del sulfato de aluminio ................... 42 2.3.4. Hipoclorito de Sodio .................................................................... 43 2.4. Marco Conceptual ................................................................................. 44 2.4.1. Aguas Residuales........................................................................ 44 2.4.2. Tratamiento Fisco y Químico Intensivo ...................................... 44 2.4.3. Prueba de Jarras......................................................................... 44 2.4.4. El Cloro puede ser usado como Hipoclorito de sodio.................. 44 2.4.5. Carga máxima permisible............................................................ 45 2.4.6. Cuerpo receptor o cuerpo de agua.............................................. 45 2.4.7. Efluente ....................................................................................... 45 2.4.8. Afluente ....................................................................................... 45 2.4.9. ECA (Estándar de Calidad Ambiental) ........................................ 45 CAPÍTULO III: PLANTEAMIENTO OPERACIONAL 3.1. Definiciones Operacionales .................................................................. 46 3.2. Universo y Muestra ............................................................................... 46 3.3. Método y diseño .................................................................................... 46 3.3.1. Método de la Investigación.......................................................... 46 3.3.2. Diseño de la Investigación .......................................................... 48 3.4. Técnica e Instrumentos de Verificación................................................. 51
  • 4. 3.5. Campo de Verificación .......................................................................... 52 3.6. Metodología de la Investigación. ........................................................... 52 3.7. Materiales y Equipos. ............................................................................ 53 CAPÍTULO IV: ANÁLISIS Y EVALUACIÓN DE RESULTADOS 4.1. Calidad del Efluente .............................................................................. 54 4.2. Determinación del Hidróxido de Calcio ................................................ 54 4.3. Determinación Del Sulfato De Aluminio ............................................... 4.4. Adición de la solución del Hipoclorito de Sodio..................................... 4.5. Gráficas de Relación ............................................................................. 4.6. Análisis e Interpretación de Resultados ................................................ 4.7. Prueba de Hipótesis .............................................................................. 4.8. Análisis Estadístico ............................................................................... 4.9. Costo beneficio...................................................................................... CONCLUSIONES RECOMENDACIONES BIBLIOGRAFÍA ANEXOS
  • 5. ÍNDICE DE TABLAS Cuadro N°1: Operacionalización de variables.............................................. 15 Cuadro N°2: Propiedades Físicas del Oro ................................................... 19 Cuadro N°3: Operacionalización de variables.............................................. 47 Cuadro N°4: Operacionalización de variables.............................................. 49 Cuadro N°5: Comparación de costos del Floculante y la Cal....................... 50 Cuadro N°6: Costo Mensual del Tratamiento en Nazareno ........................ 50 Cuadro N°7: Calidad de Afluente ................................................................. 54 Cuadro N°8: Interpretación de Resultados .................................................. 57 Cuadro N°9: Interpretación de Resultados................................................... 60 Cuadro N°10: Interpretación de Resultados................................................. 62 Cuadro N°11: Interpretación de Resultados................................................. 64 Cuadro N°12: Interpretación de Resultados................................................. 66 Cuadro N°13: Interpretación de Resultados................................................. 70 Cuadro N°34: Cuadro Comparativo Costo año 2015 ................................... 95 Cuadro N°35: Cuadro Costos Prueba de Jarras ......................................... 95 Cuadro N°36: Cuadro Comparativo Costos Nazareno Vs. Prueba de Jarras. 95 ÍNDICE DE FIGURAS Figura N° 1: Lingote de oro......................................................................... 21 Figura N° 2: Diagrama de Flujo................................................................... 33 Figura N° 3: Diagrama de Proceso ............................................................. 34 Figura N° 4: Fuerzas Actuantes en Sedimentación .................................... 37 Figura N° 5: Sistema de Tratamiento Nazareno ......................................... 49 Figura N° 6 : Cuadros comparativo de Cal y Floculante Año 2014- 2015........................................................................................ 47 ANEXOS
  • 6. Cuadro N°14: Conductividad........................................................................ 72 Cuadro N°15: Potencial de Hidrógeno ......................................................... 73 Cuadro N°16: DBO5..................................................................................... 74 Cuadro N°17: DQO ...................................................................................... 75 Cuadro N°18: Aluminio................................................................................. 76 Cuadro N°19: Arsénico ................................................................................ 77 Cuadro N°20: Bario ...................................................................................... 78 Cuadro N°21: Berilio..................................................................................... 79 Cuadro N°22: Boro....................................................................................... 80 Cuadro N°23: Cadmio .................................................................................. 81 Cuadro N°24: Cobre..................................................................................... 82 Cuadro N°25: Cobalto .................................................................................. 83 Cuadro N°26: Cromo Total........................................................................... 84 Cuadro N°27: Hierro..................................................................................... 85 Cuadro N°28: Litio........................................................................................ 86 Cuadro N°29: Manganeso............................................................................ 87 Cuadro N°30: Níquel .................................................................................... 88 Cuadro N°31: Plomo .................................................................................... 89 Cuadro N°32: Selenio................................................................................... 90 Cuadro N°33: Zinc........................................................................................ 91
  • 7. DEDICATORIA A Dios por ser quien soy en la vida. A mis padres: por su gran amor y apoyo incondicional como muestra de gratitud, por la invalorable ayuda en mi formación profesional y logro de mis aspiraciones. A mi hermano: por enseñarme a no rendirme ante cualquier situación. A mi hijo Fernando: por ser el motor y motivo de hasta donde he llegado hasta ahora.
  • 8. AGRADECIMIENTO A Dios, por darme la fortaleza y sabiduría A mi familia por su apoyo incondicional.
  • 9. RESUMEN La especial atención es Optimizar técnica y económicamente el tratamiento de las aguas residuales industriales generadas de la U.E.A. Orcopampa, provincia de Castilla. Para mejorar la calidad de las aguas vertidas al rio Orcopampa. La tesis se centra en un caso de estudio particular de la U.E.A. Orcopampa, que se encuentra realizando trabajos de explotación. El presente proyecto se justifica porque permitiría la aplicación de un nuevo proceso para el tratamiento de nuestros efluentes, siempre en cuando la evaluación técnica-económica lo permita. Finalmente, se presentan los esquemas de la optimización técnica y económica que son efectivos y viables para el caso estudiado, así como los cálculos necesarios para determinar los parámetros establecidos según la legislación peruana.
  • 10. ABSTRACT Special attention is technically and economically optimize the treatment of industrial wastewater generated from the U.E.A. Orcopampa province of Castilla. To improve the quality of water discharged into the river Orcopampa. The thesis focuses on a particular case study of the U.E.A. Orcopampa, which he is doing work of exploitation. This project is justified because it would allow the implementation of a new process to treat our effluents, always when the technical - economic evaluation permits. Finally, schemes of technical and economic optimization that are effective and viable for the case study and the calculations necessary to determine the parameters established under Peruvian law are presented.
  • 11. CAPÍTULO I DISEÑO DE LA INVESTIGACIÓN 1.1. Descripción de la Realidad Problemática En la actualidad existe una preocupación común entre el sector privado como en el público, para el tratamiento de las aguas residuales, cuya existencia se hace insostenible no solo para la tranquilidad de la población si no que incide directamente en la salud humana, por el entorno indeseable que se genera y también porque las actividades productivas de alimentos sobre todo procedentes de las aguas continentales y del mar se ven afectadas. Asimismo el Perú es el primer productor de oro, zinc, estaño, plomo y molibdeno en América Latina. La Cordillera de los Andes es la columna vertebral de Perú y la principal fuente de depósitos minerales del mundo, tiene un importante potencial geológico. Es el tercer país en el mundo en reservas de oro, plata, cobre y zinc (US Geological Survey - USGS figures). El presente proyecto tiene como objetivo la realización de optimizar técnica y económicamente el tratamiento de las aguas residuales industriales de la U.E.A. Orcopampa, mediante una optimización del sistema de tratamiento de las aguas residuales, a través, de la determinación de parámetros de operación y la caracterización de las
  • 12. cantidades de sustancias que se deben de combinar, junto con los tiempos de residencia, así como también la identificación de los procesos y operaciones que se pueden renovar con la finalidad de optimizar los recursos disponibles de la planta. El sistema de tratamiento de las aguas residuales industriales de una empresa es un proceso físico químico que cuenta con unidades de homogenización, coagulación, floculación, sedimentación y filtración que permite eliminar sólidos en suspensión, sólidos disueltos y materia orgánica. Se espera que una vez concluida la aplicación de la optimización de la remoción de la carga contaminante hasta alcanzar el valor establecido en cumplimiento con la legislación ambiental de los ECA (estándar de calidad ambiental) para poder descargar el agua residual industrial tratada al cuerpo receptor de agua dulce, con lo cual la unidad de tratamiento estará operando con la eficiencia requerida tal como indica la literatura para el tipo de sistemas instalados en la planta 1.2. Formulación del Problema. En los procesos metalúrgicos el requerimiento del agua es necesario, posteriormente se convierte en efluentes que de acuerdo a la legislación vigente antes del vertimiento al río se debe realizar el tratamiento como agua residual industrial. La U.E.A ORCOPAMPA se encuentra ubicado en el distrito de Orcopampa, provincia de Castilla, departamento de Arequipa a una distancia de 1350 Km de la ciudad de Lima, entre 3800 y 4500 m.s.n.m. La Compañía de Minas Buenaventura, ha iniciado el proceso de adecuación a los LMP y ECA, establecidos por la normatividad vigente, implementando medidas preliminares de manejo ambiental tendientes a controlar la calidad de sus efluentes y sus cuerpos receptores. Las aguas de mina generadas en el Sector de Veta Nazareno, es de carácter químicamente ácido, con valores promedio de 5,70 ppm. Los
  • 13. parámetros críticos de mayor importancia son los sólidos suspendidos, el hierro y el manganeso, los cuales deben ser reducidos en el tratamiento. Presentan además caudales relativamente fluctuantes durante la mayor parte del ciclo hidrológico. Para el diseño y optimización de la planta de tratamiento se ha considerado un estudio cuidadoso de ingeniería, basado en la evaluación del comportamiento histórico de los parámetros críticos antes mencionados, y en la selección apropiada de los procesos y operaciones más adecuados y económicos, y sostenibles a través del tiempo. 1.3. Justificación e importancia de la Investigación Justificación Las aguas residuales deben ser sometidas a un tratamiento previo, que permitan el cumplimiento de ECA cumplir con la responsabilidad social- ambiental, la política ambiental de la empresa al verter al cuerpo receptor, según las disposiciones que dicte el Ministerio del Ambiente para su implementación donde no cause perjuicio a otro uso en cantidad o calidad del agua, no se afecte la conservación del ambiente acuático. Importancia El presente estudio de investigación pretende aportar al mejoramiento de la dosis y el uso de insumos en el tratamiento de las aguas residuales que se genera del proceso de metalúrgico, considerando el cumplimiento de la calidad del agua tratada para el vertimiento en el río, en los parámetros a medir.
  • 14. 1.4. Objetivo de la Investigación 1.4.1. Objetivo General Optimizar técnica y económicamente el tratamiento de las aguas residuales industriales generadas de la U.E.A. Orcopampa, provincia de Castilla. 1.4.2. Objetivos Específicos Evaluar los parámetros de las aguas residuales generadas del proceso metalúrgico - Determinar la dosis óptima del hidróxido de calcio - Determinar la dosis óptima de sulfato de aluminio - Evaluar remoción de los sólidos suspendidos - Calcular el costo del tratamiento y comparar con el tratamiento existente. 1.4.3. Hipótesis de la investigación. La optimización del tratamiento de las aguas residuales industriales de la U.E.A. Orcopampa permitirá la eficiencia en el proceso de tratamiento de las aguas residuales y la disminución de los costos operativos actuales. 1.5. Variables e Indicadores 1.5.1. Variable Independiente Agua Residual Industrial Minera: Agua generada de los procesos metalúrgicos en la obtención del oro. 1.5.2. Variable Dependiente Tratamiento del Efluente: Optimizar el tratamiento para su eficiencia y alcanzar el ECA según la legislación. 1.5.3. Operacionalización de las variables
  • 15. Las variables a evaluar presentar indicadores medibles para el análisis e interpretación: CUADRO N°1 Operacionalización de variables VARIABLE INDICADOR ESCALA INDEPENDIENTE: Efluente Ind. Metalúrgico - pH - turbidez - Solidos Totales - Conductividad - DQO - DBO - Metales Pesados DEPENDIENTE: Tratamiento del Efluente - Volumen - Ph - Dosis del floculante - Dosis del Hidróxido de Calcio Fuente: Elaboración Propia 1.6. Tipo y Nivel de la Investigación a) Tipo de Investigación: La investigación será del tipo aplicativa, porque se escogerá dentro de las técnicas existentes para el tratamiento de efluentes mineros y se ajustarán los parámetros para encontrar las cantidades mínimas, pero efectivas de los productos químicos a emplear. b) Nivel de la Investigación: El nivel será descriptivo, porque se va detallar una tecnología que permita el tratamiento de los efluentes para adecuarlos a los ECAS
  • 16. CAPÍTULO II MARCO TEÓRICO 2.1. Antecedentes Teóricos de la Investigación En el estudio de investigación “Propuesta de un modelo socio económico de decisión de uso de aguas residuales tratadas en sustitución de agua limpia para áreas verdes de la Universidad de Ingeniería”, se menciona sobre la problemática y proyectos para resolver el problema de las aguas residuales en lima metropolitana, el callao y resto del país 1. En el proyecto “Optimización de la Planta de Tratamiento de Aguas Residuales Industriales de una empresa Textil, para el Tratamientos de Aguas residuales 2donde menciona el objetivo básico del tratamiento es proteger la salud y promover el bienestar de los individuos miembros de la sociedad. El retorno de las aguas residuales a nuestros ríos o lagos nos convierte en usuarios directos o indirectos de las mismas, y a medida que crece la población, aumenta la necesidad de proveer sistemas de tratamiento o renovación que permitan eliminar los riesgos para la salud y minimizar los daños al ambiente. 2.2. Marco Legal 1 http://cybertesis.uni.edu.pe/bitstream/uni/217/1/mendez_mf.pdf Revisado [ Fecha 11 /10/15 Hora: 11:00 am ] 2 http://dspace.ups.edu.ec/bitstream/123456789/6215/1/UPS-GT000524.pdf Revisado [ Fecha 12/10/15 Hora: 11:15 am ]
  • 17. El marco legal que regula los recursos hídricos en el Perú es: - Ley de Recursos Hídricos N° 29338 (2009) cuyos principios son: Valoración del agua y de gestión integrada, prioridad de acceso al agua, participación de la población y cultura, seguridad jurídica, respeto del agua de las comunidades, principio sostenible, descentralización de la gestión pública del agua, carácter precautorio, eficiencia, gestión de cuencas y tutela jurídica. La ley establece la existencia del Sistema Nacional de Gestión de Recursos Hídricos, cuyo ente rector es la Autoridad Nacional del Agua (ANA). Además establece los usos que se le puede dar a los recursos hídricos, los derechos y licencias de uso, la protección del agua, los regímenes económicos, la planificación del uso, la infraestructura hidráulica, normatividad sobre el agua subterránea, las aguas amazónicas, los fenómenos naturales, finalmente, las infracciones y sanciones. - Reglamento de la Ley 29338 Decreto Supremo N 002-2008-MINAM - Decreto supremo N° 002-2008-MINAM. Aprobación de los estándares de calidad ambiental para agua y del anexo I, el cual establece el nivel de concentración de elementos, parámetros físicos, químicos y biológicos presentes en el agua con fin que no represente riesgo significativo para la salud de las personas ni para el ambiente. - Decreto supremo N° 023-2009-MINAM. Aprobación de las disposiciones para la implementación de los estándares de Nacionales de la Calidad Ambiental (ECA) para el agua, las cuales constan se once estándares y dos disposiciones transitorias. Se realiza en fin de la implementación del Decreto supremo N° 002- 2008-MINAN. 18 diciembre, 2009. - Decreto supremo N° 001-2010-AG. Aprobación del reglamento de la Ley de Recursos Hídricos N° 29338. tiene por objeto regular el uso y gestión de los recursos hídricos que comprenden el agua continental: superficial y subterránea, y los bienes asociados a esta; asimismo, la actuación del Estado y los particulares en dicha gestión.
  • 18. - Ley N° 26821: Aprobación de la Ley Orgánica para el aprovechamiento sostenible de los recursos naturales. En esta ley se hace mención sobre el aprovechamiento sostenible de los recursos naturales, la función del estado en promover su aprovechamiento sostenible, otorgamiento de los derechos sobre los recursos naturales así como de las condiciones de su aprovechamiento. 26 junio, 1997. 2.3. Marco Teórico 2.3.1. Mineral del Oro El oro es un elemento químico de número atómico 79, que está ubicado en el grupo 11 de la tabla periódica. Es un metal precioso blando de color amarillo. Su símbolo es Au (del latín aurum, ‘brillante amanecer’). Es un metal de transición blando, brillante, amarillo, pesado, maleable y dúctil. El oro no reacciona con la mayoría de los productos químicos, pero es sensible y soluble al cianuro, al mercurio, al agua regia, cloro y a la lejía. Este metal se encuentra normalmente en estado puro, en forma de pepitas y depósitos aluviales. El oro es uno de los metales tradicionalmente empleados para acuñar monedas; se utiliza en la joyería, la industria y la electrónica por su resistencia a la corrosión. Se ha empleado como símbolo de pureza, valor, realeza, etc. El principal objetivo de los alquimistas era producir oro partiendo de otras sustancias como el plomo. Actualmente está comprobado químicamente que es imposible convertir metales inferiores en oro, de modo que la cantidad de oro que existe en el mundo es constante.
  • 19. 2.3.1.1. Propiedades físicas del Oro CUADRO N° 2 Propiedades Físicas del Oro PROPIEDADES FISICAS UNIDADES Densidad 19,300 kg por metro cúbico Punto de fusión 1337.33 K (1064.18 °C). Número atómico 79 Peso atómico: 197 Fuente: Elaboración propia 2.3.1.2. Cualidades químicas del oro El oro es un elemento químico así que solo puede ser encontrado, no fabricado. Es inerte, lo que significa que: es prácticamente inmune al deterioro, no es muy útil en ningún proceso industrial o químico que lo utilice y que es barato de almacenar durante largos periodos de tiempo. Es notable por su rareza, densidad y su excelente conductividad eléctrica. El oro tiene una gran cantidad de usos industriales gracias de sus cualidades físicas. Se utiliza en la industria odontológica y en la fabricación de algunos productos electrónicos que necesitan contactos de alta calidad no corrosivos. Sin embargo, sus usos realmente prácticos son numéricamente insignificantes. De todo el oro minado de la tierra, la mayor parte se utiliza de estas tres maneras: - Como adorno personal, donde su color y su relación con la riqueza contribuyen a su uso en la fabricación de joyas. (En torno al 60% del abastecimiento global).
  • 20. - Como refugio público de riqueza, al respaldar los sistemas monetarios. (En torno al 20% del abastecimiento global). - Como refugio de riqueza privada (En torno al 15% del abastecimiento global) 2.3.1.3. Extracción del oro y purificación Dada la cualidad inerte del oro, alrededor de un 80% del metal en mineral se encuentra en su estado elemental. Hay varios procesos para extraerlo y luego purificarlo. La amalgama es un proceso basado en mercurio que funciona por la disposición del metal para ser disuelto en dicho elemento. El mercurio se aplica al mineral, recoge el oro y la amalgama resultante se destila, hirviendo el mercurio para deshacerse de él. El mercurio es altamente tóxico y, por tanto, ecológicamente peligroso. El proceso industrial para este tipo de extracción es costoso. El proceso más importante para la extracción del oro es la cianuración (o proceso de cianuro). El cianuro sódico en la presencia del aire provoca que el oro entre en solución. Un mineral de buena calidad se deshace de su oro en un proceso de filtración en tanques. Un mineral de calidad inferior necesita pasar por el proceso de lixiviación, donde grandes pilas de mineral son rociadas con solución de cianuro durante un periodo de tiempo prolongado. El oro relativamente bruto se purifica principalmente de dos maneras. El primer estado de purificación más barato es el proceso Miller que utiliza gas cloro y alcanza una purificación del 99,5%. Por otra parte está el proceso más caro Wohlwill, que electroliza el oro hasta purezas del 99,99%. Los lingotes de oro Good Delivery (la unidad principal de trading de oro, ver imagen), tienen una pureza mínima del 99,5%. Figura 1. Lingote de oro
  • 21. 2.3.1.4. Ley del oro Minerales como la plata y el oro es común que se los clasifique según su peso ley. Esto se refiere al grado de pureza del elemento. Por ejemplo la plata, oro y platino son minerales nativos (es decir, están formados por esos elementos: Ag, Au y Pt respectivamente). Sin embargo estos minerales pueden tener impurezas (serán elementos accesorios en su composición mineralógica) que hacen que baje su pureza (Su peso ley será más bajo) Por lo tanto cuanto mayor es el peso ley, más puro será el mineral; por ende más caro saldrá. La ley del oro es la indicación de la proporción de metal fino (puro) que hay en una aleación. Cuando hablamos de “ley de 18 kilates” indicamos que en cada 24 partes de oro hay 18 de fino y 6 de otros metales; por ejemplo, plata o cobre. La ley de 24 kilates quiere decir que las 24 partes son de oro; cuando la ley es de 22, se indica que la aleación está formada por 22 partes de oro y 2 partes de otros metales. En la ley de 12 kilates, habrá 12 partes de oro y otras 12 de otro metal, o liga. La ley, se puede expresar, tanto en kilates (medida de pureza), como en milésimas; las milésimas nos indican el peso de oro que entra en 1000 unidades; por tanto, si la ley de un trozo de oro es de 850 milésimas, significa que en 1000 gramos entran 850 gramos de oro fino y el resto de otros metales; si la ley es de 916, en 1000 gramos entrarán 916 de oro puro.
  • 22. 2.3.1.5. Explotación del Oro 2.3.1.5.1. Tipos de explotación del Oro Esta puede ser pequeña, mediana y gran minería.3 1. Minería de superficie: La minería de superficie es el sector más amplio de la minería, y se utiliza para más del 60% de los materiales extraídos. Puede emplearse para cualquier material. Los distintos tipos de mina de superficie tienen diferentes nombres, y, por lo general, suelen estar asociados a determinados materiales extraídos. Las minas a cielo abierto suelen ser de metales; en las explotaciones al descubierto se suele extraer carbón; las canteras suelen dedicarse a la extracción de materiales industriales y de construcción. - Minas a cielo abierto Son minas de superficie que adoptan la forma de grandes fosas en terraza, cada vez más profundas y anchas. Los ejemplos clásicos de minas a cielo abierto son las minas de diamantes de Sudáfrica, en las que se explotan las chimeneas de kimberlita, depósitos de mineral en forma cilíndrica que ascienden por la corteza terrestre. La extracción empieza con la perforación y voladura de la roca. - Explotaciones al descubierto Las explotaciones al descubierto se emplean con frecuencia, aunque no siempre, para extraer carbón y lignito. En el Reino Unido se obtienen más de 10 millones de toneladas de carbón anuales en explotaciones al descubierto. La principal diferencia entre estas minas y las de cielo abierto es que el material de desecho extraído para descubrir la veta de carbón, en lugar de transportarse a zonas de vertido lejanas, se vuelve a dejar en la cavidad creada por la explotación reciente. 3 http://www.eumed.net/libros-gratis/2009c/568/Tipos%20de%20explotacion.htm
  • 23. Los placeres son depósitos de partículas minerales mezcladas con arena o grava. Las minas de placer suelen estar situadas en los lechos de los ríos o en sus proximidades. - Minería subterránea: La minería subterránea se puede subdividir en minería de roca blanda y minería de roca dura. Los ingenieros de minas hablan de roca “blanda” cuando no exige el empleo de explosivos en el proceso de extracción. En otras palabras, las rocas blandas pueden cortarse con las herramientas que proporciona la tecnología moderna. La gran diferencia entre los tipos de explotación entre la gran Minería, la mediana y la pequeña radica en sus costos de producción. 2.3.1.6. Técnicas de Extracción del Oro A. Bateo Se utiliza un recipiente cóncavo de poca profundidad, similar a un plato hondo de unos 25 a 35 centímetros de diámetro. Antiguamente estos recipientes o bateas eran de metal, pero actualmente se usan también de plástico, ya que con un detector de metales puede saberse de antemano si el material contendrá oro o no. El procedimiento consiste en llenar el recipiente con la arena y gravilla que contiene oro, sumergirlo en agua y agitarlo. Como el oro es más denso que la arena o la roca se asienta en el fondo. El material generalmente se obtiene en las orillas de los arroyos o ríos aprovechando la misma agua para separar el oro, pero también suelen hallarse yacimientos en lechos de arroyos o ríos secos en cuyo caso es necesaria una fuente auxiliar de agua. Para determinar la riqueza en oro en los minerales de las vetas o filones, se utiliza una pequeña batea de unos 20 centímetros de diámetro similar a un cucharón, que en Chile y Argentina se suele llamar poruña; se muele el mineral medianamente fino, se coloca un puñado en
  • 24. la poruña, se agita con agua y el oro se asienta en el fondo. De esta manera se puede calcular la cantidad de oro que contiene el mineral. El bateo o panning es la técnica más sencilla para la búsqueda de oro, y suele usarse en forma individual pero no es comercialmente viable para extraer el oro de los grandes depósitos, salvo que los costos laborales sean muy bajos. A menudo se comercializan como atracción turística en las primeras compañías de oro. B. Proceso con cianuro La extracción de oro con cianuro se puede utilizar en zonas donde se encuentran finas rocas que contienen oro. La solución de cianuro de sodio se mezcla con rocas finas, que anteriormente se haya comprobado que puedan contener oro y/o plata. Para lograr que se separen de las rocas en forma de solución de cianuración del oro y/o cianuración de plata, se le añade zinc a la solución, lo que precipita los residuos de zinc y también metales deseados como el oro y la plata. Se elimina el zinc con ácido nítrico o ácido sulfúrico, dejando la plata y/o barras de oro, que generalmente se funden en lingotes que luego son enviados a una refinería de metales para su transformación final con agua regia a metales puros en 99,9999 %. Medgold fue una de las primeras empresas en utilizar este método. Avances en los años setenta han promovido el uso del carbón en la extracción de oro de la solución de filtración. El oro es absorbido por la matriz porosa del carbono. El carbón activo tiene una superficie interna tan grande que quince gramos (media onza), podrían cubrir 18,000 m². El oro puede ser separado del carbono mediante el uso de una solución fuerte de alcohol, soda cáustica y cianuro. A esto se le conoce como la elución o desorción. El oro se adhiere a lana de acero por medio de electro-obtención. Unas resinas de oro específicas también pueden ser utilizadas en lugar de carbón activo, o donde se requiere la separación selectiva de oro, de cobre y de otros metales disueltos.
  • 25. 2.3.1.6.1. La extracción de oro en la cultura popular o minería en pequeña escala Los minerales extraídos de las vetas o filones que tienen una buena concentración de oro, especialmente de partículas libres y granuladas, se mezclan con agua y se muelen en unas piedras llamadas quimbaletes, las que tienen una concavidad que permite usarlas como un mortero. A continuación se agrega mercurio para formar una amalgama con el oro, la que es separada del resto colándola a través de una tela fina. Luego se refoga o quema la amalgama para evaporar el mercurio, quedando el oro en forma de bolas, cuyo tamaño depende de la cantidad de metal existente en el mineral. Este procedimiento no solamente es nocivo para el minero que extrae el material, quien aspira parte de los vapores del mercurio eliminado durante el calentamiento, sino también para las zonas aledañas, pues el mercurio evaporado se condensa contaminando tierras y aguas.4 Las grandes compañías de oro Barrick Gold, Goldcorp y Newmont Mining Corporation son las tres empresas más grandes del mundo en minería de oro. 2.3.1.7. Descripción del Proceso Metalúrgico del Oro El Proceso metalúrgico se divide en: - Sección de Pesaje y Almacenamiento La Sección de Pesaje y Almacenamiento es la de control y recepción de minerales auríferos y relave de amalgamación que se encarga de cualificar, cuantificar, y almacenar el mineral para el cual se dispone de una balanza electrónica de camiones de 60.0 TM, Mettler Toledo de capacidad, ubicada en la zona de entrada de la Planta de Beneficio. Los minerales con una granulometría mayor a ¾” pasa a la sección de chancado para su fragmentación y posteriormente su respectivo muestreo, y si el mineral es de granulometría menor a ¾” pasa directo a la cancha de almacenamiento para su descarga, homogenización y 4 https://es.wikipedia.org/wiki/Miner%C3%ADa_del_oro
  • 26. muestreo, y si es relave de amalgamación, después del pesado pasa a la cancha de almacenamiento para su descarga y muestreo - Sección de Chancado La Sección de Chancado estará en la capacidad de proporcionar el tonelaje requerido y contara con tres circuitos de chancado (Ver Diagrama de flujos – capacidad 300TMD) que trabajan en paralelo, que cuentan cada uno de ellos con una Chancadora de Quijada (chancado primario) y una Chancadora Cónica (chancado secundario), estos circuitos son alimentados con mineral grueso proveniente de las minas, posteriormente reducidos a tamaños a -½” aproximadamente, serán almacenados en tolvas con capacidad de acuerdo al circuito de chancado, se utilizaran cedazos vibratorios de -3/4” y -1/2” para clasificar el mineral. Estos circuitos cuentan con fajas transportadoras (que transportan el mineral) y cedazos vibratorios (que tamizan el mineral). Esta etapa del proceso se realiza de manera independiente y está adaptado a las características de acopio del mineral que proviene de diferentes lugares. El control de generación de emisiones de polvo en esta sección se realiza mediante shutes cubiertos y colectores de polvo. Circuito de Chancado Nº 01 Cuenta con 2 tolva de gruesos de 40 toneladas métricas de capacidad, con una parrilla de 7” de abertura, la descarga pasa a una chancadora de quijada marca COMESA de 10” x 21”, el producto del chancado primario es transportado por una faja de 18” x 26 m que pasa por un electroimán descarga en una zaranda vibratoria de 3” x 8” con una malla de ½”, donde el Overzise que son los gruesos pasan a un chancado secundario que está conformado por una Chancadora Cónica Symons de 2’, y el Underzise que es el producto fino de esta va a una faja de 16” x 12 metros y es el producto final 100% ½”, el mineral para su respectivo muestreo, el producto de la Chancadora Symons de 2’
  • 27. descarga en la faja transportadora de 16” x 12 m completándose así el circuito cerrado. Circuito de Chancado Nº 02 Este circuito cuenta con 4 tolvas de grueso de 15 toneladas métricas de capacidad cada una, las cuales descargan a una faja transportadora de 15.5” x 9 m descargando a una chancadora de quijada 10” x 16”, el producto de este chancado primario es transportado por una faja de 18” x 26 m que pasa por un electroimán, hacia una zaranda vibratoria de 3” x 8” con malla de ½” de abertura, el Overzise pasa a una chancadora Symons de 2’ y el Underzise que es el fino será el producto final , el producto del chancado secundario descarga en una faja de 15.5” x 15 m se une con los finos, completándose así el circuito. Circuito de Chancado Nº 03 Este circuito cuenta con 2 tolvas de grueso de 15 toneladas métricas de capacidad cada una, las cuales descargan a una faja transportadora de 15.5” x 9 m descargando a una chancadora de quijada 9” x 12”, el producto de este chancado primario es transportado por una faja de 18” x 26 m que pasa por un electroimán, hacia una zaranda vibratoria de 3” x 6” con malla de de ½” de abertura, el Overzise pasa a una chancadora Symons de 1.5’ y el Underzise que es el fino será el producto final , el producto del chancado secundario descarga en una faja de 15.5” x 15 m que a su vez se une con la faja 18” x 26 m, completándose así el circuito cerrado. - Sección de Molienda, Clasificación y Lixiviación Sección Molienda y Clasificación La Planta cuenta con una capacidad de 300 TM/día, tiene instalado un molino de bolas de 6’ x 8’, un molino de bolas 6’ x 6’y un molino de bolas 5’ x 8’. La ley de cabeza varía de acuerdo al ingreso del mineral. La malla de alimentación al molino es 100%-1/2”.
  • 28. La descarga hacia la tolva de finos de capacidad de 150 TM, desde un Tolvin de paso de capacidad 15 TM es por medio de una faja de 16” x 15 m. La carga saliente de la tolva de finos es transportada por una faja de 15.5” x 15 m, hacia el molino de bolas primario de 6’ x 8’ marca COMESA y la descarga de este con una densidad promedio de 1650 g/l va hacia un cajón de bombeo el cual bombea la pulpa con una bomba de pulpa de 4” x 3”, este alimenta al hidrociclón D-10, el Underflow (gruesos) es descargado hacia el molino de bolas 6’ x 6’ para continuar con la molienda secundaria, la descarga de este molino se junta en el cajón de bombeo de la descarga del molino primario 6’ x 8’ cerrando el circuito. El Overflow del hidrociclón (finos) es llevado hacia un cajón de bombeo para ser bombeado por una bomba de pulpa de 3” x 3”hacia un hidrociclón D-20 donde el Underflow (gruesos) descarga hacia el molino de bolas 5’ x 8’ para continuar con la remolienda. El Overflow (fino) que sal con una densidad promedio 1250 g/l y a 90% -malla200, pasa a los tanques de lixiviación previo paso por una zaranda vibratoria de pulpa para eliminar la materia orgánica que pudiera afectar el proceso. Los reactivos usados son 2, el cianuro NaCN y la cal minera, estos son adicionados en el molino primario, la fuerza del cianuro es de acuerdo a la ley de cabeza y va de 0.05% a 0.08%, la cal regula el pH a 11. La lixiviación de los valores Au, Ag empieza en los molinos, obteniéndose un promedio de 60% de disolución. Concentración Gravimétrica La descarga del molino de bolas primario 6’ x 8’ COMESA, es bombeada al hidrociclón D-10, aproximadamente un tercio de la carga enviada al hidrociclón es desviada a la zaranda de alta frecuencia 8” x 9” donde los gruesos de la zaranda y del hidrociclón son descargados al molino de bolas 6’ x 6’ COMESA y el fino de la zaranda son tratados en un concentrador Falcón modelo SB-750. Las colas del Falcón son devueltas al cajón de bomba, mientras que el concentrado gravimétrico se almacena en un cono decantador para su posterior tratamiento. La bomba envía la pulpa al hidrociclón D-10. Aproximadamente un tercio de la carga enviada al hidrociclón es desviada a la zaranda de alta
  • 29. frecuencia de 8” x 9” que efectúa un corte de aproximadamente 80%-65 malla. Los concentrados se cosecha en sacos después de concluido cada turno de trabajo, para enseguida ser muestreado, pesado, codificado y precintado. Cianuración La pulpa fina que corresponde al Overflow del hidrociclón D-20 pasa a un circuito de agitación mecánica compuesta por tanques de dimensiones 24’ x 24’, todos estos tanques están colocados en serie conformando así un circuito que permita agitar la pulpa en periodo de 60 horas aproximadamente. Adsorción La descarga del último tanque de Cianuración pasa al espesador de 50’ x 10’, el cual separa en dos productos, uno por rebose que es la solución rica (Overflow), pasa al circuito de precipitación con polvo de zinc (Merril Crow), y la descarga (Underflow) con una densidad de 1435g/l es bombeado con una bomba Peristáltica de 7.5 HP hacia un circuito de seis tanques de adsorción de dimensiones 20’ x 20’, con la ayuda de solución barren que se adiciona al primer tanque desde el circuito Merril Crow se baja la densidad a 1350 g/l. El carbón activado de agrega en contracorriente al avance del flujo desde el ultimo tanque 20’ x 20’hasta donde se cosecha el carbón que está listo para la desorción. El tiempo de adsorción es de 8 horas aproximadamente y del último tanque sale el relave general del proceso. Merrill Crowe La solución rica (pregman) con una ley promedio de 8 g Au/ m3 y 15 g Ag/m3, una fuerza de cianuro de 0.075%, pasa a los clarificadores y con la bomba de vacío pasa por la torre de vacío para eliminar el oxígeno disuelto, con la bomba la solución ya desoxigenada es bombeada a los filtros, antes de la bomba está el cono de alimentación
  • 30. de reactivos, el polvo de zinc y el acetato de plomo, el precipitado se queda en los filtros y la solución que pasa por los filtros, ya es una solución barren, que es bombeada una parte hacia reservorios y la otra hacia el primer tanque de adsorción para bajar la densidad a 1350 g/l. - Desorción El carbón extraído del primer tanque de adsorción será colocado en un tanque cerrado (reactor)existente instalado de acuerdo a la capacidad actual para el tratamiento del material, dicho carbón estará bajo la acción de una solución recirculante compuesta de 10 % de alcohol, 0.1 % de cianuro y 2 % de soda caustica diluida todo en agua destilada a temperatura de 80 °C, esta solución será alimentada por la parte inferior del tanque y descargada por la parte superior del mismo en dos reactores de capacidad de 2.1 TM, ubicado en la sección de desorción. El carbón desorbido es llevado con agua hacia el reactor reactivador de carbón ubicado en planta. Posteriormente este carbón es muestreado, llenado en costales y pesado. - Reactivación del carbón En la Planta de Beneficio de Minera Veta Dorada S.A.C. se utiliza los tratamientos de reactivación Químicos y Térmicos con el fin de regenerar el Carbón desorbido. Reactivación Químico El carbón desorbido es cargado hacia un reactor en un promedio de 2,500 Kg. (peso seco) y es lavado inicialmente con agua, posteriormente con ácido clorhídrico o nítrico y finalmente con agua por un lapso de 2 a 3 horas cada lavada. La función del ácido, es la de remover el calcio y la sílice atrapadas por el carbón. Una vez culminado este proceso, este carbón es llenado en costales y queda listo para su uso en el proceso. Reactivación Térmica
  • 31. En la Planta de Beneficio de Minera Veta Dorada S.A.C. cuenta con un equipo de Regeneración Térmica “OILON”, en el cual el carbón que proviene del proceso de desorción es calentado a temperaturas que oscilan entre 500 a 600 °C con el fin de eliminar alguna materia orgánica cogida por el carbón en el proceso. Posteriormente el carbón ya regenerado es tamizado para eliminar los finos y es agregado nuevamente al proceso de Cianuración para extraer los valores de oro que puedan contener. - Electrodeposición La solución producto de la desorción conforma dos circuitos con las celdas electrolíticas con cátodos y ánodos, en el cátodo de lana de acero se forma el precipitado de AU Ag Cu de donde serán recuperados por disolución del fierro con ácido sulfúrico, enviándose a fundición el producto sólido. - Fundición La Planta de Beneficio de Minera Veta Dorada S.A.C. Trabaja la fusión del producto de la electrodeposición en crisoles a llama directa de gas bajo una campana de extracción existente, instalación que opera a una mayor capacidad instalada. En este proceso se utiliza fundentes que generan una pequeña escoria y el metal líquido es vaciado en lingoteras. - Producto Final Después de haber realizado el tratamiento del mineral en las secciones de chancado y molienda, en la sección de adsorción se obtiene el carbón activado cargado del metal valioso que es el oro. Las concentraciones de oro con las que se obtiene los carbones en esta etapa son de 3.5 gr de Oro por Kg. de carbón activado. El producto final de la Planta de Beneficio de Minera Veta Dorada S.A.C está constituido por el llamado “Oro Doré”. Dependiendo de la
  • 32. demanda de los clientes se obtiene también como producto el oro refinado.
  • 33. Figura 2. Diagrama de Flujo Fuente: Elaboración Propia
  • 34. Figura 3. Diagrama del Proceso Fuente: Elaboración propia 2.3.1.8. Subprocesos del tratamiento en definiciones operacionales Neutralización: Las aguas residuales deben neutralizarse para ajustar su valor de pH. Solo mediante este proceso podrán cumplir los requisitos de las distintas unidades de proceso que conforman los sistemas de tratamiento de aguas residuales. La neutralización puede utilizarse para el tratamiento de las aguas residuales ácidas que contienen metales. La incorporación de un reactivo alcalino aumenta el pH de los residuos ácidos. Esto forma un precipitado que recoge los metales no deseados. El resultado es una Neutralización Agua Tratada 5ml Na ClO 390 ppm Al2 (SO4)3 Agua Residual Ca (OH) 2 ppm Desinfección Sedimentació n Floculación Coagulación Decantación
  • 35. solución inicial cuyo pH se ha ajustado dentro de un rango óptimo para precipitar los metales como hidróxidos. Decantación: La misión de la de la decantación es eliminar partículas, ya sea por sedimentación o flotación, partículas que en el caso del tratamiento del agua pueden proceder de sustancias disueltas, que por la vía de la oxidación han pasado a insolubles ( es el caso del hierro y manganeso disueltos, que por oxidación pasan a su estado oxidado insoluble ) o por las propias partículas coloidales en suspensión existentes en el agua bruta, la mayoría de las cuales por coagulación - floculación han pasado a ser sedimentables. Otras sustancias disueltas pueden quedar adheridas o adsorbidas por los coágulos-flóculos y son eliminadas de esta forma. Coagulación y Floculacion: Los procesos de coagulación y Floculacion se empiezan para extraer del agua los sólidos que en ella se encuentran suspendidos siempre que su rapidez natural de asentamiento sea muy baja para proporcionar clarificación efectiva. El proceso de Coagulación y Floculacion se usa para: - Remoción de turbiedad orgánica o inorgánica que no puede sedimentar rápidamente. - Remoción de color verdadero y aparente. - Eliminación de bacterias, virus y organismos patógenos susceptibles de ser separados por coagulación. - Destrucción de algas y plancton en general. - Eliminación de substancias productoras del sabor y olor en algunos casos de precipitados químicos suspendidos o compuestos orgánicos en otros. Es preciso distinguir los fenómenos que ocurren durante los procesos de coagulación y floculación, los mismos que son: Coagulación: Comienza en el mismo instante en el que se agrega los coagulantes al agua y dura solamente fracciones de segundo. Básicamente consiste en una serie de reacciones físicas y químicas
  • 36. entre los coagulantes, la superficie de las partículas, la alcalinidad del agua y el agua misma que provocan la desestabilización de las partículas suspendidas, ósea la remoción de las fuerzas que las mantienen separadas. La coagulación requiere de compuestos químicos que son los coagulantes. Los coagulantes se pueden clasificar en dos grupos: poli electrolitos o ayudantes de coagulación y coagulantes metálicos. Floculacion: Es el fenómeno por el cual las partículas ya desestabilizadas chocan unas con otras para formar coágulos mayores. La Floculacion es estimulada por un mezclado lento que junta poco a poco los floculos, un mezclado demasiado intenso los rompe y raramente se vuelven a formar en su tamaño y fuerzas óptimos. Como se describió anteriormente la dosis del coagulante en un factor que influye en el proceso de coagulación. Para determinar la dosis óptima de coagulante se debe realizar el Sistema de Simulación del proceso de coagulación (prueba de jarras) Sedimentación: Es la eliminación de sólidos en el agua por asentamiento gravitacional. En la etapa de sedimentación actúan tres fuerzas que son: Fuerza externas, Fuerzas de Empuje y Fuerzas de rozamiento. Fuerza Externa: En una gran cantidad de los casos, como por ejemplo en la sedimentación simple de partículas en suspensión de agua, la fuerza externa es solo el peso propio .Sin embargo, deben considerarse igualmente como fuerza externa las fuerzas de inercia, las que pueden tener una acción preponderante en la separación. Empuje: Es el peso del fluido desalojado, según el principio de Arquímedes, esto ocurre porque el agua ofrece una fuerza opuesta al peso) reacción del líquido). Fuerza de Rozamiento: El rozamiento es un fenómeno físico que se manifiesta como una resistencia que opone un cuerpo al movimiento de
  • 37. otro que este en contacto con él, o al movimiento relativo de las partículas en el interior de una material (líquido, gas). Además de las fuerzas actuantes existen otros factores que se deben tener presentes durante la operación, los mismos que son: Que el agua al entrar en el tanque provoque a mínima turbulencia, el impedir corrientes en corto circuito o directas entre la entrada y la salida y que el efluente salga sin provocar disturbios para que no arrastre hacia fuera del tanque el material sedimentado. Figura N° 4 Fuerzas actuantes en Sedimentación Fuente: Elaboración propia Desinfección: Los procesos de sedimentación, coagulación remueven con mayor o menor eficiencia, la mayoría de las bacterias y virus presentes en el agua. Desde este punto de vista pueden ser considerados como procesos preparatorios para la desinfección pues cumplen dos objetivos: - Disminuyen la carga bacteriana del agua. - Hacen más eficientes los métodos de desinfección. Mediante la desinfección se lora la destrucción de los organismos causantes de enfermedades o patógenos presentes en ella dentro de estos microorganismos se pueden mencionar: Bacterias, Protozoarios, Virus, Trematodos.
  • 38. Agua Tratada: Producto líquido que se obtiene al someter el agua de cualquier sistema de abastecimiento a los tratamientos físicos y químicos necesarios para su purificación. 2.3.2. Propiedades del Hidróxido de Calcio (reactividad) Hidróxido de Calcio. Es un polvo blanco producido por la mezcla de óxido de calcio ("cal") con agua. La intoxicación con hidróxido de calcio ocurre cuando alguien ingiere esta sustancia. Estado natural El hidróxido de calcio es un polvo blanco que se obtiene por la calcinación del carbonato cálcico: CaCO3 (s) = CaO (s)+ CO2 (g) CaO (s) + H2O = Ca(OH)2 (ac) Es poco soluble en agua, su pH es alcalino, aproximadamente de 12.4, lo que le permite ser un magnífico bactericida, hasta las esporas mueren al ponerse en contacto con el elemento. Comúnmente se prepara con suero fisiológico ó agua tratada, aunque puede utilizarse cualquier presentación o marca comercial su fuente natural se relacionan a continuación. - Cemento - Agua de cal - Muchos disolventes y limpiadores industriales (cientos de miles de productos de la construcción, raspadores de pisos, limpiadores de ladrillos, productos endurecedores del cemento y muchos otros). - Cal apagada5 2.3.2.1. Aplicaciones de la cal hidratada La cal hidratada se emplea en: 2.3.2.1.1. Industria 5 http://www.ecured.cu/Hidr%C3%B3xido_de_Calcio
  • 39. Metalúrgica: En la producción de magnesio se pueden utilizar dos tipos de procesos de fabricación: proceso electrolítico o proceso de reducción térmica, en el proceso electrolítico se utiliza cal hidratada. Química: En mezclas de pesticidas; en el proceso para la neutralización de ácido sobrante, en la industria petrolera; en la manufactura de aditivos para el petróleo crudo; en la industria petroquímica para la manufactura de aceite sólido; en la manufactura de estereato de calcio; como rellenante y como materia prima para la obtención de carbonato de calcio precipitado (CCP ó PCC). 2.3.2.1.1.1. Industrias alimentarias: Industria azucarera (en concreto en el azúcar de caña) - Ostricultura - Piscicultura - Industria láctea - Fabricación de colas y gelatinas - Conservación de frutas y verduras: Para la eliminación del exceso de CO2 en las cámaras de atmósfera controlada (AC) para la conservación de frutas y verduras (también flores) - Tratamiento del trigo y del maíz: Componente para la nixtamalización del maíz para producir tortillas. - Fabricación de la sal: Para librar una salmuera de carbonatos de calcio y magnesio en la manufactura de sal de mesa. - Para el procesamiento de agua para bebidas alcohólicas y carbonatadas 2.3.2.1.1.2. Protección ambiental a) Tratamiento de aguas potables (potabilización): Se emplea para ablandar, purificar, eliminar turbiedad, neutralizar la acidez y eliminar la sílice y otras impurezas con el fin de mejorar la calidad del agua que consumen las personas.
  • 40. b) Tratamiento de aguas residuales: La cal se utiliza, de manera muy habitual, en los tratamientos convencionales químicos de aguas residuales industriales, básicamente, de carácter inorgánico. La cal es un álcali fácilmente disponible, que es utilizado ampliamente en el tratamiento o línea de lodos en las plantas de depuración de aguas residuales urbanas o en aguas industriales de carácter orgánico. 2.3.2.1.1.3. Remineralización de agua desalinizada: La adición de cal permite realizar un acondicionamiento del agua desalinizada que puede ir desde un ajuste de pH y reducción de la agresividad, hasta la remineralización de las aguas por el aporte de calcio. La cal es imprescindible para el tratamiento final de las aguas procedentes de la desalinización del agua del mar puesto que aporta uno de los compuestos nutricionales básicos - el calcio - y es necesaria para el mantenimiento del equilibrio cal-carbónico, con el fin de evitar incrustaciones o corrosiones. 2.3.2.1.1.4. Depuración de gases: La cal, dependiendo del proceso, es el desulfurante más rentable y natural que elimina el anhídrido sulfuroso y otros gases ácidos (HCl, HF y NOx) de los humos industriales de incineradoras de residuos sólidos urbanos, de centrales térmicas y de la industria en general. La cal también se emplea para eliminar los compuestos orgánicos persistentes (COP) como son dioxinas y furanos, y metales pesados de incineradoras municipales e industriales. 2.3.2.1.1.5. Tratamiento de residuos: La cal se emplea, además de como integrante de diversos tratamientos químicos, como agente para prevenir los malos olores y la contaminación de las aguas por la lixiviación. 2.3.2.1.1.6. Tratamiento de suelos contaminados:
  • 41. Las técnicas empleadas en el tratamiento de suelos contaminados se agrupan de la manera siguiente: 1. Fisicoquímicos 2. Estabilización - solidificación 3. Biológicos 4. Térmicos En el tratamiento ó método físico-químico (que constituye un proceso de transformación del residuo mediante la adición de una serie de compuestos químicos para alcanzar el objetivo deseado), la cal se utiliza en las técnicas de neutralización, precipitación y decloración. Con respecto a la técnica de estabilización / solidificación (cuyo principal objetivo es reducir la movilidad y solubilidad de contaminantes presentes en el suelo, disminuyendo su toxicidad y eliminando su lixiviación), existe una variante denominada “Solidificación con cal y materiales puzolánicos”.6 2.3.3. Sulfato de aluminio El sulfato de aluminio es una sal sólida y de color blanco. Generalmente es usada en la industria como floculante en la purificación de agua potable y en la industria del papel. El sulfato de aluminio se obtiene al reaccionar un mineral alumínico (caolín, bauxita, hidrato de aluminio) con ácido sulfúrico a temperaturas elevadas; la reacción que se lleva a cabo es la siguiente: Al2O3 + 3H2SO4 -------- > Al2(SO4) 3 + 3H2O Una vez que se obtiene el sulfato de aluminio, este se tiene en dos presentaciones: sólido y líquido, con dos especificaciones, estándar y libre de fierro. 2.3.3.1. Propiedad Floculante 6 https://es.wikipedia.org/wiki/Hidr%C3%B3xido_de_calcio
  • 42. Cuando el pH del agua es débilmente ácido, neutro o débilmente alcalino, el aluminio precipita arrastrando las partículas en suspensión, dejando el agua transparente. Esta propiedad es comúnmente usada en piscinas y para tratamiento de aguas industriales para evitar formación de gérmenes y algas. 2.3.3.2. Usos y aplicaciones del sulfato de aluminio El sulfato de aluminio tiene las siguientes aplicaciones: - Sulfato de aluminio en la industria de la Pulpa y Papel.- Ajuste de pH, encolado (brea o cera) y ajuste de retención (fino, carga, pigmentos, etc.) además de servir en el tratamiento de sus efluentes. - Sulfato de aluminio para el tratamiento de aguas residuales: El sulfato de aluminio es un producto económico y efectivo en la eliminación del fósforo en las plantas de tratamiento de agua residual, tanto municipal e industrial, y clarifica el agua al precipitar los sólidos suspendidos. - Sulfato de aluminio para el tratamiento de agua potable: El sulfato de aluminio permite clarificar el agua potable, ya que es un coagulante y por ello sedimenta los sólidos en suspensión, los cuales por su tamaño requerirán un tiempo muy largo para sedimentar. - Sulfato de aluminio en la manufactura química: Se emplea en producción de otras sales de aluminio. - Sulfato de aluminio en la industria de jabones y grasas: Se emplea en la producción de jabones de aluminio y grasas para usos industriales. - Sulfato de aluminio en la industria del petróleo: Manufactura de catalizadores sintéticos. - Sulfato de aluminio en la industria de Farmacéutica: Como astringente en la preparación de drogas y cosméticos.7 2.3.4. Hipoclorito de Sodio 7http://www.quiminet.com/articulos/el-sulfato-de-aluminio-y-sus-aplicaciones-en-la-industria- 27849.htm
  • 43. El cloro, utilizado solo o en forma de hipoclorito sódico, actúa como un potente desinfectante. Añadido al agua destruye rápidamente las bacterias y otros microorganismos que pueda contener, lo que garantiza su potabilidad y ayuda a eliminar sabores y olores. El cloro, como tal o en forma de hipoclorito sódico, es el desinfectante del agua más utilizado en el mundo por su efectividad, bajo coste y fácil uso. Según la Organización Mundial de la Salud: “La desinfección con cloro es la mejor garantía del agua microbiológicamente potable”. Por sus propiedades, el cloro es efectivo para combatir todo tipo de microrganismos contenidos en el agua -incluyendo bacterias, virus, hongos y levaduras- y las algas y limos que proliferan en el interior de las tuberías de suministro y en los depósitos de almacenamiento. Solo la cloración garantiza que el agua ya tratada se mantiene libre de gérmenes durante su tránsito por tuberías y depósitos antes de llegar al grifo, además de ser también el método más económico. Por todo ello, la cloración es el método de potabilización del agua más extendido en el planeta, como lo avala el hecho de que el 98% del agua que se suministra en Europa occidental haya sido desinfectada con cloro. 2.4. Marco Conceptual 2.4.1. Aguas Residuales Las aguas de composición variada provenientes de las descargas de usos municipales, industriales, comerciales, de servicios agrícolas, pecuarios, domésticos, incluyendo fraccionamientos y en general de cualquier otro uso, que hayan sufrido degradación en su calidad original. 2.4.2. Tratamiento Fisco y Químico Intensivo Estas etapas comprenden lo que es la Clarificación, cuyas operaciones son: Sedimentación, Coagulación/Floculacion y Desinfección.
  • 44. 2.4.3. Prueba de Jarras La prueba de jarras es un procedimiento común de laboratorio para determinar la dosis óptima de coagulante para el agua potable o el tratamiento de aguas residuales. Este método permite realizar ajustes en el pH, las variaciones en las dosis de coagulante o polímero, alternando velocidades de mezclado, a pequeña escala con el fin de predecir el funcionamiento de una operación a gran escala de tratamiento. Una prueba de jarras simula los procesos de coagulación- floculación – sedimentación; que fomentan la eliminación de los coloides en suspensión y materia orgánica que puede conducir a problemas de turbidez, olor y sabor. 2.4.4. El Cloro puede ser usado como Hipoclorito de sodio: Hipoclorito de sodio: El Hipoclorito de sodio o lejía representa seguramente uno de los más potentes y eficaces germicidas de amplio espectro descubiertos por el hombre, teniendo la capacidad de destruir hasta el 99 % de los gérmenes, bacterias, virus, algas, huevos, esporas y protozoos, si se respetan las condiciones de uso correctas, como la concentración y el tiempo de contacto entre el desinfectante y el material a tratar 2.4.5. Carga máxima permisible Es el límite de carga que puede ser aceptado en la descarga a un cuerpo receptor o a un sistema de alcantarillado. 2.4.6. Cuerpo receptor o cuerpo de agua Es todo río, lago, laguna, aguas subterráneas, cauce, depósito de agua, corriente, zona marina, estuarios, que sea susceptible de recibir directa o indirectamente la descarga de aguas residuales. 2.4.7. Efluente Líquido proveniente de un proceso de tratamiento, proceso productivo o de una actividad.
  • 45. 2.4.8. Afluente El concepto de afluente es habitual en la hidrología en referencia al cuerpo de agua cuya desembocadura no se produce en el mar, sino que lo hace en un río superior o de mayor importancia. 2.4.9. ECA (Estándar de Calidad Ambiental ) Que, el artículo 31° de la Ley Nº 28611, define al Estándar de Calidad Ambiental (ECA) como la medida que establece el nivel de concentración o del grado de elementos, sustancias o parámetros físicos, químicos y biológicos, presentes en el aire, agua o suelo en su condición de cuerpo receptor, que no representa riesgo significativo para la salud de las personas ni al ambiente.
  • 46. CAPÍTULO III PLANTEAMIENTO OPERACIONAL 3.1. Definiciones Operacionales 3.2. Universo y Muestra Universo: El análisis y estudio del tratamiento del agua residual generada de los procesos metalúrgicos corresponde a U.E.A Orcopampa. Muestra: Está conformada por el volumen de agua residual para el tratamiento, aplicando la dosis óptima, la concentración del coagulante requerido, así como la evaluación técnico – económico en la U.E.A. Orcopampa. 3.3. Método y diseño 3.3.1. Método de la Investigación: Para la investigación se aplica el método científico, complementado con el enfoque sistémico, a través de: - Investigación de Campo: Que permite la Identificación de la dosis requerida de reactivos químicos para mejorar el tratamiento de las aguas residuales industriales; a través de la Prueba de Jarras, para la determinación de la cantidad de coagulante; así como la determinación de la cantidad mínima de hidróxido del calcio para precipitar los metales y corregir el Ph. - Investigación experimental de laboratorio: Para las determinaciones de:
  • 47. CUADRO N°3 Variables Parámetros Turbidez Solidos Totales Potencial de Hidrogeno DQO DBO5 Barrido Óptico de Metales Fuente: Elaboración Propia La investigación se realiza en los mismos lugares donde acontecen los hechos, fenómenos o situaciones que se pretenden investigar. La investigación de campo obliga al investigador a movilizarse al sitio o escenario donde se ubica el objeto o sujeto motivo de la investigación que aspira emprender. En relación con esta definición, se puede afirmar que este trabajo de investigación corresponde con dicho diseño, ya que la recopilación de la información se realizara enmarcada dentro del ambiente específico en el que se presenta el hecho a estudiar, a fin de dar una propuesta de solución que se corresponda con el contexto y adecúe con las posibilidades de implantación que se proporcionen de la comunidad. 3.3.2. Diseño de la Investigación: Para el desarrollo del trabajo se empleó un diseño experimental, que permitió la observación de la muestra, considerando:
  • 48. Evaluación del efluente - El sistema de Tratamiento de efluentes Nazareno se encuentra en el Nivel. 3800 m.s.n.m., el efluente de interior de mina es evacuado a través de 3 tubos, dos tubos de 4 pulg con un caudal de 16.0 Lt/seg y 11 Lt/seg el otro tubo es de 10 pulg que conduce un caudal de 37.1 Lt/seg. - En sistema de Tratamiento de efluentes Nazareno tiene un tanque reaccionador de 0.35 m3 y dos tanques de dosificación de lechada de cal (mecánicos eléctricos) y sus capacidades son de 2 m3 c/u en donde se prepara la lechada de cal a una concentración de 30.0 gr/Lt., el caudal de dosificación de la lechada de cal es de 100 a 700 ml/seg aproximadamente, esto varía de acuerdo al caudal de bombeo y pH que presenta. La dosificación se controla mediante una válvula de 1pulg, para posteriormente llega a la poza de sedimentación. - Adicionalmente se cuenta con 1 cilindro de dosificación de floculante de 0.54 m3 a una concentración de 1gr/Lt. Y el caudal de dosificación es de 20 a 60 ml/seg. Dependiendo de la presencia de los sólidos. - Una vez dosificados, estas aguas son conducidas por un canal donde ingresan a dos pozas de sedimentación, que funcionan una a la vez, la capacidad de la poza de sedimentación Nº 1 es de 6600 m3 y de la poza de sedimentación Nº 2 de 7300 m3. - Finalmente el efluente es vertido al cuerpo receptor (Río Chilcaymarca), donde se tiene un punto de control denominado ECH-2.
  • 49. El sistema de Tratamiento de la Planta Nazareno del área de recursos hídricos se muestra a continuación: Figura N° 5 Sistema de Tratamiento Nazareno Fuente: Elaboración CMBSSA Los resultados obtenidos de los parámetros según el laboratorio de la empresa CMBSSA son los siguientes que se muestran en los 4 cuadros siguientes junto con sus costos:
  • 50. CUADRO N°4 Resultado de Parámetros Mes Enero 2015 ELEMENTOSMUESTRAS 1 ECH-2 0.29 <0.008 0.029 <0.0003 0.983 <0.0001 0.005 0.019 <0.0040.83 0.214 0.975 0.013 <0.001 0.03 0.028 9 <2.00 <10.00 2094 6.49 73.5 DQO m g/L ConductividadµS/cm pH.*Unidad pH Turbidez Se m g/L Zn m g/L STS m g/L DBO m g/L Cd m g/L Cu m g/LCo m g/LCrm g/LFe m g/L Lim g/L B m g/L Código de Servicio Elemento Unidad M n m g/L Nim g/L Pb m g/L N Alm g/L Asm g/L Bam g/L Bem g/L Fuente: Empresa CMBSAA-Laboratorio Cuadro4.1 Costo Mes de Enero 2015 2015 Nro. Dias Floculante Polychem PA 8500 (Kg) Cal Viva (Kg) Precio Unitario $. Kg Consumo Total Kg Costo Total $. Precio Unitario $. Kg Consumo Total Kg Costo Total $. Enero 31 5.80 37.2 215.76 0.25 4,110 1,027.50 Fuente: Empresa CMBSAA
  • 51. CUADRO N°5 Resultado de Parámetros Mes Febrero 2015 MUESTRAS ELEMENTOS 1 ECH-2 0.40 1.0 1.01 <0.0003 0.983 <0.0068 0.040 0.78 <0.0500.83 0.540 0.1500 0.025 <0.0509 0.060 0.040 20 <8.00 <30.00 3094 14 80.5 Código de Servicio Elemento Unidad M n m g/L Nim g/L Pb m g/L N Alm g/L Asm g/L Bam g/L Bem g/L DQO m g/L ConductividadµS/cm pH.*Unidad pH Turbidez Se m g/L Zn m g/L STS m g/L DBO m g/L Cd m g/L Cu m g/LCo m g/LCrm g/LFe m g/L Lim g/L B m g/L Fuente: Empresa CMBSAA-Laboratorio Cuadro 5.1 Costo Mes de Febrero 2015 2015 Nro. Dias Floculante Polychem PA 8500 (Kg) Cal Viva (Kg) Precio Unitario $. Kg Consumo Total Kg Costo Total $. Precio Unitario $. Kg Consumo Total Kg Costo Total $. COSTO TOTAL Febrero 28 5.80 33.6 194.88 0.25 2,525 631.25 826.13 Fuente: Empresa CMBSAA
  • 52. CUADRO N°6 Resultado de Parámetros Mes Marzo 2015 Fuente: Empresa CMBSAA-Laboratorio Cuadro 6.1 Costo Mes de Marzo 2015 2015 Nro. Días Floculante Polychem PA 8500 (Kg) Cal Viva (Kg) Precio Unitario $. Kg Consumo Total Kg Costo Total $. Precio Unitario $. Kg Consumo Total Kg Costo Total $. COSTO TOTAL Marzo 31 5.80 49.6 287.68 0.25 8,265 2,066.25 2,353.93 Fuente: Empresa CMBSAA ELEMENTOSMUESTRAS 1 ECH-2 0.60 2.0 1.01 <0.0010 0.970 <0.0055 0.045 0.88 <0.0600.90 0.670 0.1000 0.045 <0.0550 0.076 0.060 25 <10.00 <40.00 3054 14 90.5 DQO m g/L ConductividadµS/cm pH.*Unidad pH Turbidez Se m g/L Zn m g/L STS m g/L DBO m g/L Cd m g/L Cu m g/LCo m g/LCrm g/LFe m g/L Lim g/L B m g/L Código de Servicio Elemento Unidad M n m g/L Nim g/L Pb m g/L N Alm g/L Asm g/L Bam g/L Bem g/L
  • 53. CUADRO N°7 Resultado de Parámetros Mes Abril 2015 Fuente: Empresa CMBSAA-Laboratorio Cuadro 7.1 Costo Mes de Abril 2015 2015 Nro. Días Floculante Polychem PA 8500 (Kg) Cal Viva (Kg) Precio Unitario $. Kg Consumo Total Kg Costo Total $. Precio Unitario $. Kg Consumo Total Kg Costo Total $. COSTO TOTAL Abril 30 5.80 46.5 269.70 0.25 4,850 1,212.50 1,482.20 Fuente: Empresa CMBSA ELEMENTOSMUESTRAS 1 ECH-2 0.50 2.0 10 <0.0020 0.970 <0.0060 0.055 0.90 <0.0700.90 0.670 0.1000 0.045 <0.0550 0.080 0.090 30 <20.00 <50.00 3080 13 89.5 DQO m g/L ConductividadµS/cm pH.*Unidad pH Turbidez Se m g/L Zn m g/L STS m g/L DBO m g/L Cd m g/L Cu m g/LCo m g/LCrm g/LFe m g/L Lim g/L B m g/L Código de Servicio Elemento Unidad M n m g/L Nim g/L Pb m g/L N Alm g/L Asm g/L Bam g/L Bem g/L
  • 54. 54 Evaluación económica de los resultados durante el año 2015 es la siguiente: La Evaluación económica de la UEA de Orcopampa se puede ver en el siguiente cuadro. A continuación de describe la comparación de costos del Floculante y la Cal que se utilizó durante el año 2015. CUADRO N°5 Comparación de costos del Floculante y la Cal-2015 Nazareno ECH-2 Fuente: Empresa CMBSAA Enero 31 5.80 37.2 215.76 0.25 4,110 1,027.50 1,243.26 Febrero 28 5.80 33.6 194.88 0.25 2,525 631.25 826.13 Marzo 31 5.80 49.6 287.68 0.25 8,265 2,066.25 2,353.93 Abril 30 5.80 46.5 269.70 0.25 4,850 1,212.50 1,482.20 Mayo 31 5.80 40.6 235.48 0.25 5,370 1,342.50 1,577.98 Junio 30 5.80 39.0 226.20 0.25 8,825 2,206.25 2,432.45 Julio 31 5.80 40.8 236.64 0.25 7,371 1,842.75 2,079.39 Agosto 31 5.80 46.4 269.12 0.25 7,125 1,781.25 2,050.37 Setiembre 30 5.80 48.5 281.30 0.25 8,175 2,043.75 2,325.05 Octubre 31 5.80 36.7 212.86 0.25 5,375 1,343.75 1,556.61 Noviembre 30 5.80 39.8 230.84 0.25 6,300 1,575.00 1,805.84 Diciembre 31 5.80 38.2 221.56 0.25 8,825 2,206.25 2,427.81 5.80 496.9 2,882.02 0.25 77,116 19,279.00 22,161.02 5.80 41.4 240.17 0.25 6,426 1,606.58 1,846.75PROMEDIO Precio Unitario $. Kg Consumo Total Kg Costo Total $. Floculante Polychem PA 8500 (Kg) Precio Unitario $. Kg Consumo Total Kg Costo Total $.2015 Nro. Dias Cal Viva (Kg) COSTO TOTAL TOTAL
  • 55. 55 CUADRO N°6 Comparación Costo del Tratamiento 2014-2015 en Nazareno ECH-2 Fuente: Elaboración Propia Figura N° 6 Cuadros comparativo de Cal y Floculante Año 2014- 2015 Fuente: Elaboración Propia
  • 56. 56 3.4. Técnica e Instrumentos de Verificación Técnicas: - Observación Directa: Participante, Estructurada - Cuaderno de Campo - Prueba de jarras Instrumentos: - Fotografías - Material del laboratorio - Informes del laboratorio acreditado con resultados del ECAS 3.5. Metodología de la Investigación. La metodología que se va utilizar para la investigación de nuestro proyecto de tesis será: - Método de Investigación de Campo - Investigación experimental de laboratorio - Identificación de las dosis requeridas de reactivos químicos para mejorar el tratamiento de las aguas residuales industriales - Pruebas de jarras. 3.6. Materiales y Equipos Se utilizaron las instalaciones del laboratorio de la U.E.A. Orcopampa Materiales: - Vasos de 500ml. - Varillas de vidrio - 4 Vasos de 100ml - 1 Probeta de 100ml
  • 57. 57 - 1 Fiola - 1 Luna de reloj - 1 Espátula - 1 Probeta de 50 ml Equipos: - 1 Balanza - Tiras de pH - Equipo de Prueba de jarras Insumos: - Hidróxido de Calcio - Sulfato de Aluminio - Hipoclorito de Sodio 3.7 DETERMINACIÓN DE DOSIS DE HIDRÓXIDO DE CALCIO a) Determinar los parámetros iniciales del agua cruda como son Turbiedad, pH, y solidos sedimentables b) Llenar los cuatro vasos del equipo con 500 ml de la muestra de agua cruda. c) Agregar las diferentes dosis de cal (hidróxido de calcio) a cada jarra, mover por 15 minutos y dejar reposar 20 minutos. d) Observar y escoger la jarra que tenga el menor valor de turbidez y con mayor porcentaje de precipitados. 3.6.1 PRUEBA DE JARRAS a) Determinar el pH para escoger el coagulante optimo b) Enrazar en cada jarra de 1 litro el agua tratada con hidróxido de calcio, empleando la dosis optima anteriormente calculada
  • 58. 58 c) Preparar una solución de sulfato de aluminio patrón con una concentración de 1500 ppm d) Calcular con la fórmula de diluciones la cantidad de solución de sulfato de aluminio que se debe agregar a cada jarra. Se consideró concentraciones alrededor de los valores que se emplean a la fecha en la planta e) Proceder a una agitación rápida durante 5 minutos (mezcla rápida). f) Cambiar a una agitación lenta durante 10 minutos (mezcla lenta). g) Dejar en reposo durante un tiempo aproximado de 20 minutos. h) Decantar el líquido sobrenadante con cuidado de no remover los sólidos sedimentados i) A esta solución medir otra vez los parámetros de turbiedad, pH, color.
  • 59. 59 CAPÍTULO IV ANÁLISIS Y EVALUACIÓN DE RESULTADOS 4.1. CALIDAD DEL EFLUENTE La Calidad del Afluente según el Tratamiento que le da la empresa muestra los siguientes resultados: CUADRO N° 7 Parámetros Unidad Nazareno Norma Conductividad µS/cm 2094 2500 - 5000 Potencial de Hidrogeno Unidad pH 8 6,5 – 8,5 DBO5 mg/L 9 15 DQO mg/L 20 40 Aluminio mg/L 0.29 5 Arsénico mg/L <0.008 0,1- 0,2 Bario mg/L 0.029 0,7 Berilio mg/L <0.0003 0,1- 0,1 Boro mg/L 0.983 1-5 Cadmio mg/L <0.0001 0,01-0,05 Cobre mg/L 0.005 0,2-0,5 Cobalto mg/L 0.019 0.05-1 Cromo Total mg/L <0.004 0,1-1 Hierro mg/L 0.83 5 Litio mg/L 0.214 2,5 Magnesio mg/L 0.002 250 Manganeso mg/L 0.975 0,2 Níquel mg/L 0.013 0,2-1 Plomo mg/L <0.001 0,05 Selenio mg/L 0.03 0,02 – 0,05 Zinc mg/L 0.028 2-24 Elaboración Propia
  • 60. 60 4.2. DETERMINACIÓN DEL HIDRÓXIDO DE CALCIO Se colocó en cada jarra 500 ml la misma cantidad de agua cruda con concentraciones de hidróxido de calcio diferentes que van en el siguiente orden. Para saber la masa que se debe adicionar para obtener las dosis antes mencionadas se usó la siguiente formula. ( )lsolucionV solutomg ppm = Procedimiento: 1. Se pesó el hidróxido de calcio (CaO2H2) de acuerdo a los cálculos realizados con la formula descrita anteriormente. Figura 7: Preparación del Hidróxido de Calcio Fuente: Elaboración propia 2. Se agregó el Hidróxido de calcio a las 4 jarras de 500 ml cada una. Figura 8: Hidróxido de calcio en Jarras
  • 61. 61 Fuente: Elaboración propia 3. Se movió lentamente la solución por un periodo de 15 minutos. Figura 9: Hidróxido de calcio en Jarras Fuente: Elaboración propia 4. Se dejó sedimentar por un periodo de 20 minutos cada jarra. Figura 10: Sedimentación Fuente: Elaboración propia
  • 62. 62 CUADRO N° 8 RESULTADOS CONCENTRACION DE HIDROXIDO DE CALCIO JARRA CONCENTRACIÓN DE Ca(OH)2 (ppm) MASA DE HIDRÓXIDO DE CALCIO (CaO2H2) (mg) 1 5 2,5 2 10 5 3 15 7,5 4 20 10 GRAFICO Nº 08 0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00 20.00 CONCENTRACIÓN DE Ca(OH)2 (ppm) MASA DE HIDRÓXIDO DE CALCIO (CaO2H2) (mg) JARRA 1 JARRA 2 JARRA 3 JARRA 4 INTERPRETACIÓN: De las 4 Jarras se determinó la concentración adecuada de Ca(OH)2 (ppm) 20 y masa de Hidróxido de Calcio (mg) 7,5.
  • 63. 63 CUADRO 9 RESULTADOS CONCENTRACION DEL PARAMETRO pH PARÁMETROS JARRA 1 JARRA 2 JARRA 3 JARRA 4 Concentración hidróxido calcio 10ppm 15 ppm 20 ppm 25 ppm Ph 13 13 11 12 GRAFICO Nº 09 0 5 10 15 20 25 Concentraciòn hidróxido calcio Ph JARRA 1 JARRA 2 JARRA 3 JARRA 4 Interpretación: Al hacer las diferentes pruebas se determinó que la dosis efectiva es de 20 ppm de hidróxido de calcio, debido a que el pH obtenido fue 11 y la turbidez fue la más baja.
  • 64. 64 4.3. DETERMINACIÓN DEL SULFATO DE ALUMINIO Se añadió a cada jarra de 1000 ml que ya se encontraba con la solución de hidróxido de calcio (5 Muestras) en la primera jarra de adiciono 10 ml de la misma solución del sulfato de aluminio al 1%, en la segunda jarra esta se adiciono 20 ml de la misma solución continuando así con las demás jarras hasta 50 ml. Para saber cuántos ml de la solución se deben adicionar para obtener las dosis antes mencionadas se usó la siguiente formula. 2211 CVCV = En Donde: V1 Volumen 1 V2 Volumen 2 correspondiente al volumen que se desea obtener. C1 Concentración 1 de la solución de la cual se parte C2 Concentración 2 a la que se desea llegar Conclusión: Usando la formula se determinó que la cantidad de sulfato de aluminio adecuada es de 390 mg Procedimiento: 1. Se preparó la solución de sulfato de aluminio Fuente: Elaboración propia
  • 65. 65 2. Se adiciono la muestra preparada a cada vaso. Figura 12. Adición de la muestra Fuente: Elaboración propia
  • 66. 66 CUADRO 10 RESULTADOS CONCENTRACION DE ALUMINIO JARRA Concentración de sulfato de aluminio Al2(SO4)3 (ppm) Volumen de solución sulfato aluminio Al2(SO4)3 1500 ppm patrón (ml) 1 310 207ml 2 340 227ml 3 375 250ml 4 400 500ml GRAFICO Nº 10 0 50 100 150 200 250 300 350 400 450 500 Concentración de sulfato de aluminio Al2(SO4)3 (ppm) Volumen de solución sulfato aluminio Al2(SO4)3 1500 ppm patrón (ml) JARRA 1 JARRA 2 JARRA 3 JARRA 4 Fuente: Elaboración propia Interpretación: Al hacer las diferentes pruebas se determinó que la dosis efectiva es de 375 ppm de Al2(SO4)3, para 250ml de muestra preparada con Hidróxido de Calcio (CaO2H2).
  • 67. 67 CUADRO 11 RESULTADOS DE LOS PARAMETROS pH Y TURBIEDAD PARÁMETROS JARRA 1 JARRA 2 JARRA 3 JARRA 4 Al2(SO4)3, 310 ppm 340ppm 375 ppm 390 pmm pH 13 13 12 17 Turbiedad 83.5 82.3 60.9 70.3 Fuente: Elaboración propia GRAFICO Nº 11 0.0 50.0 100.0 150.0 200.0 250.0 300.0 350.0 400.0  Al2(SO4)3, pH Turbiedad JARRA 1 JARRA 2 JARRA 3 JARRA 4 Fuente: Elaboración propia Interpretación: Al hacer las diferentes pruebas se determinó que la dosis efectiva es de la Jarra 3 donde se obtuvo los resultados adecuados.
  • 68. 68 4.4. Adición de la solución del Hipoclorito de Sodio Para bajar el nivel de pH se escogió el hipoclorito de sodio por sus propiedades desinfectantes, disponibilidad en el mercado y bajo costo. Se efectuó una híper- cloración adicionando 5ml de hipoclorito de calcio Para saber la dosis de cloro a añadir se usó la siguiente formula 1 22 1 C xCV V = En donde: V1 = Volumen 1 V2= Volumen 2 correspondiente al volumen que se desea obtener C1= Concentración 1 de la solución de la cual se parte C2= Concentración 2 a la que se desea llegar Partiendo de un solución al 5% de concentración se tiene ppm ppmmlx V 50000 5500 1 = mlV 05,01 = Con lo cual se obtuvo 0,05 ml que son los que se añadió al agua cruda transcurrido un tiempo mínimo de 30 minutos. CONCLUSIÓN: El pH bajo de 12 a 9.
  • 69. 69 CUADRO 12 RESULTADO FINAL DE LAS 4 JARRAS CON SUS RESPECTIVOS PARAMETROS PARAMETROS JARRA 1 JARRA 2 JARRA 3 JARRA 4 Cal 10ppm 15 ppm 20 ppm 25 ppm Al2(SO4)3, 310 ppm 340ppm 375 ppm 390 ppm Hipoclorito de sodio 5ml 5ml 5ml 5ml pH 12 11 9 14 Turbiedad 83.5 82.3 60.9 75.7 Fuente: Elaboración propia GRAFICO Nº 12 0,00 50,00 100,00 150,00 200,00 250,00 300,00 350,00 400,00 Cal  Al2(SO4)3, Hipoclorito de sodio pH Turbiedad JARRA 1 JARRA 2 JARRA 3 JARRA 4 Fuente: Elaboración propia INTERPRETACIÓN: Una vez terminada la prueba de jarras y con los datos obtenidos, se eligió que la dosis de la jarra 3 fue la más conveniente.
  • 70. 70 Una vez determinadas las condiciones iniciales del agua cruda se realizó la prueba de Jarras de la siguiente manera. 1. Se añadió a cada Jarra 1000 ml de agua cruda , en la primera jarra se adiciono 10 ppm de la solución de Cal al 1 % , en la segunda jarra esta vez se adiciono 15 ppm de la misma solución , continuando así hasta la jarra 4 para saber cuántos ml de las solución se deben adicionar para obtener las dosis antes mencionadas se usó la siguiente formula : 2211 CVCV = En donde Volumen 1 Volumen 2 correspondiente al volumen que se desea obtener Concentración 1 de la solución de la cual se parte. Concentración 2 a la que se desea llegar. Partiendo de una solución al 1% y para conocer cuántas partes por millón hay presentes se tiene: ppm Sulfatogr x Aguaml Sulfatogr alSolución 10000 1000000 10000 10000 10000 100 1 %1 === Para el primer caso de 2 ppm se tiene: 2211 CVCV = mlV ppmxmlppmxV 2.0 10000 2000 2100010000 1 1 == = 2. Esto significa que para obtener una dosis de 2ppm se debe adicionar 0.2 ml de la solución al 1% en 1000ml de agua cruda, el mismo procedimiento se realizó para las dosis restantes, los resultados obtenidos fueron para la segunda jarra 0.3 ml, para la tercera 0.4 ml.
  • 71. 71 Figura 13. 3. Como segundo paso se añadió el Sulfato de Aluminio al 0.5% de concentración, la dosis varía entre 0.1 a 0.3 ppm, para este caso se usó 0.1 ppm , así mismo usando la fórmula anterior se pudo determinar los ml a dosificar , que para el caso de 0.1 ppm fue de 0.02 ml. Figura 14 4. Para bajar el pH del agua se empleó el Hipoclorito de Sodio añadiendo 10ppm (1ml) a cada jarra. 5. Una vez colocado la cal el sulfato de aluminio y el hipoclorito de Sodio se procedió a una agitación rápida (100 RPM) durante un minuto y luego durante 15 minutos a una agitación lenta (40 RPM), luego de la agitación se dejó sedimentar por 10 minutos.
  • 72. 72 Figura 15 6. A cada muestra de agua de las cuatro jarras se realizó análisis de Turbiedad, DQO, DBO, pH, Conductividad y barrido óptico de metales, para así determinar que dosis produjo los mejores resultados. Los resultados que se obtuvieron con esta prueba se detallan en la siguiente tabla
  • 73. 73 4.5. Análisis Comparativo de la Dosis Óptima Resultante y la de Nazareno ECH-2. Se demuestran los resultados con los siguientes cuadros y gráficos. CUADRO Nº 13 Parámetros Nazareno Prueba de Jarras Porcentaje % Conductividad 2094 730 83.760 29.200 Potencial de Hidrogeno 8 7 100.00 87.50 DBO5 9 5.8 60.00 38.67 DQO 20 10 50.00 25.00 Aluminio 0.29 0.069 5.80 1.38 Arsénico 0.008 0.01 0.80 1.00 Bario 0.029 0.2 2.90 20.00 Berilio 0.0003 0.001 0.03 0.10 Boro 0.983 0.313 98.30 31.30 Cadmio 0.0001 0.003 0.01 0.30 Cobre 0.0015 0.003 0.15 0.30 Cobalto 0.019 0.008 1.90 0.80 Cromo Total 0.004 0.009 0.40 0.90 Hierro 0.83 0.072 16.60 1.44 Litio 0.214 0.040 10.70 2.00 Manganeso 0.975 0.358 97.50 35.80 Níquel 0.013 0.018 1.30 1.80 Plomo 0.001 0.008 0.10 0.80 Selenio 0.03 0.01 3.00 1.00 Zinc 0.028 0.022 1.40 1.10 Fuente: Elaboración propia
  • 74. 74 GRÁFICO Nº 13 RESULTADOS DE LOS PARAMETROS NAZARENO ECH-2 VS PRUEBA DE JARRAS 0,000 10,000 20,000 30,000 40,000 50,000 60,000 70,000 80,000 90,000 100,000 Conductividad Poten,Hidrogeno DBO5 DQO Aluminio Arsénico Bario Berilio Boro Cadmio Cobre Cobalto CromoTotal Hierro Litio Manganeso Níquel Plomo Selenio Zinc Nazareno Prueba de Jarras FUENTE: ELABORACION PROPIA INTERPRETACIÓN: Se observa que la conductividad de Nazareno ECH- 2 es de 2094 (83.76%) pero con la prueba de jarras que se hizo bajo a 730 (29.20%).
  • 75. 75 4.6. Análisis Estadístico - Con los resultados experimentales obtenidos se procedió a construir tablas que relacionan los parámetros de turbidez, conductividad , pH y metales pesados con las dosis de coagulante aplicadas, ordenadas por los meses en que se realizaron los ensayos. - Posteriormente se construyeron las tablas y gráficas respectivas donde se relacionan las dosis óptimas con la dosis que emplea la empresa. - Se hallaron los porcentajes de remoción de turbiedad y color después del tratamiento con Sulfato de Aluminio tipo B. - Por último se tabularon los resultados obtenidos de una forma que se relacionaran las condiciones iniciales y finales del agua (turbiedad- color-pH) con las dosis óptimas de coagulante encontradas. 4.7. Análisis de los Costos Operativos Beneficio La inversión siempre es un factor importante que es preciso tomar en cuenta, Insumos Químicos: Dentro de los insumos químicos se encuentra el, Hidróxido de Calcio, Sulfato de Aluminio y el Hipoclorito de sodio, costos que se determinaron a partir de las dosis obtenidas de las pruebas experimentales. 1. Cal: Para los cálculos del costo de cal se tomó como referencia la dosis de cal usada en el agua más turbia que fue de 10 ppm por presentar menor pH. xtml m Lt diasmcal 3 3 1 1000 /22= díaLtCal ml Lt mlxCal /22 1000 .1 22000 = = Con un costo de $ 0.15 por kg. se tiene:
  • 76. 76 3 3 /0005.50 /22//01.50 mCalCosto diamdiaCalCosto = = Cada metro cúbico de agua tendrá una inversión de $ 0.0005 por concepto de cal. 2. Sulfato de Aluminio: De acuerdo a las pruebas experimentales la dosis que produjo los mejores resultados fue de 5 ppm al 1% de concentración en aguas más turbias y de 5 ppm al 1% de concentración en aguas menos turbias , para el cálculo de los costos de sulfato de aluminio se trabajó con la concentración del 5% . Con una producción de 22 al día de agua se tiene : ( ) ( ) ( ) díaLtSOAl ml Lt mlxSOAl mlx m Lt diaxmSOAl /.2.2 1000 .1 2200 1.0 1 .1000 /22 342 342 3 3 342 = = = Para 22m3 al día de agua se necesitara de 2,2 de Al2(SO4)3, teniendo en consideración que el Kg de sulfato de aluminio cuesta $4.8 para preparar 2,2 L de solución al 5% el costo será de $0.08 ( ) ( ) 3 342 3 342 /004.50 /22//08.50 mSOAlCosto díamdíaSOAlCosto = = El costo por m3 de agua coagulada será de $. 0.004. 3. Hipoclorito de Sodio: la dosis sobre la cual se realizó los cálculos fue de 6 ppm de cloro al 5% que comúnmente se encuentra en el mercado.
  • 77. 77 díamlNaClO mlx lm Lt xdíamNaClO /2640 12.0 1000 /22 3 3 = = El costo por litro de cloro en el mercado se encuentra en $. 0.50. 3 3 /06.50 /22//3.1$. 5.506.2 mNaClOCosto díamdíaNaClOCosto LxNaClOCosto = = = Cada metro cúbico de agua tendrá una inversión de $0.06 por concepto de hipoclorito de sodio Una vez obtenidos todos los valores relacionados a los Costos de Funcionamiento se procedió a realizar la sumatoria para saber cuál es el costo por metro cúbico de agua tratada.
  • 78. 78 CUADRO N° 33 Cuadro Costos Floculante y Cal Viva Año 2015 Nazareno CUADRO N° 34 Cuadro Costos Prueba de Jarras CUADRO COSTOS Sulfato de Aluminio(kg) Cal Viva (kg) Nro. Días Precio Unitario $ kg. Consumo Total Kg. Costo Total Precio Unitario $ kg. Consumo Total Kg. Costo Total Enero 31 4.8 37.2 178.56 0.15 102 15.3 Febrero 28 4.8 33.6 161.28 0.15 91.2 13.68 Marzo 31 4.8 49.6 238.08 0.15 139.2 20.88 Abril 30 4.8 46.5 223.2 0.15 129.9 19.485 Mayo 31 4.8 40.6 194.88 0.15 112.2 16.83 Junio 30 4.8 39 187.2 0.15 107 16.11 Julio 31 4.8 40.8 195.84 0.15 112.8 16.92 Agosto 31 4.8 46.4 222.72 0.15 129.6 19.44 Septiembre 30 4.8 48.5 232.8 0.15 135.9 20.385 Octubre 31 4.8 36.7 176.16 0.15 100.5 15.075 Noviembre 30 4.8 39.8 191.04 0.15 109.8 16.47 Diciembre 31 4.8 38.2 183.36 0.15 105 15.75 TOTAL 496.9 2385.12 1.8 1375.5 206.325 Enero 31 5.80 37.2 215.76 0.25 4,110 1,027.50 1,243.26 Febrero 28 5.80 33.6 194.88 0.25 2,525 631.25 826.13 Marzo 31 5.80 49.6 287.68 0.25 8,265 2,066.25 2,353.93 Abril 30 5.80 46.5 269.70 0.25 4,850 1,212.50 1,482.20 Mayo 31 5.80 40.6 235.48 0.25 5,370 1,342.50 1,577.98 Junio 30 5.80 39.0 226.20 0.25 8,825 2,206.25 2,432.45 Julio 31 5.80 40.8 236.64 0.25 7,371 1,842.75 2,079.39 Agosto 31 5.80 46.4 269.12 0.25 7,125 1,781.25 2,050.37 Setiembre 30 5.80 48.5 281.30 0.25 8,175 2,043.75 2,325.05 Octubre 31 5.80 36.7 212.86 0.25 5,375 1,343.75 1,556.61 Noviembre 30 5.80 39.8 230.84 0.25 6,300 1,575.00 1,805.84 Diciembre 31 5.80 38.2 221.56 0.25 8,825 2,206.25 2,427.81 5.80 496.9 2,882.02 0.25 77,116 19,279.00 22,161.02 5.80 41.4 240.17 0.25 6,426 1,606.58 1,846.75PROMEDIO Precio Unitario $. Kg Consumo Total Kg Costo Total $. Floculante Polychem PA 8500 (Kg) Precio Unitario $. Kg Consumo Total Kg Costo Total $.2015 Nro. Dias Cal Viva (Kg) COSTO TOTAL TOTAL
  • 79. 79 CUADRO COMPARATIVO COSTOS NAZARENO VS PRUEBA DE JARRAS I N T E R P R E T A INTERPRETACIÓN: Cada metro cúbico obtenido tendrá un costo de $ 1.71. Con lo cual se tiene un ahorro del 97% en comparación con el costo de la planta actual de la UEA de Orcopampa.
  • 80. 80 CONCLUSIONES • Se evaluó los parámetros de las aguas residuales generadas del proceso metalúrgico. • Se determinó la dosis óptima del hidróxido de calcio, siendo óptimo el resultado con la prueba de jarras. • Se determinó la dosis óptima de sulfato de aluminio, siendo óptimo el resultado con la prueba de jarras. • Se calculó el costo del tratamiento y comparo con el tratamiento existente, siendo óptimo el resultado con la prueba de jarras.
  • 81. 81 RECOMENDACIONES • Se recomienda realizar mantenimiento y calibración de los equipos utilizados en el proceso de tratamiento de agua de una forma periódica por personal especializado y así lograr mediciones de mayor confiabilidad. • Es necesario realizar una inversión en equipos y material de laboratorio dado que es necesario tener un buen control en el sector del agua que garantice que el agua esté libre de impurezas que puedan tener efectos adversos sobre la salud. • Es recomendable que en posteriores análisis no se evalué solo los parámetros de turbidez y pH en cuanto a la dosificación de coagulante sino también parámetros como dureza que también afectan la cantidad de coagulante en el momento del tratamiento de aguas. • Para posteriores análisis es necesario la recolección de un mayor volumen de agua cruda para la realización de los ensayos de una forma repetitiva y así lograr una mayor confiabilidad en los resultados obtenidos. • Se recomienda que en la Planta de Tratamiento de Agua de la UEA Orcopampa se realicen ensayos periódicos con la prueba de jarras con el fin de mejorar la cantidad de coagulante utilizada al dosificar el agua.
  • 82. 82 BIBLIOGRAFÍA 1. http://cybertesis.un.edu.pe/bitstream/uni/217/1/mendez_mf.pdf 2. http://dspace.ups.edu.ec/bitstream/123456789/6215/1/UPS-GT000524.pdf 3. http://www.monografias.com/trabajos89/extraccion-oro-mineria-cielo- abierto-mca/extraccion-oro-mineria-cielo-abierto-mca.shtml#ixzz47byprxYC 5. http://es.slideshare.net/NELSHON/tratamiento-de-aguas-residuales- fitorremediacion 6. http://www.siebec.com/+-Traitement-d-effluents-industriels-+.html?lang=es 7. http://es.slideshare.net/NELSHON/tratamiento-de-aguas-residuales- fitorremediacion? 8. http://www.revistas.unal.edu.co/index.php/dyna/article/view/25636/39133 1. Autor: CEPIS Título: Operación y mantenimiento de plantas de tratamiento de agua: manual de capacitación para operadores. Lima, CEPIS, 2002. 862 p. (OPS/CEPIS/PUB/02.76) 2. Tratamiento de aguas residuales – R. S. Ramalho 3. Mangini, S. P., Prendes, H., Amsler, M. L., & Huespe, J. (2003) 4. Borges, C. Determinación de parámetros de diseño de un tratamiento físico químico de aguas residuales, Yucatan,1996.456pp. 5. Romero, J . Purificación de aguas residuales Editorial Escuela Colombiana de Ingeniería, Colombia, 2000. 394 pp. 6. Seoanez, M. Ingeniería ambiental aplicada .Editorial Mundi Prensa . Madrid, 1997.528 pp.
  • 83. 83 7. Osvaldo Aduvire Drenaje acido mina generación y tratamiento Instituto Geológico y Minero de España Dirección de Recursos Minerales y Geoambiente, Madrid, 2006 Pag.13. 8. República del Perú, Ministerio de Energía y Minas (2006), Guía Ambiental para el Manejo de Drenaje Ácido de Minas. 9. Villachica, C. (2004), Proceso NCD, Caso Exitoso de Transferencia de Tecnología Limpia Para el Tratamiento de Efluentes Ácidos de Mina. 10. Mangini, S. P., Prendes, H., Amsler, M. L., & Huespe, J. (2003) 11. Aduvire, O., Barettino, D., Llopis, L., Aduvire, H. (2002), Prevención de la Formación y Tratamiento por métodos Pasivos de Aguas Ácidas de Minas y Escombreras 12. Rodríguez, R., Estupiñán, M., Iglesias, M., Castillo, E. (2007), Evaluación del riesgo ambiental de los pasivos ambientales de la cuenca alta del Río Santa en el departamento de Ancash, Perú.
  • 84. 84 A N E X O S CUADRO N° 14 En el siguiente cuadro se observa la diferencia de Nazareno ECH-2 con la Prueba de jarras que se realizo Parámetros Unidad Nazareno % Prueba de Jarra % Conductividad µS/cm 2094 83.76 730 29.20 FUENTE: ELABORACION PROPIA GRÁFICO N° 14 PARAMETRO CONDUCTIVIDAD NAZARENO VS PRUEBA DE JARRAS FUENTE: ELABORACION PROPIA INTERPRETACIÓN: Se observa que la conductividad de Nazareno es de 2094 (83.76%) pero con la prueba de jarras que se hizo bajo a 730 (29.20%).
  • 85. 85 CUADRO Nº 15 En el siguiente cuadro se observa la diferencia de Nazareno ECH-2 con la Prueba de jarras que se realizo Parámetros Unidad Nazareno % Prueba de Jarra % Potencial de hidrógeno µS/cm 8 100 7 87.50 Fuente: Elaboración propia GRÁFICO Nº 15 PARAMETRO POTENCIAL DE HIDROGENO NAZARENO VS PRUEBA DE JARRAS Fuente: Elaboración propia INTERPRETACIÓN: Se observa que el potencial de hidrogeno de Nazareno es de 8 (100%) pero con la prueba de jarras que se hizo bajo a 7 (87.50%).
  • 86. 86 CUADRO Nº 16 En el siguiente cuadro se observa la diferencia de Nazareno ECH-2 con la Prueba de jarras que se realizo Parámetros Unidad Nazareno % Prueba de Jarra % DBO5 Mg/L 9 60.00 5,8 38.67 Fuente: Elaboración propia GRÁFICO Nº 16 PARAMETRO DBO5 NAZARENO VS PRUEBA DE JARRAS Fuente: Elaboración propia INTERPRETACIÓN: Se observa que la DBO5 de Nazareno es de 9 (60.00%) pero con la prueba de jarras que se hizo bajo a 5.8 (38.67%).
  • 87. 87 CUADRO Nº17 En el siguiente cuadro se observa la diferencia de Nazareno ECH-2 con la Prueba de jarras que se realizo Parámetros Unidad Nazareno % Prueba de Jarra % DQO Mg/L 20 50.00 10 25.00 Fuente: Elaboración propia GRÁFICO Nº 17 PARAMETRO DQO NAZARENO VS PRUEBA DE JARRAS Fuente: Elaboración propia INTERPRETACIÓN: Se observa que la DQO de Nazareno es de 20 (50.00%) pero con la prueba de jarras que se hizo bajo a 10 (25.00%).
  • 88. 88 CUADRO Nº 18 En el siguiente cuadro se observa la diferencia de Nazareno ECH-2 con la Prueba de jarras que se realizo Parámetros Unidad Nazareno % Prueba de Jarra % ALUMINIO Mg/L 0.29 5.80 0.069 1.38 Fuente: Elaboración propia GRÁFICO Nº 18 PARAMETRO ALUMINIO NAZARENO VS PRUEBA DE JARRAS Fuente: Elaboración propia INTERPRETACIÓN: Se observa que el aluminio de Nazareno es de 0.29 (5.80%) pero con la prueba de jarras que se hizo bajo a 0.069 (1.38%).
  • 89. 89 CUADRO Nº 19 En el siguiente cuadro se observa la diferencia de Nazareno ECH-2 con la Prueba de jarras que se realizo Parámetros Unidad Nazareno % Prueba de Jarra % ARSÉNICO Mg/L 0.008 0.80 0.01 1.00 Fuente: Elaboración propia GRÁFICO Nº 19 PARAMETRO ARSENICO NAZARENO VS PRUEBA DE JARRAS Fuente: Elaboración propia INTERPRETACIÓN: Se observa que el Arsénico de Nazareno es de 0.008 (0.80%) pero con la prueba de jarras que se hizo alta a 0.01 (1.00%).
  • 90. 90 CUADRO Nº 20 En el siguiente cuadro se observa la diferencia de Nazareno ECH-2 con la Prueba de jarras que se realizo Parámetros Unidad Nazareno % Prueba de Jarra % BARIO Mg/L 0.029 2.90 0.2 20.00 Fuente: Elaboración propia GRÁFICO Nº 20 PARAMETRO BARIO NAZARENO VS PRUEBA DE JARRAS Fuente: Elaboración propia INTERPRETACIÓN: Se observa que el Bario de Nazareno es de 0.029 (2.90%) pero con la prueba de jarras que se hizo alta a 0.20 (20.00%).
  • 91. 91 CUADRO Nº 21 En el siguiente cuadro se observa la diferencia de Nazareno ECH-2 con la Prueba de jarras que se realizo Parámetros Unidad Nazareno % Prueba de Jarra % BERILIO Mg/L 0.0003 0.03 0.001 0.10 Fuente: Elaboración propia GRÁFICO Nº 21 PARAMETRO BERILIO NAZARENO VS PRUEBA DE JARRAS Fuente: Elaboración propia INTERPRETACIÓN: Se observa que el Berilio de Nazareno es de 0.0003 (0.03) pero con la prueba de jarras que se hizo alta a 0.001(0.10%)