SlideShare una empresa de Scribd logo
1 de 34
MATRICES Y DETERMINANTES
Definición de matriz
Se llama matriz de orden m n a todo conjunto rectangular de elementos aij
dispuestos en m líneas horizontales (filas) y n verticales (columnas) de la forma:




Abreviadamente suele expresarse en la forma A =(aij), con i =1, 2, ..., m, j
=1, 2, ..., n. Los subíndices indican la posición del elemento dentro de la
matriz, el primero denota la fila ( i ) y el segundo la columna ( j ). Por ejemplo el
elemento a25 será el elemento de la fila 2 y columna 5.
MATRICES Y DETERMINANTES
Tipos de matrices:
Matriz fila:  Es una matriz que solo tiene una fila, es decir m =1 y por tanto
   es de orden 1 x n.

                              a11   a12    a13  a1n


Matriz columna: Es una matriz que solo tiene una columna, es decir, n =1
y por tanto es de orden m x 1.
                                     a11
                                     a21
                                     a31
                                      
                                     am1
MATRICES Y DETERMINANTES
Tipos de matrices:
Matriz cuadrada:          Es aquella que tiene el mismo número de filas que de
   columnas, es decir m = n. En estos casos se dice que la matriz cuadrada es
   de orden n, y no n x n.
Los elementos aij con i = j, o sea aii forman la llamada diagonal principal de la
   matriz cuadrada, y los elementos aij con i + j = n +1 la diagonal secundaria.


                      a11    a12     a13  a1n
                      a21    a22     a23  a2 n
                      a31    a32     a33  a3n
                                     
                      an1    an 2    an 3  ann
MATRICES Y DETERMINANTES
Tipos de matrices:
Matriz traspuesta: Dada una matriz A, se llama traspuesta de A, y se representa por
   At, a la matriz que se obtiene cambiando filas por columnas. La primera fila de A es
   la primera fila de At , la segunda fila de A es la segunda columna de At, etc.

De la definición se deduce que si A es de orden m x n, entonces At es de orden n x m.




    Matriz simétrica: Una matriz cuadrada A es simétrica si A = At, es decir,
    si aij = aji   i, j.
    Matriz antisimétrica: Una matriz cuadrada es antisimétrica si A = –At, es
    decir, si aij = –aji i, j.
MATRICES Y DETERMINANTES
   Tipos de matrices:
Matriz nula es aquella que todos sus elementos son 0 y se representa por 0


      La matriz                   es una matriz nula de orden 3




      La matriz                   es una matriz nula de orden 2 x 4
MATRICES Y DETERMINANTES
Tipos de matrices:
Matriz diagonal: Es una matriz cuadrada, en la que todos los elementos no
pertenecientes a la diagonal principal son nulos.




Matriz escalar: Es una matriz diagonal con todos los elementos de la diagonal
iguales




Matriz unidad o identidad: Es una matriz escalar con los elementos de la
diagonal principal iguales a 1.
MATRICES Y DETERMINANTES
Tipos de matrices:
Matriz Triangular:       Es una matriz cuadrada que tiene nulos todos los
elementos que están a un mismo lado de la diagonal principal.
Las matrices triangulares pueden ser de dos tipos:

           Triangular Superior: Si los elementos que están por debajo de la
           diagonal principal son todos nulos. Es decir, aij = 0   i < j.

           Triangular Inferior: Si los elementos que están por encima de la
           diagonal principal son todos nulos. Es decir, aij = 0    j < i.



                                    matriz triangular inferior



                                    matriz triangular superior
MATRICES Y DETERMINANTES

       Operaciones con matrices
 Trasposición de matrices
 Suma y diferencia de matrices

 Producto de una matriz por un número

 Propiedades simplificativas

 Producto de matrices
 Matrices inversibles
MATRICES Y DETERMINANTES
                 Operaciones con matrices
            Trasposición de matrices
Dada una matriz de orden m x n, A = (aij), se llama matriz traspuesta de A, y se representa por
At, a la matriz que se obtiene cambiando las filas por las columnas (o viceversa) en la matriz A.
Es decir:




  Propiedades de la trasposición de matrices:
  1ª.- Dada una matriz A, siempre existe su traspuesta y además es única.
  2ª.- La traspuesta de la matriz traspuesta de A es A. a (At)t = A.
MATRICES Y DETERMINANTES
              Operaciones con matrices
      Suma y diferencia de matrices
La suma de dos matrices A=(aij), B=(bij) de la misma dimensión, es otra matriz
   S=(sij) de la misma dimensión que los sumandos y con término genérico sij=aij+bij.
   Por tanto, para poder sumar dos matrices estas han de tener la misma dimensión.

La suma de las matrices A y B se denota por A+B.
Ejemplo




                   Sin embargo,                     no se pueden sumar.


 La diferencia de matrices A y B se representa por A–B, y se define como: A–B = A + (–B)
MATRICES Y DETERMINANTES
             Operaciones con matrices
      Suma y diferencia de matrices
      Propiedades de la suma de matrices

1ª.     A + (B + C) = (A + B) + C              Propiedad Asociativa


2ª.    A+B=B+A                                 Propiedad conmutativa


3ª. A + 0 = A (0 es la matriz nula)            Matriz Nula


4ª. La matriz –A, que se obtiene cambiando de signo todos los elementos de
   A, recibe el nombre de matriz opuesta de A, ya que A + (–A) = 0.
MATRICES Y DETERMINANTES
               Operaciones con matrices
       Producto de una matriz por un número
El producto de una matriz A = (aij) por un número real k es otra matriz B = (bij) de la misma
dimensión que A y tal que cada elemento bij de B se obtiene multiplicando aij por k, es
decir, bij = k·aij.

Ejemplo:




 El producto de la matriz A por el número real k se designa por k·A. Al número real k se le
 llama también escalar, y a este producto, producto de escalares por matrices
MATRICES Y DETERMINANTES
              Operaciones con matrices
      Producto de una matriz por un número
      Propiedades del producto de una matriz por un escalar

1ª. k (A + B) = k A + k B       Propiedad distributiva 1ª


2ª. (k + h)A = k A + h A        Propiedad distributiva 2ª


3ª. k [h A] = (k h) A           Propiedad asociativa mixta

.




4ª. 1 · A = A · 1 = A           Elemento unidad
MATRICES Y DETERMINANTES
     Operaciones con matrices
 Propiedades simplificativas

Si A + C = B + C    A=B


Si k A = k B   A = B si k es distinto de 0


Si k A = h A   h = k si A es distinto de 0
MATRICES Y DETERMINANTES
               Operaciones con matrices
     Producto de matrices
Dadas dos matrices A y B, su producto es otra matriz P cuyos elementos se obtienen
multiplicando las filas de A por las columnas de B. De manera más formal, los elementos
de P son de la forma:

                           Pij =   Sa   ik     bkj

Es evidente que el número de columnas de A debe coincidir con el número de filas de B. Es
más, si A tiene dimensión m x n y B dimensión n x p, la matriz P será de orden m x p, Es
decir:



    Ejemplo:
                                             no se pueden multiplicar
MATRICES Y DETERMINANTES
                 Operaciones con matrices
      Producto de matrices
Propiedades del producto de matrices
  A·(B·C) = (A·B)·C (Propiedad asociativa)

  El producto de matrices en general no es conmutativo.




  Si A es una matriz cuadrada de orden n se tiene A·In = In·A = A.

  Dada una matriz cuadrada A de orden n, no siempre existe otra matriz B tal que
  A·B = B·A = In. Si existe dicha matriz B, se dice que es la matriz inversa de A y se
  representa por A–1 .

  El producto de matrices es distributivo respecto de la suma de matrices, es decir:
  A·(B + C) = A·B + A·C
MATRICES Y DETERMINANTES
               Operaciones con matrices
   Producto de matrices
Consecuencias de las Propiedades

Si A · B = 0 no implica que A = 0 ó B = 0




Si A · B = A · C no implica que B = C




En general (A+B)2    A2 + B2 +2AB, ya que A · B     B·A



En general (A+B) · (A–B)    A2 – B2, ya que A · B   B·A
MATRICES Y DETERMINANTES


       Matrices inversibles

Una matriz cuadrada que posee inversa se dice que es
inversible o regular; en caso contrario recibe el nombre de
singular.
MATRICES Y DETERMINANTES
Propiedades de la inversión de matrices


          La matriz inversa, si existe, es única

          A-1·A = A·A-1= I

         (A·B)-1 = B-1·A-1

          (A-1)-1 = A

          (kA)-1 = (1/k) · A-1

          (At) –1 = (A-1) t
MATRICES Y DETERMINANTES
Observación:

   Podemos encontrar matrices que cumplen A·B = I, pero que B·A I, en tal
caso, podemos decir que A es la inversa de B "por la izquierda" o que B es la
inversa de A "por la derecha".


Hay varios métodos para calcular la matriz inversa de una matriz dada:



        Por el método de Gauss-Jordan
        Usando determinantes
        Directamente
MATRICES Y DETERMINANTES
    Cálculo Directo de la Matriz Inversa

Dada la matriz                buscamos una matriz que cumpla A·A-1 = I, es decir




Para ello planteamos el sistema de ecuaciones:




 La matriz que se ha calculado realmente sería la inversa por la "derecha", pero es fácil
 comprobar que también cumple A-1 · A = I, con lo cual es realmente la inversa de A.
MATRICES Y DETERMINANTES
Observación:

   Podemos encontrar matrices que cumplen A·B = I, pero que B·A I, en tal
caso, podemos decir que A es la inversa de B "por la izquierda" o que B es la
inversa de A "por la derecha".


Hay varios métodos para calcular la matriz inversa de una matriz dada:



        Por el método de Gauss-Jordan
        Usando determinantes
        Directamente
MATRICES Y DETERMINANTES
Método de Gauss-Jordan para el cálculo de la matriz inversa
          El método de Gauss-Jordan para calcular la matriz inversa de una
dada se basa en una triangulación superior y luego otra inferior de la matriz a la
cual se le quiere calcular la inversa.

                    Ejemplo 1                  Ejemplo 2



          Dada una matriz A de orden n, para calcular su inversa hay que
 transformar la matriz (A I In) mediante transformaciones elementales por filas
 en la matriz (In I B). La matriz B será, evidentemente, la inversa de A.


Para aplicar el método se necesita una matriz cuadrada de rango máximo.
Sabemos que no siempre una matriz tiene inversa, por lo cual comprobaremos
que la matriz tenga rango máximo al aplicar el método de Gauss para realizar
la triangulación superior. Si al aplicar el método de Gauss (triangulación
inferior) se obtiene una línea de ceros, la matriz no tiene inversa.
                                   Ejemplo                               VOLVER
Cálculo de la Matriz Inversa por el método de Gauss - Jordan
    Cuando hacemos transformaciones elementales en una matriz, esto es
    equivalente a multiplicarla por otra matriz dada. Ejemplo:

                    1   1   0                              1   1       0
                                    F2 – 2F1 g F2
                    2   1   1                              0       1   1
                                    F1 + F3 g F3
                     1 1     2                             0   2       2


    Esta transformación es equivalente a la siguiente multiplicación:

                        1   0 0      1    1    0          1    1       0
                        2 1 0        2    1    1          0    1       1
                        1   0 1       1 1          2      0    2       2



    En consecuencia al transformar (A I In) en (In I B) realmente lo que
    estamos haciendo son las siguientes multiplicaciones:
                                A-1·A= In     y        A-1 · In = A-1=B
                                                                           VOLVER
Cálculo de la Matriz Inversa por el método de Gauss - Jordan

   Aplicando el método de Gauss-Jordan a la matriz


   •En primer lugar triangulamos inferiormente:




   •Una vez que hemos triangulado superiormente lo hacemos inferiormente:




   Por último, habrá que convertir la matriz diagonal en la matriz identidad:




   De donde, la matriz inversa de A es


                                                                                VOLVER
Cálculo de la Matriz Inversa por el método de Gauss - Jordan



   Aplicando el método de Gauss-Jordan a la matriz                 se tiene:




   Como hay una fila completa de ceros, la matriz A no tiene rango máximo, en
   este caso 2, por tanto no tiene inversa pues es una matriz singular




                                                                     VOLVER
Gauss, Carl Friedrich



                            b. April 30, 1777, Brunswick [Germany]
                            d. Feb. 23, 1855, Göttingen, Hanover



Original name JOHANN FRIEDRICH CARL GAUSS German mathematician
who also made contributions to other sciences.




                                                          VOLVER
Cálculo de la Matriz Inversa por el método de Gauss - Jordan
    Queremos calcular la inversa de



    1º.- Se escribe la matriz A junto a esta la matriz identidad,


    2º.- Triangularizamos la matriz A de arriba a abajo y realizamos las mismas operaciones en la matriz de la derecha.




       Como podemos observar el rango de la matriz es máximo (en este caso 3), por tanto la matriz A es regular
       (tiene inversa), podemos calcular su inversa.

    3º.- Triangularizamos la matriz de abajo a arriba, realizando las mismas operaciones en la matriz de la derecha.




    4º.- Por último se divide cada fila por el elemento diagonal correspondiente.




                                                                                                                 VOLVER
MATRICES Y DETERMINANTES
Método de Gauss-Jordan para el cálculo de la matriz inversa
          El método de Gauss-Jordan para calcular la matriz inversa de una
dada se basa en una triangulación superior y luego otra inferior de la matriz a la
cual se le quiere calcular la inversa.

                    Ejemplo 1                  Ejemplo 2



          Dada una matriz A de orden n, para calcular su inversa hay que
 transformar la matriz (A I In) mediante transformaciones elementales por filas
 en la matriz (In I B). La matriz B será, evidentemente, la inversa de A.


Para aplicar el método se necesita una matriz cuadrada de rango máximo.
Sabemos que no siempre una matriz tiene inversa, por lo cual comprobaremos
que la matriz tenga rango máximo al aplicar el método de Gauss para realizar
la triangulación superior. Si al aplicar el método de Gauss (triangulación
inferior) se obtiene una línea de ceros, la matriz no tiene inversa.
                                   Ejemplo                               VOLVER
MATRICES Y DETERMINANTES
Observación:

   Podemos encontrar matrices que cumplen A·B = I, pero que B·A I, en tal
caso, podemos decir que A es la inversa de B "por la izquierda" o que B es la
inversa de A "por la derecha".


Hay varios métodos para calcular la matriz inversa de una matriz dada:



        Por el método de Gauss-Jordan
        Usando determinantes
        Directamente
MATRICES Y DETERMINANTES




                      VOLVER
MATRICES Y DETERMINANTES




                      VOLVER
MATRICES Y DETERMINANTES
Cálculo de la matriz inversa usando determinantes

 Dada una matriz cuadrada A, se llama matriz adjunta de A, y se representa
 por Adj(A), a la matriz de los adjuntos, Adj(A) = (Aij).

   Ejemplo

 Si tenemos una matriz tal que det (A)    0, se verifica:




 Esto es fácil probarlo puesto que sabemos que la suma de los productos de
 los elementos de una fila por sus adjuntos es el valor del determinante, y que
 la suma de los productos de los elementos de una fila por los adjuntos de
 otra fila diferente es 0 (esto sería el desarrollo de un determinante, que tiene
 dos filas iguales, por los adjuntos de una de ellas). Ejemplo
MATRICES Y DETERMINANTES




                      VOLVER

Más contenido relacionado

La actualidad más candente

Matrices conmutable, idempotente, nilpotente, involutiva, elemental y equival...
Matrices conmutable, idempotente, nilpotente, involutiva, elemental y equival...Matrices conmutable, idempotente, nilpotente, involutiva, elemental y equival...
Matrices conmutable, idempotente, nilpotente, involutiva, elemental y equival...
algebra
 
Matrices y conclusiones
Matrices y conclusionesMatrices y conclusiones
Matrices y conclusiones
Selvin Loayes
 
Sistemas de ecuaciones
Sistemas de ecuacionesSistemas de ecuaciones
Sistemas de ecuaciones
ujgh
 
14 integral definida [graficas]
14 integral definida [graficas]14 integral definida [graficas]
14 integral definida [graficas]
Abraham Aj
 

La actualidad más candente (20)

Matrices conmutable, idempotente, nilpotente, involutiva, elemental y equival...
Matrices conmutable, idempotente, nilpotente, involutiva, elemental y equival...Matrices conmutable, idempotente, nilpotente, involutiva, elemental y equival...
Matrices conmutable, idempotente, nilpotente, involutiva, elemental y equival...
 
Matrices y conclusiones
Matrices y conclusionesMatrices y conclusiones
Matrices y conclusiones
 
TEORÍA DE CONJUNTOS
TEORÍA DE CONJUNTOSTEORÍA DE CONJUNTOS
TEORÍA DE CONJUNTOS
 
Presentación de Funciones Matemáticas
Presentación de Funciones MatemáticasPresentación de Funciones Matemáticas
Presentación de Funciones Matemáticas
 
relaciones y funciones
relaciones y funcionesrelaciones y funciones
relaciones y funciones
 
Relaciones binarias
Relaciones binariasRelaciones binarias
Relaciones binarias
 
Matrices
MatricesMatrices
Matrices
 
Relación binaria entre conjuntos
Relación binaria entre conjuntosRelación binaria entre conjuntos
Relación binaria entre conjuntos
 
Las matrices
Las matricesLas matrices
Las matrices
 
Matrices
Matrices Matrices
Matrices
 
Diapositivas funciones 1
Diapositivas funciones 1Diapositivas funciones 1
Diapositivas funciones 1
 
Operaciones algebraicas
Operaciones algebraicasOperaciones algebraicas
Operaciones algebraicas
 
Matrices
MatricesMatrices
Matrices
 
Matrices y determinantes
Matrices y determinantes Matrices y determinantes
Matrices y determinantes
 
Sistemas de ecuaciones
Sistemas de ecuacionesSistemas de ecuaciones
Sistemas de ecuaciones
 
14 integral definida [graficas]
14 integral definida [graficas]14 integral definida [graficas]
14 integral definida [graficas]
 
Demostraciones Algebraicas
Demostraciones AlgebraicasDemostraciones Algebraicas
Demostraciones Algebraicas
 
Demostración números reales
Demostración números realesDemostración números reales
Demostración números reales
 
Ejercicios plano tangente
Ejercicios plano tangenteEjercicios plano tangente
Ejercicios plano tangente
 
Presentacion sobre matrices rosa depena
Presentacion sobre matrices rosa depenaPresentacion sobre matrices rosa depena
Presentacion sobre matrices rosa depena
 

Similar a Matrices y determinantes

Unidad 4 matrices y determinantes
Unidad 4 matrices y determinantesUnidad 4 matrices y determinantes
Unidad 4 matrices y determinantes
joder
 
Matrices y determinantes
Matrices y determinantesMatrices y determinantes
Matrices y determinantes
HUGO VASQUEZ
 
Teoria De Matrices Y Determinantes
Teoria De Matrices Y DeterminantesTeoria De Matrices Y Determinantes
Teoria De Matrices Y Determinantes
Fco Alejandro
 
Matrices+y+determinantes
Matrices+y+determinantesMatrices+y+determinantes
Matrices+y+determinantes
Vladimir Viera
 
Metodos numericos3
Metodos numericos3Metodos numericos3
Metodos numericos3
monica
 
Metodos numericos3
Metodos numericos3Metodos numericos3
Metodos numericos3
monica
 
Metodos numericos3
Metodos numericos3Metodos numericos3
Metodos numericos3
monica
 

Similar a Matrices y determinantes (20)

Unidad 4 matrices y determinantes
Unidad 4 matrices y determinantesUnidad 4 matrices y determinantes
Unidad 4 matrices y determinantes
 
Matrices y Determinantes
Matrices y DeterminantesMatrices y Determinantes
Matrices y Determinantes
 
Matrices y determinantes
Matrices y determinantesMatrices y determinantes
Matrices y determinantes
 
Matrices y determinantes
Matrices y determinantesMatrices y determinantes
Matrices y determinantes
 
Matrices+y+determinantes
Matrices+y+determinantesMatrices+y+determinantes
Matrices+y+determinantes
 
Matrices+y+determinantes
Matrices+y+determinantesMatrices+y+determinantes
Matrices+y+determinantes
 
Teoria De Matrices Y Determinantes
Teoria De Matrices Y DeterminantesTeoria De Matrices Y Determinantes
Teoria De Matrices Y Determinantes
 
Matrices+y+determinantes 1
Matrices+y+determinantes 1Matrices+y+determinantes 1
Matrices+y+determinantes 1
 
Matrices+y+determinantes
Matrices+y+determinantesMatrices+y+determinantes
Matrices+y+determinantes
 
Matrices+y+determinantes
Matrices+y+determinantesMatrices+y+determinantes
Matrices+y+determinantes
 
Matrices+y+determinantes
Matrices+y+determinantesMatrices+y+determinantes
Matrices+y+determinantes
 
Varios matrices y determinantes
Varios   matrices y determinantesVarios   matrices y determinantes
Varios matrices y determinantes
 
Matrices pdf
Matrices pdfMatrices pdf
Matrices pdf
 
Metodos numericos3
Metodos numericos3Metodos numericos3
Metodos numericos3
 
Temas de matrices y determinantes m1 ccesa007
Temas  de matrices y  determinantes  m1 ccesa007Temas  de matrices y  determinantes  m1 ccesa007
Temas de matrices y determinantes m1 ccesa007
 
matrices y determinantes
matrices y determinantesmatrices y determinantes
matrices y determinantes
 
Matrices
MatricesMatrices
Matrices
 
Metodos numericos3
Metodos numericos3Metodos numericos3
Metodos numericos3
 
Metodos numericos3
Metodos numericos3Metodos numericos3
Metodos numericos3
 
Matrices
MatricesMatrices
Matrices
 

Último

DIAPOSITIVAS LIDERAZGO Y GESTION INTERGENERACION (3).pptx
DIAPOSITIVAS LIDERAZGO Y GESTION INTERGENERACION (3).pptxDIAPOSITIVAS LIDERAZGO Y GESTION INTERGENERACION (3).pptx
DIAPOSITIVAS LIDERAZGO Y GESTION INTERGENERACION (3).pptx
7500222160
 
3ro - Semana 1 (EDA 2) 2023 (3).ppt. edx
3ro - Semana 1 (EDA 2) 2023 (3).ppt. edx3ro - Semana 1 (EDA 2) 2023 (3).ppt. edx
3ro - Semana 1 (EDA 2) 2023 (3).ppt. edx
Evafabi
 
Hiperbilirrubinemia en el recién nacido.pptx
Hiperbilirrubinemia en el recién nacido.pptxHiperbilirrubinemia en el recién nacido.pptx
Hiperbilirrubinemia en el recién nacido.pptx
salazarsilverio074
 
Catalogo de tazas para la tienda nube de dostorosmg
Catalogo de tazas para la tienda nube de dostorosmgCatalogo de tazas para la tienda nube de dostorosmg
Catalogo de tazas para la tienda nube de dostorosmg
dostorosmg
 
GUIA UNIDAD 3 costeo variable fce unc.docx
GUIA UNIDAD 3 costeo variable fce unc.docxGUIA UNIDAD 3 costeo variable fce unc.docx
GUIA UNIDAD 3 costeo variable fce unc.docx
AmyKleisinger
 

Último (20)

DIAPOSITIVAS LIDERAZGO Y GESTION INTERGENERACION (3).pptx
DIAPOSITIVAS LIDERAZGO Y GESTION INTERGENERACION (3).pptxDIAPOSITIVAS LIDERAZGO Y GESTION INTERGENERACION (3).pptx
DIAPOSITIVAS LIDERAZGO Y GESTION INTERGENERACION (3).pptx
 
3ro - Semana 1 (EDA 2) 2023 (3).ppt. edx
3ro - Semana 1 (EDA 2) 2023 (3).ppt. edx3ro - Semana 1 (EDA 2) 2023 (3).ppt. edx
3ro - Semana 1 (EDA 2) 2023 (3).ppt. edx
 
Correcion del libro al medio hay sitio.pptx
Correcion del libro al medio hay sitio.pptxCorrecion del libro al medio hay sitio.pptx
Correcion del libro al medio hay sitio.pptx
 
DECRETO-2535-DE-1993-pdf.pdf VIGILANCIA PRIVADA
DECRETO-2535-DE-1993-pdf.pdf VIGILANCIA PRIVADADECRETO-2535-DE-1993-pdf.pdf VIGILANCIA PRIVADA
DECRETO-2535-DE-1993-pdf.pdf VIGILANCIA PRIVADA
 
2024 - 04 PPT Directiva para la formalizacion, sustento y registro del gasto ...
2024 - 04 PPT Directiva para la formalizacion, sustento y registro del gasto ...2024 - 04 PPT Directiva para la formalizacion, sustento y registro del gasto ...
2024 - 04 PPT Directiva para la formalizacion, sustento y registro del gasto ...
 
Analisis del art. 37 de la Ley del Impuesto a la Renta
Analisis del art. 37 de la Ley del Impuesto a la RentaAnalisis del art. 37 de la Ley del Impuesto a la Renta
Analisis del art. 37 de la Ley del Impuesto a la Renta
 
mapa-conceptual-evidencias-de-auditoria_compress.pdf
mapa-conceptual-evidencias-de-auditoria_compress.pdfmapa-conceptual-evidencias-de-auditoria_compress.pdf
mapa-conceptual-evidencias-de-auditoria_compress.pdf
 
____ABC de las constelaciones con enfoque centrado en soluciones - Gabriel de...
____ABC de las constelaciones con enfoque centrado en soluciones - Gabriel de...____ABC de las constelaciones con enfoque centrado en soluciones - Gabriel de...
____ABC de las constelaciones con enfoque centrado en soluciones - Gabriel de...
 
Las sociedades anónimas en el Perú , de acuerdo a la Ley general de sociedades
Las sociedades anónimas en el Perú , de acuerdo a la Ley general de sociedadesLas sociedades anónimas en el Perú , de acuerdo a la Ley general de sociedades
Las sociedades anónimas en el Perú , de acuerdo a la Ley general de sociedades
 
Hiperbilirrubinemia en el recién nacido.pptx
Hiperbilirrubinemia en el recién nacido.pptxHiperbilirrubinemia en el recién nacido.pptx
Hiperbilirrubinemia en el recién nacido.pptx
 
Sostenibilidad y continuidad huamcoli robin-cristian.pptx
Sostenibilidad y continuidad huamcoli robin-cristian.pptxSostenibilidad y continuidad huamcoli robin-cristian.pptx
Sostenibilidad y continuidad huamcoli robin-cristian.pptx
 
Distribuciones de frecuencia cuarto semestre
Distribuciones de frecuencia cuarto semestreDistribuciones de frecuencia cuarto semestre
Distribuciones de frecuencia cuarto semestre
 
liderazgo guia.pdf.............................
liderazgo guia.pdf.............................liderazgo guia.pdf.............................
liderazgo guia.pdf.............................
 
Presentacion encuentra tu creatividad papel azul.pdf
Presentacion encuentra tu creatividad papel azul.pdfPresentacion encuentra tu creatividad papel azul.pdf
Presentacion encuentra tu creatividad papel azul.pdf
 
Reporte Tributario para Entidades Financieras.pdf
Reporte Tributario para Entidades Financieras.pdfReporte Tributario para Entidades Financieras.pdf
Reporte Tributario para Entidades Financieras.pdf
 
2 Tipo Sociedad comandita por acciones.pptx
2 Tipo Sociedad comandita por acciones.pptx2 Tipo Sociedad comandita por acciones.pptx
2 Tipo Sociedad comandita por acciones.pptx
 
Catalogo de tazas para la tienda nube de dostorosmg
Catalogo de tazas para la tienda nube de dostorosmgCatalogo de tazas para la tienda nube de dostorosmg
Catalogo de tazas para la tienda nube de dostorosmg
 
GUIA UNIDAD 3 costeo variable fce unc.docx
GUIA UNIDAD 3 costeo variable fce unc.docxGUIA UNIDAD 3 costeo variable fce unc.docx
GUIA UNIDAD 3 costeo variable fce unc.docx
 
EL REFERENDO para una exposición de sociales
EL REFERENDO para una exposición de socialesEL REFERENDO para una exposición de sociales
EL REFERENDO para una exposición de sociales
 
CORRIENTES DEL PENSAMIENTO ECONÓMICO.pptx
CORRIENTES DEL PENSAMIENTO ECONÓMICO.pptxCORRIENTES DEL PENSAMIENTO ECONÓMICO.pptx
CORRIENTES DEL PENSAMIENTO ECONÓMICO.pptx
 

Matrices y determinantes

  • 1. MATRICES Y DETERMINANTES Definición de matriz Se llama matriz de orden m n a todo conjunto rectangular de elementos aij dispuestos en m líneas horizontales (filas) y n verticales (columnas) de la forma: Abreviadamente suele expresarse en la forma A =(aij), con i =1, 2, ..., m, j =1, 2, ..., n. Los subíndices indican la posición del elemento dentro de la matriz, el primero denota la fila ( i ) y el segundo la columna ( j ). Por ejemplo el elemento a25 será el elemento de la fila 2 y columna 5.
  • 2. MATRICES Y DETERMINANTES Tipos de matrices: Matriz fila: Es una matriz que solo tiene una fila, es decir m =1 y por tanto es de orden 1 x n. a11 a12 a13  a1n Matriz columna: Es una matriz que solo tiene una columna, es decir, n =1 y por tanto es de orden m x 1. a11 a21 a31  am1
  • 3. MATRICES Y DETERMINANTES Tipos de matrices: Matriz cuadrada: Es aquella que tiene el mismo número de filas que de columnas, es decir m = n. En estos casos se dice que la matriz cuadrada es de orden n, y no n x n. Los elementos aij con i = j, o sea aii forman la llamada diagonal principal de la matriz cuadrada, y los elementos aij con i + j = n +1 la diagonal secundaria. a11 a12 a13  a1n a21 a22 a23  a2 n a31 a32 a33  a3n      an1 an 2 an 3  ann
  • 4. MATRICES Y DETERMINANTES Tipos de matrices: Matriz traspuesta: Dada una matriz A, se llama traspuesta de A, y se representa por At, a la matriz que se obtiene cambiando filas por columnas. La primera fila de A es la primera fila de At , la segunda fila de A es la segunda columna de At, etc. De la definición se deduce que si A es de orden m x n, entonces At es de orden n x m. Matriz simétrica: Una matriz cuadrada A es simétrica si A = At, es decir, si aij = aji i, j. Matriz antisimétrica: Una matriz cuadrada es antisimétrica si A = –At, es decir, si aij = –aji i, j.
  • 5. MATRICES Y DETERMINANTES Tipos de matrices: Matriz nula es aquella que todos sus elementos son 0 y se representa por 0 La matriz es una matriz nula de orden 3 La matriz es una matriz nula de orden 2 x 4
  • 6. MATRICES Y DETERMINANTES Tipos de matrices: Matriz diagonal: Es una matriz cuadrada, en la que todos los elementos no pertenecientes a la diagonal principal son nulos. Matriz escalar: Es una matriz diagonal con todos los elementos de la diagonal iguales Matriz unidad o identidad: Es una matriz escalar con los elementos de la diagonal principal iguales a 1.
  • 7. MATRICES Y DETERMINANTES Tipos de matrices: Matriz Triangular: Es una matriz cuadrada que tiene nulos todos los elementos que están a un mismo lado de la diagonal principal. Las matrices triangulares pueden ser de dos tipos: Triangular Superior: Si los elementos que están por debajo de la diagonal principal son todos nulos. Es decir, aij = 0 i < j. Triangular Inferior: Si los elementos que están por encima de la diagonal principal son todos nulos. Es decir, aij = 0 j < i. matriz triangular inferior matriz triangular superior
  • 8. MATRICES Y DETERMINANTES Operaciones con matrices Trasposición de matrices Suma y diferencia de matrices Producto de una matriz por un número Propiedades simplificativas Producto de matrices Matrices inversibles
  • 9. MATRICES Y DETERMINANTES Operaciones con matrices Trasposición de matrices Dada una matriz de orden m x n, A = (aij), se llama matriz traspuesta de A, y se representa por At, a la matriz que se obtiene cambiando las filas por las columnas (o viceversa) en la matriz A. Es decir: Propiedades de la trasposición de matrices: 1ª.- Dada una matriz A, siempre existe su traspuesta y además es única. 2ª.- La traspuesta de la matriz traspuesta de A es A. a (At)t = A.
  • 10. MATRICES Y DETERMINANTES Operaciones con matrices Suma y diferencia de matrices La suma de dos matrices A=(aij), B=(bij) de la misma dimensión, es otra matriz S=(sij) de la misma dimensión que los sumandos y con término genérico sij=aij+bij. Por tanto, para poder sumar dos matrices estas han de tener la misma dimensión. La suma de las matrices A y B se denota por A+B. Ejemplo Sin embargo, no se pueden sumar. La diferencia de matrices A y B se representa por A–B, y se define como: A–B = A + (–B)
  • 11. MATRICES Y DETERMINANTES Operaciones con matrices Suma y diferencia de matrices Propiedades de la suma de matrices 1ª. A + (B + C) = (A + B) + C Propiedad Asociativa 2ª. A+B=B+A Propiedad conmutativa 3ª. A + 0 = A (0 es la matriz nula) Matriz Nula 4ª. La matriz –A, que se obtiene cambiando de signo todos los elementos de A, recibe el nombre de matriz opuesta de A, ya que A + (–A) = 0.
  • 12. MATRICES Y DETERMINANTES Operaciones con matrices Producto de una matriz por un número El producto de una matriz A = (aij) por un número real k es otra matriz B = (bij) de la misma dimensión que A y tal que cada elemento bij de B se obtiene multiplicando aij por k, es decir, bij = k·aij. Ejemplo: El producto de la matriz A por el número real k se designa por k·A. Al número real k se le llama también escalar, y a este producto, producto de escalares por matrices
  • 13. MATRICES Y DETERMINANTES Operaciones con matrices Producto de una matriz por un número Propiedades del producto de una matriz por un escalar 1ª. k (A + B) = k A + k B Propiedad distributiva 1ª 2ª. (k + h)A = k A + h A Propiedad distributiva 2ª 3ª. k [h A] = (k h) A Propiedad asociativa mixta . 4ª. 1 · A = A · 1 = A Elemento unidad
  • 14. MATRICES Y DETERMINANTES Operaciones con matrices Propiedades simplificativas Si A + C = B + C A=B Si k A = k B A = B si k es distinto de 0 Si k A = h A h = k si A es distinto de 0
  • 15. MATRICES Y DETERMINANTES Operaciones con matrices Producto de matrices Dadas dos matrices A y B, su producto es otra matriz P cuyos elementos se obtienen multiplicando las filas de A por las columnas de B. De manera más formal, los elementos de P son de la forma: Pij = Sa ik bkj Es evidente que el número de columnas de A debe coincidir con el número de filas de B. Es más, si A tiene dimensión m x n y B dimensión n x p, la matriz P será de orden m x p, Es decir: Ejemplo: no se pueden multiplicar
  • 16. MATRICES Y DETERMINANTES Operaciones con matrices Producto de matrices Propiedades del producto de matrices A·(B·C) = (A·B)·C (Propiedad asociativa) El producto de matrices en general no es conmutativo. Si A es una matriz cuadrada de orden n se tiene A·In = In·A = A. Dada una matriz cuadrada A de orden n, no siempre existe otra matriz B tal que A·B = B·A = In. Si existe dicha matriz B, se dice que es la matriz inversa de A y se representa por A–1 . El producto de matrices es distributivo respecto de la suma de matrices, es decir: A·(B + C) = A·B + A·C
  • 17. MATRICES Y DETERMINANTES Operaciones con matrices Producto de matrices Consecuencias de las Propiedades Si A · B = 0 no implica que A = 0 ó B = 0 Si A · B = A · C no implica que B = C En general (A+B)2 A2 + B2 +2AB, ya que A · B B·A En general (A+B) · (A–B) A2 – B2, ya que A · B B·A
  • 18. MATRICES Y DETERMINANTES Matrices inversibles Una matriz cuadrada que posee inversa se dice que es inversible o regular; en caso contrario recibe el nombre de singular.
  • 19. MATRICES Y DETERMINANTES Propiedades de la inversión de matrices La matriz inversa, si existe, es única A-1·A = A·A-1= I (A·B)-1 = B-1·A-1 (A-1)-1 = A (kA)-1 = (1/k) · A-1 (At) –1 = (A-1) t
  • 20. MATRICES Y DETERMINANTES Observación: Podemos encontrar matrices que cumplen A·B = I, pero que B·A I, en tal caso, podemos decir que A es la inversa de B "por la izquierda" o que B es la inversa de A "por la derecha". Hay varios métodos para calcular la matriz inversa de una matriz dada: Por el método de Gauss-Jordan Usando determinantes Directamente
  • 21. MATRICES Y DETERMINANTES Cálculo Directo de la Matriz Inversa Dada la matriz buscamos una matriz que cumpla A·A-1 = I, es decir Para ello planteamos el sistema de ecuaciones: La matriz que se ha calculado realmente sería la inversa por la "derecha", pero es fácil comprobar que también cumple A-1 · A = I, con lo cual es realmente la inversa de A.
  • 22. MATRICES Y DETERMINANTES Observación: Podemos encontrar matrices que cumplen A·B = I, pero que B·A I, en tal caso, podemos decir que A es la inversa de B "por la izquierda" o que B es la inversa de A "por la derecha". Hay varios métodos para calcular la matriz inversa de una matriz dada: Por el método de Gauss-Jordan Usando determinantes Directamente
  • 23. MATRICES Y DETERMINANTES Método de Gauss-Jordan para el cálculo de la matriz inversa El método de Gauss-Jordan para calcular la matriz inversa de una dada se basa en una triangulación superior y luego otra inferior de la matriz a la cual se le quiere calcular la inversa. Ejemplo 1 Ejemplo 2 Dada una matriz A de orden n, para calcular su inversa hay que transformar la matriz (A I In) mediante transformaciones elementales por filas en la matriz (In I B). La matriz B será, evidentemente, la inversa de A. Para aplicar el método se necesita una matriz cuadrada de rango máximo. Sabemos que no siempre una matriz tiene inversa, por lo cual comprobaremos que la matriz tenga rango máximo al aplicar el método de Gauss para realizar la triangulación superior. Si al aplicar el método de Gauss (triangulación inferior) se obtiene una línea de ceros, la matriz no tiene inversa. Ejemplo VOLVER
  • 24. Cálculo de la Matriz Inversa por el método de Gauss - Jordan Cuando hacemos transformaciones elementales en una matriz, esto es equivalente a multiplicarla por otra matriz dada. Ejemplo: 1 1 0 1 1 0 F2 – 2F1 g F2 2 1 1 0 1 1 F1 + F3 g F3 1 1 2 0 2 2 Esta transformación es equivalente a la siguiente multiplicación: 1 0 0 1 1 0 1 1 0 2 1 0 2 1 1 0 1 1 1 0 1 1 1 2 0 2 2 En consecuencia al transformar (A I In) en (In I B) realmente lo que estamos haciendo son las siguientes multiplicaciones: A-1·A= In y A-1 · In = A-1=B VOLVER
  • 25. Cálculo de la Matriz Inversa por el método de Gauss - Jordan Aplicando el método de Gauss-Jordan a la matriz •En primer lugar triangulamos inferiormente: •Una vez que hemos triangulado superiormente lo hacemos inferiormente: Por último, habrá que convertir la matriz diagonal en la matriz identidad: De donde, la matriz inversa de A es VOLVER
  • 26. Cálculo de la Matriz Inversa por el método de Gauss - Jordan Aplicando el método de Gauss-Jordan a la matriz se tiene: Como hay una fila completa de ceros, la matriz A no tiene rango máximo, en este caso 2, por tanto no tiene inversa pues es una matriz singular VOLVER
  • 27. Gauss, Carl Friedrich b. April 30, 1777, Brunswick [Germany] d. Feb. 23, 1855, Göttingen, Hanover Original name JOHANN FRIEDRICH CARL GAUSS German mathematician who also made contributions to other sciences. VOLVER
  • 28. Cálculo de la Matriz Inversa por el método de Gauss - Jordan Queremos calcular la inversa de 1º.- Se escribe la matriz A junto a esta la matriz identidad, 2º.- Triangularizamos la matriz A de arriba a abajo y realizamos las mismas operaciones en la matriz de la derecha. Como podemos observar el rango de la matriz es máximo (en este caso 3), por tanto la matriz A es regular (tiene inversa), podemos calcular su inversa. 3º.- Triangularizamos la matriz de abajo a arriba, realizando las mismas operaciones en la matriz de la derecha. 4º.- Por último se divide cada fila por el elemento diagonal correspondiente. VOLVER
  • 29. MATRICES Y DETERMINANTES Método de Gauss-Jordan para el cálculo de la matriz inversa El método de Gauss-Jordan para calcular la matriz inversa de una dada se basa en una triangulación superior y luego otra inferior de la matriz a la cual se le quiere calcular la inversa. Ejemplo 1 Ejemplo 2 Dada una matriz A de orden n, para calcular su inversa hay que transformar la matriz (A I In) mediante transformaciones elementales por filas en la matriz (In I B). La matriz B será, evidentemente, la inversa de A. Para aplicar el método se necesita una matriz cuadrada de rango máximo. Sabemos que no siempre una matriz tiene inversa, por lo cual comprobaremos que la matriz tenga rango máximo al aplicar el método de Gauss para realizar la triangulación superior. Si al aplicar el método de Gauss (triangulación inferior) se obtiene una línea de ceros, la matriz no tiene inversa. Ejemplo VOLVER
  • 30. MATRICES Y DETERMINANTES Observación: Podemos encontrar matrices que cumplen A·B = I, pero que B·A I, en tal caso, podemos decir que A es la inversa de B "por la izquierda" o que B es la inversa de A "por la derecha". Hay varios métodos para calcular la matriz inversa de una matriz dada: Por el método de Gauss-Jordan Usando determinantes Directamente
  • 33. MATRICES Y DETERMINANTES Cálculo de la matriz inversa usando determinantes Dada una matriz cuadrada A, se llama matriz adjunta de A, y se representa por Adj(A), a la matriz de los adjuntos, Adj(A) = (Aij). Ejemplo Si tenemos una matriz tal que det (A) 0, se verifica: Esto es fácil probarlo puesto que sabemos que la suma de los productos de los elementos de una fila por sus adjuntos es el valor del determinante, y que la suma de los productos de los elementos de una fila por los adjuntos de otra fila diferente es 0 (esto sería el desarrollo de un determinante, que tiene dos filas iguales, por los adjuntos de una de ellas). Ejemplo