MATRICES Y DETERMINANTES Definición de matriz   Se llama  matriz  de orden  m×n   a todo conjunto rectangular de elementos  a ij  dispuestos en  m  líneas horizontales (filas) y  n  verticales (columnas) de la forma:  Abreviadamente suele expresarse en la forma A =( a ij ), con  i  =1, 2, ..., m,  j  =1, 2, ..., n. Los subíndices indican la posición del elemento dentro de la matriz, el primero denota la fila (  i  ) y el segundo la columna (  j  ). Por ejemplo el elemento  a 25  será el elemento de la fila 2 y columna 5.
MATRICES Y DETERMINANTES Matriz fila:   Es una matriz que solo tiene una fila, es decir  m =1  y por tanto es de orden  1 x n . Matriz columna:  Es una matriz que solo tiene una columna, es decir, n =1 y por tanto es de orden  m x 1 . Tipos de matrices :
MATRICES Y DETERMINANTES Tipos de matrices: Matriz cuadrada:   Es aquella que tiene el mismo número de filas que de columnas, es decir  m = n . En estos casos se dice que la matriz cuadrada es de orden  n , y no  n x n .  Los elementos  a ij  con  i  =  j , o sea  a ii  forman la llamada diagonal principal de la matriz cuadrada, y los elementos  a ij   con  i  +  j   =   n +1  la diagonal secundaria.
MATRICES Y DETERMINANTES Matriz traspuesta:   Dada una matriz A, se llama traspuesta de A, y se representa por A t , a la matriz que se obtiene cambiando filas por columnas. La primera fila de A es la primera fila de A t  , la segunda fila de A es la segunda columna de A t , etc.  De la definición se deduce que si A es de orden  m x n , entonces A t  es de orden  n x m .  Tipos de matrices : Matriz simétrica:  Una matriz cuadrada  A  es simétrica si  A = A t , es decir, si  a ij  =  a ji     i, j .  Matriz antisimétrica:  Una matriz cuadrada es antisimétrica si  A = –A t , es decir, si  a ij  = – a ji      i, j .
MATRICES Y DETERMINANTES Matriz nula   es aquella que todos sus elementos son 0 y se representa por  0 La matriz La matriz es una matriz nula de orden 3 es una matriz nula de orden 2 x 4 Tipos de matrices :
MATRICES Y DETERMINANTES Tipos de matrices : Matriz diagonal:   Es una matriz cuadrada, en la que todos los elementos no pertenecientes a la diagonal principal son nulos.  Matriz escalar:   Es una matriz diagonal con todos los elementos de la diagonal iguales Matriz unidad o identidad:   Es una matriz escalar con los elementos de la diagonal principal iguales a 1.
MATRICES Y DETERMINANTES Tipos de matrices : Matriz Triangular:   Es una matriz cuadrada que tiene nulos todos los elementos que están a un mismo lado de la diagonal principal. Las matrices triangulares pueden ser de dos tipos:  Triangular Superior:   Si los elementos que están por debajo de la diagonal principal son todos nulos. Es decir,  a ij = 0    i < j.   Triangular Inferior:   Si los elementos que están por encima de la diagonal principal son todos nulos. Es decir,  a ij = 0   j < i. matriz triangular inferior matriz triangular superior
MATRICES Y DETERMINANTES Trasposición de matrices Operaciones con matrices Dada una matriz de orden  m x n, A =  ( aij ), se llama matriz traspuesta de A, y se representa por A t , a la matriz que se obtiene cambiando las filas por las columnas (o viceversa) en la matriz A. Es decir: Propiedades de la trasposición de matrices: 1ª.- Dada una matriz A, siempre existe su traspuesta y además es única. 2ª.- La traspuesta de la matriz traspuesta de A es A.    (A t ) t  = A.
MATRICES Y DETERMINANTES La suma de dos matrices  A=(a ij ), B=( bij ) de la misma dimensión, es otra matriz S=( sij ) de la misma dimensión que los sumandos y con término genérico  sij=aij+bij . Por tanto, para poder sumar dos matrices estas han de tener la misma dimensión. La suma de las matrices A y B se denota por A+B. Ejemplo Suma y diferencia de matrices Operaciones con matrices La diferencia de matrices  A y B se representa por A–B, y se define como: A–B = A + (–B)                                                         Sin embargo,                              no se pueden sumar.
MATRICES Y DETERMINANTES 4ª.   La matriz –A, que se obtiene cambiando de signo todos los elementos de A, recibe el nombre de matriz opuesta de A, ya que A + (–A) = 0. Suma y diferencia de matrices Operaciones con matrices Propiedades de la suma de matrices 1ª.  A + (B + C) = (A + B) + C  Propiedad Asociativa 2ª.   A + B = B + A   Propiedad conmutativa Matriz Nula 3ª.   A + 0 = A (0 es la matriz nula)
MATRICES Y DETERMINANTES Producto de una matriz por un número   Operaciones con matrices El producto de una matriz  A = (aij)  por un número real  k  es otra matriz  B = (bij)  de la misma dimensión que  A  y tal que cada elemento  bij  de  B  se obtiene multiplicando  aij  por  k , es decir,  bij = k·aij.   Ejemplo: El producto de la matriz  A  por el número real  k  se designa por  k·A . Al número real  k  se le llama también escalar, y a este producto,  producto de escalares por matrices
MATRICES Y DETERMINANTES . Producto de una matriz por un número   Operaciones con matrices Propiedades del producto de una matriz por un escalar Elemento unidad 4ª.   1  ·  A = A  ·  1 = A   1ª.  k (A + B) = k A + k B   Propiedad distributiva 1ª 2ª.   (k + h)A = k A + h A   Propiedad distributiva 2ª Propiedad asociativa mixta 3ª.   k [h A] = (k h) A
MATRICES Y DETERMINANTES Propiedades simplificativas Operaciones con matrices Si  A + C = B + C    A = B Si  k A = k B    A = B si k es distinto de 0 Si  k A = h A    h = k si A es distinto de 0
MATRICES Y DETERMINANTES Producto de matrices Operaciones con matrices Dadas dos matrices  A  y  B , su producto es otra matriz  P  cuyos elementos se obtienen multiplicando las filas de A por las columnas de  B . De manera más formal, los elementos de  P  son de la forma:  Es evidente que el número de columnas de  A  debe coincidir con el número de filas de  B . Es más, si  A  tiene dimensión  m  x  n   y  B  dimensión  n  x  p , la matriz  P  será de orden  m  x  p , Es decir: P ij  =    a ik   b kj no se pueden multiplicar Ejemplo:
MATRICES Y DETERMINANTES Operaciones con matrices Producto de matrices Propiedades del producto de matrices A·(B·C) = (A·B)·C  (Propiedad asociativa) Si A es una matriz cuadrada de orden n se tiene A·I n  = I n ·A = A.  Dada una matriz cuadrada A de orden n, no siempre existe otra matriz B tal que A·B = B·A = I n . Si existe dicha matriz B, se dice que es la matriz inversa de A y se representa por A –1  . El producto de matrices es distributivo respecto de la suma de matrices, es decir: A·(B + C) = A·B + A·C El producto de matrices en general no es conmutativo.
MATRICES Y DETERMINANTES Operaciones con matrices Producto de matrices Consecuencias de las   Propiedades Si  A · B = 0 no implica que A = 0  ó  B = 0 Si A · B = A · C no implica que B = C En general (A+B) 2      A 2  + B 2  +2AB, ya que A · B    B · A En general (A+B) · (A–B)    A 2  – B 2 , ya que A · B    B · A

Matrices+y+determinantes

  • 1.
    MATRICES Y DETERMINANTESDefinición de matriz Se llama matriz de orden m×n a todo conjunto rectangular de elementos a ij dispuestos en m líneas horizontales (filas) y n verticales (columnas) de la forma: Abreviadamente suele expresarse en la forma A =( a ij ), con i =1, 2, ..., m, j =1, 2, ..., n. Los subíndices indican la posición del elemento dentro de la matriz, el primero denota la fila ( i ) y el segundo la columna ( j ). Por ejemplo el elemento a 25 será el elemento de la fila 2 y columna 5.
  • 2.
    MATRICES Y DETERMINANTESMatriz fila: Es una matriz que solo tiene una fila, es decir m =1 y por tanto es de orden 1 x n . Matriz columna: Es una matriz que solo tiene una columna, es decir, n =1 y por tanto es de orden m x 1 . Tipos de matrices :
  • 3.
    MATRICES Y DETERMINANTESTipos de matrices: Matriz cuadrada: Es aquella que tiene el mismo número de filas que de columnas, es decir m = n . En estos casos se dice que la matriz cuadrada es de orden n , y no n x n . Los elementos a ij con i = j , o sea a ii forman la llamada diagonal principal de la matriz cuadrada, y los elementos a ij con i + j = n +1 la diagonal secundaria.
  • 4.
    MATRICES Y DETERMINANTESMatriz traspuesta: Dada una matriz A, se llama traspuesta de A, y se representa por A t , a la matriz que se obtiene cambiando filas por columnas. La primera fila de A es la primera fila de A t , la segunda fila de A es la segunda columna de A t , etc. De la definición se deduce que si A es de orden m x n , entonces A t es de orden n x m . Tipos de matrices : Matriz simétrica: Una matriz cuadrada A es simétrica si A = A t , es decir, si a ij = a ji  i, j . Matriz antisimétrica: Una matriz cuadrada es antisimétrica si A = –A t , es decir, si a ij = – a ji  i, j .
  • 5.
    MATRICES Y DETERMINANTESMatriz nula es aquella que todos sus elementos son 0 y se representa por 0 La matriz La matriz es una matriz nula de orden 3 es una matriz nula de orden 2 x 4 Tipos de matrices :
  • 6.
    MATRICES Y DETERMINANTESTipos de matrices : Matriz diagonal: Es una matriz cuadrada, en la que todos los elementos no pertenecientes a la diagonal principal son nulos. Matriz escalar: Es una matriz diagonal con todos los elementos de la diagonal iguales Matriz unidad o identidad: Es una matriz escalar con los elementos de la diagonal principal iguales a 1.
  • 7.
    MATRICES Y DETERMINANTESTipos de matrices : Matriz Triangular: Es una matriz cuadrada que tiene nulos todos los elementos que están a un mismo lado de la diagonal principal. Las matrices triangulares pueden ser de dos tipos: Triangular Superior: Si los elementos que están por debajo de la diagonal principal son todos nulos. Es decir, a ij = 0  i < j. Triangular Inferior: Si los elementos que están por encima de la diagonal principal son todos nulos. Es decir, a ij = 0  j < i. matriz triangular inferior matriz triangular superior
  • 8.
    MATRICES Y DETERMINANTESTrasposición de matrices Operaciones con matrices Dada una matriz de orden m x n, A = ( aij ), se llama matriz traspuesta de A, y se representa por A t , a la matriz que se obtiene cambiando las filas por las columnas (o viceversa) en la matriz A. Es decir: Propiedades de la trasposición de matrices: 1ª.- Dada una matriz A, siempre existe su traspuesta y además es única. 2ª.- La traspuesta de la matriz traspuesta de A es A.  (A t ) t = A.
  • 9.
    MATRICES Y DETERMINANTESLa suma de dos matrices A=(a ij ), B=( bij ) de la misma dimensión, es otra matriz S=( sij ) de la misma dimensión que los sumandos y con término genérico sij=aij+bij . Por tanto, para poder sumar dos matrices estas han de tener la misma dimensión. La suma de las matrices A y B se denota por A+B. Ejemplo Suma y diferencia de matrices Operaciones con matrices La diferencia de matrices A y B se representa por A–B, y se define como: A–B = A + (–B)                                                         Sin embargo,                            no se pueden sumar.
  • 10.
    MATRICES Y DETERMINANTES4ª. La matriz –A, que se obtiene cambiando de signo todos los elementos de A, recibe el nombre de matriz opuesta de A, ya que A + (–A) = 0. Suma y diferencia de matrices Operaciones con matrices Propiedades de la suma de matrices 1ª. A + (B + C) = (A + B) + C Propiedad Asociativa 2ª. A + B = B + A Propiedad conmutativa Matriz Nula 3ª. A + 0 = A (0 es la matriz nula)
  • 11.
    MATRICES Y DETERMINANTESProducto de una matriz por un número Operaciones con matrices El producto de una matriz A = (aij) por un número real k es otra matriz B = (bij) de la misma dimensión que A y tal que cada elemento bij de B se obtiene multiplicando aij por k , es decir, bij = k·aij. Ejemplo: El producto de la matriz A por el número real k se designa por k·A . Al número real k se le llama también escalar, y a este producto, producto de escalares por matrices
  • 12.
    MATRICES Y DETERMINANTES. Producto de una matriz por un número Operaciones con matrices Propiedades del producto de una matriz por un escalar Elemento unidad 4ª. 1 · A = A · 1 = A 1ª. k (A + B) = k A + k B Propiedad distributiva 1ª 2ª. (k + h)A = k A + h A Propiedad distributiva 2ª Propiedad asociativa mixta 3ª. k [h A] = (k h) A
  • 13.
    MATRICES Y DETERMINANTESPropiedades simplificativas Operaciones con matrices Si A + C = B + C  A = B Si k A = k B  A = B si k es distinto de 0 Si k A = h A  h = k si A es distinto de 0
  • 14.
    MATRICES Y DETERMINANTESProducto de matrices Operaciones con matrices Dadas dos matrices A y B , su producto es otra matriz P cuyos elementos se obtienen multiplicando las filas de A por las columnas de B . De manera más formal, los elementos de P son de la forma: Es evidente que el número de columnas de A debe coincidir con el número de filas de B . Es más, si A tiene dimensión m x n y B dimensión n x p , la matriz P será de orden m x p , Es decir: P ij =  a ik b kj no se pueden multiplicar Ejemplo:
  • 15.
    MATRICES Y DETERMINANTESOperaciones con matrices Producto de matrices Propiedades del producto de matrices A·(B·C) = (A·B)·C (Propiedad asociativa) Si A es una matriz cuadrada de orden n se tiene A·I n = I n ·A = A. Dada una matriz cuadrada A de orden n, no siempre existe otra matriz B tal que A·B = B·A = I n . Si existe dicha matriz B, se dice que es la matriz inversa de A y se representa por A –1 . El producto de matrices es distributivo respecto de la suma de matrices, es decir: A·(B + C) = A·B + A·C El producto de matrices en general no es conmutativo.
  • 16.
    MATRICES Y DETERMINANTESOperaciones con matrices Producto de matrices Consecuencias de las Propiedades Si A · B = 0 no implica que A = 0 ó B = 0 Si A · B = A · C no implica que B = C En general (A+B) 2  A 2 + B 2 +2AB, ya que A · B  B · A En general (A+B) · (A–B)  A 2 – B 2 , ya que A · B  B · A