SlideShare una empresa de Scribd logo
1 de 17
SEMICONDUCTORESSEMICONDUCTORES
El Semiconductor es un elemento que se
comporta como un conductor o como aislante
dependiendo de diversos factores, como por
ejemplo el campo eléctrico o magnético, la
presión, la radiación que le incide, o la
temperatura del ambiente en el que se encuentre.
Los elementos químicos semiconductores de la
tabla periódica se indican en la tabla adjunta.
Elemento Grupos
Electrones en
la última capa
Cd 12 2 e-
Al, Ga, B, In 13 3 e-
Si, C, Ge 14 4 e-
P, As, Sb 15 5 e-
Se, Te, (S) 16 6 e-
El elemento semiconductor más usado es el silicio, el segundo el germanio, aunque idéntico
comportamiento presentan las combinaciones de elementos de los grupos 12 y 13 con los de los grupos
16 y 15 respectivamente (GaAs, PIn, AsGaAl, TeCd, SeCd y SCd). Posteriormente se ha comenzado a
emplear también el azufre. La característica común a todos ellos es que son tetravalentes, teniendo el
silicio una configuración electrónica s²p².
SEMICONDUCTORES
En un cristal de Silicio o Germanio que forma una estructura tetraédrica similar a la del
carbono mediante enlaces covalentes entre sus átomos, en la figura representados en el
plano por simplicidad. Cuando el cristal se encuentra a temperatura ambiente algunos
electrones pueden absorber la energía necesaria para saltar a la banda de conducción
dejando el correspondiente hueco en la banda de valencia (1). Las energías requeridas, a
temperatura ambiente, son de 1,12 eV y 0,67 eV para el silicio y el germanio
respectivamente.
Semiconductores
intrínsecos
Obviamente el proceso inverso también se produce, de modo que los electrones
pueden caer, desde el estado energético correspondiente a la banda de conducción, a
un hueco en la banda de valencia liberando energía. A este fenómeno se le
denomina recombinación. Sucede que, a una determinada temperatura, las
velocidades de creación de pares e-h, y de recombinación se igualan, de modo que
la concentración global de electrones y huecos permanece constante. Siendo "n" la
concentración de electrones (cargas negativas) y "p" la concentración de huecos
(cargas positivas),
se cumple que: ni = n = p
Por un lado la debida al movimiento de los electrones
libres de la banda de conducción, y por otro, la debida al
desplazamiento de los electrones en la banda de valencia,
que tenderán a saltar a los huecos próximos (2),
originando una corriente de huecos con 4 capas ideales
y en la dirección contraria al campo eléctrico cuya
velocidad y magnitud es muy inferior a la de la banda de
conducción.
siendo ni la concentración intrínseca del semiconductor, función
exclusiva de la temperatura y del tipo de elemento.
Ejemplos de valores de ni a temperatura ambiente (27ºc):
ni(Si) = 1.5 1010
cm-3
ni(Ge) = 1.73 1013
cm-3
Los electrones y los huecos
reciben el nombre de portadores. En los semiconductores, ambos
tipos de portadores contribuyen al paso de la corriente eléctrica. Si se
somete el cristal a una diferencia de potencial se producen dos
corrientes eléctricas.
Semiconductores intrínsecos:
Un cristal de silicio forma una estructura tetraédrica similar a la del carbono mediante enlaces
covalentes entre sus átomos, en la figura representados en el plano por simplicidad. Cuando el
cristal se encuentra a temperatura ambiente, algunos electrones pueden, absorbiendo la energía
necesaria, saltar a la banda de conducción, dejando el correspondiente hueco en la banda de
valencia (1). Las energías requeridas, a temperatura ambiente son de 1,12 y 0,67 eV para el silicio y
el germanio respectivamente.
A este fenómeno, se le denomina recombinación. Sucede que, a una
determinada temperatura, las velocidades de creación de pares e-h, y de
recombinación se igualan, de modo que la concentración global de
electrones y huecos permanece invariable. Siendo "n"la concentración de
electrones (cargas negativas) y "p" la concentración de huecos (cargas
positivas), se cumple que:
ni = n = p
siendo ni la concentración intrínseca del semiconductor, función exclusiva
de la temperatura. Si se somete el cristal a una diferencia de tensión, se
producen dos corrientes eléctricas.
Si a un semiconductor intrínseco, como el anterior, se le añade un pequeño
porcentaje de impurezas, es decir, elementos trivalentes o pentavalentes,
el semiconductor se denomina extrínseco, y se dice que está dopado.
Evidentemente, las impurezas deberán formar parte de la estructura
cristalina sustituyendo al correspondiente átomo de silicio. Hoy en día se
han logrado añadir impurezas de una parte por cada 10 millones, logrando
con ello una modificación del material.
Semiconductores
extrínsecos
Los semiconductores extrínsecos se
caracterizan, porque tienen un pequeño porcentaje
de impurezas, respecto a los intrínsecos; esto es,
posee elementos trivalentes o pentavalentes, o lo
que es lo mismo, se dice que el elemento está
dopado.
Un Semiconductor tipo N se obtiene llevando a cabo un proceso de dopado
añadiendo un cierto tipo de átomos al semiconductor para poder aumentar el número de
portadores de carga libres (en este caso negativos o electrones).
Cuando se añade el material dopante, aporta sus electrones más débilmente vinculados a
los átomos del semiconductor. Este tipo de agente dopante es también conocido como
material donante, ya que da algunos de sus electrones.
Semiconductor tipo N
El propósito del dopaje tipo n es el de producir
abundancia de electrones portadores en el
material. Para ayudar a entender cómo se
produce el dopaje tipo n considérese el caso del
silicio (Si). Los átomos del silicio tienen una
valencia atómica de cuatro, por lo que se forma
un enlace covalente con cada uno de los átomos
de silicio adyacentes. Si un átomo con cinco
electrones de valencia, tales como los del grupo
15 de la tabla periódica (ej. fósforo (P), arsénico
(As) o antimonio (Sb)), se incorpora a la red
cristalina en el lugar de un átomo de silicio,
entonces ese átomo tendrá cuatro enlaces
covalentes y un electrón no enlazado.
Nótese que cada electrón libre en el semiconductor nunca está lejos de un
ion dopante positivo inmóvil, y el material dopado tipo N generalmente
tiene una carga eléctrica neta final de cero.
Este electrón extra da como resultado la
formación de "electrones libres", el
número de electrones en el material
supera ampliamente el número de
huecos, en ese caso los electrones son
los portadores mayoritarios y los huecos son
los portadores minoritarios. A causa de que
los átomos con cinco electrones de
valencia tienen un electrón extra que
"dar", son llamados átomos donadores.
Semiconductores extrínsecos tipo n:
Son los que están dopados, con elementos pentavalentes, como por
ejemplo (As, P, Sb). Que sean elementos pentavalentes, quiere decir que
tienen cinco electrones en la última capa, lo que hace que al formarse la
estructura cristalina, un electrón quede fuera de ningún enlace covalente,
quedándose en un nivel superior al de los otros cuatro.
Semiconductor
tipo P
Un Semiconductor tipo P se obtiene llevando a cabo un proceso de dopado, añadiendo un
cierto tipo de átomos al semiconductor para poder aumentar el número de portadores de carga
libres (en este caso positivos o huecos).
Cuando se añade el material dopante libera los electrones más débilmente vinculados de los
átomos del semiconductor. Este agente dopante es también conocido como material aceptor y los
átomos del semiconductor que han perdido un electrón son conocidos como huecos.
El propósito del dopaje tipo P es el de crear abundancia de huecos. En el caso del silicio, un
átomo tetravalente (típicamente del grupo 14 de la tabla periódica) se le une un átomo con tres
electrones de valencia, tales como los del grupo 13 de la tabla periódica (ej. Al, Ga, B, In), y se
incorpora a la red cristalina en el lugar de un átomo de silicio, entonces ese átomo tendrá tres
enlaces covalentes y un hueco producido que se encontrará en condición de aceptar un electrón
libre.
Así los dopantes crean los "huecos". No
obstante, cuando cada hueco se ha
desplazado por la red, un protón del
átomo situado en la posición del hueco
se ve "expuesto" y en breve se ve
equilibrado como una cierta carga
positiva. Cuando un número suficiente
de aceptores son añadidos, los huecos
superan ampliamente la excitación
térmica de los electrones.
Así, los huecos son los portadores mayoritarios, mientras que los electrones son los portadores
minoritarios en los materiales tipo P. Los diamantes azules (tipo IIb), que contienen impurezas de
boro (B), son un ejemplo de un semiconductor tipo P que se produce de manera natural.
Semiconductores extrínsecos de tipo
p:
En este caso son los que están dopados
con elementos trivalentes, (Al, B, Ga,
In). El hecho de ser trivalentes, hace
que a la hora de formar la estructura
cristalina, dejen una vacante con un
nivel energético ligeramente superior al
de la banda de valencia, pues no existe
el cuarto electrón que lo rellenaría.
Bibliografía
http://es.wikipedia.org/wiki/Semiconductor
https://docs.google.com/viewer?
a=v&q=cache:fETr8RK0P0kJ:www.uv.es/candid/docencia/ed_tema-
02.pdf+semiconductores+intrinsecos&hl=es&gl=pa&pid=bl&srcid=ADGE
ESjhmyE4jefWQku0PWY3XRjoxu6lv1Gi2aF3xlOIzM7X0jX65z9osOE40K
qvjA6d8c-
C1UbAZYRPU08oM_QsokLk3jMWKzUMi1K4b17Kx_OdUPZe81LSueafc
3v_0JQWAbYJEMUs&sig=AHIEtbTevTuF6FzP0UrVINaoLKXu-r8v7w
http://tgt40034.blogspot.com/
http://www.glogster.com/mesacuadrado/semiconductores/g-6mc20nl5duap6dcg1o0rpa0
http://www.google.com.pe/url?
sa=t&rct=j&q=&esrc=s&source=web&cd=7&sqi=2&ved=0CE8QFjAG&u
rl=http%3A%2F%2Fwww.etitudela.com%2FElectrotecnia%2Fdownloads
%2Fintroduccion.pdf&ei=HM69UpvZH42pkAe-
u4H4Bw&usg=AFQjCNEXseO5zvTriHoij-dZn-
F2RmiUqg&bvm=bv.58187178,d.eW0
http://www.ecured.cu/index.php/Semiconductores
http://
www.asifunciona.com/fisica/ke_semiconductor/ke_semiconductor_1.htm
SEMICONDUCTORES - FISICA ELECTRONICA

Más contenido relacionado

La actualidad más candente

Electronica analogica
Electronica analogicaElectronica analogica
Electronica analogicaClauFdzSrz
 
Funciones singulares jesus badell
Funciones singulares jesus badellFunciones singulares jesus badell
Funciones singulares jesus badelljesus badell
 
Fundamentos de-circuitos-electricos-3edi-sadiku
Fundamentos de-circuitos-electricos-3edi-sadikuFundamentos de-circuitos-electricos-3edi-sadiku
Fundamentos de-circuitos-electricos-3edi-sadikuMichael Pabón León
 
compuertas_logicas.pdf
compuertas_logicas.pdfcompuertas_logicas.pdf
compuertas_logicas.pdfssuser58ba4d
 
Problemas resueltos de diodos y transistores
Problemas resueltos de diodos y transistoresProblemas resueltos de diodos y transistores
Problemas resueltos de diodos y transistoresCarlos Cardelo
 
Propiedades magnéticas de la materia
Propiedades magnéticas de la materiaPropiedades magnéticas de la materia
Propiedades magnéticas de la materiajuananelectrotecnia
 
Solenoide y toroide
Solenoide y toroideSolenoide y toroide
Solenoide y toroidePatty-15
 
Campos Magnéticos debido a Corrientes Eléctricas
Campos Magnéticos debido a Corrientes EléctricasCampos Magnéticos debido a Corrientes Eléctricas
Campos Magnéticos debido a Corrientes EléctricasFisicaIVcecyt7
 
Leyes de kirchhoff
Leyes de kirchhoffLeyes de kirchhoff
Leyes de kirchhofftecnologiadp
 
Problema nuestra del calculo de factor de rizo E1
Problema nuestra del calculo de factor de rizo E1Problema nuestra del calculo de factor de rizo E1
Problema nuestra del calculo de factor de rizo E1Tensor
 
Trabajo de maquinas electricas RESUMEN LEYES ELECTROMAGNETICAS
Trabajo de maquinas electricas RESUMEN LEYES ELECTROMAGNETICASTrabajo de maquinas electricas RESUMEN LEYES ELECTROMAGNETICAS
Trabajo de maquinas electricas RESUMEN LEYES ELECTROMAGNETICASlicf15
 
Presentación del tema 5
Presentación del tema 5Presentación del tema 5
Presentación del tema 5José Miranda
 
Corriente y resistencia. ing. carlos moreno (ESPOL)
Corriente y resistencia. ing. carlos moreno (ESPOL)Corriente y resistencia. ing. carlos moreno (ESPOL)
Corriente y resistencia. ing. carlos moreno (ESPOL)Francisco Rivas
 
Proyecto amplificador de audio de 2 w con transistores
Proyecto   amplificador de audio de 2 w con transistoresProyecto   amplificador de audio de 2 w con transistores
Proyecto amplificador de audio de 2 w con transistoresJOSUE OVIEDO
 

La actualidad más candente (20)

Electronica analogica
Electronica analogicaElectronica analogica
Electronica analogica
 
Presentacion propiedades magneticas
Presentacion propiedades magneticasPresentacion propiedades magneticas
Presentacion propiedades magneticas
 
Funciones singulares jesus badell
Funciones singulares jesus badellFunciones singulares jesus badell
Funciones singulares jesus badell
 
Fundamentos de-circuitos-electricos-3edi-sadiku
Fundamentos de-circuitos-electricos-3edi-sadikuFundamentos de-circuitos-electricos-3edi-sadiku
Fundamentos de-circuitos-electricos-3edi-sadiku
 
compuertas_logicas.pdf
compuertas_logicas.pdfcompuertas_logicas.pdf
compuertas_logicas.pdf
 
Familias Lógicas
Familias LógicasFamilias Lógicas
Familias Lógicas
 
Problemas resueltos de diodos y transistores
Problemas resueltos de diodos y transistoresProblemas resueltos de diodos y transistores
Problemas resueltos de diodos y transistores
 
Fotorresistencias
FotorresistenciasFotorresistencias
Fotorresistencias
 
Propiedades magnéticas de la materia
Propiedades magnéticas de la materiaPropiedades magnéticas de la materia
Propiedades magnéticas de la materia
 
Electrónica analógica
Electrónica analógicaElectrónica analógica
Electrónica analógica
 
Solenoide y toroide
Solenoide y toroideSolenoide y toroide
Solenoide y toroide
 
Tipos de resistencias
Tipos de resistenciasTipos de resistencias
Tipos de resistencias
 
Campos Magnéticos debido a Corrientes Eléctricas
Campos Magnéticos debido a Corrientes EléctricasCampos Magnéticos debido a Corrientes Eléctricas
Campos Magnéticos debido a Corrientes Eléctricas
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Leyes de kirchhoff
Leyes de kirchhoffLeyes de kirchhoff
Leyes de kirchhoff
 
Problema nuestra del calculo de factor de rizo E1
Problema nuestra del calculo de factor de rizo E1Problema nuestra del calculo de factor de rizo E1
Problema nuestra del calculo de factor de rizo E1
 
Trabajo de maquinas electricas RESUMEN LEYES ELECTROMAGNETICAS
Trabajo de maquinas electricas RESUMEN LEYES ELECTROMAGNETICASTrabajo de maquinas electricas RESUMEN LEYES ELECTROMAGNETICAS
Trabajo de maquinas electricas RESUMEN LEYES ELECTROMAGNETICAS
 
Presentación del tema 5
Presentación del tema 5Presentación del tema 5
Presentación del tema 5
 
Corriente y resistencia. ing. carlos moreno (ESPOL)
Corriente y resistencia. ing. carlos moreno (ESPOL)Corriente y resistencia. ing. carlos moreno (ESPOL)
Corriente y resistencia. ing. carlos moreno (ESPOL)
 
Proyecto amplificador de audio de 2 w con transistores
Proyecto   amplificador de audio de 2 w con transistoresProyecto   amplificador de audio de 2 w con transistores
Proyecto amplificador de audio de 2 w con transistores
 

Similar a SEMICONDUCTORES - FISICA ELECTRONICA (20)

Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores trabajo enviar
Semiconductores trabajo enviarSemiconductores trabajo enviar
Semiconductores trabajo enviar
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Los semiconductores intrínsecos y los semiconductores dopados
Los semiconductores intrínsecos y los semiconductores dopadosLos semiconductores intrínsecos y los semiconductores dopados
Los semiconductores intrínsecos y los semiconductores dopados
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 

Último

periodico mural y sus partes y caracteristicas
periodico mural y sus partes y caracteristicasperiodico mural y sus partes y caracteristicas
periodico mural y sus partes y caracteristicas123yudy
 
Uses of simple past and time expressions
Uses of simple past and time expressionsUses of simple past and time expressions
Uses of simple past and time expressionsConsueloSantana3
 
TUTORIA II - CIRCULO DORADO UNIVERSIDAD CESAR VALLEJO
TUTORIA II - CIRCULO DORADO UNIVERSIDAD CESAR VALLEJOTUTORIA II - CIRCULO DORADO UNIVERSIDAD CESAR VALLEJO
TUTORIA II - CIRCULO DORADO UNIVERSIDAD CESAR VALLEJOweislaco
 
5° SEM29 CRONOGRAMA PLANEACIÓN DOCENTE DARUKEL 23-24.pdf
5° SEM29 CRONOGRAMA PLANEACIÓN DOCENTE DARUKEL 23-24.pdf5° SEM29 CRONOGRAMA PLANEACIÓN DOCENTE DARUKEL 23-24.pdf
5° SEM29 CRONOGRAMA PLANEACIÓN DOCENTE DARUKEL 23-24.pdfOswaldoGonzalezCruz
 
RAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIA
RAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIARAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIA
RAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIACarlos Campaña Montenegro
 
Estas son las escuelas y colegios que tendrán modalidad no presencial este lu...
Estas son las escuelas y colegios que tendrán modalidad no presencial este lu...Estas son las escuelas y colegios que tendrán modalidad no presencial este lu...
Estas son las escuelas y colegios que tendrán modalidad no presencial este lu...fcastellanos3
 
el CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyz
el CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyzel CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyz
el CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyzprofefilete
 
VOLUMEN 1 COLECCION PRODUCCION BOVINA . SERIE SANIDAD ANIMAL
VOLUMEN 1 COLECCION PRODUCCION BOVINA . SERIE SANIDAD ANIMALVOLUMEN 1 COLECCION PRODUCCION BOVINA . SERIE SANIDAD ANIMAL
VOLUMEN 1 COLECCION PRODUCCION BOVINA . SERIE SANIDAD ANIMALEDUCCUniversidadCatl
 
programa dia de las madres 10 de mayo para evento
programa dia de las madres 10 de mayo  para eventoprograma dia de las madres 10 de mayo  para evento
programa dia de las madres 10 de mayo para eventoDiegoMtsS
 
Análisis de la Implementación de los Servicios Locales de Educación Pública p...
Análisis de la Implementación de los Servicios Locales de Educación Pública p...Análisis de la Implementación de los Servicios Locales de Educación Pública p...
Análisis de la Implementación de los Servicios Locales de Educación Pública p...Baker Publishing Company
 
Tarea 5_ Foro _Selección de herramientas digitales_Manuel.pdf
Tarea 5_ Foro _Selección de herramientas digitales_Manuel.pdfTarea 5_ Foro _Selección de herramientas digitales_Manuel.pdf
Tarea 5_ Foro _Selección de herramientas digitales_Manuel.pdfManuel Molina
 
Presentación de Estrategias de Enseñanza-Aprendizaje Virtual.pptx
Presentación de Estrategias de Enseñanza-Aprendizaje Virtual.pptxPresentación de Estrategias de Enseñanza-Aprendizaje Virtual.pptx
Presentación de Estrategias de Enseñanza-Aprendizaje Virtual.pptxYeseniaRivera50
 
LA ECUACIÓN DEL NÚMERO PI EN LOS JUEGOS OLÍMPICOS DE PARÍS. Por JAVIER SOLIS ...
LA ECUACIÓN DEL NÚMERO PI EN LOS JUEGOS OLÍMPICOS DE PARÍS. Por JAVIER SOLIS ...LA ECUACIÓN DEL NÚMERO PI EN LOS JUEGOS OLÍMPICOS DE PARÍS. Por JAVIER SOLIS ...
LA ECUACIÓN DEL NÚMERO PI EN LOS JUEGOS OLÍMPICOS DE PARÍS. Por JAVIER SOLIS ...JAVIER SOLIS NOYOLA
 

Último (20)

periodico mural y sus partes y caracteristicas
periodico mural y sus partes y caracteristicasperiodico mural y sus partes y caracteristicas
periodico mural y sus partes y caracteristicas
 
Uses of simple past and time expressions
Uses of simple past and time expressionsUses of simple past and time expressions
Uses of simple past and time expressions
 
Repaso Pruebas CRECE PR 2024. Ciencia General
Repaso Pruebas CRECE PR 2024. Ciencia GeneralRepaso Pruebas CRECE PR 2024. Ciencia General
Repaso Pruebas CRECE PR 2024. Ciencia General
 
Unidad 3 | Teorías de la Comunicación | MCDI
Unidad 3 | Teorías de la Comunicación | MCDIUnidad 3 | Teorías de la Comunicación | MCDI
Unidad 3 | Teorías de la Comunicación | MCDI
 
Sesión La luz brilla en la oscuridad.pdf
Sesión  La luz brilla en la oscuridad.pdfSesión  La luz brilla en la oscuridad.pdf
Sesión La luz brilla en la oscuridad.pdf
 
Power Point: "Defendamos la verdad".pptx
Power Point: "Defendamos la verdad".pptxPower Point: "Defendamos la verdad".pptx
Power Point: "Defendamos la verdad".pptx
 
TUTORIA II - CIRCULO DORADO UNIVERSIDAD CESAR VALLEJO
TUTORIA II - CIRCULO DORADO UNIVERSIDAD CESAR VALLEJOTUTORIA II - CIRCULO DORADO UNIVERSIDAD CESAR VALLEJO
TUTORIA II - CIRCULO DORADO UNIVERSIDAD CESAR VALLEJO
 
5° SEM29 CRONOGRAMA PLANEACIÓN DOCENTE DARUKEL 23-24.pdf
5° SEM29 CRONOGRAMA PLANEACIÓN DOCENTE DARUKEL 23-24.pdf5° SEM29 CRONOGRAMA PLANEACIÓN DOCENTE DARUKEL 23-24.pdf
5° SEM29 CRONOGRAMA PLANEACIÓN DOCENTE DARUKEL 23-24.pdf
 
RAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIA
RAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIARAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIA
RAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIA
 
TL/CNL – 2.ª FASE .
TL/CNL – 2.ª FASE                       .TL/CNL – 2.ª FASE                       .
TL/CNL – 2.ª FASE .
 
Estas son las escuelas y colegios que tendrán modalidad no presencial este lu...
Estas son las escuelas y colegios que tendrán modalidad no presencial este lu...Estas son las escuelas y colegios que tendrán modalidad no presencial este lu...
Estas son las escuelas y colegios que tendrán modalidad no presencial este lu...
 
el CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyz
el CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyzel CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyz
el CTE 6 DOCENTES 2 2023-2024abcdefghijoklmnñopqrstuvwxyz
 
Tema 7.- E-COMMERCE SISTEMAS DE INFORMACION.pdf
Tema 7.- E-COMMERCE SISTEMAS DE INFORMACION.pdfTema 7.- E-COMMERCE SISTEMAS DE INFORMACION.pdf
Tema 7.- E-COMMERCE SISTEMAS DE INFORMACION.pdf
 
VOLUMEN 1 COLECCION PRODUCCION BOVINA . SERIE SANIDAD ANIMAL
VOLUMEN 1 COLECCION PRODUCCION BOVINA . SERIE SANIDAD ANIMALVOLUMEN 1 COLECCION PRODUCCION BOVINA . SERIE SANIDAD ANIMAL
VOLUMEN 1 COLECCION PRODUCCION BOVINA . SERIE SANIDAD ANIMAL
 
programa dia de las madres 10 de mayo para evento
programa dia de las madres 10 de mayo  para eventoprograma dia de las madres 10 de mayo  para evento
programa dia de las madres 10 de mayo para evento
 
Análisis de la Implementación de los Servicios Locales de Educación Pública p...
Análisis de la Implementación de los Servicios Locales de Educación Pública p...Análisis de la Implementación de los Servicios Locales de Educación Pública p...
Análisis de la Implementación de los Servicios Locales de Educación Pública p...
 
Tarea 5_ Foro _Selección de herramientas digitales_Manuel.pdf
Tarea 5_ Foro _Selección de herramientas digitales_Manuel.pdfTarea 5_ Foro _Selección de herramientas digitales_Manuel.pdf
Tarea 5_ Foro _Selección de herramientas digitales_Manuel.pdf
 
Presentación de Estrategias de Enseñanza-Aprendizaje Virtual.pptx
Presentación de Estrategias de Enseñanza-Aprendizaje Virtual.pptxPresentación de Estrategias de Enseñanza-Aprendizaje Virtual.pptx
Presentación de Estrategias de Enseñanza-Aprendizaje Virtual.pptx
 
DIA INTERNACIONAL DAS FLORESTAS .
DIA INTERNACIONAL DAS FLORESTAS         .DIA INTERNACIONAL DAS FLORESTAS         .
DIA INTERNACIONAL DAS FLORESTAS .
 
LA ECUACIÓN DEL NÚMERO PI EN LOS JUEGOS OLÍMPICOS DE PARÍS. Por JAVIER SOLIS ...
LA ECUACIÓN DEL NÚMERO PI EN LOS JUEGOS OLÍMPICOS DE PARÍS. Por JAVIER SOLIS ...LA ECUACIÓN DEL NÚMERO PI EN LOS JUEGOS OLÍMPICOS DE PARÍS. Por JAVIER SOLIS ...
LA ECUACIÓN DEL NÚMERO PI EN LOS JUEGOS OLÍMPICOS DE PARÍS. Por JAVIER SOLIS ...
 

SEMICONDUCTORES - FISICA ELECTRONICA

  • 2. El Semiconductor es un elemento que se comporta como un conductor o como aislante dependiendo de diversos factores, como por ejemplo el campo eléctrico o magnético, la presión, la radiación que le incide, o la temperatura del ambiente en el que se encuentre. Los elementos químicos semiconductores de la tabla periódica se indican en la tabla adjunta. Elemento Grupos Electrones en la última capa Cd 12 2 e- Al, Ga, B, In 13 3 e- Si, C, Ge 14 4 e- P, As, Sb 15 5 e- Se, Te, (S) 16 6 e- El elemento semiconductor más usado es el silicio, el segundo el germanio, aunque idéntico comportamiento presentan las combinaciones de elementos de los grupos 12 y 13 con los de los grupos 16 y 15 respectivamente (GaAs, PIn, AsGaAl, TeCd, SeCd y SCd). Posteriormente se ha comenzado a emplear también el azufre. La característica común a todos ellos es que son tetravalentes, teniendo el silicio una configuración electrónica s²p². SEMICONDUCTORES
  • 3. En un cristal de Silicio o Germanio que forma una estructura tetraédrica similar a la del carbono mediante enlaces covalentes entre sus átomos, en la figura representados en el plano por simplicidad. Cuando el cristal se encuentra a temperatura ambiente algunos electrones pueden absorber la energía necesaria para saltar a la banda de conducción dejando el correspondiente hueco en la banda de valencia (1). Las energías requeridas, a temperatura ambiente, son de 1,12 eV y 0,67 eV para el silicio y el germanio respectivamente. Semiconductores intrínsecos
  • 4. Obviamente el proceso inverso también se produce, de modo que los electrones pueden caer, desde el estado energético correspondiente a la banda de conducción, a un hueco en la banda de valencia liberando energía. A este fenómeno se le denomina recombinación. Sucede que, a una determinada temperatura, las velocidades de creación de pares e-h, y de recombinación se igualan, de modo que la concentración global de electrones y huecos permanece constante. Siendo "n" la concentración de electrones (cargas negativas) y "p" la concentración de huecos (cargas positivas), se cumple que: ni = n = p
  • 5. Por un lado la debida al movimiento de los electrones libres de la banda de conducción, y por otro, la debida al desplazamiento de los electrones en la banda de valencia, que tenderán a saltar a los huecos próximos (2), originando una corriente de huecos con 4 capas ideales y en la dirección contraria al campo eléctrico cuya velocidad y magnitud es muy inferior a la de la banda de conducción. siendo ni la concentración intrínseca del semiconductor, función exclusiva de la temperatura y del tipo de elemento. Ejemplos de valores de ni a temperatura ambiente (27ºc): ni(Si) = 1.5 1010 cm-3 ni(Ge) = 1.73 1013 cm-3 Los electrones y los huecos reciben el nombre de portadores. En los semiconductores, ambos tipos de portadores contribuyen al paso de la corriente eléctrica. Si se somete el cristal a una diferencia de potencial se producen dos corrientes eléctricas.
  • 6. Semiconductores intrínsecos: Un cristal de silicio forma una estructura tetraédrica similar a la del carbono mediante enlaces covalentes entre sus átomos, en la figura representados en el plano por simplicidad. Cuando el cristal se encuentra a temperatura ambiente, algunos electrones pueden, absorbiendo la energía necesaria, saltar a la banda de conducción, dejando el correspondiente hueco en la banda de valencia (1). Las energías requeridas, a temperatura ambiente son de 1,12 y 0,67 eV para el silicio y el germanio respectivamente. A este fenómeno, se le denomina recombinación. Sucede que, a una determinada temperatura, las velocidades de creación de pares e-h, y de recombinación se igualan, de modo que la concentración global de electrones y huecos permanece invariable. Siendo "n"la concentración de electrones (cargas negativas) y "p" la concentración de huecos (cargas positivas), se cumple que: ni = n = p siendo ni la concentración intrínseca del semiconductor, función exclusiva de la temperatura. Si se somete el cristal a una diferencia de tensión, se producen dos corrientes eléctricas.
  • 7. Si a un semiconductor intrínseco, como el anterior, se le añade un pequeño porcentaje de impurezas, es decir, elementos trivalentes o pentavalentes, el semiconductor se denomina extrínseco, y se dice que está dopado. Evidentemente, las impurezas deberán formar parte de la estructura cristalina sustituyendo al correspondiente átomo de silicio. Hoy en día se han logrado añadir impurezas de una parte por cada 10 millones, logrando con ello una modificación del material. Semiconductores extrínsecos
  • 8. Los semiconductores extrínsecos se caracterizan, porque tienen un pequeño porcentaje de impurezas, respecto a los intrínsecos; esto es, posee elementos trivalentes o pentavalentes, o lo que es lo mismo, se dice que el elemento está dopado.
  • 9. Un Semiconductor tipo N se obtiene llevando a cabo un proceso de dopado añadiendo un cierto tipo de átomos al semiconductor para poder aumentar el número de portadores de carga libres (en este caso negativos o electrones). Cuando se añade el material dopante, aporta sus electrones más débilmente vinculados a los átomos del semiconductor. Este tipo de agente dopante es también conocido como material donante, ya que da algunos de sus electrones. Semiconductor tipo N
  • 10. El propósito del dopaje tipo n es el de producir abundancia de electrones portadores en el material. Para ayudar a entender cómo se produce el dopaje tipo n considérese el caso del silicio (Si). Los átomos del silicio tienen una valencia atómica de cuatro, por lo que se forma un enlace covalente con cada uno de los átomos de silicio adyacentes. Si un átomo con cinco electrones de valencia, tales como los del grupo 15 de la tabla periódica (ej. fósforo (P), arsénico (As) o antimonio (Sb)), se incorpora a la red cristalina en el lugar de un átomo de silicio, entonces ese átomo tendrá cuatro enlaces covalentes y un electrón no enlazado.
  • 11. Nótese que cada electrón libre en el semiconductor nunca está lejos de un ion dopante positivo inmóvil, y el material dopado tipo N generalmente tiene una carga eléctrica neta final de cero. Este electrón extra da como resultado la formación de "electrones libres", el número de electrones en el material supera ampliamente el número de huecos, en ese caso los electrones son los portadores mayoritarios y los huecos son los portadores minoritarios. A causa de que los átomos con cinco electrones de valencia tienen un electrón extra que "dar", son llamados átomos donadores.
  • 12. Semiconductores extrínsecos tipo n: Son los que están dopados, con elementos pentavalentes, como por ejemplo (As, P, Sb). Que sean elementos pentavalentes, quiere decir que tienen cinco electrones en la última capa, lo que hace que al formarse la estructura cristalina, un electrón quede fuera de ningún enlace covalente, quedándose en un nivel superior al de los otros cuatro.
  • 13. Semiconductor tipo P Un Semiconductor tipo P se obtiene llevando a cabo un proceso de dopado, añadiendo un cierto tipo de átomos al semiconductor para poder aumentar el número de portadores de carga libres (en este caso positivos o huecos). Cuando se añade el material dopante libera los electrones más débilmente vinculados de los átomos del semiconductor. Este agente dopante es también conocido como material aceptor y los átomos del semiconductor que han perdido un electrón son conocidos como huecos. El propósito del dopaje tipo P es el de crear abundancia de huecos. En el caso del silicio, un átomo tetravalente (típicamente del grupo 14 de la tabla periódica) se le une un átomo con tres electrones de valencia, tales como los del grupo 13 de la tabla periódica (ej. Al, Ga, B, In), y se incorpora a la red cristalina en el lugar de un átomo de silicio, entonces ese átomo tendrá tres enlaces covalentes y un hueco producido que se encontrará en condición de aceptar un electrón libre.
  • 14. Así los dopantes crean los "huecos". No obstante, cuando cada hueco se ha desplazado por la red, un protón del átomo situado en la posición del hueco se ve "expuesto" y en breve se ve equilibrado como una cierta carga positiva. Cuando un número suficiente de aceptores son añadidos, los huecos superan ampliamente la excitación térmica de los electrones. Así, los huecos son los portadores mayoritarios, mientras que los electrones son los portadores minoritarios en los materiales tipo P. Los diamantes azules (tipo IIb), que contienen impurezas de boro (B), son un ejemplo de un semiconductor tipo P que se produce de manera natural.
  • 15. Semiconductores extrínsecos de tipo p: En este caso son los que están dopados con elementos trivalentes, (Al, B, Ga, In). El hecho de ser trivalentes, hace que a la hora de formar la estructura cristalina, dejen una vacante con un nivel energético ligeramente superior al de la banda de valencia, pues no existe el cuarto electrón que lo rellenaría.
  • 16. Bibliografía http://es.wikipedia.org/wiki/Semiconductor https://docs.google.com/viewer? a=v&q=cache:fETr8RK0P0kJ:www.uv.es/candid/docencia/ed_tema- 02.pdf+semiconductores+intrinsecos&hl=es&gl=pa&pid=bl&srcid=ADGE ESjhmyE4jefWQku0PWY3XRjoxu6lv1Gi2aF3xlOIzM7X0jX65z9osOE40K qvjA6d8c- C1UbAZYRPU08oM_QsokLk3jMWKzUMi1K4b17Kx_OdUPZe81LSueafc 3v_0JQWAbYJEMUs&sig=AHIEtbTevTuF6FzP0UrVINaoLKXu-r8v7w http://tgt40034.blogspot.com/ http://www.glogster.com/mesacuadrado/semiconductores/g-6mc20nl5duap6dcg1o0rpa0 http://www.google.com.pe/url? sa=t&rct=j&q=&esrc=s&source=web&cd=7&sqi=2&ved=0CE8QFjAG&u rl=http%3A%2F%2Fwww.etitudela.com%2FElectrotecnia%2Fdownloads %2Fintroduccion.pdf&ei=HM69UpvZH42pkAe- u4H4Bw&usg=AFQjCNEXseO5zvTriHoij-dZn- F2RmiUqg&bvm=bv.58187178,d.eW0 http://www.ecured.cu/index.php/Semiconductores http:// www.asifunciona.com/fisica/ke_semiconductor/ke_semiconductor_1.htm