SlideShare una empresa de Scribd logo
1 de 14
ESTEQUIOMETRIA, REACTIVO LIMITE Y PORCENTAJE DE RENDIMIENTO
ORIANA REYES PALMA
10-1
DIANA FERNANDA JARAMILLO
DOCENTE
INSTITUCION EDUCATIVA EXALUMNAS DE LA PRESENTACIÒN
IBAGUÉ-TOLIMA
2017
CONTENIDO
INTRODUCCIÒN …………………………………………………………… 1
OBJETIVOS…………………………………………………………………. 2
MARCO TEÓRICO…………………………………………………………. 3
PROCEDIMIENTO………………………………………………………….. 4
EJERCICIOS INTERACTIVOS……………………………………………..
RESULTADOS………………………………………………………………..
INTRODUCCIÒN
La reacción química es aquel proceso químico en el cual dos sustancias o más,
denominados reactivos, por la acción de un factor energético, se convierten en
otras sustancias designadas como productos. Mientras tanto, las sustancias
pueden ser elementos químicos (materia constituida por átomos de la misma
clase) o compuestos químicos (sustancia que resulta de la unión de dos o más
elementos de la tabla periódica).
Estas reacciones necesitan ser analizadas, para ello se debe hacer un estudio
minucioso con base a diferentes procedimientos como lo son: estequiometría,
porcentaje de rendimiento y reactivo límite.
En este trabajo se darán a conocer esos tres procesos, empleandolos en la
solución de problemas, adquiriendo grandes conocimientos para nuestra vida
presente y futuro
OBJETIVOS
 Conocer y comprender los conceptos de estequiometria, reactivo limite y
porcentaje de rendimiento
 Explotar los conocimientos adquiridos para la solución de problemas
 Interpretar y comprender cada enunciado para llevar a cabo la correcta
ejecución del procedimiento
 Aprender mediante ensayos y errores las temáticas vistas
MARCO TEÓRICO
ESTEQUIOMETRIA
Es el cálculo de las cantidades de reactivos y productos de una reacción química.
Información cuantitativa de las ecuaciones ajustadas
Los coeficientes de una ecuación ajustada representan:
 el número relativo de moléculas que participan en una reacción
 el número relativo de moles participantes en dicha reacción.
Por ejemplo en la ecuación ajustada siguiente:
la producción de dos moles de agua requieren el consumo de 2 moles de H2 un
mol de O2.
Por lo tanto, en esta reacción tenemos que: "2 moles de H2, 1 mol de O2 y 2 moles
de H2O" son cantidades estequiométricamente equivalentes.
Estas relaciones estequiométricas, derivadas de las ecuaciones ajustadas,
pueden usarse para determinar las cantidades esperadas de productos para una
cantidad dada de reactivos.
Ejemplo:
¿Cuántas moles de H2O se producirán en una reacción donde tenemos 1,57
moles de O2, suponiendo que tenemos hidrógeno de sobra?
El cociente:
es la relación estequiométrica entre el H2O y el O2 de la ecuación ajustada de
esta reacción.
Ejemplo:
Calcula la masa de CO2 producida al quemar 1,00 gramo de C4H10.
Para la reacción de combustión del butano (C4H10) la ecuación ajustada es:
Para ello antes que nada debemos calcular cuantas moles de butano tenemos
en 100 gramos de la muestra:
de manera que, si la relación estequiométrica entre el C4H10 y el CO2 es:
por lo tanto:
Pero la pregunta pedía la determinación de la masa de CO2 producida, por ello
debemos convertir los moles de CO2 en gramos (usando el peso molecular del
CO2):
De manera similar podemos determinar la masa de agua producida, la masa de
oxígeno consumida, etc.
Las etapas esenciales
 Ajustar la ecuación química
 Calcular el peso molecular o fórmula de cada compuesto
 Convertir las masas a moles
 Usar la ecuación química para obtener los datos necesarios
 Reconvertir las moles a masas si se requiere
Cálculos de moles
La ecuación ajustada muestra la proporción entre reactivos y productos en la
reacción
de manera que, para cada sustancia en la ecuación se puede calcular las moles
consumidas o producidas debido a la reacción.
Si conocemos los pesos moleculares, podemos usar cantidades en gramos.
Conversión de moles a gramos:
Ejemplo: N2 ¿Cuántos moles hay en 14,0 g?
PM = 14,01 x 2 = 28,02 g/mol
Cálculos de masa
Normalmente no medimos cantidades molares, pues en la mayoría de los
experimentos en el laboratorio, es demasiado material. Esto, no es así cuando
trabajamos en una planta química
En general mediremos gramos, o miligramos de material en el laboratorio y
toneladas en el caso de plantas químicas
Los pesos moleculares y las ecuaciones químicas nos permiten usar masas o
cantidades molares
Los pasos son:
 Ajustar la ecuación química
 Convertir los valores de masa a valores molares
 Usar los coeficientes de la ecuación ajustada para determinar las
proporciones de reactivos y productos
 Reconvertir los valores de moles a masa.
Para la reacción:
Tenemos un exceso de HCl, de manera que está presente todo el que
necesitamos y más.
Nótese que por cada Ca producimos 1 H2
1) Calculamos el número de moles de Ca que pusimos en la reacción.
2) 10 g de Ca son 0,25 moles, como tenemos 0,25 moles de Ca, únicamente se
producirán 0,25 moles de H2. ¿Cuántos gramos produciremos?
gramos de H2 = moles obtenidos x peso molecular del H2 = 0,25 moles x 2,016
(g/mol) = 0,504 g
¿Cuántos g de CaCl2 se formaron? También serán 0.25 moles. Y entonces:
gramos de CaCl2 = moles obtenidos x peso molecular del CaCl2 = 0,25 moles x
110,98 (g/mol) = 27,75 g
Factores para calcular Moles-Moles
Cuando una ecuación está ajustada, basta un cálculo simple para saber las
moles de un reactivo necesarias para obtener el número deseado de moles de
un producto. Se encuentran multiplicando las moles deseada del producto por la
relación entre las moles de reactivo y las moles de producto en la ecuación
ajustada. La ecuación es la siguiente:
Ejemplo:
Cual de las siguientes operaciones es correcta para calcular el número de moles
de hidrógeno necesarios para producir 6 moles de NH3 según la siguiente
ecuación?
Solución:
REACTIVO LIMITE
Cuando una reacción se detiene porque se acaba uno de los reactivos, a ese
reactivo se le llama reactivo limitante.
Aquel reactivo que se ha consumido por completo en una reacción química se le
conoce con el nombre de reactivo limitante pues determina o limita la cantidad
de producto formado.
Reactivo limitante es aquel que se encuentra en defecto basado en la ecuación
química ajustada.
Para hallar el reactivo límite se debe calcular la cantidad de producto que
se formará para cada una de las cantidades que hay de reactivos en la
reacción.
El reactivo limitante será aquel que produce la menor cantidad de producto.
Considere la siguiente reacción:
Supongamos que se mezclan 637,2 g de NH3 con 1142 g de CO2. ¿Cuántos
gramos de urea [(NH2)2CO] se obtendrán?
1) Primero tendremos que convertir los gramos de reactivos en moles:
637,2 g de NH3 son 37,5 moles
1142 g de CO2 son 26 moles
2) Ahora definimos la proporción estequiométrica entre reactivos y productos:
 a partir de2 moles de NH3 se obtiene 1 mol de (NH2)2CO
 a partir de 1 mol de CO2 se obtiene 1 mol de (NH2)2CO
3) Calculamos el número de moles de producto que se obtendrían si cada
reactivo se consumiese en su totalidad:
 a partir de37,5 moles de NH3 se obtienen 18,75 moles de (NH2)2CO
 a partir de 26 moles de CO2 se obtienen 26 moles de (NH2)2CO
4) El reactivo limitante es el (NH3) y podremos obtener como máximo 18.75 moles
de urea.
5) Y ahora hacemos la conversión a gramos:
18,75 moles de (NH2)2CO son 1125 g.
PORCENTAJE DE RENDIMIENTO
La cantidad real obtenida del producto, dividida por la cantidad teórica máxima
que puede obtenerse (100%) se llama rendimiento.
Rendimiento teórico
La cantidad de producto que debiera formarse si todo el reactivo limitante se
consumiera en la reacción, se conoce con el nombre de rendimiento teórico.
A la cantidad de producto realmente formado se le llama simplemente
rendimiento o rendimiento de la reacción. Es claro que siempre se cumplirá la
siguiente desigualdad
Rendimiento de la reacción ≦ rendimiento teórico
Razones de este hecho:
 es posible que no todos los productos reaccionen
 es posible que haya reacciones laterales que no lleven al producto
deseado
 la recuperación del 100% de la muestra es prácticamente imposible
Una cantidad que relaciona el rendimiento de la reacción con el rendimiento
teórico se le llama rendimiento porcentual o % de rendimiento y se define así:
Ejemplo:
La reacción de 6,8 g de H2S con exceso de SO2, según la siguiente reacción,
produce 8,2 g de S. ¿Cual es el rendimiento?
(Pesos Atómicos: H = 1,008, S = 32,06, O = 16,00).
En esta reacción, 2 moles de H2S reaccionan para dar 3 moles de S.
1) Se usa la estequiometría para determinar la máxima cantidad de S que puede
obtenerse a partir de 6,8 g de H2S.
(6,8/34) x (3/2) x 32 = 9,6 g
2) Se divide la cantidad real de S obtenida por la máxima teórica, y se multiplica
por 100.
(8,2/9,6) x 100 = 85,4%
PROCEDIMIENTO
 Ingresamos a la pàgina http://www.eis.uva.es/~qgintro/esteq/esteq.html
 Ubicamos la viñeta número 4: Reactivo limitante y rendimiento y
damos clic en: ejercicios
 Resolvemos cada ejercicio planteado utilizando los conocimientos
previos
 Al obtener la respuesta que consideramos es correcta daremos clic en el
círculo que aparece a la izquierda de la opción de respuesta
 Al finalizar cada uno de ellos, daremos clic en enviar
 Obtendremos nuestros resultados
EJERCICIOS INTERACTIVOS
RESULTADOS

Más contenido relacionado

La actualidad más candente

Reactivo límite y porcentaje de rendimiento
Reactivo límite y porcentaje de rendimientoReactivo límite y porcentaje de rendimiento
Reactivo límite y porcentaje de rendimientoNicol Arteaga
 
Conceptos básicos en estequiometria de reacciones
Conceptos básicos en estequiometria de reaccionesConceptos básicos en estequiometria de reacciones
Conceptos básicos en estequiometria de reaccionesU.E.N "14 de Febrero"
 
Otras Aplicaciones De Las Ecuaciones Del Gas Ideal
Otras Aplicaciones De Las Ecuaciones Del Gas IdealOtras Aplicaciones De Las Ecuaciones Del Gas Ideal
Otras Aplicaciones De Las Ecuaciones Del Gas Idealjanet
 
Unidad I:: relaciones estequiometricas, Reactivo Limitante y Problemas
Unidad I:: relaciones estequiometricas, Reactivo  Limitante y ProblemasUnidad I:: relaciones estequiometricas, Reactivo  Limitante y Problemas
Unidad I:: relaciones estequiometricas, Reactivo Limitante y ProblemasLuis Sarmiento
 
Taller Teoría cinética de los gases
 Taller Teoría cinética de los gases Taller Teoría cinética de los gases
Taller Teoría cinética de los gasesJohan Manuel
 
Principios de quimica y estructura ena2 - ejercicio 08 presión parcial de ...
Principios de quimica y estructura    ena2 - ejercicio 08 presión parcial de ...Principios de quimica y estructura    ena2 - ejercicio 08 presión parcial de ...
Principios de quimica y estructura ena2 - ejercicio 08 presión parcial de ...Triplenlace Química
 
calculos estequiometricos
calculos estequiometricoscalculos estequiometricos
calculos estequiometricosgaby5206
 
Mezcla de gases -termodinamica
Mezcla de gases -termodinamicaMezcla de gases -termodinamica
Mezcla de gases -termodinamicaYanina C.J
 
Densidad y masa molecular de un gas
Densidad y masa molecular de un gasDensidad y masa molecular de un gas
Densidad y masa molecular de un gasNatalie Zambrano
 
Estado gaseoso (teoría )
Estado gaseoso  (teoría )Estado gaseoso  (teoría )
Estado gaseoso (teoría )Elias Navarrete
 
Clase 11 estequiometria iii reactivo limitante y rendimiento de una reacción ...
Clase 11 estequiometria iii reactivo limitante y rendimiento de una reacción ...Clase 11 estequiometria iii reactivo limitante y rendimiento de una reacción ...
Clase 11 estequiometria iii reactivo limitante y rendimiento de una reacción ...Gaby Pérez Orellana
 
CALCULOS ESTEQUIOMETRICOS
CALCULOS ESTEQUIOMETRICOSCALCULOS ESTEQUIOMETRICOS
CALCULOS ESTEQUIOMETRICOSnoexiste123
 

La actualidad más candente (19)

Reacciones quimicas 3º
Reacciones quimicas 3ºReacciones quimicas 3º
Reacciones quimicas 3º
 
Reactivo límite y porcentaje de rendimiento
Reactivo límite y porcentaje de rendimientoReactivo límite y porcentaje de rendimiento
Reactivo límite y porcentaje de rendimiento
 
Gases ideales
Gases idealesGases ideales
Gases ideales
 
Conceptos básicos en estequiometria de reacciones
Conceptos básicos en estequiometria de reaccionesConceptos básicos en estequiometria de reacciones
Conceptos básicos en estequiometria de reacciones
 
ESTEQUIOMETRÍA
ESTEQUIOMETRÍAESTEQUIOMETRÍA
ESTEQUIOMETRÍA
 
Otras Aplicaciones De Las Ecuaciones Del Gas Ideal
Otras Aplicaciones De Las Ecuaciones Del Gas IdealOtras Aplicaciones De Las Ecuaciones Del Gas Ideal
Otras Aplicaciones De Las Ecuaciones Del Gas Ideal
 
Unidad I:: relaciones estequiometricas, Reactivo Limitante y Problemas
Unidad I:: relaciones estequiometricas, Reactivo  Limitante y ProblemasUnidad I:: relaciones estequiometricas, Reactivo  Limitante y Problemas
Unidad I:: relaciones estequiometricas, Reactivo Limitante y Problemas
 
Mezclas de gases ideales
Mezclas de gases idealesMezclas de gases ideales
Mezclas de gases ideales
 
Taller Teoría cinética de los gases
 Taller Teoría cinética de los gases Taller Teoría cinética de los gases
Taller Teoría cinética de los gases
 
Principios de quimica y estructura ena2 - ejercicio 08 presión parcial de ...
Principios de quimica y estructura    ena2 - ejercicio 08 presión parcial de ...Principios de quimica y estructura    ena2 - ejercicio 08 presión parcial de ...
Principios de quimica y estructura ena2 - ejercicio 08 presión parcial de ...
 
calculos estequiometricos
calculos estequiometricoscalculos estequiometricos
calculos estequiometricos
 
Mezcla de gases -termodinamica
Mezcla de gases -termodinamicaMezcla de gases -termodinamica
Mezcla de gases -termodinamica
 
Leyes de los gases
Leyes de los gasesLeyes de los gases
Leyes de los gases
 
Densidad y masa molecular de un gas
Densidad y masa molecular de un gasDensidad y masa molecular de un gas
Densidad y masa molecular de un gas
 
Estado gaseoso (teoría )
Estado gaseoso  (teoría )Estado gaseoso  (teoría )
Estado gaseoso (teoría )
 
Clase 11 estequiometria iii reactivo limitante y rendimiento de una reacción ...
Clase 11 estequiometria iii reactivo limitante y rendimiento de una reacción ...Clase 11 estequiometria iii reactivo limitante y rendimiento de una reacción ...
Clase 11 estequiometria iii reactivo limitante y rendimiento de una reacción ...
 
CALCULOS ESTEQUIOMETRICOS
CALCULOS ESTEQUIOMETRICOSCALCULOS ESTEQUIOMETRICOS
CALCULOS ESTEQUIOMETRICOS
 
Reactivo limite
Reactivo limiteReactivo limite
Reactivo limite
 
Leyes de los gases
Leyes de los gasesLeyes de los gases
Leyes de los gases
 

Similar a Estequiometría, reactivo límite y rendimiento

Similar a Estequiometría, reactivo límite y rendimiento (20)

Estequiometría-(Reactivo limitante y Rendimiento).
Estequiometría-(Reactivo limitante y Rendimiento).Estequiometría-(Reactivo limitante y Rendimiento).
Estequiometría-(Reactivo limitante y Rendimiento).
 
CÁLCULOS ESTEQUIOMÉTRICOS
CÁLCULOS ESTEQUIOMÉTRICOSCÁLCULOS ESTEQUIOMÉTRICOS
CÁLCULOS ESTEQUIOMÉTRICOS
 
Quimica reactivo
Quimica reactivoQuimica reactivo
Quimica reactivo
 
Quimica reactivo
Quimica reactivoQuimica reactivo
Quimica reactivo
 
Quimica
QuimicaQuimica
Quimica
 
Quimica reactivo
Quimica reactivoQuimica reactivo
Quimica reactivo
 
Laboratorio quimica
Laboratorio quimicaLaboratorio quimica
Laboratorio quimica
 
Estequiometria
EstequiometriaEstequiometria
Estequiometria
 
Reactivo limitante, porcentaje de rendimiento y pureza
Reactivo limitante, porcentaje de rendimiento y purezaReactivo limitante, porcentaje de rendimiento y pureza
Reactivo limitante, porcentaje de rendimiento y pureza
 
ESTEQUIOMETRÍA
ESTEQUIOMETRÍAESTEQUIOMETRÍA
ESTEQUIOMETRÍA
 
Ejercicios de reactivo limite y rendimiento
Ejercicios de reactivo limite y rendimientoEjercicios de reactivo limite y rendimiento
Ejercicios de reactivo limite y rendimiento
 
Informedequimica..docx (1)
Informedequimica..docx (1)Informedequimica..docx (1)
Informedequimica..docx (1)
 
Reactivo limite y rendimiento
Reactivo limite y rendimiento Reactivo limite y rendimiento
Reactivo limite y rendimiento
 
Reactivo limitante y rendimiento blog.docx
Reactivo limitante y rendimiento blog.docxReactivo limitante y rendimiento blog.docx
Reactivo limitante y rendimiento blog.docx
 
Rios
RiosRios
Rios
 
Reactivo limitante y rendimiento
Reactivo limitante y rendimiento Reactivo limitante y rendimiento
Reactivo limitante y rendimiento
 
Reactivo limitante y rendimiento
Reactivo limitante y rendimiento Reactivo limitante y rendimiento
Reactivo limitante y rendimiento
 
Reactivo limitante y rendimiento
Reactivo limitante y rendimiento Reactivo limitante y rendimiento
Reactivo limitante y rendimiento
 
Estequiometría RL.pptx
Estequiometría  RL.pptxEstequiometría  RL.pptx
Estequiometría RL.pptx
 
Estequiometria
Estequiometria Estequiometria
Estequiometria
 

Más de Oriana Reyes Palma (8)

Elementos grupos VIIA, VIA, VA, IVA de la tabla periodica
Elementos grupos VIIA, VIA, VA, IVA de la tabla periodicaElementos grupos VIIA, VIA, VA, IVA de la tabla periodica
Elementos grupos VIIA, VIA, VA, IVA de la tabla periodica
 
Ardora
ArdoraArdora
Ardora
 
Spark video
Spark videoSpark video
Spark video
 
YOLA
YOLAYOLA
YOLA
 
Materiales de laboratorio
Materiales de laboratorioMateriales de laboratorio
Materiales de laboratorio
 
Nomenclatura
NomenclaturaNomenclatura
Nomenclatura
 
Herramientas interactivas
Herramientas interactivasHerramientas interactivas
Herramientas interactivas
 
Blog y página web
Blog y página webBlog y página web
Blog y página web
 

Último

Movimientos Precursores de La Independencia en Venezuela
Movimientos Precursores de La Independencia en VenezuelaMovimientos Precursores de La Independencia en Venezuela
Movimientos Precursores de La Independencia en Venezuelacocuyelquemao
 
30-de-abril-plebiscito-1902_240420_104511.pdf
30-de-abril-plebiscito-1902_240420_104511.pdf30-de-abril-plebiscito-1902_240420_104511.pdf
30-de-abril-plebiscito-1902_240420_104511.pdfgimenanahuel
 
RETO MES DE ABRIL .............................docx
RETO MES DE ABRIL .............................docxRETO MES DE ABRIL .............................docx
RETO MES DE ABRIL .............................docxAna Fernandez
 
Introducción:Los objetivos de Desarrollo Sostenible
Introducción:Los objetivos de Desarrollo SostenibleIntroducción:Los objetivos de Desarrollo Sostenible
Introducción:Los objetivos de Desarrollo SostenibleJonathanCovena1
 
Lecciones 04 Esc. Sabática. Defendamos la verdad
Lecciones 04 Esc. Sabática. Defendamos la verdadLecciones 04 Esc. Sabática. Defendamos la verdad
Lecciones 04 Esc. Sabática. Defendamos la verdadAlejandrino Halire Ccahuana
 
Factores ecosistemas: interacciones, energia y dinamica
Factores ecosistemas: interacciones, energia y dinamicaFactores ecosistemas: interacciones, energia y dinamica
Factores ecosistemas: interacciones, energia y dinamicaFlor Idalia Espinoza Ortega
 
Manual - ABAS II completo 263 hojas .pdf
Manual - ABAS II completo 263 hojas .pdfManual - ABAS II completo 263 hojas .pdf
Manual - ABAS II completo 263 hojas .pdfMaryRotonda1
 
Heinsohn Privacidad y Ciberseguridad para el sector educativo
Heinsohn Privacidad y Ciberseguridad para el sector educativoHeinsohn Privacidad y Ciberseguridad para el sector educativo
Heinsohn Privacidad y Ciberseguridad para el sector educativoFundación YOD YOD
 
TEMA 13 ESPAÑA EN DEMOCRACIA:DISTINTOS GOBIERNOS
TEMA 13 ESPAÑA EN DEMOCRACIA:DISTINTOS GOBIERNOSTEMA 13 ESPAÑA EN DEMOCRACIA:DISTINTOS GOBIERNOS
TEMA 13 ESPAÑA EN DEMOCRACIA:DISTINTOS GOBIERNOSjlorentemartos
 
programa dia de las madres 10 de mayo para evento
programa dia de las madres 10 de mayo  para eventoprograma dia de las madres 10 de mayo  para evento
programa dia de las madres 10 de mayo para eventoDiegoMtsS
 
Informatica Generalidades - Conceptos Básicos
Informatica Generalidades - Conceptos BásicosInformatica Generalidades - Conceptos Básicos
Informatica Generalidades - Conceptos BásicosCesarFernandez937857
 
Unidad II Doctrina de la Iglesia 1 parte
Unidad II Doctrina de la Iglesia 1 parteUnidad II Doctrina de la Iglesia 1 parte
Unidad II Doctrina de la Iglesia 1 parteJuan Hernandez
 
MAYO 1 PROYECTO día de la madre el amor más grande
MAYO 1 PROYECTO día de la madre el amor más grandeMAYO 1 PROYECTO día de la madre el amor más grande
MAYO 1 PROYECTO día de la madre el amor más grandeMarjorie Burga
 
RAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIA
RAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIARAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIA
RAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIACarlos Campaña Montenegro
 
la unidad de s sesion edussssssssssssssscacio fisca
la unidad de s sesion edussssssssssssssscacio fiscala unidad de s sesion edussssssssssssssscacio fisca
la unidad de s sesion edussssssssssssssscacio fiscaeliseo91
 
GLOSAS Y PALABRAS ACTO 2 DE ABRIL 2024.docx
GLOSAS  Y PALABRAS ACTO 2 DE ABRIL 2024.docxGLOSAS  Y PALABRAS ACTO 2 DE ABRIL 2024.docx
GLOSAS Y PALABRAS ACTO 2 DE ABRIL 2024.docxAleParedes11
 

Último (20)

La Trampa De La Felicidad. Russ-Harris.pdf
La Trampa De La Felicidad. Russ-Harris.pdfLa Trampa De La Felicidad. Russ-Harris.pdf
La Trampa De La Felicidad. Russ-Harris.pdf
 
Movimientos Precursores de La Independencia en Venezuela
Movimientos Precursores de La Independencia en VenezuelaMovimientos Precursores de La Independencia en Venezuela
Movimientos Precursores de La Independencia en Venezuela
 
30-de-abril-plebiscito-1902_240420_104511.pdf
30-de-abril-plebiscito-1902_240420_104511.pdf30-de-abril-plebiscito-1902_240420_104511.pdf
30-de-abril-plebiscito-1902_240420_104511.pdf
 
RETO MES DE ABRIL .............................docx
RETO MES DE ABRIL .............................docxRETO MES DE ABRIL .............................docx
RETO MES DE ABRIL .............................docx
 
Power Point: "Defendamos la verdad".pptx
Power Point: "Defendamos la verdad".pptxPower Point: "Defendamos la verdad".pptx
Power Point: "Defendamos la verdad".pptx
 
Introducción:Los objetivos de Desarrollo Sostenible
Introducción:Los objetivos de Desarrollo SostenibleIntroducción:Los objetivos de Desarrollo Sostenible
Introducción:Los objetivos de Desarrollo Sostenible
 
Lecciones 04 Esc. Sabática. Defendamos la verdad
Lecciones 04 Esc. Sabática. Defendamos la verdadLecciones 04 Esc. Sabática. Defendamos la verdad
Lecciones 04 Esc. Sabática. Defendamos la verdad
 
Factores ecosistemas: interacciones, energia y dinamica
Factores ecosistemas: interacciones, energia y dinamicaFactores ecosistemas: interacciones, energia y dinamica
Factores ecosistemas: interacciones, energia y dinamica
 
Manual - ABAS II completo 263 hojas .pdf
Manual - ABAS II completo 263 hojas .pdfManual - ABAS II completo 263 hojas .pdf
Manual - ABAS II completo 263 hojas .pdf
 
Heinsohn Privacidad y Ciberseguridad para el sector educativo
Heinsohn Privacidad y Ciberseguridad para el sector educativoHeinsohn Privacidad y Ciberseguridad para el sector educativo
Heinsohn Privacidad y Ciberseguridad para el sector educativo
 
Defendamos la verdad. La defensa es importante.
Defendamos la verdad. La defensa es importante.Defendamos la verdad. La defensa es importante.
Defendamos la verdad. La defensa es importante.
 
Unidad 4 | Teorías de las Comunicación | MCDI
Unidad 4 | Teorías de las Comunicación | MCDIUnidad 4 | Teorías de las Comunicación | MCDI
Unidad 4 | Teorías de las Comunicación | MCDI
 
TEMA 13 ESPAÑA EN DEMOCRACIA:DISTINTOS GOBIERNOS
TEMA 13 ESPAÑA EN DEMOCRACIA:DISTINTOS GOBIERNOSTEMA 13 ESPAÑA EN DEMOCRACIA:DISTINTOS GOBIERNOS
TEMA 13 ESPAÑA EN DEMOCRACIA:DISTINTOS GOBIERNOS
 
programa dia de las madres 10 de mayo para evento
programa dia de las madres 10 de mayo  para eventoprograma dia de las madres 10 de mayo  para evento
programa dia de las madres 10 de mayo para evento
 
Informatica Generalidades - Conceptos Básicos
Informatica Generalidades - Conceptos BásicosInformatica Generalidades - Conceptos Básicos
Informatica Generalidades - Conceptos Básicos
 
Unidad II Doctrina de la Iglesia 1 parte
Unidad II Doctrina de la Iglesia 1 parteUnidad II Doctrina de la Iglesia 1 parte
Unidad II Doctrina de la Iglesia 1 parte
 
MAYO 1 PROYECTO día de la madre el amor más grande
MAYO 1 PROYECTO día de la madre el amor más grandeMAYO 1 PROYECTO día de la madre el amor más grande
MAYO 1 PROYECTO día de la madre el amor más grande
 
RAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIA
RAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIARAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIA
RAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIA
 
la unidad de s sesion edussssssssssssssscacio fisca
la unidad de s sesion edussssssssssssssscacio fiscala unidad de s sesion edussssssssssssssscacio fisca
la unidad de s sesion edussssssssssssssscacio fisca
 
GLOSAS Y PALABRAS ACTO 2 DE ABRIL 2024.docx
GLOSAS  Y PALABRAS ACTO 2 DE ABRIL 2024.docxGLOSAS  Y PALABRAS ACTO 2 DE ABRIL 2024.docx
GLOSAS Y PALABRAS ACTO 2 DE ABRIL 2024.docx
 

Estequiometría, reactivo límite y rendimiento

  • 1. ESTEQUIOMETRIA, REACTIVO LIMITE Y PORCENTAJE DE RENDIMIENTO ORIANA REYES PALMA 10-1 DIANA FERNANDA JARAMILLO DOCENTE INSTITUCION EDUCATIVA EXALUMNAS DE LA PRESENTACIÒN IBAGUÉ-TOLIMA 2017
  • 2. CONTENIDO INTRODUCCIÒN …………………………………………………………… 1 OBJETIVOS…………………………………………………………………. 2 MARCO TEÓRICO…………………………………………………………. 3 PROCEDIMIENTO………………………………………………………….. 4 EJERCICIOS INTERACTIVOS…………………………………………….. RESULTADOS………………………………………………………………..
  • 3. INTRODUCCIÒN La reacción química es aquel proceso químico en el cual dos sustancias o más, denominados reactivos, por la acción de un factor energético, se convierten en otras sustancias designadas como productos. Mientras tanto, las sustancias pueden ser elementos químicos (materia constituida por átomos de la misma clase) o compuestos químicos (sustancia que resulta de la unión de dos o más elementos de la tabla periódica). Estas reacciones necesitan ser analizadas, para ello se debe hacer un estudio minucioso con base a diferentes procedimientos como lo son: estequiometría, porcentaje de rendimiento y reactivo límite. En este trabajo se darán a conocer esos tres procesos, empleandolos en la solución de problemas, adquiriendo grandes conocimientos para nuestra vida presente y futuro
  • 4. OBJETIVOS  Conocer y comprender los conceptos de estequiometria, reactivo limite y porcentaje de rendimiento  Explotar los conocimientos adquiridos para la solución de problemas  Interpretar y comprender cada enunciado para llevar a cabo la correcta ejecución del procedimiento  Aprender mediante ensayos y errores las temáticas vistas
  • 5. MARCO TEÓRICO ESTEQUIOMETRIA Es el cálculo de las cantidades de reactivos y productos de una reacción química. Información cuantitativa de las ecuaciones ajustadas Los coeficientes de una ecuación ajustada representan:  el número relativo de moléculas que participan en una reacción  el número relativo de moles participantes en dicha reacción. Por ejemplo en la ecuación ajustada siguiente: la producción de dos moles de agua requieren el consumo de 2 moles de H2 un mol de O2. Por lo tanto, en esta reacción tenemos que: "2 moles de H2, 1 mol de O2 y 2 moles de H2O" son cantidades estequiométricamente equivalentes. Estas relaciones estequiométricas, derivadas de las ecuaciones ajustadas, pueden usarse para determinar las cantidades esperadas de productos para una cantidad dada de reactivos. Ejemplo: ¿Cuántas moles de H2O se producirán en una reacción donde tenemos 1,57 moles de O2, suponiendo que tenemos hidrógeno de sobra? El cociente: es la relación estequiométrica entre el H2O y el O2 de la ecuación ajustada de esta reacción. Ejemplo: Calcula la masa de CO2 producida al quemar 1,00 gramo de C4H10. Para la reacción de combustión del butano (C4H10) la ecuación ajustada es: Para ello antes que nada debemos calcular cuantas moles de butano tenemos en 100 gramos de la muestra: de manera que, si la relación estequiométrica entre el C4H10 y el CO2 es: por lo tanto: Pero la pregunta pedía la determinación de la masa de CO2 producida, por ello debemos convertir los moles de CO2 en gramos (usando el peso molecular del CO2):
  • 6. De manera similar podemos determinar la masa de agua producida, la masa de oxígeno consumida, etc. Las etapas esenciales  Ajustar la ecuación química  Calcular el peso molecular o fórmula de cada compuesto  Convertir las masas a moles  Usar la ecuación química para obtener los datos necesarios  Reconvertir las moles a masas si se requiere Cálculos de moles La ecuación ajustada muestra la proporción entre reactivos y productos en la reacción de manera que, para cada sustancia en la ecuación se puede calcular las moles consumidas o producidas debido a la reacción. Si conocemos los pesos moleculares, podemos usar cantidades en gramos. Conversión de moles a gramos: Ejemplo: N2 ¿Cuántos moles hay en 14,0 g? PM = 14,01 x 2 = 28,02 g/mol Cálculos de masa Normalmente no medimos cantidades molares, pues en la mayoría de los experimentos en el laboratorio, es demasiado material. Esto, no es así cuando trabajamos en una planta química En general mediremos gramos, o miligramos de material en el laboratorio y toneladas en el caso de plantas químicas Los pesos moleculares y las ecuaciones químicas nos permiten usar masas o cantidades molares Los pasos son:  Ajustar la ecuación química  Convertir los valores de masa a valores molares  Usar los coeficientes de la ecuación ajustada para determinar las proporciones de reactivos y productos  Reconvertir los valores de moles a masa. Para la reacción: Tenemos un exceso de HCl, de manera que está presente todo el que necesitamos y más. Nótese que por cada Ca producimos 1 H2 1) Calculamos el número de moles de Ca que pusimos en la reacción.
  • 7. 2) 10 g de Ca son 0,25 moles, como tenemos 0,25 moles de Ca, únicamente se producirán 0,25 moles de H2. ¿Cuántos gramos produciremos? gramos de H2 = moles obtenidos x peso molecular del H2 = 0,25 moles x 2,016 (g/mol) = 0,504 g ¿Cuántos g de CaCl2 se formaron? También serán 0.25 moles. Y entonces: gramos de CaCl2 = moles obtenidos x peso molecular del CaCl2 = 0,25 moles x 110,98 (g/mol) = 27,75 g Factores para calcular Moles-Moles Cuando una ecuación está ajustada, basta un cálculo simple para saber las moles de un reactivo necesarias para obtener el número deseado de moles de un producto. Se encuentran multiplicando las moles deseada del producto por la relación entre las moles de reactivo y las moles de producto en la ecuación ajustada. La ecuación es la siguiente: Ejemplo: Cual de las siguientes operaciones es correcta para calcular el número de moles de hidrógeno necesarios para producir 6 moles de NH3 según la siguiente ecuación? Solución:
  • 8. REACTIVO LIMITE Cuando una reacción se detiene porque se acaba uno de los reactivos, a ese reactivo se le llama reactivo limitante. Aquel reactivo que se ha consumido por completo en una reacción química se le conoce con el nombre de reactivo limitante pues determina o limita la cantidad de producto formado. Reactivo limitante es aquel que se encuentra en defecto basado en la ecuación química ajustada. Para hallar el reactivo límite se debe calcular la cantidad de producto que se formará para cada una de las cantidades que hay de reactivos en la reacción. El reactivo limitante será aquel que produce la menor cantidad de producto. Considere la siguiente reacción: Supongamos que se mezclan 637,2 g de NH3 con 1142 g de CO2. ¿Cuántos gramos de urea [(NH2)2CO] se obtendrán? 1) Primero tendremos que convertir los gramos de reactivos en moles: 637,2 g de NH3 son 37,5 moles 1142 g de CO2 son 26 moles 2) Ahora definimos la proporción estequiométrica entre reactivos y productos:  a partir de2 moles de NH3 se obtiene 1 mol de (NH2)2CO  a partir de 1 mol de CO2 se obtiene 1 mol de (NH2)2CO 3) Calculamos el número de moles de producto que se obtendrían si cada reactivo se consumiese en su totalidad:  a partir de37,5 moles de NH3 se obtienen 18,75 moles de (NH2)2CO  a partir de 26 moles de CO2 se obtienen 26 moles de (NH2)2CO 4) El reactivo limitante es el (NH3) y podremos obtener como máximo 18.75 moles de urea. 5) Y ahora hacemos la conversión a gramos: 18,75 moles de (NH2)2CO son 1125 g. PORCENTAJE DE RENDIMIENTO La cantidad real obtenida del producto, dividida por la cantidad teórica máxima que puede obtenerse (100%) se llama rendimiento. Rendimiento teórico La cantidad de producto que debiera formarse si todo el reactivo limitante se consumiera en la reacción, se conoce con el nombre de rendimiento teórico. A la cantidad de producto realmente formado se le llama simplemente rendimiento o rendimiento de la reacción. Es claro que siempre se cumplirá la siguiente desigualdad Rendimiento de la reacción ≦ rendimiento teórico Razones de este hecho:  es posible que no todos los productos reaccionen
  • 9.  es posible que haya reacciones laterales que no lleven al producto deseado  la recuperación del 100% de la muestra es prácticamente imposible Una cantidad que relaciona el rendimiento de la reacción con el rendimiento teórico se le llama rendimiento porcentual o % de rendimiento y se define así: Ejemplo: La reacción de 6,8 g de H2S con exceso de SO2, según la siguiente reacción, produce 8,2 g de S. ¿Cual es el rendimiento? (Pesos Atómicos: H = 1,008, S = 32,06, O = 16,00). En esta reacción, 2 moles de H2S reaccionan para dar 3 moles de S. 1) Se usa la estequiometría para determinar la máxima cantidad de S que puede obtenerse a partir de 6,8 g de H2S. (6,8/34) x (3/2) x 32 = 9,6 g 2) Se divide la cantidad real de S obtenida por la máxima teórica, y se multiplica por 100. (8,2/9,6) x 100 = 85,4%
  • 10. PROCEDIMIENTO  Ingresamos a la pàgina http://www.eis.uva.es/~qgintro/esteq/esteq.html  Ubicamos la viñeta número 4: Reactivo limitante y rendimiento y damos clic en: ejercicios  Resolvemos cada ejercicio planteado utilizando los conocimientos previos  Al obtener la respuesta que consideramos es correcta daremos clic en el círculo que aparece a la izquierda de la opción de respuesta  Al finalizar cada uno de ellos, daremos clic en enviar
  • 13.