SlideShare una empresa de Scribd logo
1 de 14
Descargar para leer sin conexión
UNEFA-SEDE SAN TOMÉ
Asignatura: Fluidos de Perforación
Contenido: Sistemas de Lodos
Prof.: Ing. Pavel Bellorín
CLASIFICACIÓN LOS FLUIDOS DE PERFORACIÓN
Los convencionales son usados para perforar formaciones donde las densidades varían
entre 6 y 20 lb/gal y los no convencionales cuando es necesario perforar con una densidad
menor de 6 lb/gal, equivalente a un gradiente de presión subnormal menor a 0.312 psi/pie.
FLUIDOS BASE AGUA
Un fluido base agua es aquel cuya fase continua es agua. El aceite adicionado a un fluido
base agua forma parte de la fase dispersa, se comporta como sólido suspendido. Los fluidos
base agua pueden disperso, no disperso, inhibidos y no inhibidos.
Los dispersos contienen adelgazantes químicos y los no dispersos no. Los inhibidos tienen
iones inhibidores de lutitas y los no inhibidos no. De hecho, un lodo disperso no inhibido es
aquel que contiene adelgazantes químicos, pero no tiene ningún tipo de ion inhibidor.
El potasio (K) es el ion más usado para inhibir arcillas, por su reducido tamaño y su baja
capacidad de hidratación. La fuente suplidora de potasio más común es el Cloruro de
Potasio (KCL).
FLUIDOS DE PERFORACIÓN BASE AGUA DE USO COMÚN
� Lignosulfonatos
� Calinos
� Polímeros
� Viscoelásticos
� Baja densidad
� Salinos
UNEFA-SEDE SAN TOMÉ
Asignatura: Fluidos de Perforación
Contenido: Sistemas de Lodos
Prof.: Ing. Pavel Bellorín
UNEFA-SEDE SAN TOMÉ
Asignatura: Fluidos de Perforación
Contenido: Sistemas de Lodos
Prof.: Ing. Pavel Bellorín
FLUIDOS LIGNOSULFONATO
Estos fluidos son dispersos no inhibidos a base de arcilla. Se utilizan para perforar
formaciones superficiales deleznables altamente permeables que se estabilizan con revoque
y peso. Estos fluidos se caracterizan por ser muy sensibles a la acción de cualquier
contaminante. Se formulan con soda cáustica, bentonita, lignosulfonatos y lignitos.
Estos fluidos requieren del agregado diario de soda cáustica para mantener el pH entre 9.5 y
11.5. La bentonita es agregada en forma prehidratada para lograr un mejor control de la
capacidad de transporte y suspensión del fluido y para obtener revoques delgados, flexibles,
poco permeables y altamente compresibles que minimizan la pérdida de agua. La acción
adelgazante la logran a través de los lignosulfonatos y los lignitos.
En condiciones normales de perforación, estos fluidos funcionan bien en una relación de
concentración de 2 a 1, es decir que por cada dos libras de lignosulfonato se agrega una
libra de lignito, pero a medida que aumenta la temperatura y con el fin de lograr un mejor
control del filtrado, es aconsejable invertir la relación. Estos productos son poderosos
adelgazantes, al extremo de que un exceso de lignosulfonato inhibe por completo al sistema
y causa la formación de espuma. En estos casos el fluido adquiere un color bastante
ennegrecido y al igual que el filtrado.
FLUIDOS CALINOS
Estos fluidos son dispersos inhibidos a base de cal. Se utilizan para perforar arcillas
hidratables del tipo gumbo y se caracterizan por:
a) presentar viscosidades más bajas que un fluido disperso de la misma densidad
b) ofrecer mayor tolerancia a los sólidos que cualquier sistema disperso.
Este tipo de fluido se desempeña muy bien en temperaturas de 250 ºF – 300 ºF, y si en su
formulación contiene un estabilizador térmico podrá soportar hasta 400 ºF, conservando así
la cadena de polímeros y controlando la invasión del fluido a la formación. El sistema se
obtiene mediante el proceso de “breakover” convirtiendo la arcilla sódica a cálcica. Este
intercambio de bases de un catión monovalente de sodio a un catión bivalente de calcio,
con su mayor energía de enlace, tiende a que las plaquetas de arcillas se mantengan unidas.
A medida que estas plaquetas se deshidratan, el agua adsorbida en la arcilla hidratada se
libera. De esto resulta una reducción en el tamaño de las partículas y un aumento en el
volumen del agua libre, con la correspondiente reducción en la viscosidad. Este fenómeno
permite mantener mayor cantidad de sólidos con una viscosidad y una resistencia de gel
mínimas.
Los lodos tratados con calcio tienen varias ventajas y desventajas con respecto. A los lodos
convencionales de agua dulce y bajo pH.
Ventajas
1.- Por sus características inhibitorias son capaces de mantener baja viscosidad y resistencia
de gel con alta tolerancia de sólidos. Esto los hace particularmente aplicables a los sistemas
de lodos densificados. Se pueden tener así densidades máximas con mínimas viscosidades.
2.- Estos lodos permiten perforar hoyos más estables a través de formaciones de lutitas
difíciles, disminuyendo los problemas de hoyos inestables y de lutitas desprendibles. El
incremento en los sólidos de baja gravedad se minimiza también, debido a la característica
inhibitoria del ambiente cálcico.
3.- Son resistentes a las contaminaciones habituales: sal, cemento y anhidrita.
UNEFA-SEDE SAN TOMÉ
Asignatura: Fluidos de Perforación
Contenido: Sistemas de Lodos
Prof.: Ing. Pavel Bellorín
4.- El problema de hinchamiento de arcillas disminuye y en consecuencia el daño a la
formación.
Desventajas
1.- El aumento de viscosidad del lodo durante la conversión puede causar daño en el pozo.
2.- Antes de la conversión, la concentración de sólidos debe ser baja. Esto pone ciertos
límites a la conversión de lodos de elevadas densidad, a menos que se haga por etapas.
3.-Las temperaturas superiores a 300 F pueden causar una seria gelificación, pudiendo
llegar a la cementación. Esta es causada por alta alcalinidad, calcio soluble y sólidos
elevados que forman un cemento alúmino-silíceo.
POLÍMEROS
Son coloides orgánicos de cadena larga que se utilizan para viscosificar, controlar filtrado,
adelgazar o encapsular sólidos. Son sustancias compuestas por unidades estructurales o
monómeros que se repiten en cadena mediante un proceso de polimerización. Estos
monómeros pueden ser iguales o diferentes.
Si son iguales el producto es un homopolímero, pero si son diferentes el producto es un
copolímero. El peso molecular es proporcional al grado de polimerización y corresponde al
número de monómeros en el polímero. Tanto las propiedades físicas como las propiedades
químicas del polímero son controladas principalmente por el peso molecular y dependen
además del tipo de monómero, de la cantidad de ramificaciones y del tipo de
modificaciones químicas de los diferentes grupos de polímeros.
Estructuralmente, el polímero puede ser lineal o ramificado. Los lineales son más
susceptibles a la degradación mecánica que los polímeros ramificados pero son más
resistentes a la degradación termal.
Los polímeros constituyen, por lo general, sistemas no dispersos y se clasifican de acuerdo
a su origen, estructura y utilidad.
Según su origen, los polímeros se clasifican en:
• Naturales
• Modificados
• Sintéticos
• Naturales.- Estos polímeros se originan de una forma natural y no requieren de cambios
químicos en el proceso de manufactura. Se usan ampliamente, debido a consideraciones
económicas. Generalmente, son hidrocoloides, es decir, polímeros que no forman una
solución verdadera. Estos, en lugar de hacerse solubles en el agua, se hidratan e hinchan.
Almidón, Goma Guar y XCD son ejemplos de este grupo.
• Modificados.- Los polímeros modificados son alterados químicamente con el fin de
mejorar su tolerancia a la sal, su solubilidad y su estabilidad térmica. El
HEC es un buen ejemplo de este grupo. Este polímero es no iónico, ideal para viscosificar
salmueras. Posee excelentes propiedades tixotrópicas y de adelgazamiento, pero carece de
punto cedente y fuerza de gel.
• Sintéticos.- Estos polímeros son elaborados haciendo reaccionar un monómero repetidas
veces para poder formar un homopolímero. También se pueden hacer reaccionar-
monómeros diferentes para formar un copolímero. Las posibilidades de formar polímeros
sintéticos son limitadas, pero muchas veces el costo es prohibitivo. Los poliacrilatos y las
UNEFA-SEDE SAN TOMÉ
Asignatura: Fluidos de Perforación
Contenido: Sistemas de Lodos
Prof.: Ing. Pavel Bellorín
poliacrilaminas son polímeros sintéticos típicos solubles en agua. Hay que tomar en cuenta
que el Almidón es más barato que el HEC y éste, a su vez, es más barato que los
poliacrilatos pero, los polímeros sintéticos son más baratos libra por libra.
Desde el punto de vista de su estructura química existen dos grupos: los que se derivan de
la celulosa y los que se derivan de los alcoholes y de acuerdo con su estructura física se
tienen los iónicos y no iónicos.
Los polímeros iónicos son los que poseen cargas eléctricas. Estos grupos se ionizan en agua
y el tipo de carga que van a desarrollar va a determinar su utilidad.
A su vez, los polímeros iónicos pueden ser:
• Aniónicos
• Catiónicos
• Anfotéricos
Los aniónicos tienen cargas negativas y los catiónicos cargas positivas. La mayoría de los
polímeros utilizados en perforación son aniónicos, como CMC (Carboxi – Metil -
Celulosa), PAC (Celulosa – Poli - Aniónica).
Los polímeros catiónicos tienen cargas positivas y con frecuencia son del tipo amina.. Estos
polímeros tienden a flocular a las arcillas y tienen mayor capacidad para encapsular que los
aniónicos. Se adhieren a las superficies o caras de las arcillas, donde predominan las cargas
negativas, desplazando algunos cationes y moléculas de agua. La adsorción es rápida e
irreversible.
Estos polímeros precipitan instantáneamente cuando se mezclan con polímeros aniónicos y
sus principales limitaciones son: estabilidad térmica, costo y control de reología. Entre
algunos polímeros catiónicos comerciales, se tienen: POLY KAT, CAT-I, MCAT
Los polímeros anfotéricos poseen cargas positivas y negativas, a bajo pH funcionan como
catiónicos y a alto pH funcionan como aniónicos. El KLA -CURE II y el CLAY SEAL son
algunos ejemplos de polímeros anfotéricos de bajo peso molecular. Estos polímeros se
derivan de las poliaminas y son poderosos deshidratadores y/o supresores de arcillas que
trabajan con baja concentración de bentonita, por lo tanto requieren menor dilución. Son
compatibles con polímeros aniónicos y catiónicos y normalmente se mezclan en
concentración de 6 lb/bbl.
Los polímeros anfotéricos floculan los lodos con altos valores de MBT, causando excesiva
viscosidad, de allí que solo se deben agregar cuando el lodo contenga baja concentración de
sólidos reactivos; es decir, mínima cantidad de bentonita prehidratada (MBT < 12 lbIBbl).
Esta limitación obliga a prestar mayor atención al control del filtrado, cuando se estén
utilizando polímeros anfotéricos.
CLASIFÍCACIÓN DE LOS POLÍMEROS DE ACUERDO CON SU UTILIDAD
• Viscosificantes
• Floculantes
• Estabilizantes
• Reductores de filtrado
• Defloculantes / adelgazantes
La utilidad de un polímero depende de su peso molecular. Los de alto peso molecular
pueden funcionar como viscosificantes, encapsulantes o estabilizantes, los de peso
UNEFA-SEDE SAN TOMÉ
Asignatura: Fluidos de Perforación
Contenido: Sistemas de Lodos
Prof.: Ing. Pavel Bellorín
molecular intermedio actúan como controladores de filtrado y los de bajo peso molecular
funcionan como adelgazantes.
SISTEMA POLIMÉRICO VISCOELÁSTICO
Los fluidos viscoelásticos, conocidos también con el nombre de fluidos de reología
específica o fluidos biopolimérícos, son fluidos pseudoplásticos, es decir fluidos cuyo
comportamiento es independiente del tiempo y se caracterizan por tener propiedades
viscoelásticas, son viscosos como un líquido y elásticos como un sólido. La
viscoelásticidad es difícil de obtener en el campo y es el grado de deformación o esfuerzo
elástico alcanzado por un fluido antes de iniciar su transformación de un estado casi sólido
a un estado líquido, de ahí se tiene que un fluido viscoso se deforma o fluye al aplicarle
tanto un esfuerzo como una deformación, pero no se recupera cuando se suspende la fuerza,
mientras que un fluido elástico recupera su forma original al remover el esfuerzo, siempre y
cuando la deformación no exceda el límite elástico del material. El aceite es un material
puramente viscoso, en cambio las soluciones poliméricas presentan ambos componentes
pero su grado de elasticidad es significativo, especialmente al sometérsele a bajas tasas de
deformación, que es cuando realmente se necesita obtener un comportamiento pseudo -
sólido para lograr suspensión. La mayoría de los fluidos utilizados en perforación tienen
propiedades tanto pseudo - sólidas (elásticas) como pseudo - líquida (viscosas), pero
solamente aquellos que tienen un esfuerzo cedente real junto con un alto grado de
elasticidad relativa, son los que en verdad imparten alta viscosidad y alta capacidad de
arrastre.
Los fluidos viscoelásticos se caracterizan por dar altas viscosidades a bajas tasas de corte y
desarrollar altos geles instantáneos pero frágiles y de fácil ruptura; además, ofrecen baja
resistencia al flujo con mínima presión de bomba y exhiben un esfuerzo verdadero de
cedencia elevado que indica la transición del estado casi sólido al estado casi líquido bajo
condiciones de corte mínimo. Este esfuerzo es diferente al punto cedente de Bingham, el
cual se obtiene por extrapolación y en base a las lecturas obtenidas a 600 y 300 RPM en un
viscosímetro de campo.
Es evidente que los fluidos se desplazan en el espacio anular a velocidades menores de 60
RPM. Por ese motivo, el modelo plástico de Binghan no describe su comportamiento
reológico a bajas tasas de corte. Los fluidos viscoelásticos se utilizan para perforar pozos
direccionales y horizontales por su gran capacidad de acarreo y suspensión. Su capacidad
de suspensión es tal que aún en condiciones estáticas minimiza la formación de lechos de
ripio o camadas, que se forman usualmente en el punto de máxima desviación del pozo.
Esta propiedad es medida a bajas tasas de corte con un viscosímetro Brookfield,
instrumento que mide viscosidades a tasas inferiores a 3 RPM (5.1 seg.-1
) y permite
correlacionar las propiedades de suspensión de los sólidos con la viscosidad determinada a
una velocidad de corte de 0.3 RPM (0.06seg.-1
.).
Además de la LSRV existen otros procedimientos para determinar la capacidad de acarreo
y suspensión de los fluidos viscoelásticos. Estos procedimientos están basados en :
• Reogramas
• Factores “n” y “K”
• Tiempo de regresión
UNEFA-SEDE SAN TOMÉ
Asignatura: Fluidos de Perforación
Contenido: Sistemas de Lodos
Prof.: Ing. Pavel Bellorín
Los reogramas son gráficas que relacionan el esfuerzo de corte con la tasa de corte para
describir el comportamiento reológico de los fluidos a través del anular.
Los factores “n” y “k” están relacionados con el perfil de flujo y la consistencia del fluido.
De hecho, el factor “n” indica la habilidad pseudoplástica del fluido, se relaciona con el
perfil de flujo del fluido en el anular y depende de la calidad del viscosificador, mientras
que el factor “k” es el índice de consistencia o esfuerzo cortante de la viscosidad de un
fluido correspondiente a una tasa de corte de un segundo reciproco. Este factor da una idea
de la viscosidad del lodo y de la capacidad de acarreo a bajas velocidades de corte.
Los fluidos pseudoplásticos se caracterizan por dar valores bajos de “n” y altos de ”k” a
bajas velocidades de corte.
FLUIDOS DE BAJA DENSIDAD
Fluidos diseñados para perforar, completar y/o rehabilitar pozos en yacimientos con bajos
gradientes de presión (zonas depletadas)
• INTEFLOW
• MICROBURBUJAS
El Inteflow es una emulsión de fase continua agua, con densidades entre 7 y 9 lb/gal y
relación aceite agua que puede variar entre 80/20 y 40/60. Esta emulsión utiliza un
surfactante no tóxico y biodegradable en concentración de 20 lb/bbl.
Ventajas del sistema
• Alta estabilidad térmica ( ± 300°F )
• Proporciona buena lubricidad
• Alta tasa de recuperación del fluido ( > 80% )
• Maximiza la producción
• Fácil de preparar y mantener
• Tolera la presencia del H2S
• Mínimo daño a la formación ( fluido Drill–In )
En un sistema inteflow estable, el 90% de las gotas emulsionadas deben estar por debajo de
los 10 μ; por tal razón, es importante realizar pruebas de distribución de tamaño de
partículas para mantener un mejor control sobre la calidad del fluido.
MICROBURBUJAS
Fluido usado para perforar formaciones de muy bajas presiones y altas permeabilidades.
Este tipo de fluido encapsula aire o gas, formando microburbujas, comúnmente conocidas
como afrones
Las microburbujas se generan con un surfactante y en sitios donde existan condiciones de
turbulencia y cavitación, principalmente a nivel de mecha. Este aditivo usado en
concentración de 1.5 lb/bbl genera aproximadamente entre 8 y 10% v/v de afrones y 12
lb/bbl genera entre 12 y 14%
Las microburbujas están conformadas por un núcleo de aire o gas, rodeadas por delgadas
capas de agua y mantenidas por la tensión interfacial desarrollada por el surfactante
Características resaltantes de las microburbujas
• Ejercen fuerzas de Laplace que les permiten expandirse en las regiones de baja presión
• Desarrollan altas viscosidades a bajas tasas de corte ( LSRV )
UNEFA-SEDE SAN TOMÉ
Asignatura: Fluidos de Perforación
Contenido: Sistemas de Lodos
Prof.: Ing. Pavel Bellorín
• Permiten mantener bajas densidades ( 6.8 – 7.8 lb/gal )
• Son estables y recirculables
• No coalescen ni pierden su configuración cuando son sometidas a esfuerzos de
compresión y expansión
• Por su reducido tamaño resultan difícil de ser removidas por los equipos de control de
sólidos.
• El 70% de los afrones tienen un tamaño entre 70 y 100 μ y el 30% alrededor de 150 μ
• No interfieren con ninguna herramienta de fondo ni afectan los resultados de los registros
eléctricos
• Actúan como agente puenteante porque tiene la capacidad de expandirse y atraerse
mutuamente en las regiones de baja presión
Limitaciones del sistema microburbujas
• Trabaja en un rango de pH entre 9.5 y 10
• Debe prepararse con agua potable o agregarse algún bactericida como medida preventiva
• Requiere el uso de un estabilizador térmico para evitar la degradación de los polímeros
• El sello no resiste más de 3000 psi de presión diferencial
FLUIDOS SALINOS
Fluidos drill-in no dispersos inhibidos utilizados usualmente para perforar zonas
productoras en pozos horizontales o con alto ángulo de inclinación.
Se dice que se trata de un lodo de agua salada cuando contiene más de 10000 ppm de sal y
no ha sido convertido a algún otro tipo de lodo. Los lodos de agua salada se clasifican a su
vez de acuerdo a la cantidad de sal presente y/o a la fuente de agua utilizada en su
preparación. En consecuencia, los lodos salinos contienen 10000 ppm de sal pero no están
saturados. La saturación se alcanza a una concentración de 268000 ppm de NaCI. El agua
dulce, para saturar, requiere una concentración de 109 libras de sal por barril de agua.
Los lodos salinos no saturados son, generalmente, el resultado de agua de mar o agua
salobre o de tolerar la sal que se encuentra durante la perforación. La. sal actúa como un
contaminante en los sistemas de agua dulce. Cuando se encuentra, aún en muy pequeñas
cantidades, produce un aumento de la viscosidad, resistencia del gel y pérdida de filtrado.
Sin embargo, muchas veces se agrega sal a un lodo de agua dulce con el fin de controlar
resistividad. Los lodos salinos requieren de adiciones mayores de soda cáustica para
mantener el pH entre 11-11.5, aunque en algunas áreas no se controla el pH sino que se
deja a su evolución natural obteniéndose valores aproximados entre 6 y 7.
Estos sistemas tienen tendencia a formar espuma superficial con mucha frecuencia, causar
problemas de corrosión y dar filtrados altos. La espuma se controla aumentando la
alcalinidad, espolvoreando bentonita, o utilizando un antiespumante tal como el estereato
de aluminio mezclado con aceite, el cual reduce la tensión superficial que rodea la burbuja,
liberando, en esta forma, el aire que se halla entrampado. La corrosión con inhibidores de
corrosión y manteniendo alto pH, usualmente entre 11-11.5 y el filtrado, utilizando almidón
modificado.
En los lodos salinos resulta bastante difícil emulsionar aceite para bajar peso o lograr
lubricidad. En estos casos se requiere usar un emulsionante químico en una proporción
UNEFA-SEDE SAN TOMÉ
Asignatura: Fluidos de Perforación
Contenido: Sistemas de Lodos
Prof.: Ing. Pavel Bellorín
equivalente al 2% o 3% del volumen total del aceite empleado para poder lograr una
emulsión satisfactoria.
SALMUERAS INORGÁNICAS
Sal
Las sales son simplemente combinaciones del anión de un ácido con el catión de una base.
Pueden ser neutras o tener una tedencia hacia la acidez o hacia la basicidad. Ej: HCl +
NaOH NaCl + H2O
Salmuera
Una salmuera es una mezcla de agua con sal que puede prepararse con una o varias sales
diferentes, dependiendo de la densidad requerida, dado que su densidad es función del tipo
y cantidad de sal que puede disolverse en determinada condición de trabajo.
Las salmueras son sistemas libre de sólidos no disueltos que se utilizan generalmente como
fluido de completación y/o rehabilitación de pozos.
La densidad es el factor principal a considerar en la selección de una salmuera. Como
soluciones absolutas, las salmueras son especialmente vulnerables a los cambios de
densidad con la temperatura y la presión. Al aumentar la temperatura, el fluido se dilata, y
la densidad del fluido disminuye.
En consecuencia, nunca se debe calcular la densidad de una salmuera sin considerar el
efecto de la temperatura, porque un subestimado de la densidad podría causar una
arremetida y un sobreestimado una pérdida de circulación.
Es costumbre expresar las densidades a una temperatura de referencia, estimada en 60ºF,
dado que la densidad de la salmuera varía con la temperatura del ambiente en superficie.
Por ello se debe medir la densidad, el volumen y la temperatura actual del fluido y aplicar
una corrección de densidad para temperatura, usando el coeficiente de expansión
volumétrica correspondiente. En consecuencia, la salmuera debe ser formulada de forma tal
que quede compensada la reducción de densidad causada por la temperatura del pozo.
Se dice que una salmuera está saturada cuando, a determinada temperatura, sólo entra en la
solución una limitada cantidad de sal. Si se eleva la temperatura de la solución se puede
agregar más sal; pero si se reduce la temperatura, parte de la sal disuelta saldrá de la
solución formando cristales en los tanques de mezcla.
Esta limitación de temperatura se conoce con el nombre de punto de cristalización, el cual
debe ser tomado muy en cuenta sobre todo cuando se estén preparando salmueras pesadas.
Turbidez
La turbidez es una función de la claridad de la salmuera y se expresa en unidades NTU
(Unidades de Turbidez Nefelométrica). Valores bajos de NTU son obtenidos por limpieza
del fluido que se logra a través de cartuchos, utilizando filtro prensas de tierra diatomeas ó
ambos. En una salmuera nueva el NTU debe ser menor de 40.
Turbidímetros para medir las NTU de una salmuera
SALMUERAS ORGÁNICAS
Este tipo de salmuera se prepara con sales alcalinas metálicas solubles en agua que
proceden del ácido fórmico, conocidas como formiatos. Existen formiatos de sodio
(NaCOOH ), potasio ( KCOOH) y cesio (CsCOOH)
UNEFA-SEDE SAN TOMÉ
Asignatura: Fluidos de Perforación
Contenido: Sistemas de Lodos
Prof.: Ing. Pavel Bellorín
Las salmueras de formiato proveen soluciones salinas de altas densidades y bajas
viscosidades. No son dañinas al medio ambiente y se biodegradan rápidamente. Son
antioxidantes poderosos que ayudan a proteger a los viscosificantes y a los polímeros
reductores de filtrado contra la degradación térmica hasta temperaturas de por lo menos 300
°F
Este tipo de salmuera es compatible con las aguas de formación que contiene sulfatos y
carbonatos, por lo tanto reducen la posibilidad de dañar la permeabilidad por la
precipitación de sales. Son sumamente costosas.
Ventajas
• Ausencia total de sólidos suspendidos
• Mayor descarte de sólidos en las zarandas como resultado de la poca degradación que
sufren los sólidos por la acción inhibitoria del fluido.
• Mayor aprovechamiento de energía en el fondo por su baja viscosidad.
• La carencia de sólidos para densificar hace posible el uso de mallas más finas
• Son reusables porque pueden filtrarse
FLUIDOS BASE ACEITE
Un fluido base aceite es aquel cuya fase continua, al igual que el filtrado, es puro aceite.
Los fluidos base aceite son utilizados principalmente para perforar:
Además, se usan para tomar núcleos y como fluidos de completación, empaque y
rehabilitación de pozos.
Estos fluidos pueden ser del tipo:
� Emulsión inversa
� 100% Aceite
UNEFA-SEDE SAN TOMÉ
Asignatura: Fluidos de Perforación
Contenido: Sistemas de Lodos
Prof.: Ing. Pavel Bellorín
Emulsión
Una emulsión es un sistema disperso formado por dos líquidos inmiscibles, uno de ellos
constituye la fase dispersa distribuida en forma de pequeñas gotas y el otro la fase continua
o medio de dispersión. Para lograr la emulsión se requiere la adición de un agente
emulsificante y suficiente agitación de mezcla.
El tipo de emulsión se determina fácilmente por medición de la conductividad eléctrica y se
identifica por la fase que esté en contacto con la formación y no la que esté en mayor
proporción.
Existen emulsiones directas e inversas.
• Directas - Aceite en Agua (O/W)
• Inversas - Agua en Aceite (W/O)
La inversa se usa generalmente para perforar formaciones de lutítas sensibles al agua,
aplicando el concepto de actividad balanceada. Esta se logra cuando en el fluido se tiene la
misma concentración de sal que contiene la formación, en este caso el agua no pasa del
hoyo hacia la formación ni de la formación hacia el hoyo.
La actividad varía de acuerdo con la concentración y tipo de sal disuelta en la emulsión,
recordando que la sal disminuye la actividad y el agua la aumenta.
En las emulsiones inversas la relación aceite/agua puede variar entre 90/10 y 60/40 y la
concentración del emulsificante va en función del contenido de agua; es decir, a medida
que aumenta el porcentaje de agua debe haber suficiente emulsificante para formar una
película alrededor de cada gota de agua, de modo que no se fusionen y en consecuencia no
coalescan; de lo contrario, la emulsión pierde estabilidad.
La coalescencia es el proceso responsable por la separación definitiva de las fases y ocurre
cuando dos gotas de agua se unen para formar una sola. En una buena emulsión no debe
haber tendencia de separación de fases.
Una emulsión es más estable en la medida que las gotas de agua se hacen más pequeñas y
uniformes y los sólidos agregados o incorporados se mantienen humectados por aceite.
Cuando se aumenta el porcentaje de aceite se logra estabilidad porque la separación entre
las gotas de agua se hace mayor y la viscosidad de la emulsión disminuye. El agua genera
viscosidad, resistencia de gel y contribuye con el controlar del filtrado porque las gotas se
comportan como sólidos suspendidos.
TIPOS DE EMULSIONES INVERSAS
• Convencional.-
Emulsión muy fuerte con alta estabilidad eléctrica y filtrado HP-HT 100% aceite, que por
lo general es menor de 10 cc . El filtrado API es cero.
• Filtrado relajado
Este tipo de emulsión usa un emulsificante que no requiere cal y comparada con una
convencional es más débil y de menor estabilidad eléctrica. Su filtrado HP-HT resulta
mayor y es normal que contenga agua, el API puede ser medible. Su ventaja es la de
proporcionar mayor ROP con ciertos tipos de mechas.
FLUIDOS 100% ACEITE
Estos fluidos se preparan con puro aceite y con un surfactante débil que tiene la habilidad
de absorber el agua de la formación y emulsionarla de manera efectiva.
Los surfactantes fuertes disminuyen la permeabilidad de la zona productora por bloqueo,
alterando su humectabilidad. Estas alteraciones pueden causar errores en la predicción y
UNEFA-SEDE SAN TOMÉ
Asignatura: Fluidos de Perforación
Contenido: Sistemas de Lodos
Prof.: Ing. Pavel Bellorín
evaluación del yacimiento en base a los datos obtenidos de los núcleos y además, pueden
disminuir la producción del pozo después de su completación.
Los lodos 100% aceite son utilizados usualmente para recobrar núcleos en su estado
original y perforar zonas de lutítas sensibles al agua. Estos lodos pueden tolerar hasta un
15% v/v de agua de formación, pero se recomienda convertirlos a un sistema de emulsión
inversa cuando el porcentaje de agua alcance valores entre 5 y 10% en volumen.
El costo de mantenimiento de estos lodos es bajo y al igual que las emulsiones inversas no
son afectadas por contaminantes comunes, dan hoyos en calibre y minimizan problemas de
torque y arrastre, entre otros.
DESVENTAJAS DE LOS FLUIDOS 100% ACEITE
• Mayor contaminación ambiental
• Menor tasa de penetración
• Mayor densidad equivalente de circulación
• Baja reología
PROBLEMAS Y SITUACIONES COMUNES AL PERFORAR CON FLUIDOS
BASE ACEITE
Problemas
Situaciones
• Contaminación con agua
• Precipitación del material de peso
• Disminución de la eficiencia operacional de los equipos de control de sólidos
• Desplazamiento
• Pérdida de circulación
• Cementación
• Arremetidas
CÁLCULOS DE LA RELACIÓN ACEITE / AGUA
Para calcular la relación aceite/agua de un lodo base aceite es necesario, primero,
determinar por análisis de retorta el porcentaje por volumen de aceite y agua presente en el
lodo. Usando estos porcentajes, la relación aceite/agua se calcula como sigue:
UNEFA-SEDE SAN TOMÉ
Asignatura: Fluidos de Perforación
Contenido: Sistemas de Lodos
Prof.: Ing. Pavel Bellorín
Ejercicio práctico.
Calcular la relación aceite/agua de 150 bbl de lodo y el volumen de aceite para cambiarla a
85/15. El análisis de retorta dio los siguientes resultados: 68 % aceite, 18 % agua y14 %
sólidos.
Res.
• La relación aceite/agua existente es:
UNEFA-SEDE SAN TOMÉ
Asignatura: Fluidos de Perforación
Contenido: Sistemas de Lodos
Prof.: Ing. Pavel Bellorín
CONTAMINACIÓN
Un contaminante es cualquier elemento, sea líquido, sólido o gas, que cause cambios
indeseables en las propiedades del fluido. Este elemento puede ser contaminante para todo
tipo de fluido o solamente para un fluido en particular.
El contaminante puede ser introducido desde la superficie, ser parte integral de la
formación o puede ser el producto de un sobre tratamiento.
Todo contaminante causa floculación, aumenta la reología y la pérdida de agua y en todos
los casos, con excepción del cemento, disminuye el pH.
Algunos contaminantes, como el cemento y el agua dura, son predecibles y pueden ser
tratados químicamente, otros como la sal, no tienen ningún tipo de tratamiento.
• Contaminantes comunes
1.- Sólidos
2.- Calcio
3.- Sales solubles
4.- Gas
5.- Temperatura
6.- Oxígeno
7.- Bacterias
8.- Carbonatos/Bicarbonatos
REFERENCIAS
Tecnología de los Fluidos de Perforación (Prieto, Alí. Manual Técnico APOCA, 2007)

Más contenido relacionado

La actualidad más candente

Estimulacion matricial reactiva
Estimulacion matricial reactivaEstimulacion matricial reactiva
Estimulacion matricial reactivaNone
 
Terminación y Reacondicionamiento de Pozos
Terminación y Reacondicionamiento de PozosTerminación y Reacondicionamiento de Pozos
Terminación y Reacondicionamiento de Pozosenzosedv
 
Fracturamiento
FracturamientoFracturamiento
FracturamientoNone
 
Estimulacion matricial no reactiva
Estimulacion matricial no reactivaEstimulacion matricial no reactiva
Estimulacion matricial no reactivaNone
 
Problemas comunes de perforación relacionados con (1)
Problemas comunes de perforación relacionados con (1)Problemas comunes de perforación relacionados con (1)
Problemas comunes de perforación relacionados con (1)patiinu
 
Combustión in situ en la recuoeracion de Hc's
Combustión in situ en la recuoeracion de Hc's Combustión in situ en la recuoeracion de Hc's
Combustión in situ en la recuoeracion de Hc's Manuel Hernandez
 
Estimulacion matricial
Estimulacion matricialEstimulacion matricial
Estimulacion matricialNone
 
Cementación forzada o secundaria y tapones de cementación
Cementación forzada o secundaria y tapones de cementaciónCementación forzada o secundaria y tapones de cementación
Cementación forzada o secundaria y tapones de cementaciónRuben Veraa
 
15 cementación forzada. teoría y cálculo05 pruebasvde laboratorio para lo...
15   cementación forzada. teoría y cálculo05   pruebasvde laboratorio para lo...15   cementación forzada. teoría y cálculo05   pruebasvde laboratorio para lo...
15 cementación forzada. teoría y cálculo05 pruebasvde laboratorio para lo...AgustÍn Piccione
 
Daño a la formacion
Daño a la formacionDaño a la formacion
Daño a la formacionC Prados
 
Análisis de pruebas de transiente de presión
Análisis de pruebas de transiente de presiónAnálisis de pruebas de transiente de presión
Análisis de pruebas de transiente de presiónJulio Cesar Asomoza
 
Exposicion estimulación
Exposicion estimulaciónExposicion estimulación
Exposicion estimulaciónNone
 

La actualidad más candente (20)

Cementaciones
CementacionesCementaciones
Cementaciones
 
Estimulacion matricial reactiva
Estimulacion matricial reactivaEstimulacion matricial reactiva
Estimulacion matricial reactiva
 
Terminación y Reacondicionamiento de Pozos
Terminación y Reacondicionamiento de PozosTerminación y Reacondicionamiento de Pozos
Terminación y Reacondicionamiento de Pozos
 
Fracturamiento
FracturamientoFracturamiento
Fracturamiento
 
Estimulacion matricial no reactiva
Estimulacion matricial no reactivaEstimulacion matricial no reactiva
Estimulacion matricial no reactiva
 
Fluidos de terminacion
Fluidos de terminacionFluidos de terminacion
Fluidos de terminacion
 
Problemas comunes de perforación relacionados con (1)
Problemas comunes de perforación relacionados con (1)Problemas comunes de perforación relacionados con (1)
Problemas comunes de perforación relacionados con (1)
 
Cgba metodos de recuperacion mejorada-quimicos
Cgba metodos de recuperacion mejorada-quimicosCgba metodos de recuperacion mejorada-quimicos
Cgba metodos de recuperacion mejorada-quimicos
 
Reacondicionamiento de pozos
Reacondicionamiento de pozosReacondicionamiento de pozos
Reacondicionamiento de pozos
 
Combustión in situ en la recuoeracion de Hc's
Combustión in situ en la recuoeracion de Hc's Combustión in situ en la recuoeracion de Hc's
Combustión in situ en la recuoeracion de Hc's
 
Estimulacion matricial
Estimulacion matricialEstimulacion matricial
Estimulacion matricial
 
Cementación forzada o secundaria y tapones de cementación
Cementación forzada o secundaria y tapones de cementaciónCementación forzada o secundaria y tapones de cementación
Cementación forzada o secundaria y tapones de cementación
 
Analisis de retorta
Analisis de retortaAnalisis de retorta
Analisis de retorta
 
15 cementación forzada. teoría y cálculo05 pruebasvde laboratorio para lo...
15   cementación forzada. teoría y cálculo05   pruebasvde laboratorio para lo...15   cementación forzada. teoría y cálculo05   pruebasvde laboratorio para lo...
15 cementación forzada. teoría y cálculo05 pruebasvde laboratorio para lo...
 
Curso control solidos iii parte
Curso control solidos iii parteCurso control solidos iii parte
Curso control solidos iii parte
 
Daño a la formacion
Daño a la formacionDaño a la formacion
Daño a la formacion
 
PERFILAJE DE POZOS
PERFILAJE DE POZOSPERFILAJE DE POZOS
PERFILAJE DE POZOS
 
Análisis de pruebas de transiente de presión
Análisis de pruebas de transiente de presiónAnálisis de pruebas de transiente de presión
Análisis de pruebas de transiente de presión
 
Exposicion estimulación
Exposicion estimulaciónExposicion estimulación
Exposicion estimulación
 
Curso caracterización dinámica 11 nov 12
Curso caracterización dinámica 11 nov 12Curso caracterización dinámica 11 nov 12
Curso caracterización dinámica 11 nov 12
 

Destacado

Destacado (6)

Manual de Fluidos de Perforacion
Manual de Fluidos de PerforacionManual de Fluidos de Perforacion
Manual de Fluidos de Perforacion
 
Pemex manual-tecnico-de-formulas
Pemex manual-tecnico-de-formulasPemex manual-tecnico-de-formulas
Pemex manual-tecnico-de-formulas
 
Lodos de perforacion base agua y base aceite
Lodos de perforacion base agua y base aceiteLodos de perforacion base agua y base aceite
Lodos de perforacion base agua y base aceite
 
MICROFILTRACIÓN GRUPO 6 !!!!
MICROFILTRACIÓN GRUPO 6 !!!!MICROFILTRACIÓN GRUPO 6 !!!!
MICROFILTRACIÓN GRUPO 6 !!!!
 
Filtracion
FiltracionFiltracion
Filtracion
 
Filtración
FiltraciónFiltración
Filtración
 

Similar a Sistemas de lodos

Coagulacion_y_Floculacion.pptx
Coagulacion_y_Floculacion.pptxCoagulacion_y_Floculacion.pptx
Coagulacion_y_Floculacion.pptxMarkoBello2
 
Resinas de intercambio ionico y sus tipos
Resinas de intercambio ionico y sus tiposResinas de intercambio ionico y sus tipos
Resinas de intercambio ionico y sus tiposAGUACONTROL C.A.
 
Est mat no react
Est mat no reactEst mat no react
Est mat no reactNone
 
2. tratamiento de efluentes industriales
2. tratamiento de efluentes industriales2. tratamiento de efluentes industriales
2. tratamiento de efluentes industrialesJulio Cesar
 
Composicion de los_fluidos_de_perofracio
Composicion de los_fluidos_de_perofracioComposicion de los_fluidos_de_perofracio
Composicion de los_fluidos_de_perofracioDaniel I. Coritza T
 
01 elaboracion de lodos de perforacion
01 elaboracion de lodos de perforacion01 elaboracion de lodos de perforacion
01 elaboracion de lodos de perforacionfioreladonaire
 
fluido de perforacion base agua- realizado por yuliana ovalle
fluido de perforacion base agua- realizado por yuliana ovalle fluido de perforacion base agua- realizado por yuliana ovalle
fluido de perforacion base agua- realizado por yuliana ovalle julianamic
 
Tema 6 a demulsificantes
Tema 6 a demulsificantesTema 6 a demulsificantes
Tema 6 a demulsificantesRonald Guichay
 
tarea-numero3ruiz-rivera-jhon-crignerpdf.pdf
tarea-numero3ruiz-rivera-jhon-crignerpdf.pdftarea-numero3ruiz-rivera-jhon-crignerpdf.pdf
tarea-numero3ruiz-rivera-jhon-crignerpdf.pdfLuLopez7
 
56045204 unidad-2-0-tipos-fluidos-problemas-y-tcnicas-en-pozos
56045204 unidad-2-0-tipos-fluidos-problemas-y-tcnicas-en-pozos56045204 unidad-2-0-tipos-fluidos-problemas-y-tcnicas-en-pozos
56045204 unidad-2-0-tipos-fluidos-problemas-y-tcnicas-en-pozosMaileth Yelicka Escobar Vargas
 
INH. DE INCRUSTACIONES (1).pptx
INH. DE INCRUSTACIONES (1).pptxINH. DE INCRUSTACIONES (1).pptx
INH. DE INCRUSTACIONES (1).pptxjonathanchicui2
 

Similar a Sistemas de lodos (20)

Tratamiento de agua
Tratamiento de aguaTratamiento de agua
Tratamiento de agua
 
Coagulacion_y_Floculacion.pptx
Coagulacion_y_Floculacion.pptxCoagulacion_y_Floculacion.pptx
Coagulacion_y_Floculacion.pptx
 
Coagulacion exposicion
Coagulacion exposicionCoagulacion exposicion
Coagulacion exposicion
 
Resinas de intercambio ionico y sus tipos
Resinas de intercambio ionico y sus tiposResinas de intercambio ionico y sus tipos
Resinas de intercambio ionico y sus tipos
 
Est mat no react
Est mat no reactEst mat no react
Est mat no react
 
2. tratamiento de efluentes industriales
2. tratamiento de efluentes industriales2. tratamiento de efluentes industriales
2. tratamiento de efluentes industriales
 
Aldehidos y cetonas
Aldehidos y cetonasAldehidos y cetonas
Aldehidos y cetonas
 
Aguas de formacion
Aguas de formacionAguas de formacion
Aguas de formacion
 
Aldehidos y cetonas
Aldehidos y cetonasAldehidos y cetonas
Aldehidos y cetonas
 
lignosulfonatos
 lignosulfonatos lignosulfonatos
lignosulfonatos
 
Composicion de los_fluidos_de_perofracio
Composicion de los_fluidos_de_perofracioComposicion de los_fluidos_de_perofracio
Composicion de los_fluidos_de_perofracio
 
01 elaboracion de lodos de perforacion
01 elaboracion de lodos de perforacion01 elaboracion de lodos de perforacion
01 elaboracion de lodos de perforacion
 
Flotacion de cobre
Flotacion de cobreFlotacion de cobre
Flotacion de cobre
 
fluido de perforacion base agua- realizado por yuliana ovalle
fluido de perforacion base agua- realizado por yuliana ovalle fluido de perforacion base agua- realizado por yuliana ovalle
fluido de perforacion base agua- realizado por yuliana ovalle
 
Tema 6 a demulsificantes
Tema 6 a demulsificantesTema 6 a demulsificantes
Tema 6 a demulsificantes
 
Fluidos base agua
Fluidos base aguaFluidos base agua
Fluidos base agua
 
tarea-numero3ruiz-rivera-jhon-crignerpdf.pdf
tarea-numero3ruiz-rivera-jhon-crignerpdf.pdftarea-numero3ruiz-rivera-jhon-crignerpdf.pdf
tarea-numero3ruiz-rivera-jhon-crignerpdf.pdf
 
Tratamiento de aguas residuales ii
Tratamiento de aguas residuales iiTratamiento de aguas residuales ii
Tratamiento de aguas residuales ii
 
56045204 unidad-2-0-tipos-fluidos-problemas-y-tcnicas-en-pozos
56045204 unidad-2-0-tipos-fluidos-problemas-y-tcnicas-en-pozos56045204 unidad-2-0-tipos-fluidos-problemas-y-tcnicas-en-pozos
56045204 unidad-2-0-tipos-fluidos-problemas-y-tcnicas-en-pozos
 
INH. DE INCRUSTACIONES (1).pptx
INH. DE INCRUSTACIONES (1).pptxINH. DE INCRUSTACIONES (1).pptx
INH. DE INCRUSTACIONES (1).pptx
 

Último

APORTES A LA ARQUITECTURA DE WALTER GROPIUS Y FRANK LLOYD WRIGHT
APORTES A LA ARQUITECTURA DE WALTER GROPIUS Y FRANK LLOYD WRIGHTAPORTES A LA ARQUITECTURA DE WALTER GROPIUS Y FRANK LLOYD WRIGHT
APORTES A LA ARQUITECTURA DE WALTER GROPIUS Y FRANK LLOYD WRIGHTElisaLen4
 
FUNCION DE ESTADO EN LA TERMODINAMICA.pdf
FUNCION DE ESTADO EN LA TERMODINAMICA.pdfFUNCION DE ESTADO EN LA TERMODINAMICA.pdf
FUNCION DE ESTADO EN LA TERMODINAMICA.pdfalfredoivan1
 
NTC 3883 análisis sensorial. metodología. prueba duo-trio.pdf
NTC 3883 análisis sensorial. metodología. prueba duo-trio.pdfNTC 3883 análisis sensorial. metodología. prueba duo-trio.pdf
NTC 3883 análisis sensorial. metodología. prueba duo-trio.pdfELIZABETHCRUZVALENCI
 
ELASTICIDAD PRECIO DE LA DEMaaanANDA.ppt
ELASTICIDAD PRECIO DE LA DEMaaanANDA.pptELASTICIDAD PRECIO DE LA DEMaaanANDA.ppt
ELASTICIDAD PRECIO DE LA DEMaaanANDA.pptRobertoCastao8
 
[1LLF] UNIDADES, MAGNITUDES FÍSICAS Y VECTORES.pdf
[1LLF] UNIDADES, MAGNITUDES FÍSICAS Y VECTORES.pdf[1LLF] UNIDADES, MAGNITUDES FÍSICAS Y VECTORES.pdf
[1LLF] UNIDADES, MAGNITUDES FÍSICAS Y VECTORES.pdfsmendozap1
 
Maquinaria Agricola utilizada en la produccion de Piña.pdf
Maquinaria Agricola utilizada en la produccion de Piña.pdfMaquinaria Agricola utilizada en la produccion de Piña.pdf
Maquinaria Agricola utilizada en la produccion de Piña.pdfdanielJAlejosC
 
Presentacion de la ganaderia en la región
Presentacion de la ganaderia en la regiónPresentacion de la ganaderia en la región
Presentacion de la ganaderia en la regiónmaz12629
 
Minería convencional: datos importantes y conceptos
Minería convencional: datos importantes y conceptosMinería convencional: datos importantes y conceptos
Minería convencional: datos importantes y conceptosisauVillalva
 
Matrices Matemáticos universitario pptx
Matrices  Matemáticos universitario pptxMatrices  Matemáticos universitario pptx
Matrices Matemáticos universitario pptxNancyJulcasumaran
 
semana-08-clase-transformadores-y-norma-eep.ppt
semana-08-clase-transformadores-y-norma-eep.pptsemana-08-clase-transformadores-y-norma-eep.ppt
semana-08-clase-transformadores-y-norma-eep.pptKelinnRiveraa
 
Sistemas de Ecuaciones no lineales-1.pptx
Sistemas de Ecuaciones no lineales-1.pptxSistemas de Ecuaciones no lineales-1.pptx
Sistemas de Ecuaciones no lineales-1.pptx170766
 
analisis tecnologico( diagnostico tecnologico, herramienta de toma de deciones)
analisis tecnologico( diagnostico tecnologico, herramienta de toma de deciones)analisis tecnologico( diagnostico tecnologico, herramienta de toma de deciones)
analisis tecnologico( diagnostico tecnologico, herramienta de toma de deciones)Ricardo705519
 
Estadística Anual y Multianual del Sector Eléctrico Ecuatoriano
Estadística Anual y Multianual del Sector Eléctrico EcuatorianoEstadística Anual y Multianual del Sector Eléctrico Ecuatoriano
Estadística Anual y Multianual del Sector Eléctrico EcuatorianoEduardoBriones22
 
Trazos paileros para realizar trazos, cortes y calculos.pptx
Trazos paileros para realizar trazos, cortes y calculos.pptxTrazos paileros para realizar trazos, cortes y calculos.pptx
Trazos paileros para realizar trazos, cortes y calculos.pptxmiguelmateos18
 
27311861-Cuencas-sedimentarias-en-Colombia.ppt
27311861-Cuencas-sedimentarias-en-Colombia.ppt27311861-Cuencas-sedimentarias-en-Colombia.ppt
27311861-Cuencas-sedimentarias-en-Colombia.pptjacnuevarisaralda22
 
Aportes a la Arquitectura de Le Corbusier y Mies Van der Rohe
Aportes a la Arquitectura de Le Corbusier y Mies Van der RoheAportes a la Arquitectura de Le Corbusier y Mies Van der Rohe
Aportes a la Arquitectura de Le Corbusier y Mies Van der RoheElisaLen4
 
Cereales tecnología de los alimentos. Cereales
Cereales tecnología de los alimentos. CerealesCereales tecnología de los alimentos. Cereales
Cereales tecnología de los alimentos. Cerealescarlosjuliogermanari1
 
ATS-FORMATO cara.pdf PARA TRABAJO SEGURO
ATS-FORMATO cara.pdf  PARA TRABAJO SEGUROATS-FORMATO cara.pdf  PARA TRABAJO SEGURO
ATS-FORMATO cara.pdf PARA TRABAJO SEGUROalejandrocrisostomo2
 
Introduction to Satellite Communication_esp_FINAL.ppt
Introduction to Satellite Communication_esp_FINAL.pptIntroduction to Satellite Communication_esp_FINAL.ppt
Introduction to Satellite Communication_esp_FINAL.pptReYMaStERHD
 
CALCULO DE ENGRANAJES RECTOS SB-2024.pptx
CALCULO DE ENGRANAJES RECTOS SB-2024.pptxCALCULO DE ENGRANAJES RECTOS SB-2024.pptx
CALCULO DE ENGRANAJES RECTOS SB-2024.pptxCarlosGabriel96
 

Último (20)

APORTES A LA ARQUITECTURA DE WALTER GROPIUS Y FRANK LLOYD WRIGHT
APORTES A LA ARQUITECTURA DE WALTER GROPIUS Y FRANK LLOYD WRIGHTAPORTES A LA ARQUITECTURA DE WALTER GROPIUS Y FRANK LLOYD WRIGHT
APORTES A LA ARQUITECTURA DE WALTER GROPIUS Y FRANK LLOYD WRIGHT
 
FUNCION DE ESTADO EN LA TERMODINAMICA.pdf
FUNCION DE ESTADO EN LA TERMODINAMICA.pdfFUNCION DE ESTADO EN LA TERMODINAMICA.pdf
FUNCION DE ESTADO EN LA TERMODINAMICA.pdf
 
NTC 3883 análisis sensorial. metodología. prueba duo-trio.pdf
NTC 3883 análisis sensorial. metodología. prueba duo-trio.pdfNTC 3883 análisis sensorial. metodología. prueba duo-trio.pdf
NTC 3883 análisis sensorial. metodología. prueba duo-trio.pdf
 
ELASTICIDAD PRECIO DE LA DEMaaanANDA.ppt
ELASTICIDAD PRECIO DE LA DEMaaanANDA.pptELASTICIDAD PRECIO DE LA DEMaaanANDA.ppt
ELASTICIDAD PRECIO DE LA DEMaaanANDA.ppt
 
[1LLF] UNIDADES, MAGNITUDES FÍSICAS Y VECTORES.pdf
[1LLF] UNIDADES, MAGNITUDES FÍSICAS Y VECTORES.pdf[1LLF] UNIDADES, MAGNITUDES FÍSICAS Y VECTORES.pdf
[1LLF] UNIDADES, MAGNITUDES FÍSICAS Y VECTORES.pdf
 
Maquinaria Agricola utilizada en la produccion de Piña.pdf
Maquinaria Agricola utilizada en la produccion de Piña.pdfMaquinaria Agricola utilizada en la produccion de Piña.pdf
Maquinaria Agricola utilizada en la produccion de Piña.pdf
 
Presentacion de la ganaderia en la región
Presentacion de la ganaderia en la regiónPresentacion de la ganaderia en la región
Presentacion de la ganaderia en la región
 
Minería convencional: datos importantes y conceptos
Minería convencional: datos importantes y conceptosMinería convencional: datos importantes y conceptos
Minería convencional: datos importantes y conceptos
 
Matrices Matemáticos universitario pptx
Matrices  Matemáticos universitario pptxMatrices  Matemáticos universitario pptx
Matrices Matemáticos universitario pptx
 
semana-08-clase-transformadores-y-norma-eep.ppt
semana-08-clase-transformadores-y-norma-eep.pptsemana-08-clase-transformadores-y-norma-eep.ppt
semana-08-clase-transformadores-y-norma-eep.ppt
 
Sistemas de Ecuaciones no lineales-1.pptx
Sistemas de Ecuaciones no lineales-1.pptxSistemas de Ecuaciones no lineales-1.pptx
Sistemas de Ecuaciones no lineales-1.pptx
 
analisis tecnologico( diagnostico tecnologico, herramienta de toma de deciones)
analisis tecnologico( diagnostico tecnologico, herramienta de toma de deciones)analisis tecnologico( diagnostico tecnologico, herramienta de toma de deciones)
analisis tecnologico( diagnostico tecnologico, herramienta de toma de deciones)
 
Estadística Anual y Multianual del Sector Eléctrico Ecuatoriano
Estadística Anual y Multianual del Sector Eléctrico EcuatorianoEstadística Anual y Multianual del Sector Eléctrico Ecuatoriano
Estadística Anual y Multianual del Sector Eléctrico Ecuatoriano
 
Trazos paileros para realizar trazos, cortes y calculos.pptx
Trazos paileros para realizar trazos, cortes y calculos.pptxTrazos paileros para realizar trazos, cortes y calculos.pptx
Trazos paileros para realizar trazos, cortes y calculos.pptx
 
27311861-Cuencas-sedimentarias-en-Colombia.ppt
27311861-Cuencas-sedimentarias-en-Colombia.ppt27311861-Cuencas-sedimentarias-en-Colombia.ppt
27311861-Cuencas-sedimentarias-en-Colombia.ppt
 
Aportes a la Arquitectura de Le Corbusier y Mies Van der Rohe
Aportes a la Arquitectura de Le Corbusier y Mies Van der RoheAportes a la Arquitectura de Le Corbusier y Mies Van der Rohe
Aportes a la Arquitectura de Le Corbusier y Mies Van der Rohe
 
Cereales tecnología de los alimentos. Cereales
Cereales tecnología de los alimentos. CerealesCereales tecnología de los alimentos. Cereales
Cereales tecnología de los alimentos. Cereales
 
ATS-FORMATO cara.pdf PARA TRABAJO SEGURO
ATS-FORMATO cara.pdf  PARA TRABAJO SEGUROATS-FORMATO cara.pdf  PARA TRABAJO SEGURO
ATS-FORMATO cara.pdf PARA TRABAJO SEGURO
 
Introduction to Satellite Communication_esp_FINAL.ppt
Introduction to Satellite Communication_esp_FINAL.pptIntroduction to Satellite Communication_esp_FINAL.ppt
Introduction to Satellite Communication_esp_FINAL.ppt
 
CALCULO DE ENGRANAJES RECTOS SB-2024.pptx
CALCULO DE ENGRANAJES RECTOS SB-2024.pptxCALCULO DE ENGRANAJES RECTOS SB-2024.pptx
CALCULO DE ENGRANAJES RECTOS SB-2024.pptx
 

Sistemas de lodos

  • 1. UNEFA-SEDE SAN TOMÉ Asignatura: Fluidos de Perforación Contenido: Sistemas de Lodos Prof.: Ing. Pavel Bellorín CLASIFICACIÓN LOS FLUIDOS DE PERFORACIÓN Los convencionales son usados para perforar formaciones donde las densidades varían entre 6 y 20 lb/gal y los no convencionales cuando es necesario perforar con una densidad menor de 6 lb/gal, equivalente a un gradiente de presión subnormal menor a 0.312 psi/pie. FLUIDOS BASE AGUA Un fluido base agua es aquel cuya fase continua es agua. El aceite adicionado a un fluido base agua forma parte de la fase dispersa, se comporta como sólido suspendido. Los fluidos base agua pueden disperso, no disperso, inhibidos y no inhibidos. Los dispersos contienen adelgazantes químicos y los no dispersos no. Los inhibidos tienen iones inhibidores de lutitas y los no inhibidos no. De hecho, un lodo disperso no inhibido es aquel que contiene adelgazantes químicos, pero no tiene ningún tipo de ion inhibidor. El potasio (K) es el ion más usado para inhibir arcillas, por su reducido tamaño y su baja capacidad de hidratación. La fuente suplidora de potasio más común es el Cloruro de Potasio (KCL). FLUIDOS DE PERFORACIÓN BASE AGUA DE USO COMÚN � Lignosulfonatos � Calinos � Polímeros � Viscoelásticos � Baja densidad � Salinos
  • 2. UNEFA-SEDE SAN TOMÉ Asignatura: Fluidos de Perforación Contenido: Sistemas de Lodos Prof.: Ing. Pavel Bellorín
  • 3. UNEFA-SEDE SAN TOMÉ Asignatura: Fluidos de Perforación Contenido: Sistemas de Lodos Prof.: Ing. Pavel Bellorín FLUIDOS LIGNOSULFONATO Estos fluidos son dispersos no inhibidos a base de arcilla. Se utilizan para perforar formaciones superficiales deleznables altamente permeables que se estabilizan con revoque y peso. Estos fluidos se caracterizan por ser muy sensibles a la acción de cualquier contaminante. Se formulan con soda cáustica, bentonita, lignosulfonatos y lignitos. Estos fluidos requieren del agregado diario de soda cáustica para mantener el pH entre 9.5 y 11.5. La bentonita es agregada en forma prehidratada para lograr un mejor control de la capacidad de transporte y suspensión del fluido y para obtener revoques delgados, flexibles, poco permeables y altamente compresibles que minimizan la pérdida de agua. La acción adelgazante la logran a través de los lignosulfonatos y los lignitos. En condiciones normales de perforación, estos fluidos funcionan bien en una relación de concentración de 2 a 1, es decir que por cada dos libras de lignosulfonato se agrega una libra de lignito, pero a medida que aumenta la temperatura y con el fin de lograr un mejor control del filtrado, es aconsejable invertir la relación. Estos productos son poderosos adelgazantes, al extremo de que un exceso de lignosulfonato inhibe por completo al sistema y causa la formación de espuma. En estos casos el fluido adquiere un color bastante ennegrecido y al igual que el filtrado. FLUIDOS CALINOS Estos fluidos son dispersos inhibidos a base de cal. Se utilizan para perforar arcillas hidratables del tipo gumbo y se caracterizan por: a) presentar viscosidades más bajas que un fluido disperso de la misma densidad b) ofrecer mayor tolerancia a los sólidos que cualquier sistema disperso. Este tipo de fluido se desempeña muy bien en temperaturas de 250 ºF – 300 ºF, y si en su formulación contiene un estabilizador térmico podrá soportar hasta 400 ºF, conservando así la cadena de polímeros y controlando la invasión del fluido a la formación. El sistema se obtiene mediante el proceso de “breakover” convirtiendo la arcilla sódica a cálcica. Este intercambio de bases de un catión monovalente de sodio a un catión bivalente de calcio, con su mayor energía de enlace, tiende a que las plaquetas de arcillas se mantengan unidas. A medida que estas plaquetas se deshidratan, el agua adsorbida en la arcilla hidratada se libera. De esto resulta una reducción en el tamaño de las partículas y un aumento en el volumen del agua libre, con la correspondiente reducción en la viscosidad. Este fenómeno permite mantener mayor cantidad de sólidos con una viscosidad y una resistencia de gel mínimas. Los lodos tratados con calcio tienen varias ventajas y desventajas con respecto. A los lodos convencionales de agua dulce y bajo pH. Ventajas 1.- Por sus características inhibitorias son capaces de mantener baja viscosidad y resistencia de gel con alta tolerancia de sólidos. Esto los hace particularmente aplicables a los sistemas de lodos densificados. Se pueden tener así densidades máximas con mínimas viscosidades. 2.- Estos lodos permiten perforar hoyos más estables a través de formaciones de lutitas difíciles, disminuyendo los problemas de hoyos inestables y de lutitas desprendibles. El incremento en los sólidos de baja gravedad se minimiza también, debido a la característica inhibitoria del ambiente cálcico. 3.- Son resistentes a las contaminaciones habituales: sal, cemento y anhidrita.
  • 4. UNEFA-SEDE SAN TOMÉ Asignatura: Fluidos de Perforación Contenido: Sistemas de Lodos Prof.: Ing. Pavel Bellorín 4.- El problema de hinchamiento de arcillas disminuye y en consecuencia el daño a la formación. Desventajas 1.- El aumento de viscosidad del lodo durante la conversión puede causar daño en el pozo. 2.- Antes de la conversión, la concentración de sólidos debe ser baja. Esto pone ciertos límites a la conversión de lodos de elevadas densidad, a menos que se haga por etapas. 3.-Las temperaturas superiores a 300 F pueden causar una seria gelificación, pudiendo llegar a la cementación. Esta es causada por alta alcalinidad, calcio soluble y sólidos elevados que forman un cemento alúmino-silíceo. POLÍMEROS Son coloides orgánicos de cadena larga que se utilizan para viscosificar, controlar filtrado, adelgazar o encapsular sólidos. Son sustancias compuestas por unidades estructurales o monómeros que se repiten en cadena mediante un proceso de polimerización. Estos monómeros pueden ser iguales o diferentes. Si son iguales el producto es un homopolímero, pero si son diferentes el producto es un copolímero. El peso molecular es proporcional al grado de polimerización y corresponde al número de monómeros en el polímero. Tanto las propiedades físicas como las propiedades químicas del polímero son controladas principalmente por el peso molecular y dependen además del tipo de monómero, de la cantidad de ramificaciones y del tipo de modificaciones químicas de los diferentes grupos de polímeros. Estructuralmente, el polímero puede ser lineal o ramificado. Los lineales son más susceptibles a la degradación mecánica que los polímeros ramificados pero son más resistentes a la degradación termal. Los polímeros constituyen, por lo general, sistemas no dispersos y se clasifican de acuerdo a su origen, estructura y utilidad. Según su origen, los polímeros se clasifican en: • Naturales • Modificados • Sintéticos • Naturales.- Estos polímeros se originan de una forma natural y no requieren de cambios químicos en el proceso de manufactura. Se usan ampliamente, debido a consideraciones económicas. Generalmente, son hidrocoloides, es decir, polímeros que no forman una solución verdadera. Estos, en lugar de hacerse solubles en el agua, se hidratan e hinchan. Almidón, Goma Guar y XCD son ejemplos de este grupo. • Modificados.- Los polímeros modificados son alterados químicamente con el fin de mejorar su tolerancia a la sal, su solubilidad y su estabilidad térmica. El HEC es un buen ejemplo de este grupo. Este polímero es no iónico, ideal para viscosificar salmueras. Posee excelentes propiedades tixotrópicas y de adelgazamiento, pero carece de punto cedente y fuerza de gel. • Sintéticos.- Estos polímeros son elaborados haciendo reaccionar un monómero repetidas veces para poder formar un homopolímero. También se pueden hacer reaccionar- monómeros diferentes para formar un copolímero. Las posibilidades de formar polímeros sintéticos son limitadas, pero muchas veces el costo es prohibitivo. Los poliacrilatos y las
  • 5. UNEFA-SEDE SAN TOMÉ Asignatura: Fluidos de Perforación Contenido: Sistemas de Lodos Prof.: Ing. Pavel Bellorín poliacrilaminas son polímeros sintéticos típicos solubles en agua. Hay que tomar en cuenta que el Almidón es más barato que el HEC y éste, a su vez, es más barato que los poliacrilatos pero, los polímeros sintéticos son más baratos libra por libra. Desde el punto de vista de su estructura química existen dos grupos: los que se derivan de la celulosa y los que se derivan de los alcoholes y de acuerdo con su estructura física se tienen los iónicos y no iónicos. Los polímeros iónicos son los que poseen cargas eléctricas. Estos grupos se ionizan en agua y el tipo de carga que van a desarrollar va a determinar su utilidad. A su vez, los polímeros iónicos pueden ser: • Aniónicos • Catiónicos • Anfotéricos Los aniónicos tienen cargas negativas y los catiónicos cargas positivas. La mayoría de los polímeros utilizados en perforación son aniónicos, como CMC (Carboxi – Metil - Celulosa), PAC (Celulosa – Poli - Aniónica). Los polímeros catiónicos tienen cargas positivas y con frecuencia son del tipo amina.. Estos polímeros tienden a flocular a las arcillas y tienen mayor capacidad para encapsular que los aniónicos. Se adhieren a las superficies o caras de las arcillas, donde predominan las cargas negativas, desplazando algunos cationes y moléculas de agua. La adsorción es rápida e irreversible. Estos polímeros precipitan instantáneamente cuando se mezclan con polímeros aniónicos y sus principales limitaciones son: estabilidad térmica, costo y control de reología. Entre algunos polímeros catiónicos comerciales, se tienen: POLY KAT, CAT-I, MCAT Los polímeros anfotéricos poseen cargas positivas y negativas, a bajo pH funcionan como catiónicos y a alto pH funcionan como aniónicos. El KLA -CURE II y el CLAY SEAL son algunos ejemplos de polímeros anfotéricos de bajo peso molecular. Estos polímeros se derivan de las poliaminas y son poderosos deshidratadores y/o supresores de arcillas que trabajan con baja concentración de bentonita, por lo tanto requieren menor dilución. Son compatibles con polímeros aniónicos y catiónicos y normalmente se mezclan en concentración de 6 lb/bbl. Los polímeros anfotéricos floculan los lodos con altos valores de MBT, causando excesiva viscosidad, de allí que solo se deben agregar cuando el lodo contenga baja concentración de sólidos reactivos; es decir, mínima cantidad de bentonita prehidratada (MBT < 12 lbIBbl). Esta limitación obliga a prestar mayor atención al control del filtrado, cuando se estén utilizando polímeros anfotéricos. CLASIFÍCACIÓN DE LOS POLÍMEROS DE ACUERDO CON SU UTILIDAD • Viscosificantes • Floculantes • Estabilizantes • Reductores de filtrado • Defloculantes / adelgazantes La utilidad de un polímero depende de su peso molecular. Los de alto peso molecular pueden funcionar como viscosificantes, encapsulantes o estabilizantes, los de peso
  • 6. UNEFA-SEDE SAN TOMÉ Asignatura: Fluidos de Perforación Contenido: Sistemas de Lodos Prof.: Ing. Pavel Bellorín molecular intermedio actúan como controladores de filtrado y los de bajo peso molecular funcionan como adelgazantes. SISTEMA POLIMÉRICO VISCOELÁSTICO Los fluidos viscoelásticos, conocidos también con el nombre de fluidos de reología específica o fluidos biopolimérícos, son fluidos pseudoplásticos, es decir fluidos cuyo comportamiento es independiente del tiempo y se caracterizan por tener propiedades viscoelásticas, son viscosos como un líquido y elásticos como un sólido. La viscoelásticidad es difícil de obtener en el campo y es el grado de deformación o esfuerzo elástico alcanzado por un fluido antes de iniciar su transformación de un estado casi sólido a un estado líquido, de ahí se tiene que un fluido viscoso se deforma o fluye al aplicarle tanto un esfuerzo como una deformación, pero no se recupera cuando se suspende la fuerza, mientras que un fluido elástico recupera su forma original al remover el esfuerzo, siempre y cuando la deformación no exceda el límite elástico del material. El aceite es un material puramente viscoso, en cambio las soluciones poliméricas presentan ambos componentes pero su grado de elasticidad es significativo, especialmente al sometérsele a bajas tasas de deformación, que es cuando realmente se necesita obtener un comportamiento pseudo - sólido para lograr suspensión. La mayoría de los fluidos utilizados en perforación tienen propiedades tanto pseudo - sólidas (elásticas) como pseudo - líquida (viscosas), pero solamente aquellos que tienen un esfuerzo cedente real junto con un alto grado de elasticidad relativa, son los que en verdad imparten alta viscosidad y alta capacidad de arrastre. Los fluidos viscoelásticos se caracterizan por dar altas viscosidades a bajas tasas de corte y desarrollar altos geles instantáneos pero frágiles y de fácil ruptura; además, ofrecen baja resistencia al flujo con mínima presión de bomba y exhiben un esfuerzo verdadero de cedencia elevado que indica la transición del estado casi sólido al estado casi líquido bajo condiciones de corte mínimo. Este esfuerzo es diferente al punto cedente de Bingham, el cual se obtiene por extrapolación y en base a las lecturas obtenidas a 600 y 300 RPM en un viscosímetro de campo. Es evidente que los fluidos se desplazan en el espacio anular a velocidades menores de 60 RPM. Por ese motivo, el modelo plástico de Binghan no describe su comportamiento reológico a bajas tasas de corte. Los fluidos viscoelásticos se utilizan para perforar pozos direccionales y horizontales por su gran capacidad de acarreo y suspensión. Su capacidad de suspensión es tal que aún en condiciones estáticas minimiza la formación de lechos de ripio o camadas, que se forman usualmente en el punto de máxima desviación del pozo. Esta propiedad es medida a bajas tasas de corte con un viscosímetro Brookfield, instrumento que mide viscosidades a tasas inferiores a 3 RPM (5.1 seg.-1 ) y permite correlacionar las propiedades de suspensión de los sólidos con la viscosidad determinada a una velocidad de corte de 0.3 RPM (0.06seg.-1 .). Además de la LSRV existen otros procedimientos para determinar la capacidad de acarreo y suspensión de los fluidos viscoelásticos. Estos procedimientos están basados en : • Reogramas • Factores “n” y “K” • Tiempo de regresión
  • 7. UNEFA-SEDE SAN TOMÉ Asignatura: Fluidos de Perforación Contenido: Sistemas de Lodos Prof.: Ing. Pavel Bellorín Los reogramas son gráficas que relacionan el esfuerzo de corte con la tasa de corte para describir el comportamiento reológico de los fluidos a través del anular. Los factores “n” y “k” están relacionados con el perfil de flujo y la consistencia del fluido. De hecho, el factor “n” indica la habilidad pseudoplástica del fluido, se relaciona con el perfil de flujo del fluido en el anular y depende de la calidad del viscosificador, mientras que el factor “k” es el índice de consistencia o esfuerzo cortante de la viscosidad de un fluido correspondiente a una tasa de corte de un segundo reciproco. Este factor da una idea de la viscosidad del lodo y de la capacidad de acarreo a bajas velocidades de corte. Los fluidos pseudoplásticos se caracterizan por dar valores bajos de “n” y altos de ”k” a bajas velocidades de corte. FLUIDOS DE BAJA DENSIDAD Fluidos diseñados para perforar, completar y/o rehabilitar pozos en yacimientos con bajos gradientes de presión (zonas depletadas) • INTEFLOW • MICROBURBUJAS El Inteflow es una emulsión de fase continua agua, con densidades entre 7 y 9 lb/gal y relación aceite agua que puede variar entre 80/20 y 40/60. Esta emulsión utiliza un surfactante no tóxico y biodegradable en concentración de 20 lb/bbl. Ventajas del sistema • Alta estabilidad térmica ( ± 300°F ) • Proporciona buena lubricidad • Alta tasa de recuperación del fluido ( > 80% ) • Maximiza la producción • Fácil de preparar y mantener • Tolera la presencia del H2S • Mínimo daño a la formación ( fluido Drill–In ) En un sistema inteflow estable, el 90% de las gotas emulsionadas deben estar por debajo de los 10 μ; por tal razón, es importante realizar pruebas de distribución de tamaño de partículas para mantener un mejor control sobre la calidad del fluido. MICROBURBUJAS Fluido usado para perforar formaciones de muy bajas presiones y altas permeabilidades. Este tipo de fluido encapsula aire o gas, formando microburbujas, comúnmente conocidas como afrones Las microburbujas se generan con un surfactante y en sitios donde existan condiciones de turbulencia y cavitación, principalmente a nivel de mecha. Este aditivo usado en concentración de 1.5 lb/bbl genera aproximadamente entre 8 y 10% v/v de afrones y 12 lb/bbl genera entre 12 y 14% Las microburbujas están conformadas por un núcleo de aire o gas, rodeadas por delgadas capas de agua y mantenidas por la tensión interfacial desarrollada por el surfactante Características resaltantes de las microburbujas • Ejercen fuerzas de Laplace que les permiten expandirse en las regiones de baja presión • Desarrollan altas viscosidades a bajas tasas de corte ( LSRV )
  • 8. UNEFA-SEDE SAN TOMÉ Asignatura: Fluidos de Perforación Contenido: Sistemas de Lodos Prof.: Ing. Pavel Bellorín • Permiten mantener bajas densidades ( 6.8 – 7.8 lb/gal ) • Son estables y recirculables • No coalescen ni pierden su configuración cuando son sometidas a esfuerzos de compresión y expansión • Por su reducido tamaño resultan difícil de ser removidas por los equipos de control de sólidos. • El 70% de los afrones tienen un tamaño entre 70 y 100 μ y el 30% alrededor de 150 μ • No interfieren con ninguna herramienta de fondo ni afectan los resultados de los registros eléctricos • Actúan como agente puenteante porque tiene la capacidad de expandirse y atraerse mutuamente en las regiones de baja presión Limitaciones del sistema microburbujas • Trabaja en un rango de pH entre 9.5 y 10 • Debe prepararse con agua potable o agregarse algún bactericida como medida preventiva • Requiere el uso de un estabilizador térmico para evitar la degradación de los polímeros • El sello no resiste más de 3000 psi de presión diferencial FLUIDOS SALINOS Fluidos drill-in no dispersos inhibidos utilizados usualmente para perforar zonas productoras en pozos horizontales o con alto ángulo de inclinación. Se dice que se trata de un lodo de agua salada cuando contiene más de 10000 ppm de sal y no ha sido convertido a algún otro tipo de lodo. Los lodos de agua salada se clasifican a su vez de acuerdo a la cantidad de sal presente y/o a la fuente de agua utilizada en su preparación. En consecuencia, los lodos salinos contienen 10000 ppm de sal pero no están saturados. La saturación se alcanza a una concentración de 268000 ppm de NaCI. El agua dulce, para saturar, requiere una concentración de 109 libras de sal por barril de agua. Los lodos salinos no saturados son, generalmente, el resultado de agua de mar o agua salobre o de tolerar la sal que se encuentra durante la perforación. La. sal actúa como un contaminante en los sistemas de agua dulce. Cuando se encuentra, aún en muy pequeñas cantidades, produce un aumento de la viscosidad, resistencia del gel y pérdida de filtrado. Sin embargo, muchas veces se agrega sal a un lodo de agua dulce con el fin de controlar resistividad. Los lodos salinos requieren de adiciones mayores de soda cáustica para mantener el pH entre 11-11.5, aunque en algunas áreas no se controla el pH sino que se deja a su evolución natural obteniéndose valores aproximados entre 6 y 7. Estos sistemas tienen tendencia a formar espuma superficial con mucha frecuencia, causar problemas de corrosión y dar filtrados altos. La espuma se controla aumentando la alcalinidad, espolvoreando bentonita, o utilizando un antiespumante tal como el estereato de aluminio mezclado con aceite, el cual reduce la tensión superficial que rodea la burbuja, liberando, en esta forma, el aire que se halla entrampado. La corrosión con inhibidores de corrosión y manteniendo alto pH, usualmente entre 11-11.5 y el filtrado, utilizando almidón modificado. En los lodos salinos resulta bastante difícil emulsionar aceite para bajar peso o lograr lubricidad. En estos casos se requiere usar un emulsionante químico en una proporción
  • 9. UNEFA-SEDE SAN TOMÉ Asignatura: Fluidos de Perforación Contenido: Sistemas de Lodos Prof.: Ing. Pavel Bellorín equivalente al 2% o 3% del volumen total del aceite empleado para poder lograr una emulsión satisfactoria. SALMUERAS INORGÁNICAS Sal Las sales son simplemente combinaciones del anión de un ácido con el catión de una base. Pueden ser neutras o tener una tedencia hacia la acidez o hacia la basicidad. Ej: HCl + NaOH NaCl + H2O Salmuera Una salmuera es una mezcla de agua con sal que puede prepararse con una o varias sales diferentes, dependiendo de la densidad requerida, dado que su densidad es función del tipo y cantidad de sal que puede disolverse en determinada condición de trabajo. Las salmueras son sistemas libre de sólidos no disueltos que se utilizan generalmente como fluido de completación y/o rehabilitación de pozos. La densidad es el factor principal a considerar en la selección de una salmuera. Como soluciones absolutas, las salmueras son especialmente vulnerables a los cambios de densidad con la temperatura y la presión. Al aumentar la temperatura, el fluido se dilata, y la densidad del fluido disminuye. En consecuencia, nunca se debe calcular la densidad de una salmuera sin considerar el efecto de la temperatura, porque un subestimado de la densidad podría causar una arremetida y un sobreestimado una pérdida de circulación. Es costumbre expresar las densidades a una temperatura de referencia, estimada en 60ºF, dado que la densidad de la salmuera varía con la temperatura del ambiente en superficie. Por ello se debe medir la densidad, el volumen y la temperatura actual del fluido y aplicar una corrección de densidad para temperatura, usando el coeficiente de expansión volumétrica correspondiente. En consecuencia, la salmuera debe ser formulada de forma tal que quede compensada la reducción de densidad causada por la temperatura del pozo. Se dice que una salmuera está saturada cuando, a determinada temperatura, sólo entra en la solución una limitada cantidad de sal. Si se eleva la temperatura de la solución se puede agregar más sal; pero si se reduce la temperatura, parte de la sal disuelta saldrá de la solución formando cristales en los tanques de mezcla. Esta limitación de temperatura se conoce con el nombre de punto de cristalización, el cual debe ser tomado muy en cuenta sobre todo cuando se estén preparando salmueras pesadas. Turbidez La turbidez es una función de la claridad de la salmuera y se expresa en unidades NTU (Unidades de Turbidez Nefelométrica). Valores bajos de NTU son obtenidos por limpieza del fluido que se logra a través de cartuchos, utilizando filtro prensas de tierra diatomeas ó ambos. En una salmuera nueva el NTU debe ser menor de 40. Turbidímetros para medir las NTU de una salmuera SALMUERAS ORGÁNICAS Este tipo de salmuera se prepara con sales alcalinas metálicas solubles en agua que proceden del ácido fórmico, conocidas como formiatos. Existen formiatos de sodio (NaCOOH ), potasio ( KCOOH) y cesio (CsCOOH)
  • 10. UNEFA-SEDE SAN TOMÉ Asignatura: Fluidos de Perforación Contenido: Sistemas de Lodos Prof.: Ing. Pavel Bellorín Las salmueras de formiato proveen soluciones salinas de altas densidades y bajas viscosidades. No son dañinas al medio ambiente y se biodegradan rápidamente. Son antioxidantes poderosos que ayudan a proteger a los viscosificantes y a los polímeros reductores de filtrado contra la degradación térmica hasta temperaturas de por lo menos 300 °F Este tipo de salmuera es compatible con las aguas de formación que contiene sulfatos y carbonatos, por lo tanto reducen la posibilidad de dañar la permeabilidad por la precipitación de sales. Son sumamente costosas. Ventajas • Ausencia total de sólidos suspendidos • Mayor descarte de sólidos en las zarandas como resultado de la poca degradación que sufren los sólidos por la acción inhibitoria del fluido. • Mayor aprovechamiento de energía en el fondo por su baja viscosidad. • La carencia de sólidos para densificar hace posible el uso de mallas más finas • Son reusables porque pueden filtrarse FLUIDOS BASE ACEITE Un fluido base aceite es aquel cuya fase continua, al igual que el filtrado, es puro aceite. Los fluidos base aceite son utilizados principalmente para perforar: Además, se usan para tomar núcleos y como fluidos de completación, empaque y rehabilitación de pozos. Estos fluidos pueden ser del tipo: � Emulsión inversa � 100% Aceite
  • 11. UNEFA-SEDE SAN TOMÉ Asignatura: Fluidos de Perforación Contenido: Sistemas de Lodos Prof.: Ing. Pavel Bellorín Emulsión Una emulsión es un sistema disperso formado por dos líquidos inmiscibles, uno de ellos constituye la fase dispersa distribuida en forma de pequeñas gotas y el otro la fase continua o medio de dispersión. Para lograr la emulsión se requiere la adición de un agente emulsificante y suficiente agitación de mezcla. El tipo de emulsión se determina fácilmente por medición de la conductividad eléctrica y se identifica por la fase que esté en contacto con la formación y no la que esté en mayor proporción. Existen emulsiones directas e inversas. • Directas - Aceite en Agua (O/W) • Inversas - Agua en Aceite (W/O) La inversa se usa generalmente para perforar formaciones de lutítas sensibles al agua, aplicando el concepto de actividad balanceada. Esta se logra cuando en el fluido se tiene la misma concentración de sal que contiene la formación, en este caso el agua no pasa del hoyo hacia la formación ni de la formación hacia el hoyo. La actividad varía de acuerdo con la concentración y tipo de sal disuelta en la emulsión, recordando que la sal disminuye la actividad y el agua la aumenta. En las emulsiones inversas la relación aceite/agua puede variar entre 90/10 y 60/40 y la concentración del emulsificante va en función del contenido de agua; es decir, a medida que aumenta el porcentaje de agua debe haber suficiente emulsificante para formar una película alrededor de cada gota de agua, de modo que no se fusionen y en consecuencia no coalescan; de lo contrario, la emulsión pierde estabilidad. La coalescencia es el proceso responsable por la separación definitiva de las fases y ocurre cuando dos gotas de agua se unen para formar una sola. En una buena emulsión no debe haber tendencia de separación de fases. Una emulsión es más estable en la medida que las gotas de agua se hacen más pequeñas y uniformes y los sólidos agregados o incorporados se mantienen humectados por aceite. Cuando se aumenta el porcentaje de aceite se logra estabilidad porque la separación entre las gotas de agua se hace mayor y la viscosidad de la emulsión disminuye. El agua genera viscosidad, resistencia de gel y contribuye con el controlar del filtrado porque las gotas se comportan como sólidos suspendidos. TIPOS DE EMULSIONES INVERSAS • Convencional.- Emulsión muy fuerte con alta estabilidad eléctrica y filtrado HP-HT 100% aceite, que por lo general es menor de 10 cc . El filtrado API es cero. • Filtrado relajado Este tipo de emulsión usa un emulsificante que no requiere cal y comparada con una convencional es más débil y de menor estabilidad eléctrica. Su filtrado HP-HT resulta mayor y es normal que contenga agua, el API puede ser medible. Su ventaja es la de proporcionar mayor ROP con ciertos tipos de mechas. FLUIDOS 100% ACEITE Estos fluidos se preparan con puro aceite y con un surfactante débil que tiene la habilidad de absorber el agua de la formación y emulsionarla de manera efectiva. Los surfactantes fuertes disminuyen la permeabilidad de la zona productora por bloqueo, alterando su humectabilidad. Estas alteraciones pueden causar errores en la predicción y
  • 12. UNEFA-SEDE SAN TOMÉ Asignatura: Fluidos de Perforación Contenido: Sistemas de Lodos Prof.: Ing. Pavel Bellorín evaluación del yacimiento en base a los datos obtenidos de los núcleos y además, pueden disminuir la producción del pozo después de su completación. Los lodos 100% aceite son utilizados usualmente para recobrar núcleos en su estado original y perforar zonas de lutítas sensibles al agua. Estos lodos pueden tolerar hasta un 15% v/v de agua de formación, pero se recomienda convertirlos a un sistema de emulsión inversa cuando el porcentaje de agua alcance valores entre 5 y 10% en volumen. El costo de mantenimiento de estos lodos es bajo y al igual que las emulsiones inversas no son afectadas por contaminantes comunes, dan hoyos en calibre y minimizan problemas de torque y arrastre, entre otros. DESVENTAJAS DE LOS FLUIDOS 100% ACEITE • Mayor contaminación ambiental • Menor tasa de penetración • Mayor densidad equivalente de circulación • Baja reología PROBLEMAS Y SITUACIONES COMUNES AL PERFORAR CON FLUIDOS BASE ACEITE Problemas Situaciones • Contaminación con agua • Precipitación del material de peso • Disminución de la eficiencia operacional de los equipos de control de sólidos • Desplazamiento • Pérdida de circulación • Cementación • Arremetidas CÁLCULOS DE LA RELACIÓN ACEITE / AGUA Para calcular la relación aceite/agua de un lodo base aceite es necesario, primero, determinar por análisis de retorta el porcentaje por volumen de aceite y agua presente en el lodo. Usando estos porcentajes, la relación aceite/agua se calcula como sigue:
  • 13. UNEFA-SEDE SAN TOMÉ Asignatura: Fluidos de Perforación Contenido: Sistemas de Lodos Prof.: Ing. Pavel Bellorín Ejercicio práctico. Calcular la relación aceite/agua de 150 bbl de lodo y el volumen de aceite para cambiarla a 85/15. El análisis de retorta dio los siguientes resultados: 68 % aceite, 18 % agua y14 % sólidos. Res. • La relación aceite/agua existente es:
  • 14. UNEFA-SEDE SAN TOMÉ Asignatura: Fluidos de Perforación Contenido: Sistemas de Lodos Prof.: Ing. Pavel Bellorín CONTAMINACIÓN Un contaminante es cualquier elemento, sea líquido, sólido o gas, que cause cambios indeseables en las propiedades del fluido. Este elemento puede ser contaminante para todo tipo de fluido o solamente para un fluido en particular. El contaminante puede ser introducido desde la superficie, ser parte integral de la formación o puede ser el producto de un sobre tratamiento. Todo contaminante causa floculación, aumenta la reología y la pérdida de agua y en todos los casos, con excepción del cemento, disminuye el pH. Algunos contaminantes, como el cemento y el agua dura, son predecibles y pueden ser tratados químicamente, otros como la sal, no tienen ningún tipo de tratamiento. • Contaminantes comunes 1.- Sólidos 2.- Calcio 3.- Sales solubles 4.- Gas 5.- Temperatura 6.- Oxígeno 7.- Bacterias 8.- Carbonatos/Bicarbonatos REFERENCIAS Tecnología de los Fluidos de Perforación (Prieto, Alí. Manual Técnico APOCA, 2007)