SlideShare una empresa de Scribd logo
1 de 15
Descargar para leer sin conexión
Sistemas Inteligentes y
Redes Neuronales Artificiales
(SI01)

Laboratorio: 1
Funciones de activación de las RNAs

Ing. José C. Benítez P.
Funciones de activación de las RNAs
Objetivo
Fundamento teórico: Funciones de las RNA.
Funciones de Activación
Tarea
Informe de Laboratorio

Sistemas Inteligentes y Redes Neuronales - Prof. Ing. José C. Benítez P.

2
Objetivo
Revisar el concepto y aplicación de las diferentes
funciones que representan a las RNAs.
Graficar las diferentes funciones de activación
utilizados usualmente en RNAs.

Sistemas Inteligentes y Redes Neuronales - Prof. Ing. José C. Benítez P.

3
Fundamento teórico
Funciones que representan a las RNAs:
La salida de una neurona viene dada por tres funciones:
1. Una función de propagación
2. Una función de activación
3. Una función de transferencia

Capa de
Salida

1

Salida

Y

e

Sistemas Inteligentes y Redes Neuronales - Prof. Ing. José C. Benítez P.

4
Fundamento teórico
1. Una función de propagación.
• También es conocida como función de excitación.
• Consiste en la sumatoria de cada entrada multiplicada por el peso
de su interconexión (valor neto).
• Si el peso es positivo, la conexión se denomina excitatoria; si es
negativo, se denomina inhibitoria.
2. Una función de activación
• La función de activación, modifica a la función de propagación.
• Puede no existir, siendo en este caso la salida la misma función
de propagación.
3. Función de transferencia
• La función de transferencia, se aplica al valor devuelto por la
función de activación.

Sistemas Inteligentes y Redes Neuronales - Prof. Ing. José C. Benítez P.

5
Funciones de activación
Función de transferencia de las RNA

Como función de transferencia se usan generalmente las siguientes
funciones:
- Escalón
- Lineal
- No lineal
- Competitiva
- Saturación

Sistemas Inteligentes y Redes Neuronales - Prof. Ing. José C. Benítez P.

6
a)

Función de activación Escalón.
Utilizada en redes Perceptron. Se obtiene salidas de valores [0,1].
Se usa el comando:
>>Y=hardlim(v)
Ejemplo:
>>v=-10:0.5:10;
>>subplot(121), plot(v);
>>subplot(122), stem(v);
>>O=hardlim(v);
>>subplot(121), plot(v,O)
>>subplot(122), stem(v,O)
>>m=[-5:0.5:5;-4:0.5:6];
>>O=hardlim(m);
>>subplot(121), plot(v,O)
>>subplot(122), stem(v,O)
>>m2=[-5:0.5:5;-4:0.5:6 ;-3:0.5:7];
>>O=hardlim(m2);
>>subplot(121), plot(v,O)
>>subplot(122), stem(v,O)
Sistemas Inteligentes y Redes Neuronales - Prof. Ing. José C. Benítez P.

7
b) Función de activación Escalón.
Utilizada en redes Perceptron. Se obtiene salidas de valores [-1,1].
Se usa el comando:
>>Y=hardlims(v)
Ejemplo:
>>v=-10:0.5:10;
>>subplot(121), plot(v);
>>subplot(122), stem(v);
>>O=hardlims(v);
>>subplot(121), plot(v,O)
>>subplot(122), stem(v,O)
>>m=[-5:0.5:5;-4:0.5:6];
>>O=hardlims(m);
>>subplot(121), plot(v,O)
>>subplot(122), stem(v,O)
>>m2=[-5:0.5:5;-4:0.5:6 ;-3:0.5:7];
>>O=hardlims(m2);
>>subplot(121), plot(v,O)
>>subplot(122), stem(v,O)
Sistemas Inteligentes y Redes Neuronales - Prof. Ing. José C. Benítez P.

8
Para las siguientes funciones de
activación utilizar los vectores de
entrada mostrados:
>>v=-10:0.5:10;
>>m=[-5:0.5:5;-4:0.5:6];
>>m2=[-5:0.5:5;-4:0.5:6 ;-3:0.5:7];
Graficar las entradas y las salidas
respectivamente.

Sistemas Inteligentes y Redes Neuronales - Prof. Ing. José C. Benítez P.

9
c) Función de activación Lineal.
Utilizada en redes adaline o en la última capa de las MLP.
La salida es igual que la
entrada, se obtiene con el
comando:
>>Y=purelin(v)
d) Función de activación Gaussiana.
Utilizada en redes de base radial
La respuesta es de una función
gaussiana, utilizamos el comando :
>>Y=radbas(v)

Sistemas Inteligentes y Redes Neuronales - Prof. Ing. José C. Benítez P.

10
e) Función de activación no Lineal.
Para la salida [0,1], función
sigmoide logaritmica,
utilizamos el comando :
>>Y=logsig(v)

Para la salida [-1,1], función
tangente sigmoidal
hiperbólica, utilizamos el
comando :
>>Y=tansig(v)

Sistemas Inteligentes y Redes Neuronales - Prof. Ing. José C. Benítez P.

11
f) Función de activación Saturación.
Utilizada en las redes Hopfield
Para la salida de valores [0,1],
utilizamos el comando :
>>Y=satlin(v)

Para la salida de valores [-1,1],
utilizamos el comando :
>>Y=satlins(v)

Sistemas Inteligentes y Redes Neuronales - Prof. Ing. José C. Benítez P.

12
Tarea
Utilizar vectores cuadráticos, rampa, ruido y pulso
(cada una centrado en el eje Y) para cada una de las
funciones de activación desarrolladas en este
laboratorio. Mediante MatLab graficar el vector de
entrada y la salida.

Sistemas Inteligentes y Redes Neuronales - Prof. Ing. José C. Benítez P.

13
Informe de Laboratorio
El Informe de Laboratorio es un documento gráfico en lo posible
y es redactado en Word con el desarrollo del laboratorio.
Niveles de Informe:
Primer nivel: Observaciones. Imágenes con comentarios
cortos. Redactar al ir desarrollando el laboratorio. (Requiere
desarrollar el laboratorio).
Segundo nivel: Conclusiones. Redactar al terminar el
laboratorio.(Requiere haber desarrollado el laboratorio).
Tercer Nivel: Recomendaciones. (Requiere lectura de otras
fuentes).
Dentro de su Carpeta Personal del Dropbox crear una carpeta
para el laboratorio 1 con el siguiente formato:
SIRN_PaternoM_Lab1
Adjuntar fuentes que le han ayudado en esta carpeta creada.
Las fuentes deben conservar el nombre original de archivo y se
debe agregar _L1 al final.
Presentar el Informe de Laboratorio 1 en esta carpeta creada.
Sistemas Inteligentes y Redes Neuronales - Prof. Ing. José C. Benítez P.

14
Lab1. Funciones de activación de las RNAs.

http://utpsirn.blogspot.com
Sistemas Inteligentes y Redes Neuronales - Prof. Ing. José C. Benítez P.

15

Más contenido relacionado

La actualidad más candente

COmpuertas LÓgicas.
COmpuertas LÓgicas.COmpuertas LÓgicas.
COmpuertas LÓgicas.
jengibre
 
Ic3 enunciado ejerc1 (2)
Ic3 enunciado ejerc1 (2)Ic3 enunciado ejerc1 (2)
Ic3 enunciado ejerc1 (2)
pepe lopez
 
Organizacion-de-la-unidad-central-de-procesamiento
Organizacion-de-la-unidad-central-de-procesamientoOrganizacion-de-la-unidad-central-de-procesamiento
Organizacion-de-la-unidad-central-de-procesamiento
José Luis Olivares
 
Leccion3 y4 agosto25_2011solucion
Leccion3 y4 agosto25_2011solucionLeccion3 y4 agosto25_2011solucion
Leccion3 y4 agosto25_2011solucion
Jair BG
 
Compuertas logicas basicas_y_algebra_de_boole_2009
Compuertas logicas basicas_y_algebra_de_boole_2009Compuertas logicas basicas_y_algebra_de_boole_2009
Compuertas logicas basicas_y_algebra_de_boole_2009
Moises
 
Informepractica4dedigitales 160715195218
Informepractica4dedigitales 160715195218Informepractica4dedigitales 160715195218
Informepractica4dedigitales 160715195218
andrevmd
 
Practica 1
Practica 1Practica 1
Practica 1
madeje
 

La actualidad más candente (17)

Slides taller de exploiting Navaja Negra 4ed
Slides taller de exploiting Navaja Negra 4edSlides taller de exploiting Navaja Negra 4ed
Slides taller de exploiting Navaja Negra 4ed
 
Puerto paralelo
Puerto paraleloPuerto paralelo
Puerto paralelo
 
COmpuertas LÓgicas.
COmpuertas LÓgicas.COmpuertas LÓgicas.
COmpuertas LÓgicas.
 
Ic3 enunciado ejerc1 (2)
Ic3 enunciado ejerc1 (2)Ic3 enunciado ejerc1 (2)
Ic3 enunciado ejerc1 (2)
 
Practica 5 SAIA UFT VJSS
Practica 5 SAIA UFT VJSSPractica 5 SAIA UFT VJSS
Practica 5 SAIA UFT VJSS
 
Asignacion7
Asignacion7Asignacion7
Asignacion7
 
⭐⭐⭐⭐⭐ SISTEMAS DIGITALES 2, PROYECTOS PROPUESTOS (2021 PAO1)
⭐⭐⭐⭐⭐ SISTEMAS DIGITALES 2, PROYECTOS PROPUESTOS (2021 PAO1)⭐⭐⭐⭐⭐ SISTEMAS DIGITALES 2, PROYECTOS PROPUESTOS (2021 PAO1)
⭐⭐⭐⭐⭐ SISTEMAS DIGITALES 2, PROYECTOS PROPUESTOS (2021 PAO1)
 
Lenguaje de emsanble
Lenguaje de emsanbleLenguaje de emsanble
Lenguaje de emsanble
 
Proyecto 7 - Claurimar Medina Quintero
Proyecto 7 - Claurimar Medina QuinteroProyecto 7 - Claurimar Medina Quintero
Proyecto 7 - Claurimar Medina Quintero
 
Organizacion-de-la-unidad-central-de-procesamiento
Organizacion-de-la-unidad-central-de-procesamientoOrganizacion-de-la-unidad-central-de-procesamiento
Organizacion-de-la-unidad-central-de-procesamiento
 
Leccion3 y4 agosto25_2011solucion
Leccion3 y4 agosto25_2011solucionLeccion3 y4 agosto25_2011solucion
Leccion3 y4 agosto25_2011solucion
 
Compuertas logicas basicas_y_algebra_de_boole_2009
Compuertas logicas basicas_y_algebra_de_boole_2009Compuertas logicas basicas_y_algebra_de_boole_2009
Compuertas logicas basicas_y_algebra_de_boole_2009
 
⭐⭐⭐⭐⭐ SOLUCIÓN LECCIÓN SISTEMAS EMBEBIDOS, 2do Parcial (2020 PAO 1)
⭐⭐⭐⭐⭐ SOLUCIÓN LECCIÓN SISTEMAS EMBEBIDOS, 2do Parcial (2020 PAO 1)⭐⭐⭐⭐⭐ SOLUCIÓN LECCIÓN SISTEMAS EMBEBIDOS, 2do Parcial (2020 PAO 1)
⭐⭐⭐⭐⭐ SOLUCIÓN LECCIÓN SISTEMAS EMBEBIDOS, 2do Parcial (2020 PAO 1)
 
Practica nro2 ixis_marionny
Practica nro2 ixis_marionnyPractica nro2 ixis_marionny
Practica nro2 ixis_marionny
 
Proyecto digitales
Proyecto digitalesProyecto digitales
Proyecto digitales
 
Informepractica4dedigitales 160715195218
Informepractica4dedigitales 160715195218Informepractica4dedigitales 160715195218
Informepractica4dedigitales 160715195218
 
Practica 1
Practica 1Practica 1
Practica 1
 

Destacado

Fy edp 2013-3_balotario pc2
Fy edp 2013-3_balotario pc2Fy edp 2013-3_balotario pc2
Fy edp 2013-3_balotario pc2
jcbenitezp
 
Utp sirn_2014-1 lab1
 Utp sirn_2014-1 lab1 Utp sirn_2014-1 lab1
Utp sirn_2014-1 lab1
jcbenitezp
 
Utp sirn_s2_rna
 Utp sirn_s2_rna  Utp sirn_s2_rna
Utp sirn_s2_rna
jcbenitezp
 
Db vsa-011 registro de asistencia docente ago2015
Db vsa-011 registro de asistencia docente  ago2015Db vsa-011 registro de asistencia docente  ago2015
Db vsa-011 registro de asistencia docente ago2015
jcbenitezp
 
Utp pro_2013-1 examen final
 Utp pro_2013-1 examen final Utp pro_2013-1 examen final
Utp pro_2013-1 examen final
jcbenitezp
 
Uni rdsi 2016 1 sesion 12 redes moviles 3 g
Uni rdsi 2016 1 sesion 12 redes moviles 3 gUni rdsi 2016 1 sesion 12 redes moviles 3 g
Uni rdsi 2016 1 sesion 12 redes moviles 3 g
jcbenitezp
 
Uni rdsi 2016 1 sesion 13-14 redes moviles 4 g
Uni rdsi 2016 1 sesion 13-14 redes moviles 4 gUni rdsi 2016 1 sesion 13-14 redes moviles 4 g
Uni rdsi 2016 1 sesion 13-14 redes moviles 4 g
jcbenitezp
 
ejercicios resueltos de estatica
ejercicios resueltos de estaticaejercicios resueltos de estatica
ejercicios resueltos de estatica
clasesdequimica
 

Destacado (10)

C ref card
C ref cardC ref card
C ref card
 
Fy edp 2013-3_balotario pc2
Fy edp 2013-3_balotario pc2Fy edp 2013-3_balotario pc2
Fy edp 2013-3_balotario pc2
 
Utp sirn_2014-1 lab1
 Utp sirn_2014-1 lab1 Utp sirn_2014-1 lab1
Utp sirn_2014-1 lab1
 
Utp sirn_s2_rna
 Utp sirn_s2_rna  Utp sirn_s2_rna
Utp sirn_s2_rna
 
Contenido de estatica
Contenido de  estaticaContenido de  estatica
Contenido de estatica
 
Db vsa-011 registro de asistencia docente ago2015
Db vsa-011 registro de asistencia docente  ago2015Db vsa-011 registro de asistencia docente  ago2015
Db vsa-011 registro de asistencia docente ago2015
 
Utp pro_2013-1 examen final
 Utp pro_2013-1 examen final Utp pro_2013-1 examen final
Utp pro_2013-1 examen final
 
Uni rdsi 2016 1 sesion 12 redes moviles 3 g
Uni rdsi 2016 1 sesion 12 redes moviles 3 gUni rdsi 2016 1 sesion 12 redes moviles 3 g
Uni rdsi 2016 1 sesion 12 redes moviles 3 g
 
Uni rdsi 2016 1 sesion 13-14 redes moviles 4 g
Uni rdsi 2016 1 sesion 13-14 redes moviles 4 gUni rdsi 2016 1 sesion 13-14 redes moviles 4 g
Uni rdsi 2016 1 sesion 13-14 redes moviles 4 g
 
ejercicios resueltos de estatica
ejercicios resueltos de estaticaejercicios resueltos de estatica
ejercicios resueltos de estatica
 

Similar a Utp sirn l1_funciones 2013-3

Utp sirn_sl4 la rna percetron 2012-2
 Utp sirn_sl4 la rna percetron 2012-2 Utp sirn_sl4 la rna percetron 2012-2
Utp sirn_sl4 la rna percetron 2012-2
c09271
 
Utp sirn_sl3 salidas de rna 2012-2
 Utp sirn_sl3 salidas de rna 2012-2 Utp sirn_sl3 salidas de rna 2012-2
Utp sirn_sl3 salidas de rna 2012-2
jcbenitezp
 
Utp sirn sl4 la rna perceptron 2012-2
Utp sirn sl4 la rna perceptron 2012-2Utp sirn sl4 la rna perceptron 2012-2
Utp sirn sl4 la rna perceptron 2012-2
jcbenitezp
 
Utp sirn_sl2 la rna perceptron
 Utp sirn_sl2 la rna perceptron Utp sirn_sl2 la rna perceptron
Utp sirn_sl2 la rna perceptron
jcbenitezp
 
S iy rn 2011-3 balotario de la pc1
S iy rn 2011-3 balotario de la pc1S iy rn 2011-3 balotario de la pc1
S iy rn 2011-3 balotario de la pc1
jcbenitezp
 
Utp ia_sl4 la rna perceptron
 Utp ia_sl4 la rna perceptron Utp ia_sl4 la rna perceptron
Utp ia_sl4 la rna perceptron
jcbenitezp
 
Utp sirn_sl4 la rna perceptron
 Utp sirn_sl4 la rna perceptron Utp sirn_sl4 la rna perceptron
Utp sirn_sl4 la rna perceptron
c09271
 
Utp 2015-2_sirn lab2
 Utp 2015-2_sirn lab2 Utp 2015-2_sirn lab2
Utp 2015-2_sirn lab2
jcbp_peru
 
S iy rn 2012-1 balotario de la pc1
S iy rn 2012-1 balotario de la pc1S iy rn 2012-1 balotario de la pc1
S iy rn 2012-1 balotario de la pc1
c09271
 
Utp sirn_s7_adaline y perceptron
 Utp sirn_s7_adaline y perceptron Utp sirn_s7_adaline y perceptron
Utp sirn_s7_adaline y perceptron
jcbenitezp
 
Utp 2015-2_ia lab2
 Utp 2015-2_ia lab2 Utp 2015-2_ia lab2
Utp 2015-2_ia lab2
jcbp_peru
 
Utp 2015-2_sirn lab2
 Utp 2015-2_sirn lab2 Utp 2015-2_sirn lab2
Utp 2015-2_sirn lab2
jcbp_peru
 
Utp sirn_2015-1 lab1
 Utp sirn_2015-1 lab1 Utp sirn_2015-1 lab1
Utp sirn_2015-1 lab1
jcbp_peru
 
Utp ia_2014-2 lab2
 Utp ia_2014-2 lab2 Utp ia_2014-2 lab2
Utp ia_2014-2 lab2
jcbp_peru
 
Utp ia_2014-2 lab2
 Utp ia_2014-2 lab2 Utp ia_2014-2 lab2
Utp ia_2014-2 lab2
jcbp_peru
 
Utp sirn_2014-2 lab2
 Utp sirn_2014-2 lab2 Utp sirn_2014-2 lab2
Utp sirn_2014-2 lab2
jcbp_peru
 
Utp sirn_2014-2 lab2
 Utp sirn_2014-2 lab2 Utp sirn_2014-2 lab2
Utp sirn_2014-2 lab2
jcbp_peru
 
Utp ia_2015-1 lab1
 Utp ia_2015-1 lab1 Utp ia_2015-1 lab1
Utp ia_2015-1 lab1
jcbp_peru
 

Similar a Utp sirn l1_funciones 2013-3 (20)

redes neuronales
redes neuronales redes neuronales
redes neuronales
 
Utp sirn_sl4 la rna percetron 2012-2
 Utp sirn_sl4 la rna percetron 2012-2 Utp sirn_sl4 la rna percetron 2012-2
Utp sirn_sl4 la rna percetron 2012-2
 
Utp sirn_sl3 salidas de rna 2012-2
 Utp sirn_sl3 salidas de rna 2012-2 Utp sirn_sl3 salidas de rna 2012-2
Utp sirn_sl3 salidas de rna 2012-2
 
Utp sirn sl4 la rna perceptron 2012-2
Utp sirn sl4 la rna perceptron 2012-2Utp sirn sl4 la rna perceptron 2012-2
Utp sirn sl4 la rna perceptron 2012-2
 
Utp sirn_sl2 la rna perceptron
 Utp sirn_sl2 la rna perceptron Utp sirn_sl2 la rna perceptron
Utp sirn_sl2 la rna perceptron
 
S iy rn 2011-3 balotario de la pc1
S iy rn 2011-3 balotario de la pc1S iy rn 2011-3 balotario de la pc1
S iy rn 2011-3 balotario de la pc1
 
Utp ia_sl4 la rna perceptron
 Utp ia_sl4 la rna perceptron Utp ia_sl4 la rna perceptron
Utp ia_sl4 la rna perceptron
 
redes neuronales perceptron
redes neuronales  perceptronredes neuronales  perceptron
redes neuronales perceptron
 
Utp sirn_sl4 la rna perceptron
 Utp sirn_sl4 la rna perceptron Utp sirn_sl4 la rna perceptron
Utp sirn_sl4 la rna perceptron
 
Utp 2015-2_sirn lab2
 Utp 2015-2_sirn lab2 Utp 2015-2_sirn lab2
Utp 2015-2_sirn lab2
 
S iy rn 2012-1 balotario de la pc1
S iy rn 2012-1 balotario de la pc1S iy rn 2012-1 balotario de la pc1
S iy rn 2012-1 balotario de la pc1
 
Utp sirn_s7_adaline y perceptron
 Utp sirn_s7_adaline y perceptron Utp sirn_s7_adaline y perceptron
Utp sirn_s7_adaline y perceptron
 
Utp 2015-2_ia lab2
 Utp 2015-2_ia lab2 Utp 2015-2_ia lab2
Utp 2015-2_ia lab2
 
Utp 2015-2_sirn lab2
 Utp 2015-2_sirn lab2 Utp 2015-2_sirn lab2
Utp 2015-2_sirn lab2
 
Utp sirn_2015-1 lab1
 Utp sirn_2015-1 lab1 Utp sirn_2015-1 lab1
Utp sirn_2015-1 lab1
 
Utp ia_2014-2 lab2
 Utp ia_2014-2 lab2 Utp ia_2014-2 lab2
Utp ia_2014-2 lab2
 
Utp ia_2014-2 lab2
 Utp ia_2014-2 lab2 Utp ia_2014-2 lab2
Utp ia_2014-2 lab2
 
Utp sirn_2014-2 lab2
 Utp sirn_2014-2 lab2 Utp sirn_2014-2 lab2
Utp sirn_2014-2 lab2
 
Utp sirn_2014-2 lab2
 Utp sirn_2014-2 lab2 Utp sirn_2014-2 lab2
Utp sirn_2014-2 lab2
 
Utp ia_2015-1 lab1
 Utp ia_2015-1 lab1 Utp ia_2015-1 lab1
Utp ia_2015-1 lab1
 

Más de jcbenitezp

Tarea 1 tesis i filosofia y conocimiento
Tarea 1 tesis i filosofia y conocimientoTarea 1 tesis i filosofia y conocimiento
Tarea 1 tesis i filosofia y conocimiento
jcbenitezp
 
Calendario academico 2015 02 g
Calendario academico 2015   02 gCalendario academico 2015   02 g
Calendario academico 2015 02 g
jcbenitezp
 
Utp 2015-2_pdi_lab3
 Utp 2015-2_pdi_lab3 Utp 2015-2_pdi_lab3
Utp 2015-2_pdi_lab3
jcbenitezp
 
Utp sirn_2015-2 lab3
 Utp sirn_2015-2 lab3 Utp sirn_2015-2 lab3
Utp sirn_2015-2 lab3
jcbenitezp
 
Pdi paterno m_lab2c
Pdi paterno m_lab2cPdi paterno m_lab2c
Pdi paterno m_lab2c
jcbenitezp
 
Utp 2015-2_sirn_s7_r_competitivas
 Utp 2015-2_sirn_s7_r_competitivas Utp 2015-2_sirn_s7_r_competitivas
Utp 2015-2_sirn_s7_r_competitivas
jcbenitezp
 
Utp 2015-2_sirn_s7_r_competitivas
 Utp 2015-2_sirn_s7_r_competitivas Utp 2015-2_sirn_s7_r_competitivas
Utp 2015-2_sirn_s7_r_competitivas
jcbenitezp
 
Utp 2015-2_sirn_s6_adaline y backpropagation
 Utp 2015-2_sirn_s6_adaline y backpropagation Utp 2015-2_sirn_s6_adaline y backpropagation
Utp 2015-2_sirn_s6_adaline y backpropagation
jcbenitezp
 
Utp ia_s1_introduccion ia
 Utp ia_s1_introduccion ia Utp ia_s1_introduccion ia
Utp ia_s1_introduccion ia
jcbenitezp
 
Utp sirn_s1_introduccion ia 2014-2
 Utp sirn_s1_introduccion ia 2014-2 Utp sirn_s1_introduccion ia 2014-2
Utp sirn_s1_introduccion ia 2014-2
jcbenitezp
 
Utp sirn_s1_introduccion ia 2014-2
 Utp sirn_s1_introduccion ia 2014-2 Utp sirn_s1_introduccion ia 2014-2
Utp sirn_s1_introduccion ia 2014-2
jcbenitezp
 
Utp sirn_s1_introduccion ia 2014-2
 Utp sirn_s1_introduccion ia 2014-2 Utp sirn_s1_introduccion ia 2014-2
Utp sirn_s1_introduccion ia 2014-2
jcbenitezp
 
Inteligencia artificial
Inteligencia artificialInteligencia artificial
Inteligencia artificial
jcbenitezp
 
W0 i9 inteligenciaartificial
W0 i9 inteligenciaartificialW0 i9 inteligenciaartificial
W0 i9 inteligenciaartificial
jcbenitezp
 
Wi0 a sistemasinteligentesyredesneuronales
Wi0 a sistemasinteligentesyredesneuronalesWi0 a sistemasinteligentesyredesneuronales
Wi0 a sistemasinteligentesyredesneuronales
jcbenitezp
 

Más de jcbenitezp (20)

Cap4 jc benitez
Cap4 jc benitezCap4 jc benitez
Cap4 jc benitez
 
Tarea 1 tesis i filosofia y conocimiento
Tarea 1 tesis i filosofia y conocimientoTarea 1 tesis i filosofia y conocimiento
Tarea 1 tesis i filosofia y conocimiento
 
It526 2017 2 ep
It526 2017 2 epIt526 2017 2 ep
It526 2017 2 ep
 
It526 2015 2 pc3
It526 2015 2 pc3 It526 2015 2 pc3
It526 2015 2 pc3
 
Calendario academico 2015 02 g
Calendario academico 2015   02 gCalendario academico 2015   02 g
Calendario academico 2015 02 g
 
Utp 2015-2_pdi_lab3
 Utp 2015-2_pdi_lab3 Utp 2015-2_pdi_lab3
Utp 2015-2_pdi_lab3
 
Utp sirn_2015-2 lab3
 Utp sirn_2015-2 lab3 Utp sirn_2015-2 lab3
Utp sirn_2015-2 lab3
 
Pdi paterno m_lab2c
Pdi paterno m_lab2cPdi paterno m_lab2c
Pdi paterno m_lab2c
 
Utp 2015-2_sirn_s7_r_competitivas
 Utp 2015-2_sirn_s7_r_competitivas Utp 2015-2_sirn_s7_r_competitivas
Utp 2015-2_sirn_s7_r_competitivas
 
Utp 2015-2_sirn_s7_r_competitivas
 Utp 2015-2_sirn_s7_r_competitivas Utp 2015-2_sirn_s7_r_competitivas
Utp 2015-2_sirn_s7_r_competitivas
 
Utp 2015-2_sirn_s6_adaline y backpropagation
 Utp 2015-2_sirn_s6_adaline y backpropagation Utp 2015-2_sirn_s6_adaline y backpropagation
Utp 2015-2_sirn_s6_adaline y backpropagation
 
Utp ia_s1_introduccion ia
 Utp ia_s1_introduccion ia Utp ia_s1_introduccion ia
Utp ia_s1_introduccion ia
 
Utp sirn_s1_introduccion ia 2014-2
 Utp sirn_s1_introduccion ia 2014-2 Utp sirn_s1_introduccion ia 2014-2
Utp sirn_s1_introduccion ia 2014-2
 
Utp sirn_s1_introduccion ia 2014-2
 Utp sirn_s1_introduccion ia 2014-2 Utp sirn_s1_introduccion ia 2014-2
Utp sirn_s1_introduccion ia 2014-2
 
Utp sirn_s1_introduccion ia 2014-2
 Utp sirn_s1_introduccion ia 2014-2 Utp sirn_s1_introduccion ia 2014-2
Utp sirn_s1_introduccion ia 2014-2
 
Inteligencia artificial
Inteligencia artificialInteligencia artificial
Inteligencia artificial
 
W0 i9 inteligenciaartificial
W0 i9 inteligenciaartificialW0 i9 inteligenciaartificial
W0 i9 inteligenciaartificial
 
Wi0 a sistemasinteligentesyredesneuronales
Wi0 a sistemasinteligentesyredesneuronalesWi0 a sistemasinteligentesyredesneuronales
Wi0 a sistemasinteligentesyredesneuronales
 
4 g
4 g4 g
4 g
 
Article005
Article005Article005
Article005
 

Utp sirn l1_funciones 2013-3

  • 1. Sistemas Inteligentes y Redes Neuronales Artificiales (SI01) Laboratorio: 1 Funciones de activación de las RNAs Ing. José C. Benítez P.
  • 2. Funciones de activación de las RNAs Objetivo Fundamento teórico: Funciones de las RNA. Funciones de Activación Tarea Informe de Laboratorio Sistemas Inteligentes y Redes Neuronales - Prof. Ing. José C. Benítez P. 2
  • 3. Objetivo Revisar el concepto y aplicación de las diferentes funciones que representan a las RNAs. Graficar las diferentes funciones de activación utilizados usualmente en RNAs. Sistemas Inteligentes y Redes Neuronales - Prof. Ing. José C. Benítez P. 3
  • 4. Fundamento teórico Funciones que representan a las RNAs: La salida de una neurona viene dada por tres funciones: 1. Una función de propagación 2. Una función de activación 3. Una función de transferencia Capa de Salida 1 Salida Y e Sistemas Inteligentes y Redes Neuronales - Prof. Ing. José C. Benítez P. 4
  • 5. Fundamento teórico 1. Una función de propagación. • También es conocida como función de excitación. • Consiste en la sumatoria de cada entrada multiplicada por el peso de su interconexión (valor neto). • Si el peso es positivo, la conexión se denomina excitatoria; si es negativo, se denomina inhibitoria. 2. Una función de activación • La función de activación, modifica a la función de propagación. • Puede no existir, siendo en este caso la salida la misma función de propagación. 3. Función de transferencia • La función de transferencia, se aplica al valor devuelto por la función de activación. Sistemas Inteligentes y Redes Neuronales - Prof. Ing. José C. Benítez P. 5
  • 6. Funciones de activación Función de transferencia de las RNA Como función de transferencia se usan generalmente las siguientes funciones: - Escalón - Lineal - No lineal - Competitiva - Saturación Sistemas Inteligentes y Redes Neuronales - Prof. Ing. José C. Benítez P. 6
  • 7. a) Función de activación Escalón. Utilizada en redes Perceptron. Se obtiene salidas de valores [0,1]. Se usa el comando: >>Y=hardlim(v) Ejemplo: >>v=-10:0.5:10; >>subplot(121), plot(v); >>subplot(122), stem(v); >>O=hardlim(v); >>subplot(121), plot(v,O) >>subplot(122), stem(v,O) >>m=[-5:0.5:5;-4:0.5:6]; >>O=hardlim(m); >>subplot(121), plot(v,O) >>subplot(122), stem(v,O) >>m2=[-5:0.5:5;-4:0.5:6 ;-3:0.5:7]; >>O=hardlim(m2); >>subplot(121), plot(v,O) >>subplot(122), stem(v,O) Sistemas Inteligentes y Redes Neuronales - Prof. Ing. José C. Benítez P. 7
  • 8. b) Función de activación Escalón. Utilizada en redes Perceptron. Se obtiene salidas de valores [-1,1]. Se usa el comando: >>Y=hardlims(v) Ejemplo: >>v=-10:0.5:10; >>subplot(121), plot(v); >>subplot(122), stem(v); >>O=hardlims(v); >>subplot(121), plot(v,O) >>subplot(122), stem(v,O) >>m=[-5:0.5:5;-4:0.5:6]; >>O=hardlims(m); >>subplot(121), plot(v,O) >>subplot(122), stem(v,O) >>m2=[-5:0.5:5;-4:0.5:6 ;-3:0.5:7]; >>O=hardlims(m2); >>subplot(121), plot(v,O) >>subplot(122), stem(v,O) Sistemas Inteligentes y Redes Neuronales - Prof. Ing. José C. Benítez P. 8
  • 9. Para las siguientes funciones de activación utilizar los vectores de entrada mostrados: >>v=-10:0.5:10; >>m=[-5:0.5:5;-4:0.5:6]; >>m2=[-5:0.5:5;-4:0.5:6 ;-3:0.5:7]; Graficar las entradas y las salidas respectivamente. Sistemas Inteligentes y Redes Neuronales - Prof. Ing. José C. Benítez P. 9
  • 10. c) Función de activación Lineal. Utilizada en redes adaline o en la última capa de las MLP. La salida es igual que la entrada, se obtiene con el comando: >>Y=purelin(v) d) Función de activación Gaussiana. Utilizada en redes de base radial La respuesta es de una función gaussiana, utilizamos el comando : >>Y=radbas(v) Sistemas Inteligentes y Redes Neuronales - Prof. Ing. José C. Benítez P. 10
  • 11. e) Función de activación no Lineal. Para la salida [0,1], función sigmoide logaritmica, utilizamos el comando : >>Y=logsig(v) Para la salida [-1,1], función tangente sigmoidal hiperbólica, utilizamos el comando : >>Y=tansig(v) Sistemas Inteligentes y Redes Neuronales - Prof. Ing. José C. Benítez P. 11
  • 12. f) Función de activación Saturación. Utilizada en las redes Hopfield Para la salida de valores [0,1], utilizamos el comando : >>Y=satlin(v) Para la salida de valores [-1,1], utilizamos el comando : >>Y=satlins(v) Sistemas Inteligentes y Redes Neuronales - Prof. Ing. José C. Benítez P. 12
  • 13. Tarea Utilizar vectores cuadráticos, rampa, ruido y pulso (cada una centrado en el eje Y) para cada una de las funciones de activación desarrolladas en este laboratorio. Mediante MatLab graficar el vector de entrada y la salida. Sistemas Inteligentes y Redes Neuronales - Prof. Ing. José C. Benítez P. 13
  • 14. Informe de Laboratorio El Informe de Laboratorio es un documento gráfico en lo posible y es redactado en Word con el desarrollo del laboratorio. Niveles de Informe: Primer nivel: Observaciones. Imágenes con comentarios cortos. Redactar al ir desarrollando el laboratorio. (Requiere desarrollar el laboratorio). Segundo nivel: Conclusiones. Redactar al terminar el laboratorio.(Requiere haber desarrollado el laboratorio). Tercer Nivel: Recomendaciones. (Requiere lectura de otras fuentes). Dentro de su Carpeta Personal del Dropbox crear una carpeta para el laboratorio 1 con el siguiente formato: SIRN_PaternoM_Lab1 Adjuntar fuentes que le han ayudado en esta carpeta creada. Las fuentes deben conservar el nombre original de archivo y se debe agregar _L1 al final. Presentar el Informe de Laboratorio 1 en esta carpeta creada. Sistemas Inteligentes y Redes Neuronales - Prof. Ing. José C. Benítez P. 14
  • 15. Lab1. Funciones de activación de las RNAs. http://utpsirn.blogspot.com Sistemas Inteligentes y Redes Neuronales - Prof. Ing. José C. Benítez P. 15