SlideShare una empresa de Scribd logo
1 de 10
•Dopaje de
Semiconductores



Elaborado por Juan Martin Challanca Ramos
Semiconductores
Intrínsecos
 Semiconductor es un elemento que se comporta como un
 conductor o como aislante dependiendo de diversos factores,
 como por ejemplo el campo eléctrico o magnético, la presión, la
 radiación que le incide, o la temperatura del ambiente en el que
 se encuentre. Los elementos químicos semiconductores de la
 tabla periódica se indican en la tabla adjunta.




   http://es.wikipedia.org/wiki/Semiconductor
Semiconductores
Intrínsecos
El elemento semiconductor más usado es el silicio, el segundo el
germanio, aunque idéntico comportamiento presentan las
combinaciones de elementos de los grupos 12 y 13 con los de los
grupos 14 y 15 respectivamente (AsGa, PIn, AsGaAl, TeCd, SeCd y
SCd). Posteriormente se ha comenzado a emplear también el
azufre. La característica común a todos ellos es que son
tetravalentes, teniendo el silicio una configuración electrónica s²p².


Tipos de semiconductores



      http://es.wikipedia.org/wiki/Semiconductor
Semiconductores
 Intrínsecos
Semiconductores intrínsecos
Es un cristal de Silicio o Germanio que forma una estructura tetraédrica similar a la del carbono mediante
enlaces covalentes entre sus átomos, en la figura representados en el plano por simplicidad. Cuando el cristal
se encuentra a temperatura ambiente algunos electrones pueden absorber la energía necesaria para saltar a la
banda de conducción dejando el correspondiente hueco en la banda de valencia (1). Las energías requeridas, a
temperatura ambiente, son de 1,1 eV y 0,7 eV para el silicio y el germanio respectivamente.
Obviamente el proceso inverso también se produce, de modo que los electrones pueden caer, desde el estado
energético correspondiente a la banda de conducción, a un hueco en la banda de valencia liberando energía. A
este fenómeno se le denomina recombinación. Sucede que, a una determinada temperatura, las velocidades de
creación de pares e-h, y de recombinación se igualan, de modo que la concentración global de electrones y
huecos permanece constante. Siendo "n" la concentración de electrones (cargas negativas) y "p" la
concentración de huecos (cargas positivas), se cumple que:


ni = n = p
siendo ni la concentración intrínseca del semiconductor, función exclusiva de la temperatura y del tipo de
elemento.
Ejemplos de valores de ni a temperatura ambiente (27ºc):
ni(Si) = 1.5 1010cm-3 ni(Ge) = 2.5 1013cm-3 Los electrones y los huecos reciben el nombre de portadores. En los
semiconductores, ambos tipos de portadores contribuyen al paso de la corriente eléctrica. Si se somete el cristal
a una diferencia de potencial se producen dos corrientes eléctricas. Por un lado la debida al movimiento de los
electrones libres de la banda de conducción, y por otro, la debida al desplazamiento de los electrones en la
banda de valencia, que tenderán a saltar a los huecos próximos (2), originando una corriente de huecos con 4
capas ideales y en la dirección contraria al campo eléctrico cuya velocidad y magnitud es muy inferior a la de la
banda de conducción.

             http://es.wikipedia.org/wiki/Semiconductor
Semiconductores
Intrínsecos
Semiconductores extrínsecos
Si a un semiconductor intrínseco, como el anterior, se le añade un pequeño porcentaje de impurezas, es
decir, elementos trivalentes o pentavalentes, el semiconductor se denomina extrínseco, y se dice que está
dopado. Evidentemente, las impurezas deberán formar parte de la estructura cristalina sustituyendo al
correspondiente átomo de silicio. Hoy en dia se han logrado añadir impurezas de una parte por cada 10
millones, logrando con ello una modificación del material.




   http://es.wikipedia.org/wiki/Semiconductor
Dopaje de
Semiconductores
En la producción de semiconductores, se denomina dopaje al proceso
intencional de agregar impurezas en un semiconductor extremadamente
puro (también referido como intrínseco) con el fin de cambiar sus
propiedades eléctricas. Las impurezas utilizadas dependen del tipo de
semiconductores a dopar. A los semiconductores con dopajes ligeros y
moderados se los conoce como extrínsecos. Un semiconductor
altamente dopado, que actúa más como un conductor que como un
semiconductor, es llamado degenerado.
El número de átomos dopantes necesitados para crear una diferencia en
las capacidades conductoras de un semiconductor es muy pequeña.
Cuando se agregan un pequeño número de átomos dopantes (en el
orden de 1 cada 100.000.000 de átomos) entonces se dice que el dopaje
es bajo o ligero. Cuando se agregan muchos más átomos (en el orden
de 1 cada 10.000 átomos) entonces se dice que el dopaje es alto o
pesado. Este dopaje pesado se representa con la nomenclatura N+ para
material de tipo N, o P+ para material de tipo P.

http://es.wikipedia.org/wiki/Dopaje_(semiconductores)
Dopaje de
Semiconductores
Elementos dopantes
Semiconductores de Grupo IV
Para los semiconductores del Grupo IV como Silicio, Germanio y Carburo de silicio,
los dopantes más comunes son elementos del Grupo III o del Grupo V. Boro,
Arsénico, Fósforo, y ocasionalmente Galio, son utilizados para dopar al Silicio.
Tipos de materiales dopantes
TIPO N
Se llama material tipo N al que posee átomos de impurezas que permiten
la aparición de electrones sin huecos asociados a los mismos. Los átomos
de este tipo se llaman donantes ya que "donan" o entregan electrones.
Suelen ser de valencia cinco, como el Arsénico y el Fósforo. De esta
forma, no se ha desbalanceado la neutralidad eléctrica, ya que el átomo
introducido al semiconductor es neutro, pero posee un electrón no ligado,
a diferencia de los átomos que conforman la estructura original, por lo que
la energía necesaria para separarlo del átomo será menor que la
necesitada para romper una ligadura en el cristal de silicio (o del
semiconductor original). Finalmente, existirán más electrones que huecos,
por lo que los primeros serán los portadores mayoritarios y los últimos los
minoritarios. La cantidad de portadores mayoritarios será función directa
de la cantidad de átomos de impurezas introducidos.

      http://es.wikipedia.org/wiki/Dopaje_(semiconductores)
El siguiente es un ejemplo de dopaje de Silicio por el Fósforo (dopaje N).
En el caso del Fósforo, se dona un electrón.




               http://es.wikipedia.org/wiki/Dopaje_(semiconductores)
Dopaje de
  Semiconductores
Tipo de Materiales Dopantes: Tipo P
Se llama así al material que tiene átomos de impurezas que permiten la formación
de huecos sin que aparezcan electrones asociados a los mismos, como ocurre al
romperse una ligadura. Los átomos de este tipo se llaman aceptores, ya que
"aceptan" o toman un electrón. Suelen ser de valencia tres, como el Aluminio, el
Indio o el Galio. Nuevamente, el átomo introducido es neutro, por lo que no
modificará la neutralidad eléctrica del cristal, pero debido a que solo tiene tres
electrones en su última capa de valencia, aparecerá una ligadura rota, que tenderá
a tomar electrones de los átomos próximos, generando finalmente más huecos que
electrones, por lo que los primeros serán los portadores mayoritarios y los
segundos los minoritarios. Al igual que en el material tipo N, la cantidad de
portadores mayoritarios será función directa de la cantidad de átomos de
impurezas introducidos.
El siguiente es un ejemplo de dopaje de Silicio por el Boro (P dopaje). En el caso
del boro le falta un electrón y, por tanto, es donado un hueco de electrón.




                  http://es.wikipedia.org/wiki/Dopaje_(semiconductores)
Dopaje de
Semiconductores




     http://es.wikipedia.org/wiki/Dopaje_(semiconductores)

Más contenido relacionado

La actualidad más candente

Semiconductores intrinsecos y dopados
Semiconductores intrinsecos y dopadosSemiconductores intrinsecos y dopados
Semiconductores intrinsecos y dopadosRj69Vc19
 
Diodos semiconductores
Diodos semiconductoresDiodos semiconductores
Diodos semiconductoresTensor
 
Los semiconductores intrínsecos y los semiconductores dopados
Los semiconductores intrínsecos y los semiconductores dopadosLos semiconductores intrínsecos y los semiconductores dopados
Los semiconductores intrínsecos y los semiconductores dopadosFederico Froebel
 
Semiconductores intrínsecos y dopados listo
Semiconductores intrínsecos y dopados listoSemiconductores intrínsecos y dopados listo
Semiconductores intrínsecos y dopados listoeny3ll
 
Semiconductores
 Semiconductores Semiconductores
Semiconductoresjuan medina
 
Semiconductores intrinsecos y extrinsecos
Semiconductores intrinsecos y extrinsecosSemiconductores intrinsecos y extrinsecos
Semiconductores intrinsecos y extrinsecosBasTH
 
Los semiconductores intrínsecos y los semiconductores extrínsecos (dopado)
Los semiconductores intrínsecos y los semiconductores  extrínsecos (dopado)Los semiconductores intrínsecos y los semiconductores  extrínsecos (dopado)
Los semiconductores intrínsecos y los semiconductores extrínsecos (dopado)rafael1414
 
Semiconductores INTRINSICO Y DOPADOS
Semiconductores INTRINSICO Y DOPADOSSemiconductores INTRINSICO Y DOPADOS
Semiconductores INTRINSICO Y DOPADOSOscar Cruz
 

La actualidad más candente (20)

Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores intrinsecos y dopados
Semiconductores intrinsecos y dopadosSemiconductores intrinsecos y dopados
Semiconductores intrinsecos y dopados
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Diodos semiconductores
Diodos semiconductoresDiodos semiconductores
Diodos semiconductores
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Los semiconductores intrínsecos y los semiconductores dopados
Los semiconductores intrínsecos y los semiconductores dopadosLos semiconductores intrínsecos y los semiconductores dopados
Los semiconductores intrínsecos y los semiconductores dopados
 
Semiconductores intrínsecos y dopados listo
Semiconductores intrínsecos y dopados listoSemiconductores intrínsecos y dopados listo
Semiconductores intrínsecos y dopados listo
 
Semiconductores
 Semiconductores Semiconductores
Semiconductores
 
Tarea semiconductores
Tarea semiconductoresTarea semiconductores
Tarea semiconductores
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores intrinsecos y extrinsecos
Semiconductores intrinsecos y extrinsecosSemiconductores intrinsecos y extrinsecos
Semiconductores intrinsecos y extrinsecos
 
Los semiconductores intrínsecos y los semiconductores extrínsecos (dopado)
Los semiconductores intrínsecos y los semiconductores  extrínsecos (dopado)Los semiconductores intrínsecos y los semiconductores  extrínsecos (dopado)
Los semiconductores intrínsecos y los semiconductores extrínsecos (dopado)
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores INTRINSICO Y DOPADOS
Semiconductores INTRINSICO Y DOPADOSSemiconductores INTRINSICO Y DOPADOS
Semiconductores INTRINSICO Y DOPADOS
 
-Semiconductores-
-Semiconductores- -Semiconductores-
-Semiconductores-
 
Semiconductores Intrínsecos y Dopados
Semiconductores Intrínsecos y DopadosSemiconductores Intrínsecos y Dopados
Semiconductores Intrínsecos y Dopados
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 

Similar a Dopaje de semiconductores: agregar impurezas para cambiar propiedades eléctricas

Similar a Dopaje de semiconductores: agregar impurezas para cambiar propiedades eléctricas (20)

Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores..
Semiconductores..Semiconductores..
Semiconductores..
 
Semiconductores..
Semiconductores..Semiconductores..
Semiconductores..
 
Semiconductores intrinsecos y los dopados
Semiconductores intrinsecos y los dopadosSemiconductores intrinsecos y los dopados
Semiconductores intrinsecos y los dopados
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores intrinsecos y dopados
Semiconductores intrinsecos y dopadosSemiconductores intrinsecos y dopados
Semiconductores intrinsecos y dopados
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores intrínsecos y dopados
Semiconductores intrínsecos y dopadosSemiconductores intrínsecos y dopados
Semiconductores intrínsecos y dopados
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Wilson s turpo condori
Wilson s turpo condoriWilson s turpo condori
Wilson s turpo condori
 
Los semiconductores intrínsecos y los semiconductores dopados
Los semiconductores intrínsecos y los semiconductores dopadosLos semiconductores intrínsecos y los semiconductores dopados
Los semiconductores intrínsecos y los semiconductores dopados
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Semiconductoresss
SemiconductoresssSemiconductoresss
Semiconductoresss
 
Semicnoductores
SemicnoductoresSemicnoductores
Semicnoductores
 

Último

SINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptx
SINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptxSINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptx
SINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptxlclcarmen
 
Fundamentos y Principios de Psicopedagogía..pdf
Fundamentos y Principios de Psicopedagogía..pdfFundamentos y Principios de Psicopedagogía..pdf
Fundamentos y Principios de Psicopedagogía..pdfsamyarrocha1
 
LINEAMIENTOS INICIO DEL AÑO LECTIVO 2024-2025.pptx
LINEAMIENTOS INICIO DEL AÑO LECTIVO 2024-2025.pptxLINEAMIENTOS INICIO DEL AÑO LECTIVO 2024-2025.pptx
LINEAMIENTOS INICIO DEL AÑO LECTIVO 2024-2025.pptxdanalikcruz2000
 
Clasificaciones, modalidades y tendencias de investigación educativa.
Clasificaciones, modalidades y tendencias de investigación educativa.Clasificaciones, modalidades y tendencias de investigación educativa.
Clasificaciones, modalidades y tendencias de investigación educativa.José Luis Palma
 
Procesos Didácticos en Educación Inicial .pptx
Procesos Didácticos en Educación Inicial .pptxProcesos Didácticos en Educación Inicial .pptx
Procesos Didácticos en Educación Inicial .pptxMapyMerma1
 
Uses of simple past and time expressions
Uses of simple past and time expressionsUses of simple past and time expressions
Uses of simple past and time expressionsConsueloSantana3
 
c3.hu3.p1.p3.El ser humano como ser histórico.pptx
c3.hu3.p1.p3.El ser humano como ser histórico.pptxc3.hu3.p1.p3.El ser humano como ser histórico.pptx
c3.hu3.p1.p3.El ser humano como ser histórico.pptxMartín Ramírez
 
CIENCIAS NATURALES 4 TO ambientes .docx
CIENCIAS NATURALES 4 TO  ambientes .docxCIENCIAS NATURALES 4 TO  ambientes .docx
CIENCIAS NATURALES 4 TO ambientes .docxAgustinaNuez21
 
TUTORIA II - CIRCULO DORADO UNIVERSIDAD CESAR VALLEJO
TUTORIA II - CIRCULO DORADO UNIVERSIDAD CESAR VALLEJOTUTORIA II - CIRCULO DORADO UNIVERSIDAD CESAR VALLEJO
TUTORIA II - CIRCULO DORADO UNIVERSIDAD CESAR VALLEJOweislaco
 
c3.hu3.p1.p2.El ser humano y el sentido de su existencia.pptx
c3.hu3.p1.p2.El ser humano y el sentido de su existencia.pptxc3.hu3.p1.p2.El ser humano y el sentido de su existencia.pptx
c3.hu3.p1.p2.El ser humano y el sentido de su existencia.pptxMartín Ramírez
 
VOLUMEN 1 COLECCION PRODUCCION BOVINA . SERIE SANIDAD ANIMAL
VOLUMEN 1 COLECCION PRODUCCION BOVINA . SERIE SANIDAD ANIMALVOLUMEN 1 COLECCION PRODUCCION BOVINA . SERIE SANIDAD ANIMAL
VOLUMEN 1 COLECCION PRODUCCION BOVINA . SERIE SANIDAD ANIMALEDUCCUniversidadCatl
 
PLANIFICACION ANUAL 2024 - INICIAL UNIDOCENTE.docx
PLANIFICACION ANUAL 2024 - INICIAL UNIDOCENTE.docxPLANIFICACION ANUAL 2024 - INICIAL UNIDOCENTE.docx
PLANIFICACION ANUAL 2024 - INICIAL UNIDOCENTE.docxJUANSIMONPACHIN
 
RAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIA
RAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIARAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIA
RAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIACarlos Campaña Montenegro
 
NARRACIONES SOBRE LA VIDA DEL GENERAL ELOY ALFARO
NARRACIONES SOBRE LA VIDA DEL GENERAL ELOY ALFARONARRACIONES SOBRE LA VIDA DEL GENERAL ELOY ALFARO
NARRACIONES SOBRE LA VIDA DEL GENERAL ELOY ALFAROJosé Luis Palma
 
Día de la Madre Tierra-1.pdf día mundial
Día de la Madre Tierra-1.pdf día mundialDía de la Madre Tierra-1.pdf día mundial
Día de la Madre Tierra-1.pdf día mundialpatriciaines1993
 

Último (20)

VISITA À PROTEÇÃO CIVIL _
VISITA À PROTEÇÃO CIVIL                  _VISITA À PROTEÇÃO CIVIL                  _
VISITA À PROTEÇÃO CIVIL _
 
Repaso Pruebas CRECE PR 2024. Ciencia General
Repaso Pruebas CRECE PR 2024. Ciencia GeneralRepaso Pruebas CRECE PR 2024. Ciencia General
Repaso Pruebas CRECE PR 2024. Ciencia General
 
SINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptx
SINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptxSINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptx
SINTAXIS DE LA ORACIÓN SIMPLE 2023-2024.pptx
 
Fundamentos y Principios de Psicopedagogía..pdf
Fundamentos y Principios de Psicopedagogía..pdfFundamentos y Principios de Psicopedagogía..pdf
Fundamentos y Principios de Psicopedagogía..pdf
 
LINEAMIENTOS INICIO DEL AÑO LECTIVO 2024-2025.pptx
LINEAMIENTOS INICIO DEL AÑO LECTIVO 2024-2025.pptxLINEAMIENTOS INICIO DEL AÑO LECTIVO 2024-2025.pptx
LINEAMIENTOS INICIO DEL AÑO LECTIVO 2024-2025.pptx
 
Clasificaciones, modalidades y tendencias de investigación educativa.
Clasificaciones, modalidades y tendencias de investigación educativa.Clasificaciones, modalidades y tendencias de investigación educativa.
Clasificaciones, modalidades y tendencias de investigación educativa.
 
Procesos Didácticos en Educación Inicial .pptx
Procesos Didácticos en Educación Inicial .pptxProcesos Didácticos en Educación Inicial .pptx
Procesos Didácticos en Educación Inicial .pptx
 
Uses of simple past and time expressions
Uses of simple past and time expressionsUses of simple past and time expressions
Uses of simple past and time expressions
 
c3.hu3.p1.p3.El ser humano como ser histórico.pptx
c3.hu3.p1.p3.El ser humano como ser histórico.pptxc3.hu3.p1.p3.El ser humano como ser histórico.pptx
c3.hu3.p1.p3.El ser humano como ser histórico.pptx
 
CIENCIAS NATURALES 4 TO ambientes .docx
CIENCIAS NATURALES 4 TO  ambientes .docxCIENCIAS NATURALES 4 TO  ambientes .docx
CIENCIAS NATURALES 4 TO ambientes .docx
 
TUTORIA II - CIRCULO DORADO UNIVERSIDAD CESAR VALLEJO
TUTORIA II - CIRCULO DORADO UNIVERSIDAD CESAR VALLEJOTUTORIA II - CIRCULO DORADO UNIVERSIDAD CESAR VALLEJO
TUTORIA II - CIRCULO DORADO UNIVERSIDAD CESAR VALLEJO
 
Tema 7.- E-COMMERCE SISTEMAS DE INFORMACION.pdf
Tema 7.- E-COMMERCE SISTEMAS DE INFORMACION.pdfTema 7.- E-COMMERCE SISTEMAS DE INFORMACION.pdf
Tema 7.- E-COMMERCE SISTEMAS DE INFORMACION.pdf
 
Sesión La luz brilla en la oscuridad.pdf
Sesión  La luz brilla en la oscuridad.pdfSesión  La luz brilla en la oscuridad.pdf
Sesión La luz brilla en la oscuridad.pdf
 
c3.hu3.p1.p2.El ser humano y el sentido de su existencia.pptx
c3.hu3.p1.p2.El ser humano y el sentido de su existencia.pptxc3.hu3.p1.p2.El ser humano y el sentido de su existencia.pptx
c3.hu3.p1.p2.El ser humano y el sentido de su existencia.pptx
 
VOLUMEN 1 COLECCION PRODUCCION BOVINA . SERIE SANIDAD ANIMAL
VOLUMEN 1 COLECCION PRODUCCION BOVINA . SERIE SANIDAD ANIMALVOLUMEN 1 COLECCION PRODUCCION BOVINA . SERIE SANIDAD ANIMAL
VOLUMEN 1 COLECCION PRODUCCION BOVINA . SERIE SANIDAD ANIMAL
 
PPTX: La luz brilla en la oscuridad.pptx
PPTX: La luz brilla en la oscuridad.pptxPPTX: La luz brilla en la oscuridad.pptx
PPTX: La luz brilla en la oscuridad.pptx
 
PLANIFICACION ANUAL 2024 - INICIAL UNIDOCENTE.docx
PLANIFICACION ANUAL 2024 - INICIAL UNIDOCENTE.docxPLANIFICACION ANUAL 2024 - INICIAL UNIDOCENTE.docx
PLANIFICACION ANUAL 2024 - INICIAL UNIDOCENTE.docx
 
RAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIA
RAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIARAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIA
RAIZ CUADRADA Y CUBICA PARA NIÑOS DE PRIMARIA
 
NARRACIONES SOBRE LA VIDA DEL GENERAL ELOY ALFARO
NARRACIONES SOBRE LA VIDA DEL GENERAL ELOY ALFARONARRACIONES SOBRE LA VIDA DEL GENERAL ELOY ALFARO
NARRACIONES SOBRE LA VIDA DEL GENERAL ELOY ALFARO
 
Día de la Madre Tierra-1.pdf día mundial
Día de la Madre Tierra-1.pdf día mundialDía de la Madre Tierra-1.pdf día mundial
Día de la Madre Tierra-1.pdf día mundial
 

Dopaje de semiconductores: agregar impurezas para cambiar propiedades eléctricas

  • 1. •Dopaje de Semiconductores Elaborado por Juan Martin Challanca Ramos
  • 2. Semiconductores Intrínsecos Semiconductor es un elemento que se comporta como un conductor o como aislante dependiendo de diversos factores, como por ejemplo el campo eléctrico o magnético, la presión, la radiación que le incide, o la temperatura del ambiente en el que se encuentre. Los elementos químicos semiconductores de la tabla periódica se indican en la tabla adjunta. http://es.wikipedia.org/wiki/Semiconductor
  • 3. Semiconductores Intrínsecos El elemento semiconductor más usado es el silicio, el segundo el germanio, aunque idéntico comportamiento presentan las combinaciones de elementos de los grupos 12 y 13 con los de los grupos 14 y 15 respectivamente (AsGa, PIn, AsGaAl, TeCd, SeCd y SCd). Posteriormente se ha comenzado a emplear también el azufre. La característica común a todos ellos es que son tetravalentes, teniendo el silicio una configuración electrónica s²p². Tipos de semiconductores http://es.wikipedia.org/wiki/Semiconductor
  • 4. Semiconductores Intrínsecos Semiconductores intrínsecos Es un cristal de Silicio o Germanio que forma una estructura tetraédrica similar a la del carbono mediante enlaces covalentes entre sus átomos, en la figura representados en el plano por simplicidad. Cuando el cristal se encuentra a temperatura ambiente algunos electrones pueden absorber la energía necesaria para saltar a la banda de conducción dejando el correspondiente hueco en la banda de valencia (1). Las energías requeridas, a temperatura ambiente, son de 1,1 eV y 0,7 eV para el silicio y el germanio respectivamente. Obviamente el proceso inverso también se produce, de modo que los electrones pueden caer, desde el estado energético correspondiente a la banda de conducción, a un hueco en la banda de valencia liberando energía. A este fenómeno se le denomina recombinación. Sucede que, a una determinada temperatura, las velocidades de creación de pares e-h, y de recombinación se igualan, de modo que la concentración global de electrones y huecos permanece constante. Siendo "n" la concentración de electrones (cargas negativas) y "p" la concentración de huecos (cargas positivas), se cumple que: ni = n = p siendo ni la concentración intrínseca del semiconductor, función exclusiva de la temperatura y del tipo de elemento. Ejemplos de valores de ni a temperatura ambiente (27ºc): ni(Si) = 1.5 1010cm-3 ni(Ge) = 2.5 1013cm-3 Los electrones y los huecos reciben el nombre de portadores. En los semiconductores, ambos tipos de portadores contribuyen al paso de la corriente eléctrica. Si se somete el cristal a una diferencia de potencial se producen dos corrientes eléctricas. Por un lado la debida al movimiento de los electrones libres de la banda de conducción, y por otro, la debida al desplazamiento de los electrones en la banda de valencia, que tenderán a saltar a los huecos próximos (2), originando una corriente de huecos con 4 capas ideales y en la dirección contraria al campo eléctrico cuya velocidad y magnitud es muy inferior a la de la banda de conducción. http://es.wikipedia.org/wiki/Semiconductor
  • 5. Semiconductores Intrínsecos Semiconductores extrínsecos Si a un semiconductor intrínseco, como el anterior, se le añade un pequeño porcentaje de impurezas, es decir, elementos trivalentes o pentavalentes, el semiconductor se denomina extrínseco, y se dice que está dopado. Evidentemente, las impurezas deberán formar parte de la estructura cristalina sustituyendo al correspondiente átomo de silicio. Hoy en dia se han logrado añadir impurezas de una parte por cada 10 millones, logrando con ello una modificación del material. http://es.wikipedia.org/wiki/Semiconductor
  • 6. Dopaje de Semiconductores En la producción de semiconductores, se denomina dopaje al proceso intencional de agregar impurezas en un semiconductor extremadamente puro (también referido como intrínseco) con el fin de cambiar sus propiedades eléctricas. Las impurezas utilizadas dependen del tipo de semiconductores a dopar. A los semiconductores con dopajes ligeros y moderados se los conoce como extrínsecos. Un semiconductor altamente dopado, que actúa más como un conductor que como un semiconductor, es llamado degenerado. El número de átomos dopantes necesitados para crear una diferencia en las capacidades conductoras de un semiconductor es muy pequeña. Cuando se agregan un pequeño número de átomos dopantes (en el orden de 1 cada 100.000.000 de átomos) entonces se dice que el dopaje es bajo o ligero. Cuando se agregan muchos más átomos (en el orden de 1 cada 10.000 átomos) entonces se dice que el dopaje es alto o pesado. Este dopaje pesado se representa con la nomenclatura N+ para material de tipo N, o P+ para material de tipo P. http://es.wikipedia.org/wiki/Dopaje_(semiconductores)
  • 7. Dopaje de Semiconductores Elementos dopantes Semiconductores de Grupo IV Para los semiconductores del Grupo IV como Silicio, Germanio y Carburo de silicio, los dopantes más comunes son elementos del Grupo III o del Grupo V. Boro, Arsénico, Fósforo, y ocasionalmente Galio, son utilizados para dopar al Silicio. Tipos de materiales dopantes TIPO N Se llama material tipo N al que posee átomos de impurezas que permiten la aparición de electrones sin huecos asociados a los mismos. Los átomos de este tipo se llaman donantes ya que "donan" o entregan electrones. Suelen ser de valencia cinco, como el Arsénico y el Fósforo. De esta forma, no se ha desbalanceado la neutralidad eléctrica, ya que el átomo introducido al semiconductor es neutro, pero posee un electrón no ligado, a diferencia de los átomos que conforman la estructura original, por lo que la energía necesaria para separarlo del átomo será menor que la necesitada para romper una ligadura en el cristal de silicio (o del semiconductor original). Finalmente, existirán más electrones que huecos, por lo que los primeros serán los portadores mayoritarios y los últimos los minoritarios. La cantidad de portadores mayoritarios será función directa de la cantidad de átomos de impurezas introducidos. http://es.wikipedia.org/wiki/Dopaje_(semiconductores)
  • 8. El siguiente es un ejemplo de dopaje de Silicio por el Fósforo (dopaje N). En el caso del Fósforo, se dona un electrón. http://es.wikipedia.org/wiki/Dopaje_(semiconductores)
  • 9. Dopaje de Semiconductores Tipo de Materiales Dopantes: Tipo P Se llama así al material que tiene átomos de impurezas que permiten la formación de huecos sin que aparezcan electrones asociados a los mismos, como ocurre al romperse una ligadura. Los átomos de este tipo se llaman aceptores, ya que "aceptan" o toman un electrón. Suelen ser de valencia tres, como el Aluminio, el Indio o el Galio. Nuevamente, el átomo introducido es neutro, por lo que no modificará la neutralidad eléctrica del cristal, pero debido a que solo tiene tres electrones en su última capa de valencia, aparecerá una ligadura rota, que tenderá a tomar electrones de los átomos próximos, generando finalmente más huecos que electrones, por lo que los primeros serán los portadores mayoritarios y los segundos los minoritarios. Al igual que en el material tipo N, la cantidad de portadores mayoritarios será función directa de la cantidad de átomos de impurezas introducidos. El siguiente es un ejemplo de dopaje de Silicio por el Boro (P dopaje). En el caso del boro le falta un electrón y, por tanto, es donado un hueco de electrón. http://es.wikipedia.org/wiki/Dopaje_(semiconductores)
  • 10. Dopaje de Semiconductores http://es.wikipedia.org/wiki/Dopaje_(semiconductores)