SlideShare una empresa de Scribd logo
1 de 61
Descargar para leer sin conexión
Energía Solar Térmica
Manual técnico para termas solares

Autores
M. Sc. Ing. Carlos Orbegozo
Ing. Roberto Arivilca

2010

1

Proyecto ID 772: Promoviendo mercados locales articulados de energías renovables

Green Energy Consultoría y Servicios SRL ©
ENERGIA SOLAR TÉRMICA
Manual técnico para termas solares

Módulo Básico

Proyecto ID 772: Promoviendo mercados locales articulados de energías renovables

2
PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

La publicación del presente documento ha sido posible gracias a la ayuda financiera del
Deutscher Entwicklungsdienst (DED). El contenido es responsabilidad exclusiva de GREEN
ENERGY y no se debe considerar como opinión del DED.
GREEN ENERGY desea que la información existente en el presente documento sirva para el
desarrollo profesional de los (las) lectores (lectoras).

Proyecto ID 772: Promoviendo mercados locales articulados de energías renovables

3
CLÁUSULA DE EXENCIÓN DE RESPONSABILIDAD
Mediante el presente documento, GREEN ENERGY pretende difundir conceptos básicos sobre la
tecnología de los calentadores (termas) solares de agua y su utilización con respeto al medio
ambiente, dentro del contexto social y económico de los países involucrados. Trataremos de corregir
los errores que se nos señalen, aplicando el concepto de la mejora continua.
No obstante, GREEN ENERGY no asume responsabilidad alguna en relación con el contenido de las
siguientes páginas, puesto que:




consiste únicamente en información básica que no aborda circunstancias específicas relativas
a los componentes y sistemas analizados;
contiene en algunas ocasiones enlaces a páginas externas sobre las que las actividades de
GREEN ENERGY no tienen control alguno y respecto de las cuales declina toda
responsabilidad;
no ofrece asesoría profesional o jurídica (si desea efectuar una consulta de este tipo, diríjase
siempre a un profesional debidamente calificado).

Pretendemos reducir al mínimo los problemas ocasionados por errores de carácter técnico. Sin
embargo, algunos datos o informaciones contenidas en las siguientes páginas pueden haber sido
creados o estructurados en archivos o formatos no exentos de errores, por lo que no podemos
garantizar que nuestro servicio no quede interrumpido o afectado de cualquier otra forma por tales
problemas. GREEN ENERGY no asume responsabilidad alguna respecto de dichos problemas, que
puedan resultar de la consulta de las presentes páginas.
La presente cláusula de exención de responsabilidad no tiene por objeto limitar la responsabilidad de
GREEN ENERGY de forma contraria a lo dispuesto por las normativas nacionales aplicables, ni excluir
su responsabilidad en los casos en los que, en virtud de dichas normativas, no pueda excluirse.

Proyecto ID 772: Promoviendo mercados locales articulados de energías renovables

4
TABLA DE CONTENIDOS
1.

PRÓLOGO ................................................................................................................................................ 7

2.

GLOSARIO DE TÉRMINOS TÉCNICOS ........................................................................................................ 8

3.

INTRODUCCIÓN ..................................................................................................................................... 12
3.1
3.2
3.3

4.

EL SOL: RECURSO ENERGÉTICO .............................................................................................................. 16
4.1
4.2
4.3
4.4
4.5
4.6
4.7

5.

CÁLCULO DEL CONSUMO DE AGUA CALIENTE Y DEL PATRÓN DE DEMANDA ................................................................33
DISEÑO DE UNA TERMA SOLAR .........................................................................................................................33
TAMAÑO DEL TANQUE DE ALMACENAMIENTO .....................................................................................................34
EFICIENCIA DE UN SISTEMA..............................................................................................................................35
PÉRDIDA DE CALOR EN UNA TERMA SOLAR..........................................................................................................35

INSTALACIÓN DE UNA TERMA SOLAR ................................................................................................... 37
7.1
7.2
7.3
7.4

8.

TERMA SOLAR CON CIRCULACIÓN NATURAL: EFECTO TERMOSIFÓN ..........................................................................22
TERMA SOLAR DE CIRCULACIÓN FORZADA...........................................................................................................22
EL COLECTOR................................................................................................................................................23
TANQUE DE ALMACENAMIENTO, USO DEL AGUA Y ABASTECIMIENTO DE AGUA CALIENTE ..............................................29
CONEXIÓN ENTRE EL TANQUE DE ALMACENAMIENTO Y EL COLECTOR .......................................................................30

DISEÑO Y DIMENSIONAMIENTO DE UNA TERMA SOLAR ....................................................................... 33
6.1
6.2
6.3
6.4
6.5

7.

FLUCTUACIONES DIARIAS Y ESTACIONALES ..........................................................................................................16
RADIACIÓN SOLAR EN UN LUGAR ESPECÍFICO (INCLINACIÓN, ORIENTACIÓN) ..............................................................17
SOMBRAS Y REFLEJOS .....................................................................................................................................18
UNIDADES ...................................................................................................................................................19
INSTRUMENTOS DE MEDICIÓN .........................................................................................................................20
MIDIENDO LA RADIACIÓN TOTAL ......................................................................................................................20
CONCLUSIONES ............................................................................................................................................20

¿COMO OPERA UNA TERMA SOLAR? .................................................................................................... 22
5.1
5.2
5.3
5.4
5.5

6.

¿QUÉ ES LA ENERGÍA SOLAR TÉRMICA? ..............................................................................................................12
APLICACIONES ..............................................................................................................................................12
POSIBILIDADES Y LIMITACIONES ........................................................................................................................15

INSTALACIÓN DE UNA TERMA SOLAR .................................................................................................................37
INSPECCIÓN DE UNA TERMA SOLAR INSTALADA ....................................................................................................38
MANTENIMIENTO DE UNA TERMA SOLAR (QUÉ HACER Y QUÉ NO HACER) ..................................................................38
GUÍA DE SOLUCIÓN DE PROBLEMAS...................................................................................................................39

CONSTRUCCIÓN DE UNA TERMA SOLAR SIMPLE ................................................................................... 42
8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9
8.10
8.11

DISEÑO DE LA TERMA SOLAR ...........................................................................................................................42
TRABAJOS DE PLOMERÍA DE LA RED DEL COLECTOR Y CONEXIÓN DE LAS ALETAS ..........................................................44
CONSTRUCCIÓN DE LA CAJA DE MADERA ............................................................................................................45
CONSTRUCCIÓN DEL TANQUE DE ALMACENAMIENTO Y DE LOS CONDUCTOS ..............................................................47
CONSTRUCCIÓN DE LA ESTRUCTURA DE SOPORTE .................................................................................................50
INSTALACIÓN DEL COLECTOR Y DEL TANQUE DE ALMACENAMIENTO .........................................................................51
INSTALACIÓN DEL COLECTOR............................................................................................................................52
INSTALACIÓN DEL TANQUE DE ALMACENAMIENTO DE AGUA ...................................................................................52
CONEXIÓN DEL COLECTOR, DEL TANQUE DE ALMACENAMIENTO Y DEL SUMINISTRO DE AGUA ........................................53
LLENADO DEL SISTEMA ..............................................................................................................................53
AISLAMIENTO Y FINALIZACIÓN DE LA TERMA SOLAR .........................................................................................54

Proyecto ID 772: Promoviendo mercados locales articulados de energías renovables

5
ANEXOS .......................................................................................................................................................... 56
ANEXO 1: LISTA DE VERIFICACIÓN PARA LA INSPECCIÓN DE TERMAS SOLARES ...............................................57
ANEXO 2: LEGISLACIÓN Y NORMATIVA Y RENOVABLE ......................................................................................61

Proyecto ID 772: Promoviendo mercados locales articulados de energías renovables

6
1. PRÓLOGO
El curso Energía solar térmica ha sido diseñado especialmente para el Proyecto ID/772. En él se
tratarán los aspectos teóricos y prácticos básicos de esta tecnología, utilizando un lenguaje sencillo y
acompañando cada tema con gráficos, tablas y fotos.
El objetivo principal del curso es poner a disposición de los interesados, un conocimiento básico
acerca de los fundamentos de la tecnología de los calentadores (termas) solares de agua a través de
un enfoque práctico del tema, desarrollando únicamente los puntos más relevantes del aspecto
teórico. De este modo, al finalizar el curso, el alumno habrá adquirido un conocimiento básico acerca
de la tecnología de estos sistemas, sus posibilidades, restricciones y aplicaciones. A su vez, será capaz
de dimensionar, instalar, inspeccionar y dar mantenimiento a calentadores solares de agua. Por
último, aprenderá a realizar mediciones y a detectar errores en el sistema.
¿Porqué estudiar la energía solar térmica?

Fuente: www.stinar.net

El calentamiento de agua mediante
energía solar es un sistema que permite
el ahorro de dinero, ya que a lo largo de
su vida útil, el combustible para que
funcione es cero.
Además, las termas solares son bastante
eficientes en lugares soleados como el
Perú.
El Estado peruano y la empresa privada
están moviendo el mercado para que
existan las condiciones necesarias para
masificar estos sistemas.

Figura 1: Termas solares en un techo

Entonces, existe hoy en día una demanda creciente de termas solares y la oferta aún no es
suficiente. Sobre todo de tecnología nacional que pueda competir sanamente con tecnología
extranjera. Este es un nicho que aún tiene mucho espacio para los fabricantes e instaladores de estos
sistemas.

Proyecto ID 772: Promoviendo mercados locales articulados de energías renovables

7
2. GLOSARIO DE TÉRMINOS TÉCNICOS
Debido a la gran diversidad de especialidades técnicas que utilizan el presente manual, es necesario
comenzar con una lista de definiciones que ayudarán a comprender mejor los términos técnicos
utilizados.
1. Aerodinámica: Es la parte de la física que trata el movimiento del aire y los efectos producidos
por su acción en los cuerpos.
2. Aerogenerador (turbina eólica): Dispositivo mediante el cual se puede llevar a cabo la captación
de la energía eólica para transformarla en energía eléctrica.
3. Aislamiento térmico: Aquellos materiales de bajo coeficiente de conductividad térmica, cuyo
empleo en los sistemas solares tiene por objeto reducir las pérdidas de calor.
4. Ángulo de inclinación del colector: Ángulo menor entre el plano de abertura de un colector solar
y el plano horizontal.
5. Área total del colector: Área máxima proyectada del colector completo, excluyendo cualquier
medio integral de montaje y de tuberías conectadas para transporte de fluido.
6. Área total de la red colectora (red colectora): Suma total de las áreas colectoras de los colectores
individuales.
7. Bombas de circulación: Dispositivo que produce el movimiento forzado de un fluido.
8. Calentador auxiliar: Dispositivo o equipo que suministra calor mediante combustible o energía
eléctrica.
9. Capacidad de almacenamiento solar: Cantidad de calor sensible por unidad de volumen que se
puede almacenar, por cada grado de cambio de temperatura.
10. Capacidad del dispositivo de almacenamiento: Volumen del fluido en el dispositivo de
almacenamiento, medido cuando está lleno.
11. Capacidad de entrega: Volumen de agua caliente que el sistema debe suministrar diariamente
para el consumo, en las condiciones de máxima demanda y a la temperatura máxima prevista.
12. Circulación por termosifón o natural: Movimiento del fluido de trabajo a través del sistema de
aprovechamiento de energía solar, inducido por la convección libre generada por la diferencia de
densidades del agua fría y el agua caliente.
13. Circulación forzada: Movimiento del fluido de trabajo a través del sistema de aprovechamiento
de energía solar, inducido por dispositivos externos o auxiliares.
14. Combustibles fósiles: Los combustibles fósiles convencionales son: carbón, petróleo, petróleo
diáfano, diesel, combustóleo, gasóleo, gas licuado de petróleo, butano, propano, metano,
isobutano, propileno, butileno, gas natural, o cualesquiera de sus combinaciones.
15. Componentes: Partes del sistema solar de calentamiento de agua incluyendo colectores,
dispositivo de almacenamiento, bombas, intercambiador de calor, controles, etc.
16. Colector solar; colector solar térmico: Dispositivo que absorbe la energía solar incidente, la
convierte en energía térmica y la transfiere al fluido que está en contacto con él. También
llamado Calentador Solar.
17. Colector, placa plana: Colector solar no concentrador, en el que la superficie de absorción es
esencialmente plana.
Proyecto ID 772: Promoviendo mercados locales articulados de energías renovables

8
18. Control: Dispositivo de regulación del sistema solar térmico o componente en funcionamiento
normal; puede ser manual o automático.
19. Cubierta del colector (colector solar): Material o materiales transparentes (o traslúcidos) que
cubren el absorbedor para reducir las pérdidas de calor y proporcionar protección ante la
intemperie.
20. Dispositivo de almacenamiento (térmico): Recipiente usado para almacenar energía térmica.
Incluye todos los elementos contenidos en él1.
21. Doméstico: Para uso residencial y pequeños edificios comerciales.
22. Energía auxiliar: Energía proporcionada mediante una fuente térmica (calor) auxiliar.
23. Energía solar disponible: Es la cantidad de radiación solar estimada a partir de mediciones hechas
en un lugar determinado, como un proceso diario (sobre cada mes) mensual.
24. Fuente térmica (calor) auxiliar: Fuente de energía térmica, diferente a la solar, usada para
complementar la salida suministrada por el sistema de energía solar; usualmente en la forma de
calor de resistencia eléctrica o energía térmica derivada de la combustión de combustibles
fósiles.
25. Fluido: Agua o cualquier otro medio utilizado para el transporte de energía en un sistema de
calentamiento de agua con la energía solar.
26. Fuente de calor auxiliar: Fuente de calor, diferente a la solar, usada para complementar la
producción suministrada por el sistema de calentamiento solar.
27. Instalador: Se refiere a la persona que realiza la instalación del Sistema y responde por esta
acción.
28. Intercambiador de calor: Dispositivo especialmente diseñado para transferir calor entre dos
fluidos físicamente separados. Los intercambiadores de calor pueden tener paredes simples o
dobles.
29. Manómetro: Dispositivo para medir la diferencia de presión entre un sistema y el medio
ambiente.
30. Montaje a ras: Instalación de un colector de modo que queda montado en el mismo plano que la
superficie del techo y nivelado de modo que la superficie del colector forme parte de la superficie
del techo.
31. Potable: Apropiada para consumo humano; bebible.
32. Presión máxima de operación: Aquella definida por el fabricante como la mayor presión de
trabajo para la cual fue diseñado el sistema de calentamiento de agua con energía solar.
33. Radiación solar (energía solar): Radiación emitida por el sol, prácticamente toda la que es
incidente en la superficie terrestre en longitudes de onda menores que 3 µm; a menudo llamada
radiación de onda corta.
34. Sistema: Se refiere al Sistema de Calentamiento de Agua con Energía Solar.
35. Sistema abierto: Sistema en que el fluido de transferencia de calor está en contacto permanente
con la atmósfera.
36. Sistema cerrado; sistema sellado; sistema sin ventilación: Sistema en que el fluido de
transferencia de calor no está en contacto con la atmósfera.
1

El fluido de transferencia y accesorios tales como intercambiadores de calor, dispositivos de conmutación de flujo, válvulas
y desviadores, firmemente fijos al o los recipientes de almacenamiento térmico, se consideran parte del dispositivo de
almacenamiento.
Proyecto ID 772: Promoviendo mercados locales articulados de energías renovables

9
37. Sistema circulante: Sistema en que el fluido de transferencia de calor circula entre el colector y el
dispositivo acumulador o el intercambiador de calor durante los períodos de funcionamiento2.
38. Sistema con almacenamiento cerrado – acoplado: Sistema en que el dispositivo acumulador está
montado directamente adyacente al colector.
39. Sistema conectado en serie: Sistema de calentamiento solar en que el fluido a calentar pasa
directamente desde un punto de suministro a través del colector a un dispositivo acumulador, o
a un calentador que emplea una fuente de calor auxiliar, o a un punto de uso.
40. Sistema convencional de calentamiento de agua: Equipo que se utiliza para calentar agua,
mediante la utilización de combustibles fósiles o electricidad.
41. Sistema de alivio de presión: Dispositivo de acción pasiva o activa que protege al sistema de
calentamiento de agua, de incrementos de presión que pudiesen comprometer su integridad
física u operacional.
42. Sistema de alivio de temperatura: Dispositivo de acción pasiva o activa que protege al sistema de
calentamiento de agua, de incrementos de temperatura que pudiesen comprometer su
integridad física u operacional.
43. Sistema de calentamiento de agua por medio del aprovechamiento de la energía solar: Conjunto
formado por el colector(es) solar(es), el termotanque o sistema de acumulación de agua caliente,
tuberías, accesorios, así como todos y cada uno de los componentes que permiten el
aprovechamiento de la radiación electromagnética emitida por el sol para el calentamiento de
agua.
44. Sistema de circulación forzada: Sistema que utiliza una bomba para hacer circular el fluido de
transferencia de calor a través del (de los) colector (es).
45. Sistema de drenado: Tapón o válvula que se utiliza para permitir la salida de los sedimentos o
partículas sólidas contenidas en el agua, de modo que se evite su acumulación.
46. Sistema de precalentamiento solar: Sistema de calentamiento solar para precalentar agua o aire,
previo a su entrada dentro de cualquier otro tipo de calentador de agua o aire.
47. Sistema directo: Sistema de calentamiento solar en que el agua calentada para consumo final o
circulado al usuario, pasa directamente a través del colector.
48. Sistema indirecto: Sistema de calentamiento solar en que un fluido de transferencia de calor,
diferente del agua para consumo, pasa directamente a través del colector.
49. Sistema solamente solar: Sistema de calentamiento solar sin ninguna fuente de calor auxiliar.
50. Sistema solar más suplementario: Sistema de calentamiento solar que utiliza en forma integrada
ambas fuentes de energía, solar y auxiliar, y que es capaz de proporcionar un servicio de
calentamiento específico, independiente de la disponibilidad de energía solar.
51. Sistema termosifón: Sistema que utiliza sólo los cambios de densidad del fluido de transferencia
de calor, para lograr la circulación entre el colector y el dispositivo acumulador o el colector y el
intercambiador de calor.
52. Sistema ventilado: Sistema en que el contacto entre el fluido de transferencia de calor y la
atmósfera está restringido a la superficie libre de una cisterna de alimentación y expansión o
solamente a una tubería abierta ventilada.
53. Temperatura, aire ambiente: Temperatura del aire alrededor de un dispositivo de
almacenamiento de energía térmica o colectores solares.
2

La circulación se lleva a cabo mediante una bomba, o mediante convección natural.
Proyecto ID 772: Promoviendo mercados locales articulados de energías renovables

10
54. Temperatura de entrada del fluido: Temperatura a la entrada del colector.
55. Transporte de fluidos: Transferencia de aire, agua u otro fluido entre componentes del sistema.
56. Temperatura de salida del fluido: Temperatura a la salida del colector.
57. Termotanque o sistema de acumulación de agua caliente: Depósito en el que se almacena el
fluido calentado mediante el aprovechamiento de la energía solar y que se utiliza para conservar
su temperatura con las menores pérdidas térmicas posibles.

Fuente: Norma Técnica Peruana NTP 399.482-2007, Sistemas de calentamiento de agua con energía
solar: Procedimientos para su instalación eficiente.

Proyecto ID 772: Promoviendo mercados locales articulados de energías renovables

11
3. INTRODUCCIÓN
3.1

¿Qué es la energía solar térmica?

En forma directa o indirecta, el trabajo diario de complejos y elegantes colectores solares, como son
las hojas de las plantas y árboles, nos proporciona alimento y produce combustible para que millones
de hogares en el mundo entero puedan cocinar, al igual que ha creado todas nuestras reservas de
combustibles fósiles en el pasado.
En el presente manual estudiaremos la generación de calor a partir de la energía solar, aprovechando
la radiación infrarroja. En el método de conversión a calor, la luz solar es absorbida por una superficie
de color negro, que por ende se calienta. A su vez, si aire o agua recorren o pasan a través de esta
superficie caliente, también se calentarán. De esta forma, el calor podrá ser transportado a donde
sea necesario. Este es, en resumen, el principio de conversión de la energía solar térmica.
3.2

Aplicaciones

En el caso de la energía solar térmica, la radiación solar es convertida directamente en calor y puede
ser empleada para el calentamiento de agua, aire u otros elementos. Las aplicaciones más conocidas
son:
–
–
–
3.2.1

Destiladores solares de agua
Secadores solares
Termas solares
Destilador solar de agua

El destilador solar de agua purifica el agua evaporándola y
luego condensándola. El destilador no contiene sales,
minerales ni impurezas orgánicas. El agua obtenida
puede ser utilizada tanto para consumo directo, en
hospitales, como agua para baterías, entre otros.
Se aconseja su uso en áreas en los lugares donde haya
abundante agua contaminada o salobre y, naturalmente,
donde haya abundante sol. Por último, los materiales
básicos, es decir, el vidrio o las láminas transparentes y
resistentes a los rayos ultravioletas, deberán obtenerse
fácilmente y tener un costo moderado.
Como
parámetro
base,
un
destilador
solar
razonablemente funcional produce cuatro litros diarios de
agua destilada por metro cuadrado de superficie útil.

Figura 2: Ejemplo de destilador
solar de agua

Las principales características operativas son las mismas
para todos los destiladores solares. A continuación encontrará la descripción de cómo opera un
destilador.

Proyecto ID 772: Promoviendo mercados locales articulados de energías renovables

12
El agua que será destilada es colocada en un recipiente dentro de una caja con cubierta inclinada de
vidrio. El agua ingresa al destilador solar a través de la entrada. La radiación solar penetra a través
de la cubierta de vidrio y calienta el fondo del recipiente, es decir, la radiación solar es absorbida al
igual que el calor, por la superficie negra ubicada bajo el agua almacenada. El agua sobre la
superficie es calentada por el sol y convertida en vapor de agua. El vapor se condensa en la cubierta
de vidrio, cuya temperatura es baja debido al contacto con el ambiente. El agua condensada baja por
el vidrio hasta un canal que va al tanque de almacenamiento. Todo el destilador deberá ser lo más
hermético posible para evitar pérdidas de vapor.
De la descripción se deduce fácilmente que un destilador con esas características puede ser
construido en forma artesanal. Cualquier mecánico o carpintero con experiencia podría construirlo.
3.2.2

Secador solar

Todos los secadores solares cuentan con los mismos componentes básicos:
a)
b)

c)
d)

Una cubierta transparente que permita el paso de la luz solar y limite las pérdidas de calor
(vidrio o plástico)
Una superficie absorbente, de color oscuro, que recoge la luz solar y la convierte en calor, para
luego liberarlo en forma de aire. El aire caliente absorbe más agua que el frío, de modo que el
aire caliente y seco es llevado a través del producto que se quiere secar
Una capa de aislamiento por debajo
Una entrada y una salida de aire, a través de las cuales el aire húmedo puede ser reemplazado
por aire fresco y más seco.

Los secadores solares pueden ser de dos clases:
1)

Secadores en las que la luz solar se utiliza directamente. En este tipo de secadores, la
absorción de calor la realiza principalmente el producto mismo.
Figura 3: Secador solar, empleado directamente

Fuente: www.alternative-technology.de

2)

Secadores en las que la luz solar se utiliza indirectamente. En este tipo de secadores, el aire de
secado se calienta en un espacio distinto de donde se coloca el producto. Los productos no son
expuestos directamente a la luz solar.

Proyecto ID 772: Promoviendo mercados locales articulados de energías renovables

13
Figura 4: Secador solar, empleado indirectamente

Fuente: www.terra.org

A continuación detallamos cómo opera una secadora. El aire recorre la secadora por convección
natural (en el Capítulo 5 se describe el principio de convección natural para el caso del agua, sin
embargo, el principio básico es el mismo en este caso). El aire se calienta al pasar por el colector, y
luego se enfría parcialmente mientras recoge la humedad del producto que se va a secar. El
producto es calentado tanto por el aire caliente como por la luz solar directa. El aire de escape sale a
través de la chimenea ubicada en la parte superior de la cámara de secado.
3.2.2

Terma solar

Una terma solar consta de uno o más colectores, así como de un tanque de almacenamiento aislado;
está diseñada para ser utilizada en casas, hospitales, lavanderías, etc. El mecanismo de operación de
una terma solar es el siguiente:
La luz solar es absorbida por una superficie de color negro cubierta por láminas de vidrio, que por
ende se calientan. A su vez, si aire o agua recorren o pasan a través de esta superficie caliente, éstos
también se calentarán. De esta forma, el calor podrá ser transportado a donde sea necesario. Este
es, en resumen, el principio de una terma solar.
El sistema de una terma solar está formado básicamente por un colector plano y un tanque de
almacenamiento de agua. La Figura 5 ilustra el diseño más simple para una terma solar.
Figura 5: Vista general de las partes principales de una terma solar

Fuente: Elaboración propia
Proyecto ID 772: Promoviendo mercados locales articulados de energías renovables

14
3.3

Posibilidades y limitaciones

La fuente de energía, es decir, la radiación solar, no cuesta; sin embargo, el equipo necesario para
poder aprovechar los rayos solares puede ser caro, y, por lo general, requiere mantenimiento.
Además, el usuario deberá tener nociones básicas sobre su funcionamiento. Una de las
características de las termas solares es que las hay de distintos grados de perfección y con un amplio
rango de costos y tamaños. La tabla 1 presenta un listado de ventajas y desventajas del uso de
termas solares.
Cuadro 1: Ventajas y desventajas del uso de una terma solar
VENTAJAS




Apropiadas para la producción local
Bajo costo operativo
Bajo costo de mantenimiento

DESVENTAJAS





(Relativamente) altos costos de
inversión
Salida del agua dependiendo de la
radiación solar
Necesidad de personal técnico para
su instalación
Necesidad de materiales de
construcción de alta calidad

Proyecto ID 772: Promoviendo mercados locales articulados de energías renovables

15
4. EL SOL: RECURSO ENERGÉTICO
Para determinar las dimensiones de un colector solar, usualmente no es necesario medir la radiación
solar porque los valores promedios se conocen para muchos de los lugares sobre la Tierra. Los
valores promedios pueden usarse y esto es suficientemente exacto para los estudios de factibilidad.
Sólo se deben considerar mediciones in situ cuando se realizan estudios de factibilidad para sistemas
muy grandes que demandan grandes inversiones.
En el Perú tenemos ya un Atlas Solar, el cual nos da una primera aproximación de los lugares donde
la radiación solar se puede aplicar. Para acceder a este Atlas, el enlace (link) es:
http://dger.minem.gob.pe/atlassolar
En esta sección aprenderemos a medir la radiación solar y a comprender las mediciones realizadas
por terceros, ya que es lo primero que debemos hacer antes de dimensionar o instalar un sistema
solar térmico.
4.1

Fluctuaciones diarias y estacionales

Además de las variaciones de un lugar a otro, también las hay
de una estación a otra (ver Figura 8). Las fluctuaciones
estacionales para el Perú están registradas en un cuadro que
muestra la radiación solar mensual. De este cuadro se puede
concluir que la radiación para Tumbes varía de 3.0 kWh/m2-día
en julio a 5.1 kWh/m2-día en marzo (ver Cuadro 2)
Figura 6: Fluctuaciones estacionales del sol

Las fluctuaciones estacionales son un problema común a muchas de las fuentes de energías
renovables (es por ello que en ocasiones son llamadas fuentes intermitentes); y constituyen además
una de sus mayores limitaciones. Por esta razón, es necesario usar algún tipo de almacenamiento. El
almacenar energía siempre resulta costoso y disminuye la eficiencia del sistema. En lo posible,
deberá evitarse almacenar energía y, en otras circunstancias, debería minimizarse su uso.
Almacenar calor por un corto tiempo (por unas horas o por un par de días) es posible utilizando un
buen tanque de almacenamiento. Los tanques de almacenamiento y el aislamiento son descritos en
detalle más adelante. Por lo tanto, las fluctuaciones diarias pueden ser manejadas si se cuenta con un
tanque. La mayor cantidad de energía es recibida sólo durante unas pocas horas, poco antes y
después del mediodía. Por lo general, la demanda de calor tiene lugar durante la tarde o la noche,
cuando el sol ya se ha ocultado. En estaciones de lluvia, puede haber una ausencia prolongada de sol.
En caso de que sea necesario contar con suministro continuo de calor, se deberá aumentar tanto la
capacidad del tanque como el tamaño de los colectores solares. Normalmente el sistema debería
estar diseñado de manera que se pueda cubrir tranquilamente un día sin luz solar.
Por otro lado, no es posible almacenar calor por un período más largo (dos /tres días) porque el
almacenamiento óptimo y, otras opciones son muy costosas. Por lo tanto, en algunas ocasiones se
utiliza otra solución para nivelar fluctuaciones estacionales; por ejemplo, un calentador eléctrico.
Proyecto ID 772: Promoviendo mercados locales articulados de energías renovables

16
Cuadro 2: Estimación de la media mensual de la radiación solar diaria del Perú
LAT.
ALT.
IRRADIACION DIARIA MEDIA MENSUAL EN KWh/m2
Gra.
m
ENE FEB MAR ABR MAY JUN JUL AGO SET OCT
Tumbes
Tumbes
Corales
3.6
85
4.6
4.9
5.1
4.9
4.5
4.1
3.0
3.9
4.2 4.2
Piura
Talara
El Alto
4.3
270
4.5
4.6
4.5
4.1
3.9
3.4
3.5
3.6
3.9 3.9
Piura
Huancabamba
Huancabamba
5.2
57
4.6
4.8
4.5
4.7
4.4
4.2
4.4
5.0
5.1 4.9
Lambayeque
Lambayeque
Lambayeque
6.7
10
5.4
5.4
5.2
5.0
4.6
3.9
3.8
4.3
4.9 5.1
Lambayeque
Chiclayo
Cayalti
7.1
150
5.9
5.9
5.5
5.5
5.0
4.4
4.5
4.9
5.6 5.8
La Libertad
Ascope
Casagrande
7.7
150
4.8
5.1
4.7
4.5
4.5
3.4
3.3
4.1
4.1 4.7
La Libertad
Ascope
Cartavio
7.9
51
5.0
6.1
5.0
4.7
4.8
3.8
3.6
4.4
4.3 4.9
Ancash
Santa
Nepena
9.2
203
5.5
6.4
5.9
5.3
5.5
3.5
3.7
4.6
4.5 5.6
Ancash
Huaraz
Huaraz
9.5
30
5.2
5.0
5.0
5.1
4.9
4.7
4.9
5.3
5.4 5.4
Lima
Barranca
Paramonga
10.7
15
5.3
4.4
5.1
4.7
2.7
1.9
2.3
2.1
2.7 4.3
Lima
Lima
Jesus Maria
12.1
10
5.5
5.3
5.2
5.0
5.6
2.3
2.0
2.2
2.4 3.3
Lima
Lima
La Molina
12.1
150
4.3
4.9
4.2
4.3
3.7
2.2
2.0
2.0
2.2 2.8
Ica
Chincha
Chincha Alta
13.4
94
5.3
4.7
4.9
5.0
3.5
2.7
2.6
3.2
3.9 4.8
Ica
Inca
Caucato
13.7
35
5.8
5.7
5.8
5.0
4.3
3.2
3.2
3.6
4.8 5.1
Ica
Nazca
Marcona
15.1
620
5.4
5.1
5.2
4.9
4.3
3.8
3.8
4.4
5.1 5.8
Arequipa
Arequipa
Arequipa
16.3
2150
5.4
5.1
5.0
5.2
4.5
4.4
4.5
5.1
5.7 6.1
Arequipa
Arequipa
Characato
16.4
2451
5.2
5.0
5.2
5.1
4.6
4.4
4.6
5.2
5.7 6.6
Arequipa
Arequipa
Pampa de Majes 16.5
140
5.8
5.5
5.7
5.4
4.7
4.5
4.8
5.3
5.0 6.7
Hoquegua
Mariscal Nieto
Moquegua
17.2
1412
5.5
5.2
5.8
5.2
4.6
4.3
4.4
4.8
5.7 6.4
Tacha
Tarata
Paucarani
17.5
4541
5.1
5.3
5.0
5.8
4.8
4.7
4.8
5.5
5.8 6.2
Tacha
Tacna
Cajana
17.9
875
5.6
5.5
5.2
4.8
4.2
3.8
4.0
4.4
4.9 5.7
Cajamarca
Cajamarca
Cajamarca
7.1
2640
4.5
4.4
4.3
4.2
4.2
4.1
4.8
4.5
4.4 4.6
Huanuco
Leoncio Prado
Tingo Maria
9.1
640
3.8
3.9
3.8
3.8
3.7
3.6
3.9
4.6
4.5 4.5
Huanuco
Huanuco
Huanuco
9.9
1895
4.5
4.3
4.4
4.4
4.3
4.2
4.4
4.7
4.7 4.9
Junin
Chanchamayo
Humaya
1.1
5.1
5.3
5.3
4.7
4.6
3.5
3.6
4.3
4.2 5.0
Junin
Huanuco
Huachac
12.0
1150
5.0
4.9
4.7
4.7
4.6
4.4
4.5
4.8
4.9 5.3
Huancavelica
Castrovirreyna
Aconococha
13.1
4520
4.9
3.7
4.1
4.3
4.2
4.6
4.3
4.6
4.9 4.9
Ayacucho
Huamanga
Ayacucho
13.2
2760
5.1
5.1
4.7
4.7
4.5
4.2
4.2
4.7
5.0 5.4
Apurinac
Abancay
Abancay
13.6
2378
4.8
4.7
4.7
4.6
4.4
4.2
4.2
4.7
5.0 5.5
Cuzco
La Convencion
Santa Ana
12.9
920
4.0
4.0
4.0
3.8
3.9
3.8
3.9
4.0
4.1 4.3
Cuzco
Cuzco
San Jeronimo
13.6
320
4.6
4.6
4.6
4.6
4.4
4.3
4.4
4.6
4.9 5.2
Puno
Puno
Duno
15.8
3875
5.1
5.2
5.1
5.1
4.6
4.4
4.6
5.0
5.5 6.0
Amazonas
Bagua
Had Valor
5.7
421
4.1
4.2
4.4
4.4
4.1
4.2
4.1
4.6
4.8 4.9
San Martin
San Martin
Juan Guerra
6.6
30
3.9
4.0
3.8
3.4
3.7
3.6
3.9
4.2
4.2 4.3
Loreto
Maynas
Iquitos
3.8
125
3.4
3.7
3.5
3.7
3.0
3.1
3.7
4.2
4.7 3.8
Loreto
Requera
Requena
5.0
180
3.9
4.0
3.7
3.5
3.4
3.4
3.7
4.2
4.3 4.4
Ucayali
Padre Abad
Padre Abad
8.5
270
4.0
3.9
3.8
3.5
3.7
3.5
4.0
4.6
4.6 4.5
Ucayali
Atalaya
Yurac-Yurua
9.0
-1
2.5
2.6
2.7
2.7
2.7
3.0
3.3
3.8
4.0 3.5
Madre de Dios
Tahuamanu
Iberia
1.4
150
3.7
3.7
3.7
3.7
3.5
3.5
3.8
4.3
4.3 4.1
Estos datos son calculados en base a mediciones de horas de sol, horas por dia, usando la formula de Angstromg.
DEPARTAMENTO

PROVINCIA

DISTRITO

NOV
4.6
4.0
4.4
5.3
6.1
4.9
5.3
5.7
5.5
4.9
4.0
3.3
5.6
5.1
5.8
6.5
6.5
6.6
6.6
6.1
6.0
4.9
4.2
4.9
4.9
5.4
5.2
5.7
5.4
4.3
5.2
6.0
5.3
4.2
4.2
4.2
4.2
3.4
4.2

DIC
4.9
4.4
4.9
5.3
6.2
5.1
5.5
5.7
5.2
5.5
4.8
4.2
4.9
5.5
5.7
6.2
5.9
6.4
6.3
5.6
5.9
4.7
3.9
4.7
5.3
5.2
4.9
5.3
5.0
4.9
4.8
5.6
4.8
4.1
3.8
3.8
4.1
3.2
3.9

MEDIA ANUAL
kWh/m2
4.5
4.0
4.7
4.9
5.5
4.4
4.8
5.2
5.1
3.0
3.8
3.4
4.2
4.8
4.9
5.3
5.3
5.6
5.4
5.4
5.0
4.5
4.0
4.5
4.7
4.9
4.8
4.9
4.7
4.0
4.7
5.2
4.5
4.0
3.7
3.9
4.0
3.1
3.9

Es una adaptación de la fuente original, Vasques, J.W. & Lloyd, P, Estimacion de la energia solar en el Peru en Revista Energetica, OLADE, ANO 11 No 1, abril de 1987.

4.2

Radiación solar en un lugar específico (inclinación, orientación)

Tome en cuenta que las cifras utilizadas en la sección anterior dan cantidades de energía por m2 en
una superficie horizontal. Muchos de los colectores solares están inclinados para captar mayor
radiación solar. La cantidad óptima de energía se capta cuando el colector está inclinado en el mismo
ángulo que el de latitud. Este debería ser de por lo menos 15o para asegurar que el agua de las lluvias
drene fácilmente, lavando el polvo al mismo tiempo. A latitudes mayores (> 30o N ó S), los colectores
están más inclinados sobre el ángulo de latitud para tratar de nivelar fluctuaciones por estaciones.
Si los colectores solares están inclinados para optimizar la recolección de energía, o si circunstancias
locales rigen cuál debe ser el ángulo óptimo, entonces la radiación promedio recibida deberá ser
corregida utilizando un factor de inclinación.
Cuadro 3: Factores de inclinación determinados para el Perú
Latitud
0 - 5º
5 - 10º
10 - 15º
15 - 20º

Factores de inclinación
15º
0.99
1.01
1.03
1.06

20º
0.97
1.00
1.02
1.07

25º
0.94
0.98
1.02
1.06

30º
0.92
0.96
1.00
1.05

35º
0.88
0.93
0.98
1.04

40º
0.84
0.89
0.96
1.02

Proyecto ID 772: Promoviendo mercados locales articulados de energías renovables

17
Ejemplo:
Para un lugar en el norte del Perú (latitud 0 - 5o), el factor de inclinación para un sistema de
calentadores solares de agua orientados hacia el norte a un ángulo de 15° N es de 0.99 o menor.
Esto es debido a que el ángulo óptimo sería de 5°. Pero para evitar que el polvo se asiente y
para permitir un adecuado drenaje del agua, el ángulo mínimo deberá ser de 15°.
Por lo tanto, la energía real recibida en el lugar sobre los colectores debe ser 0.99 veces la
radiación sobre la superficie horizontal. Para otros ángulos de inclinación y lugares, el factor de
inclinación puede diferir sustancialmente de 1, desempeñando un papel importante en la
determinación del tamaño y optimización del sistema.
Tome en cuenta que en este cuadro se supone que los colectores están mirando hacia la dirección
correcta. Esto significa que en nuestro hemisferio (Sur), los colectores están mirando exactamente
hacia el norte. Si éste no es el caso, uno debe utilizar factores de corrección similares a los de
desviación de ángulo de inclinación óptimo. Se pueden utilizar compases o mapas de la ciudad para
determinar la orientación correcta.
Hay circunstancias locales que impiden la correcta colocación de los colectores. Por ejemplo, los
colectores deben acoplarse sobre un techo que no tiene la inclinación adecuada y que no está
mirando exactamente al sol.
En países cercanos al ecuador, las consecuencias de desviaciones de la inclinación óptima son poco
importantes. El ángulo de inclinación es pequeño, así que los colectores solares normales (normal =
línea haciendo ángulo de 90o con el colector)
nunca se desvían mucho del ángulo promedio de
incidencia sobre la radiación solar (que está
cercana a la normal sobre la superficie de la
tierra). Aún así, de ser posible, es mejor dejar que
los colectores miren al sol.
4.3

Sombras y reflejos

En lo posible, deben evitarse las sombras. Pero,
cuál es exactamente la influencia de un pequeño
árbol al Este del colector solar, de un edificio alto
Figura 7: Sistema solar y algunos obstáculos
a 100 metros o de una pared detrás de los
bajos
colectores solares. Cualquier sombra tiene una
influencia negativa sobre el rendimiento de un
sistema solar. Así que, aún un árbol pequeño (además del hecho de que muchos de los árboles
pequeños eventualmente se convierten en árboles grandes) puede tener una influencia sustancial
sobre el rendimiento si está justo en el lugar equivocado. Como regla, la influencia de objetos en los
alrededores puede olvidarse cuando el ángulo de la línea, desde el colector solar hasta la cima del
objeto, con la horizontal, es menor a 20°.
Otro efecto, frecuentemente olvidado, es el de los reflejos de la radiación solar desde la superficie de
la tierra u objetos en los alrededores. Diferentes materiales tienen diferentes coeficientes de
reflexión. Por ejemplo, un edificio blanco refleja casi toda la radiación. Un edificio oscuro absorbe
mucha radiación. El césped o los árboles reflejan parte de la radiación, mientras que la tierra oscura
absorbe mucho más.
Proyecto ID 772: Promoviendo mercados locales articulados de energías renovables

18
Si uno tiene la oportunidad de escoger el color de
las paredes en el vecindario directamente
relacionado con un sistema solar, es aconsejable
escoger el blanco. De lo contrario, si uno tiene la
oportunidad de escoger el lugar, se puede tomar
en consideración este reflejo. Bajo ciertas
circunstancias, la reflexión puede ser de un 10%
del total de la radiación o más, así que sí vale la
pena (vea la Figura 8)
Figura 8: Radiación directa indirecta

4.4

Unidades

La radiación solar, la potencia solar, así como muchas otras variables pueden ser expresadas
utilizando cualquier tipo de unidad. A pesar de muchos acuerdos para lograr una estandarización,
aún se utiliza una gran diversidad de unidades. El siguiente cuadro presenta un panorama general de
las unidades más utilizadas y sus factores de conversión.
Cuadro 2: Unidades más utilizadas y sus factores de conversión
UNIDAD
Potencia Solar
W
KW
W/m2
Energía solar
KWh/m2/día
kJ/cm2
MJ/m2
KCal/cm2
Btu/ft2
Langley

EXPLICACIÓN

CONVERSIÓN

Watt
Kilowatt (1000 W)
Watt por metro cuadrado

-

kWh por metro cuadrado por día
kJ por centímetro cuadrado
MJ por metro cuadrado
1000 Calorías por centímetro cuadrado
Unidades termales Británicas por pie cuadrado
Caloría por centímetro cuadrado

A kWh/m2
1
2.778
0.2778
11.67
0.0428
0.0116

Proyecto ID 772: Promoviendo mercados locales articulados de energías renovables

19
Instrumentos de medición
Fuente: vppx134.vp.ehu.es

4.5

El instrumento que sirve para medir la energía solar es el
solarímetro. Básicamente hay dos tipos de solarímetros: el
piranómetro y el medidor fotovoltaico. Ambos tipos miden la
radiación solar tanto directa como indirecta (difusa).
El piranómetro posee una pequeña plancha de metal negro en su
interior, con una termocupla unida a ella. Esta plancha negra se
calienta al sol y con la termocupla, el aumento de temperatura se
puede medir. La plancha y la termocupla están cubiertas y aisladas
por una cúpula de vidrio. La salida de la termocupla es medida para
la radiación instantánea total en un momento dado.

4.6

Fuente: www.ufpel.tche.br

Fuente: www.arquimedes.tv

El medidor fotovoltaico no es nada más que una pequeña célula
fotovoltaica que genera electricidad. La cantidad de electricidad es
medida para conocer la radiación instantánea. Estos medidores son
mucho más económicos que los piranómetros pero menos exactos.

Figura 9: Modelos de
piranómetro
Figura 10: El medidor fotovoltaico

Midiendo la radiación total

La radiación instantánea es útil para determinar el comportamiento de una instalación en cierto
momento. Por ejemplo, al término de una inspección. La mayor parte del tiempo sin embargo, uno
está más interesado en la radiación durante un período más largo; por día, por mes o por año.
Especialmente si uno desea monitorear el comportamiento de un sistema en detalle, entonces será
necesario medir la entrada y salida del sistema por un período más largo (varios meses, un año). Sólo
en esa forma los disturbios o problemas a corto plazo pueden reglamentarse y hacerse evaluaciones
más exactas del comportamiento.
Una ventaja de los medidores fotovoltaicos es que también están disponibles con un integrador, para
que la radiación total diaria u horaria pueda ser medida sin dificultad. Si se utilizan los piranómetros,
esto no puede realizarse automáticamente. Si la insolación total por hora o por día es requerida,
tendrán que utilizarse los data loggers (acumuladores de datos) para almacenar las mediciones
instantáneas.
NOTA: ¡En un estudio de medición del recurso sol, la radiación solar debe medirse bajo el mismo
ángulo en que están colocados los módulos!
4.7

Conclusiones

Para determinar y usar la radiación solar de manera óptima deben seguirse los siguientes pasos:
Proyecto ID 772: Promoviendo mercados locales articulados de energías renovables

20
a) Calcular el promedio diario de radiación en el lugar, utilizando los mapas o altas de radiación
solar del mundo o, mejor aún, los datos de radiación de una estación meteorológica cercana.
Para sistemas solares costosos o a gran escala, la radiación debería medirse preferentemente,
por varios años.
b) Determinar el ángulo de inclinación óptimo y la orientación para el lugar:
a. Inclinación = latitud, o
b. Inclinación = latitud + 5o para optimización, orientación norte
Angulo mínimo de inclinación: 15° (para que la lluvia y el polvo no se estanquen en el módulo)
c) Calcular la influencia de sombras y reflejos. Si es necesario corregir el rendimiento de los
módulos o buscar una mejor ubicación.

Proyecto ID 772: Promoviendo mercados locales articulados de energías renovables

21
5. ¿COMO OPERA UNA TERMA SOLAR?
Tal como figura en la sección 3.2.2, una terma solar consta principalmente de un colector y un tanque
de almacenamiento de agua (vea la Figura 11). A continuación detallamos el principio de circulación
natural del agua en el sistema.
5.1

Terma solar con circulación natural: Efecto termosifón

La Figura 11 describe el principio de circulación natural en una terma solar.
Cuando la radiación solar golpea la superficie del absorbente, se convierte rápidamente en calor. Las
pérdidas de calor se reducen gracias a la cubierta y al aislamiento, de modo que el calor es recogido y
transferido al agua en los tubos (ver 1). El agua se calienta y sube por el conducto superior (vea 2)
hacia el tanque de almacenamiento (vea 3).
El agua caliente es más ligera que el agua fría,
por lo que siempre encuentra su camino hacia
el punto más alto del circuito.
Entonces, habrá un flujo que va desde el
colector hacia el tanque de almacenamiento. A
su vez, el agua caliente que sube desde el
colector es sustituida por agua fría, vía el
conducto inferior (ver 4). Por lo tanto, el agua
fluirá desde la parte más baja del tanque de
almacenamiento hacia la parte más baja del
Figura 11: Circulación natural del agua
colector. De este modo se genera una
circulación natural: el agua caliente sube desde el colector y, simultáneamente, el agua fría fluye del
tanque de agua al colector. El agua fría en el colector será calentada nuevamente por la radiación
solar, cerrando así el circuito. Un sistema basado en el principio de circulación natural es
denominado sistema de efecto termosifón; es decir, sistema donde el sol constituye la fuente de
energía. Dependiendo de la temperatura del medio ambiente y del grado de aislamiento del sistema,
éste alcanzará temperaturas entre los 40º C y 90º C.
5.2

Terma solar de circulación forzada
El sistema de efecto termosifón es el más
simple y adecuado para ser construido y
utilizado en nuestro medio y a un costo
mínimo. Por el hecho de trabajar sin una
bomba eléctrica, no requiere conexión a
la red de alumbrado público, cosa que es
muy ventajosa en el Perú, ya que hay
lugares que no cuentan con dicha
conexión.
Figura 12: Circulación forzada de agua

Por otro lado, en los lugares donde hay
electricidad, es posible instalar un
sistema de circulación forzada (vea la Figura 12), es decir, un sistema en el que se emplea una bomba
Proyecto ID 772: Promoviendo mercados locales articulados de energías renovables

22
eléctrica para hacer circular el agua en el sistema. En un sistema de circulación forzada, los sensores
de temperatura prenden la bomba eléctrica en el momento en que detectan una diferencia de
temperatura mayor de 4º C entre la parte más baja del tanque de almacenamiento y la parte
superior del panel. En comparación con el sistema de efecto termosifón, este sistema es ligeramente
más eficiente en términos de energía. En términos de costos, el sistema de circulación forzada es más
caro. Además del aumento de eficiencia, el sistema de circulación forzada permite, por lo general,
colocar el tanque de almacenamiento más abajo que el panel, en el interior de los edificios, por
ejemplo.
Otra razón por la que se utilizan sistemas de circulación forzada, es porque hacen del sistema una
instalación resistente a la congelación. En climas muy fríos, cuando la temperatura baja de cero
grados, el colector deberá estar vacío, o de lo contrario, deberá agregarse anticongelante al fluido del
colector. En el primer caso, el tanque de almacenamiento es colocado más abajo que el colector y,
sólo en caso de que haya suficiente luz solar, la bomba se pondrá en funcionamiento y el colector se
llenará de agua. En el segundo caso, el circuito del colector y el circuito de agua deberán estar
separados por un intercambiador de calor que reducirá la eficiencia de la terma solar.
Una terma solar consta de uno o más colectores, tuberías y un tanque de almacenamiento aislado.
En las próximas secciones describiremos en forma detallada sus diferentes componentes.
5.3

El colector

La parte más importante de una terma solar es el colector (vea la Figura 13). La función del colector
es convertir la radiación solar en calor y conducirlo al fluido del colector, es decir, al agua en la
mayoría de los casos. El colector consta de:


Un absorbente pintado de negro, del cual se extrae el calor mediante el fluido del colector, es
decir, el agua



Una cubierta transparente



Aislamiento en la parte posterior y a los lados del absorbente



Una cubierta de protección para el absorbente y su aislamiento.
Figura 13: Colector solar

Proyecto ID 772: Promoviendo mercados locales articulados de energías renovables

23
El absorbente deberá tener las siguientes características:
 Alta eficiencia de absorción;
 Bajo nivel de pérdidas de calor, es decir, un buen aislamiento;
 Un buen sistema de tuberías;
 Una buena conducción de calor entre la placa del absorbente y el fluido del colector.
Existen tres tipos de absorbentes eficientes:
 Absorbente de serpentín (vea la Figura 14)
 Absorbente de registro tubular (vea la Figura 15)
 Absorbente de placa (vea la Figura 16)

Figura 14: Absorbente de
serpentín

Figura 15: Absorbente de
registro tubular

Figura 16: Absorbente de placa

El Cuadro 4 presenta las diferencias entre los tres tipos de absorbentes. Hay que resaltar que esta
tabla registra los resultados de un estudio limitado, y sólo presenta información general sobre los
siguientes parámetros: calor absorbido, eficiencia, costos y horas de trabajo. En cada prueba, el
tanque contenía 60 litros de agua. El ingreso de energía durante todo el periodo de medición fue de
5 kWh, es decir, el ingreso de energía medida e integrada por computadora. Se midió entonces la
temperatura final del tanque, y a partir de ésta, se calculó el calor recogido. Todas las demás
condiciones fueron idénticas.

Cuadro 4: Prueba de comparación de los diferentes tipos de absorbente
Tipo de
absorbente
Conectado
a la placa
Calor absorbido
(kWh)
Porcentaje de
eficiencia del sistema
Costo de materiales y
energía
Tiempo de trabajo
necesario para su
construcción (en
horas)

Absorbente
de serpentín

Absorbente de
registro tubular

Absorbente de
placa

Malla de alambre

Entretejido

-

2.67

3.29

3.22

-14%

-2%

-25%

10%

6h

8h

12 h

Fuente: Streib, 1992

Proyecto ID 772: Promoviendo mercados locales articulados de energías renovables

24
5.3.1

Material absorbente

El absorbente puede ser de diferentes metales, como cobre, aluminio y acero. La característica más
importante del material empleado para la construcción de un absorbente es la conductividad del
calor, la que deberá ser la mayor posible. Si se compara al aluminio con el cobre como material
estándar, se puede decir que un absorbente hecho de aluminio es aproximadamente 4% menos
eficiente, sin embargo, el aluminio es más fácil de usar. El acero es más barato en comparación con
los otros dos materiales, pero es más difícil de utilizar y además, un absorbente de acero es
aproximadamente 10% menos eficiente.
Cuadro 5: Resultados de una prueba de comparación de diferentes materiales absorbentes
Material
Conductividad de calor
W/m. 0C
Eficiencia del
absorbente
Costo
Facilidad de uso

Hierro

Aluminio

Cobre

40

200

400

-10%

-4%

Estándar

Menor,
dependiendo del
costo local
30% más difícil

Menor,
dependiendo del
costo local
30% más fácil

Estándar
Estándar

Además del tipo de material, la eficiencia del colector se ve afectada por los siguientes factores: el
grosor de la placa absorbente, el diámetro de la tubería y el método de conexión de la placa y la
tubería.
Grosor de la placa absorbente
Una placa absorbente gruesa tiene un nivel de eficiencia más elevado, en comparación con una placa
delgada. Esto se ilustra en el siguiente cuadro:
Cuadro 6: Prueba de comparación del grosor de una placa absorbente de aluminio
Grosor(mm)

1

0.5

Eficiencia

8% más eficiente

Estándar

Fuente: Streib, 1992

En este ejemplo, una placa absorbente gruesa de aluminio es 8% más eficiente que una placa de 0.5
mm. Por supuesto, habrá un incremento en los costos de materiales y mano de obra.
Efecto del método de conexión de la placa y la tubería
En la conexión entre la placa y la tubería, la conducción de calor tiene lugar desde la placa
absorbente hasta la tubería, e incluso hasta el fluido. La conexión entre la placa y la tubería es muy
importante para lograr un eficiente transporte de calor. Existen varios métodos para conectar la
placa y la tubería:
Proyecto ID 772: Promoviendo mercados locales articulados de energías renovables

25
-

Vueltas de alambre; sólo hay contacto en ciertos puntos (vea la Figura 17)

-

Entretejido con tiras de metal; hay contacto en
forma de líneas

-

Soldadura; se logra un contacto muy efectivo
(vea la Figura 18)

Figura 17: Serpentín

Figura 18: Soldadura
La soldadura logra muy buen contacto entre la tubería y la placa; se aconseja utilizar absorbentes
soldados tanto como sea posible.
Revestimiento del absorbente
Un metal puro refleja mucha luz. Por esta razón, es necesario pintar o revestir el absorbente para
aumentar su porcentaje de absorción de calor. El absorbente puede ser pintado con brocha o
soplete y con pintura mate simple de color negro, cuyo porcentaje de absorción es, por lo general, de
90 - 95 (es decir, convierte en calor el 9095% de la energía que absorbe).
Por un lado, el absorbente mismo irradia
calor al aumentar la temperatura. Por otro
lado, las pinturas negras normales no
impiden la radiación (es decir, la emisión de
calor) al entorno; por el contrario, las
superficies negras también tienen una
emisión muy elevada (90) (vea la Figura 19)
Figura 19: Absorción y radiación del absorbente

Figura 20: Absorción y radiación del
absorbente con un revestimiento selectivo

Sin
embargo,
utilizando
revestimientos
selectivos se logra minimizar las pérdidas de
calor originadas por alzas de temperatura en las
superficies negras. Tales revestimientos ayudan
a la absorción de radiación solar (onda corta) y,
al mismo tiempo, impiden la emisión de calor
(onda larga). Los revestimientos selectivos
pueden reducir la emisión de las superficies
negras a porcentajes tan bajos como un 10%
(vea la Figura 20).

Proyecto ID 772: Promoviendo mercados locales articulados de energías renovables

26
Resulta difícil fabricar un revestimiento selectivo espectral, por lo que la mayoría de fabricantes de
termas solares adquieren piezas absorbentes completas, donde el revestimiento ya haya sido
aplicado sobre un tubo y una aleta de cobre. También se pueden comprar revestimientos selectivosespectrales en forma de láminas, que pueden ser adheridas al absorbente.
Para obtener una conexión efectiva y durable entre el revestimiento y el absorbente, es muy
importante limpiar la placa de metal y las tuberías antes de sopletear, pegar o pintar. Utilice lija y
solventes.
5.3.2

Cubierta transparente

El colector cuenta con una cubierta transparente que ayuda a reducir las pérdidas de calor y a
proteger la superficie del absorbente de la contaminación, alargando así la durabilidad del
revestimiento.
Se pueden utilizar los siguientes materiales:
–
–
–

vidrios
láminas de plástico
vidrio acrílico

El siguiente cuadro presenta las ventajas y desventajas de estos tres materiales:
Cuadro 7:

Ventajas y desventajas de los diferentes materiales para cubiertas transparentes

MATERIAL
Vidrio

Lámina de Plástico

Vidrio acrílico

VENTAJA

DESVENTAJA




relativamente estable
durable, especialmente
a la radiación UV







pesado
reducción de luz
difícil de obtener
puede ser muy costoso
se rompe fácilmente






peso ligero
fácil de manipular
fácil de obtener
alta transmisión de luz
(hasta 98%)



durabilidad (dependiendo
del tipo) que varía entre
unos pocos meses y varios
años



no es resistente a la
radiación UV, se torna
opaco y blando
se rompe fácilmente
difícil de obtener
puede ser costoso





peso ligero
fácil de manipular
buena
calidad
insolación

de




Fuente: Streib, 1992

5.3.3

Caja del colector

La función principal de esta caja (vea la Figura 21) es proteger las diferentes partes del colector de
elementos externos como la lluvia, la humedad y el viento. Puede ser construida de madera, metal y
plástico.
Proyecto ID 772: Promoviendo mercados locales articulados de energías renovables

27
La ventaja de utilizar madera es que dicho
material es aislante, por lo que no será
necesario aislar el interior del colector. La
madera debe revestirse con una capa de
pintura, pues tiende a malograrse bajo los
efectos del agua y la luz solar.
Si la caja es de metal será necesario aplicar una
capa de pintura protectora, excepto cuando se
utiliza una lámina galvanizada o de aluminio.
Los lados de la caja de metal deberán ser
aislados para evitar las pérdidas de calor.
El aislamiento servirá para minimizar la pérdida
de calor desde la parte posterior y los lados del
colector, y deberá ser resistente a
temperaturas mayores a 100ºC. Los materiales
aislantes más comunes son el tecnopor y la
lana de vidrio. El colocar una lámina de
aluminio entre el absorbente y el aislante
permite una mayor reducción de pérdida de
calor.

Figura 21: Caja de colector

Conexión de varios colectores
En el caso de sistemas más
grandes que operen con varios
colectores, es muy importante
que éstos estén conectados en
forma eficiente, con el fin de
obtener una óptima circulación
de agua. Hay varias formas de
hacerlo. La Figura 22 presenta las
conexiones recomendables y no
recomendables para los sistemas
de calentadores solares.

Figura 22: Conexiones recomendables y no
recomendables para diferentes colectores

Proyecto ID 772: Promoviendo mercados locales articulados de energías renovables

28
5.4

Tanque de almacenamiento, uso del agua y abastecimiento de agua caliente

5.4.1

Introducción

Basándose en el contenido de las secciones anteriores, ya tiene una idea del funcionamiento del
colector y de sus componentes. Esta sección describe los puntos referentes al almacenamiento de
agua, la conexión del tanque y el colector, y el abastecimiento y uso del agua.
5.4.2

Tanque de almacenamiento

Por lo general, el agua calentada por el colector no se utiliza inmediatamente, por lo que debe ser
almacenada en un tanque. Puede construirlo o comprarlo (nuevo o usado). Para los sistemas más
pequeños hasta los sistemas de 1000 litros, se pueden utilizar cilindros de aceite o contenedores de
plástico en buenas condiciones.
Existen dos tipos de tanques de almacenamiento (y de termas solares):
–
–

Tanques no presurizados (vea la Figura 23)
Tanques presurizados (vea la Figura 24)

Figura 23: Tanque no presurizado

Figura 24: Tanque presurizado

Los tanques no presurizados son más simples y baratos (se pueden emplear materiales más ligeros)
que los tanques presurizados. Un tanque presurizado soporta altas presiones causadas por el
aumento de temperatura (el agua se expande cuando se calienta) y por la misma presión del agua.
La Figura 23 ilustra las diversas entradas y salidas de un tanque de almacenamiento. En un sistema de
calentamiento, es imprescindible que tanto la entrada de agua caliente que viene desde el colector
como la salida hacia el usuario estén ubicadas por debajo del nivel de agua.
En los sistemas no presurizados, es necesario instalar en el tanque de almacenamiento una tubería
de ventilación sobre el nivel del agua fría. La tubería de escape/tubería de ventilación es colocada
sobre el nivel del agua para permitir que ésta se expanda y que el aire salga del sistema. En un
sistema presurizado, la tubería de ventilación es reemplazada por una válvula automática de salida
de presión, pequeña válvula que libera gotas de agua del sistema cuando la presión es muy alta (por
ejemplo, cuando sobrepasa la barra de los 3 - 4)
En el sistema de la Figura 23, el usuario sólo puede obtener agua caliente cuando hay un flujo
simultáneo de entrada de agua fría. La entrada de agua fría se encuentra cerca del fondo del tanque
con el fin de minimizar la alteración de los patrones de los flujos de agua en el sistema. Observe que
Proyecto ID 772: Promoviendo mercados locales articulados de energías renovables

29
la entrada de agua fría al colector está
ubicada a varios centímetros sobre el
fondo del tanque para evitar que la
suciedad y las partículas entren en los
tubos del colector (vea la Figura 25)
Puede
encontrar
tanques
de
almacenamiento de agua caliente de
forma horizontal y vertical (vea la
Figura 26). La estratificación del agua
(agua caliente en la parte superior del
tanque, agua fría en el fondo) es
mejor en un tanque vertical que en un
tanque horizontal. Ésta mejora el
funcionamiento de la terma solar.

Figura 25: Posición de la tubería de salida

Figura 26: Tanques de almacenamiento vertical y horizontal

5.4.3

Aislamiento

El tanque de almacenamiento de agua deberá ser aislado apropiadamente, con el fin de evitar
pérdidas de calor durante la noche. Al colocar el aislamiento, es importante asegurarse de que no
haya pérdidas de calor a través de las tuberías de entrada y salida. El mejor método para ello es
aislar las conexiones de las tuberías de entrada y salida del tanque. Asimismo, el tanque de
almacenamiento deberá ser colocado en un lugar más alto que el colector (por lo menos 30 cm más
alto) para evitar la circulación natural invertida.
El material aislante utilizado para el tanque deberá estar protegido contra la lluvia y la humedad, ya
que pierde su poder al mojarse. Como material de protección se puede utilizar láminas de plástico o
de metal galvanizado delgado.
5.5
5.5.1

Conexión entre el tanque de almacenamiento y el colector
Tuberías de conexión

Las tuberías de conexión deben ser lo más cortas posible para ahorrar en materiales y para reducir
las pérdidas de calor.

Proyecto ID 772: Promoviendo mercados locales articulados de energías renovables

30
ADVERTENCIA
La fuerza que rige la circulación natural es una fuerza débil (diferencia de gravedad específica entre
agua fría y caliente). Por lo tanto, cada codo, angostura o válvula aumenta la fricción, y por ende,
reduce la circulación.
Las tuberías de conexión entre el colector y el tanque de almacenamiento deberán estar inclinadas
ligeramente hacia arriba, en un ángulo de por lo menos 1º; es decir: una inclinación de 2 cm para 1 m
de largo. Esta inclinación es necesaria para evitar la formación de burbujas de aire.
Se debe evitar el uso de codos entre el tanque y el colector. Cada doblez angular aumenta la
resistencia a la circulación y reduce el porcentaje de flujo que pasa por el absorbente, disminuyendo
así la eficiencia.
El aire entra en el sistema con el primer flujo de agua, y en cada uno de los flujos posteriores. Al
calentarse, el aire y los gases que están disueltos en el agua se liberan y tienen que ser extraídos del
sistema. Si hay una burbuja de aire, la circulación puede paralizarse completamente, evitando que el
agua caliente llegue al tanque.
5.5.2

Materiales adecuados para las tuberías

La temperatura de salida del colector rara vez excede los 90ºC, por lo que es factible instalar tuberías
de metal o plástico. Sin embargo, es importante verificar si la textura de las tuberías de plástico no
se deforma debido a las altas temperaturas. Vale decir, que las tuberías de plástico tienen mayores
desventajas. Cuando el colector está vacío por un lapso determinado (problemas en el
abastecimiento de agua), su temperatura puede alcanzar los 100ºC, 120ºC o más y, cuando el agua
empieza a fluir nuevamente, se produce vapor. El plástico en tuberías o material aislante no puede
resistir estas temperaturas. Por esta razón, es preferible colocar tuberías de metal que son más
durables bajo cualquier circunstancia.
5.5.3

Diámetro de las tuberías

Una tubería de diámetro muy pequeño, reducirá el flujo debido al aumento de resistencia por
fricción. El efecto de un flujo más pequeño es que el agua caliente permanece en el sistema de
tuberías y en los colectores, lo que origina una constante pérdida de calor. Una tubería de diámetro
demasiado grande también ocasiona una reducción en el flujo, y subsecuentemente, una mayor
pérdida de calor.
Para un sistema pequeño con un solo panel de 1 m2 y un tanque de almacenamiento de 60 litros, es
suficiente utilizar tuberías de 16 mm de diámetro. Para sistemas más grandes, consulte el Cuadro,
que contiene sugerencias acerca del diámetro interior de las tuberías de conexión en proporción al
área de la superficie de panel.
Cuadro 8: Sugerencias para el diámetro interior de las tuberías de conexión (mm)
en proporción al área de la superficie de panel (m2)
Área de la
superficie (m2)
Diámetro
interior

1-2

4-6

10-12

16-20

25-30

16 mm
1/2 "

20mm
3/4"

25mm
1"

32mm
1 1/4"

40mm
1 1/2"

Fuente: Streib, 1992 (pag. 56)
Proyecto ID 772: Promoviendo mercados locales articulados de energías renovables

31
5.5.4

Aislamiento de las tuberías

El aislamiento de las tuberías de conexión que van hacia y desde el tanque de almacenamiento al
colector, tiene como finalidad aumentar la eficiencia de las termas solares. El mejoramiento de la
eficiencia depende de la calidad del aislamiento y de los materiales utilizados.
5.5.5

Abastecimiento de agua

Para garantizar el abastecimiento de agua al tanque de
almacenamiento, el tanque de la terma solar puede ser
conectado a uno de agua fría o a la red de servicio público (si
es lo suficientemente confiable). Cuando el colector está
vacío, es esencial contar con un continuo suministro de agua
fría para evitar daños ocasionados por altas temperaturas.
El tanque de agua fría debe ser colocado a un nivel más alto
que el de agua caliente para que el agua fluya con facilidad
(vea la figura 27). Para regular el nivel del agua en el tanque
de agua fría, se coloca una válvula de flotador.
Figura 27: Válvula de flotador para la regulación del
suministro de agua fría en el tanque de almacenamiento

5.5.6

Superar las pérdidas nocturnas de calor
Por lo general, las tuberías de conexión de un sistema
de efecto termosifón son colocadas fuera del tanque
y del colector, y son aisladas (vea la Figura 28).
Ligeros efectos tipo termosifón invertido se producen
en las tuberías conectadas a la parte superior del
tanque. Esto ocurre en periodos con ausencia de
radiación y temperaturas externas más frías. De esta
forma, se extrae calor del tanque de
almacenamiento.
Figura 28:

Tuberías de conexión aisladas

Esto puede evitarse aislando todas las conexiones de las tuberías del tanque, especialmente aquellas
que se encuentran en la parte superior del mismo.

Proyecto ID 772: Promoviendo mercados locales articulados de energías renovables

32
6. DISEÑO Y DIMENSIONAMIENTO DE UNA TERMA SOLAR
6.1

Cálculo del consumo de agua caliente y del patrón de demanda

Para establecer el tamaño óptimo de una terma solar para determinados clientes, primero necesita
conocer la demanda de agua caliente. Para calcular el consumo de agua caliente y el patrón de
demanda de una casa, hotel o empresa, es preferible utilizar medidores de energía (para medir el
flujo y la temperatura del agua fría y caliente) durante un periodo de un año aproximadamente.
El resultado de esta medición permite un cálculo detallado de la demanda y del patrón de demanda
(por día, por mes y por año).
Si no fuera posible usar medidores de energía, por lo menos se puede medir el consumo de agua
caliente de una semana, con lo cual se podrá calcular el consumo por mes y por año.
Otra opción para calcular el uso de agua caliente en un hogar es analizar mensualmente los recibos
de agua. Para el promedio de familias, la cantidad de agua caliente utilizada constituye
aproximadamente 25% del consumo total de agua.
Si ninguno de estos métodos es factible, la demanda será calculada mediante reglas básicas,
utilizando el siguiente cuadro para demanda de agua caliente (LPD = litros por día) a 60ºC.
Cuadro 9: Cantidad de agua caliente usada por diferentes sectores
- baños
- cocina y lavado

25 LPD/persona
5 LPD/persona

Hoteles

- por cama personal

30 LPD

Hospitales

- por cama personal

35 LPD

Cafeterías

- por turno

5 LPD/persona

Uso doméstico

6.2

Diseño de una terma solar

La energía necesaria para elevar la temperatura de una sustancia es una propiedad física conocida
como el “calor específico” de dicha sustancia. El calor específico del agua (Cp) es 4200 J/kg/ºC. Eso
significa que se necesitan 4200 joules de energía para elevar en un grado centígrado la temperatura
de un kilogramo de agua.
Tomando como base los siguientes parámetros, se puede diseñar el colector de una terma solar:
Cp
I
M
T1
T2
Eeff

-

calor específico (J/kg/ºC);
radiación solar (kWh/m2);
cantidad de agua caliente requerida (litros);
temperatura del agua caliente requerida (ºC);
temperatura del agua fría;
eficiencia de la terma solar

Proyecto ID 772: Promoviendo mercados locales articulados de energías renovables

33
En primer lugar, se debe calcular la energía necesaria basándose en la diferencia de temperatura
requerida entre el agua fría y caliente. La fórmula está dada en la siguiente ecuación (1). En el
ejemplo 1 se realiza un cálculo basado en dicha fórmula.
Q = M x Cp x (T 1 - T 2)

(1)

Ejemplo 1:
Una familia consume 200 litros diarios de agua a 40º C. La temperatura del agua en la fuente es
de 15º C. Calcule el coeficiente (Q) de energía de calor.
Q = M x Cp x (T 1 - T 2) = 200 x 4200 x 25= 21 MJ = 5.8 kWh

Una vez calculada la energía necesaria, se puede calcular el área de la superficie del colector,
tomando en cuenta la radiación solar (I) y la eficiencia del sistema (Eef).
Área del colector requerida =

Q
I x E ef

(2)

La radiación global varía durante el día, durante el año y también según la altitud y latitud. Para
realizar los cálculos, puede utilizar el índice de radiación registrado para el Perú en el cuadro o
utilizar. Para aplicar la fórmula, ver el ejemplo 2.
La eficiencia del colector depende, entre otras cosas, del tipo de colector, el aislamiento, la
instalación, etc. Por lo general, la eficiencia de un sistema completo (colector y tanque), si se utiliza
adecuadamente (!), está entre 25 - 50%. Podemos decir, como regla básica, que se puede utilizar un
promedio de 35 - 40%.
Ejemplo 2:
Use el resultado del ejemplo 1. La radiación solar es 4 kWh/m2 y la eficiencia de la terma solar es de
35%. ¿Cuál es el área de superficie necesaria para la familia?
Superficie A =

Q
I x Eef

=

5.8
0.35 x 4.0

= 4.1 m2

Entonces, se necesita un área de superficie de paneles total de 4.1 m2 para calentar 200 litros de
agua a 40º C.

6.3

Tamaño del tanque de almacenamiento

El tamaño del tanque deberá ser proporcional al requerimiento diario de agua. Si se instala un
tanque más grande, el agua estará a una temperatura más baja durante los días de menor radiación.
Un tanque más pequeño proporcionará agua caliente a temperatura más alta. Si un tanque es
demasiado pequeño, se presentarán pérdidas de calor debido a la alta temperatura del flujo de
Proyecto ID 772: Promoviendo mercados locales articulados de energías renovables

34
entrada y probablemente, no pueda satisfacer la demanda completa de agua caliente. En días de
mayor radiación, el tamaño del tanque deberá ser tal que la temperatura no exceda los 65 - 70º C.
6.4 Eficiencia de un sistema
Se puede comparar la calidad de las termas solares y de los diversos tipos de colectores en base a su
eficiencia. La eficiencia depende de cuánto de la energía suministrada se convierte en energía útil
(ver fórmula 3).
Eficiencia (%)

=

Energía útil (Qu)
Energía suministrada (Qsum)

x 100

(3)

La energía suministrada por las termas solares es la radiación solar que cae sobre la superficie del
colector. La energía útil es la energía sustraída de la terma solar en forma de agua caliente.
La eficiencia de una terma solar está determinada, por supuesto, por la calidad de un sistema pero
también, en gran medida, por su uso. En teoría, la eficiencia del sistema puede estar entre 0 y 100%,
dependiendo del uso de agua caliente, que fluctúa entre 0 litros/día hasta una suma infinita por día.
Esta es la razón por la que es más útil y común hablar de la capacidad de una terma solar expresada
en litros por día, que hablar de eficiencia.
Ahora, si Ud. desea comparar diferentes sistemas, puede ser útil medir la eficiencia de los mismos.
Sin embargo, las circunstancias deberán estandarizarse y, al hablar de eficiencia, siempre deberán
tomarse en cuenta los siguientes parámetros:
–
–
–
–

Temperatura del agua fría;
Radiación;
Temperatura del ambiente;
Consumo de agua caliente (por ejemplo 100 litros/día).

Entonces, es posible calcular la salida de energía de la terma solar:
Qsalida = m x Cp x (T1 - T2)
La entrada de energía es:
Qentrada= I x A
Y la eficiencia es la relación entre las dos:

6.5

Eef =

Qsalida
Qentrada

Pérdida de calor en una terma solar

Si desea medir la capacidad del colector para permanecer caliente, puede llevar a cabo la prueba
descrita en esta sección. Nota: Esta prueba no mide la capacidad del sistema para absorber el calor
del sol.
Para medir la pérdida de calor en el tanque de una terma solar, se deja enfriar poco a poco un tanque
con agua caliente durante varias horas (de 8 a 24 horas). Durante ese lapso se mide la baja de
temperatura del agua en el interior del tanque. Por lo general, un tanque de alto aislamiento tiene
un valor de pérdida de calor de 1 - 2 W/ºC.
Proyecto ID 772: Promoviendo mercados locales articulados de energías renovables

35
Ejemplo 3:
Un tanque con 100 litros de agua a una temperatura de 60ºC se deja enfriar en su entorno a una
temperatura de 10ºC. Luego de 8 horas, la temperatura del agua es de 55ºC.
Preguntas:

Calcule la pérdida de energía del tanque y el valor de pérdida de calor del tanque (R)

La pérdida de temperatura es de 60 ºC - 55 ºC = 5 ºC
Pérdida de energía: Q perd = m x Cp x Tperd = 100 x 4200 x 5 = 2.1 MJ
La diferencia entre las temperaturas del ambiente y del agua en el tanque en un inicio, es de 50ºC.
El tiempo en el que el tanque se enfría (t) es de 8 horas, es decir 8 x 3600 segundos.
R =

Qperd
t x (T2- T1)

=

2.1
8 x 3600 x 50

= 1,5 W/oC

Proyecto ID 772: Promoviendo mercados locales articulados de energías renovables

36
7. INSTALACIÓN DE UNA TERMA SOLAR
7.1

Instalación de una terma solar

A pesar de parecer una acción simple y rápida, la instalación de una terma solar es, quizás, la parte
más complicada de todo el proceso. Se cometen fallas y errores con mucha facilidad, y está
comprobado que tales errores (por lo general pequeños) son la causa de la mayoría de problemas de
funcionamiento. No importa cuán pequeños puedan ser, pero si podemos decir que estos errores
pueden acarrear graves consecuencias.
La primera posibilidad, obviamente, es que el sistema no funcione adecuadamente después de la
instalación; por ejemplo, que haya filtraciones en el sistema o que el agua no se caliente, son signos
de que hay una avería. En consecuencia, el cliente protestará. Si bien el problema puede ser
arreglado, esto le dará una mala reputación tanto al técnico que realizó la instalación, como a la
compañía que hizo la venta. Este tipo de fallas puede ser evitado o detectado con una inspección
visual del sistema completo inmediatamente después de la instalación (ver lista de verificación para
la inspección de termas solares).
Otra posibilidad es que, no obstante el sistema aparentemente funciona bien (es decir, no presenta
fallas detectables a simple vista, por lo que el cliente no protestará), no lo hace óptimamente. Por
ejemplo, si en un sistema de efecto termosifón, la red de tuberías del colector no ha sido construida
adecuadamente, la resistencia en el circuito será muy alta y, por ende, el sistema no funcionará
óptimamente. Si bien suministrará agua caliente, no utilizará toda su capacidad. Otro ejemplo es el
de las termas con sistema de apoyo, con los cuales hay que ser especialmente cuidadoso. En esos
casos, es posible que las termas no estén suministrando ni una gota de agua caliente, pero nadie se
dará cuenta debido a la presencia del sistema de apoyo. A largo plazo, esto tampoco satisfará las
necesidades del usuario final. Este tipo de errores sólo puede ser detectado realizando mediciones
(ver la lista de verificación): hay que comparar la radiación con la salida del sistema. Esto es muy
difícil pero puede ser bastante provechoso.
Ambas situaciones deben evitarse y pueden evitarse, si el técnico pone atención durante la
instalación. Los errores más comunes son:
Errores de instalación:
Los más comunes (pequeños) durante la instalación son:
 Filtraciones en las tuberías y conexiones entre las tuberías, el tanque de almacenamiento y el
colector
 Un trabajo de aislamiento inadecuado
 Rotura de la cubierta de vidrio del colector
 Error de inclinación de las tuberías del colector
 Errores en los sensores de temperatura (cables equivocados, sensor “caliente” y “frío” prendido,
conexiones eléctricas erradas)
Esto son errores pequeños que pueden ser evitados si el técnico realiza la instalación con cuidado y si
inspecciona su trabajo.
Errores en el diseño:
Entre estos errores encontramos:
Proyecto ID 772: Promoviendo mercados locales articulados de energías renovables

37








Orientación completamente equivocada del colector
Posición inadecuada del tanque de almacenamiento con respecto al colector
Tuberías demasiado largas o de un diámetro muy grande entre el colector, el tanque y los caños
de agua caliente
Mala conexión de las tuberías
Tamaño inadecuado del tanque en comparación con el colector
Conexión inadecuada de los colectores (en el caso de los sistemas con más de un colector)
Bombas demasiado pequeñas o demasiado grandes (en sistemas de circulación forzada)

En realidad, estos errores son más serios porque evidencian que quien diseñó/instaló el sistema no
conoce bien el funcionamiento de una terma solar.
En la parte práctica de este módulo, se instalará una terma solar simple. Esto le servirá de práctica.
Pero tenga en cuenta de que cada marca de termas solares tiene sus propios requerimientos de
instalación. El fabricante deberá especificar claramente sus requerimientos especiales en el manual
de instalación. Por lo tanto:
¡Siempre lea el manual de instalación antes de empezar el trabajo!.
7.2

Inspección de una terma solar instalada

Después de instalar una terma solar, el sistema y su instalación deben ser inspeccionados para
asegurar un buen funcionamiento por un periodo prolongado. Si se instala un sistema comercial, el
distribuidor deberá inspeccionar el sistema después de realizada la instalación. El Anexo 1 presenta
un ejemplo de lista de verificación detallada, comúnmente usada para la inspección de sistemas
hechos en casas y sistemas de termas solares disponibles en el mercado.
La lista de verificación consta de las siguientes partes:
–
–
–
–
–

Información general
Inspección visual
Prueba y medición
Opinión del usuario
Lista de acción

Utilizando la lista de verificación es posible inspeccionar la correcta instalación y funcionamiento de
todas las partes principales del sistema, y asegurarse de que haya sido bien instalado y funcione
apropiadamente.
7.3

Mantenimiento de una terma solar (qué hacer y qué no hacer)

Esta sección contiene un resumen sobre mantenimiento de termas solares, basado en un manual de
operación y mantenimiento para los usuarios de termas solares.
Las termas solares de efecto termosifón requieren escaso mantenimiento, o en algunos casos, ningún
tipo de mantenimiento. Debido al principio termosifón, no hay piezas móviles ni unidades de control
que puedan fallar. El sistema trabajará automáticamente; pero hay ciertos procedimientos básicos
que pueden ser llevados a cabo para mejorar el funcionamiento de la terma solar.

Proyecto ID 772: Promoviendo mercados locales articulados de energías renovables

38
Las termas solares con bombas eléctricas y unidades de control requieren un mayor cuidado. El
funcionamiento de la bomba y del colector deberá ser inspeccionado cada año. El siguiente resumen
es aplicable a sistemas de efecto termosifón.
¿Qué hacer?


Limpie la cubierta de vidrio regularmente. El polvo y la suciedad en la cubierta de vidrio
bloquearán el paso de los rayos solares y reducirán la salida del sistema. Dependiendo de los
alrededores (cerca del camino, el entorno polvoriento, lluvia no frecuente, etc.), es aconsejable
limpiar la cubierta de vidrio entre una vez al mes o varias al año.



Evite cualquier sombra en el colector. Pode las ramas posteriores de los árboles que rodean el
colector para así permitir que reciba la mayor cantidad de luz solar posible.



Economice en el uso de agua caliente. Trate de minimizar su frecuencia de uso. Cada vez que
Ud. abre el caño, tomará cierto tiempo calentar las tuberías desde el tanque hasta la terma.
Quizás sólo hay una pequeña pérdida de energía, pero si las tuberías son largas y el uso de agua
caliente es frecuente, la pérdida de energía aumentará.



Haga correr el agua caliente lentamente; esto impedirá la mezcla de agua caliente y fría en el
tanque de almacenamiento.



Si hay un sistema eléctrico de apoyo, gradúe el termostato tan bajo como sea posible.
Usualmente, una temperatura de 60º C es suficiente. Un punto de graduación más alta
aumentará el recibo de la luz.



Asegúrese de que no falte suministro de agua fría para la terma solar. Deje siempre abierta la
válvula de entrada de agua fría y observe que el tanque de agua fría esté siempre lleno.



Enjuague el sistema completo una vez al año para remover toda la suciedad. Si en su área el
agua es pesada, utilice un suavizador de agua para evitar obstrucciones en las tuberías del
colector.



Revise una vez al año el revestimiento del tanque de agua, del colector y de las tuberías entre el
tanque y el colector. Asegúrese de que el revestimiento no esté dañado y repárelo si es
necesario. Esto asegurará que no entre agua de lluvia en el aislamiento del colector, del tanque y
de las tuberías, mejorará el funcionamiento de su sistema y aumentará su tiempo de vida.

¿Qué no hacer?


No cierre o bloquee la tubería de ventilación. Es muy importante que permanezca abierta y que
esté colocada en un lugar más alto que el tanque de agua fría.



No coloque obstáculos que puedan sombrear el colector.



No utilice una escobilla dura o productos químicos para limpiar la cubierta de vidrio.



No deje prendido el sistema eléctrico de apoyo cuando no sea necesario. Si está prendido, el sol
no tendrá oportunidad de calentar el agua y su recibo de luz aumentará considerablemente.

7.4

Guía de solución de problemas

A continuación encontrará una guía de solución de problemas que incluye algunos de los más
comunes que pueden presentarse con las termas solares y sus soluciones.

Proyecto ID 772: Promoviendo mercados locales articulados de energías renovables

39
a) No hay agua en el caño de agua caliente


Verifique el suministro de agua fría; la válvula colocada en la salida de agua fría deberá estar
abierta y el tanque de almacenamiento de agua fría deberá estar lleno.

b) El sistema sólo abastece agua fría


Esto es normal en días muy nublados. Una terma solar sólo calienta agua cuando hay sol o
cuando hay pocas nubes. Para un suministro inmediato de agua caliente, use el sistema eléctrico
de apoyo si es necesario.



Si el uso de agua excedió su capacidad máxima para ese día, la terma solar necesitará tiempo
para calentar agua nuevamente. Para tener agua caliente inmediatamente, use el sistema
eléctrico de apoyo si es necesario.



Si ninguno de los puntos anteriores es relevante, revise que no haya obstrucciones en el circuito
del colector. La fuerza del efecto termosifón que hace circular el agua es bastante débil, y puede
detenerse por causa de pequeñas burbujas de aire en el colector o por dobladuras en las tuberías
entre el tanque de almacenamiento y el colector. Verifique la circulación estimando la
temperatura en la entrada y salida de las tuberías cercanas al colector. Cuando hay sol, la
temperatura de salida deberá ser mucho más alta que la temperatura de entrada. ¡Tenga
cuidado: la tubería de salida puede estar muy caliente! Si no logra detectar una circulación de
efecto termosifón (y no hay codos en las tuberías), es probable que haya burbujas de aire en el
sistema. Desagüe el colector y vuelva a llenarlo.

c) Por la noche hay un gran descenso en la temperatura del agua (más de 10ºC)


Verifique el aislamiento alrededor el tanque. Las paredes calientes del tanque y las tuberías
cercanas al mismo no deben estar expuestas al frío de la noche.



Asegúrese de que el aislamiento esté seco. Si está mojado por causa de la lluvia que se filtra a
través del revestimiento o de una filtración en el tanque, entonces el sistema no mantendrá el
agua caliente.



Asegúrese de que el tanque esté colocado por lo menos a 1 pie (30 centímetros) más arriba que
el colector. El flujo de circulación de un sistema de efecto termosifón puede enfriarse durante la
noche si existe una diferencia de altura demasiado pequeña entre el tanque y el colector.

d) El sistema abastece sólo agua tibia


Asegúrese de que la cubierta de vidrio esté limpia. Si está sucia, la eficiencia de la terma solar se
reducirá. Limpie el vidrio cuando sea necesario.



Asegúrese de que los obstáculos no den sombra al colector. De ser posible, retírelos.



Asegúrese de haber instalado una válvula de retención en la tubería de salida de agua caliente. Si
no ha instalado una, y si su sistema tiene caños que mezclan el agua (para la ducha), el agua fría
puede fluir dentro del tanque de almacenamiento; ya que la presión en la línea de agua fría
siempre es mayor que la presión en la línea de agua caliente. Si no cuenta con una válvula de
retención, el agua fría podría mezclarse con la caliente, y la temperatura en el tanque
descendería. La solución es instalar una válvula de retención o instalar líneas y caños
independientes para agua fría y caliente.



Revise el aislamiento alrededor del tanque de agua, del colector y de las tuberías. Si el
aislamiento está dañado o mojado, puede haber una gran pérdida de calor. Repare los pequeños
agujeros en el revestimiento o aislamiento.

Proyecto ID 772: Promoviendo mercados locales articulados de energías renovables

40
e) Hay condensación en el interior de la cubierta de vidrio del colector


Si esto ocurre sólo en las mañanas frías, no hay problema. El aire en la caja del colector siempre
contiene algo de humedad que puede condensarse sobre la cubierta de vidrio si ésta está fría.
Tan pronto como salga el sol, la condensación deberá desaparecer.



Si la condensación no desaparece al salir el sol, probablemente se trate de una filtración ya sea
en el sello de la cubierta de vidrio o en el absorbente. Ud. puede reparar filtraciones visibles en
el sello de la cubierta de vidrio utilizando un juego de reparación resistente a la intemperie. Un
colector con filtraciones debe ser cambiado o reparado.

f)

La terma solar está filtrando agua



Trate de determinar el origen del agua. Si no se trata de agua de lluvia, localice y repare la
filtración.

g) No hay suministro de agua caliente aún cuando la terma eléctrica está prendida


Prenda el sistema eléctrico de apoyo. Si no hay agua después de 30 minutos, verifique que el
termostato haya sido regulado a la temperatura correcta. Para tomar una ducha confortable
bastará con 40 º C, y para lavar unos 50º-60º C.



Si el termostato ha sido regulado correctamente, verifique si el fusible se ha quemado
(reemplácelo), o si ha habido un corte de corriente (en ese caso, espere hasta que regrese la
corriente).



Verifique que el sistema eléctrico de apoyo esté bien conectado. Si continúa sin funcionar,
consulte a un electricista o a su instalador.

Proyecto ID 772: Promoviendo mercados locales articulados de energías renovables

41
8. CONSTRUCCIÓN DE UNA TERMA SOLAR SIMPLE
Esta sección le enseñará cómo construir una terma solar simple. El sistema hecho en casa es
utilizado con fines didácticos y para practicar la destreza para trabajos en metal y plomería. La
construcción de una terma solar le permitirá apreciar cómo funciona y cuáles son sus partes más
importantes.

Advertencia:
En la práctica, los sistemas hechos en casa son de menor calidad y tienen un ciclo de vida más corto
en comparación con las termas solares disponibles en el mercado. Por lo tanto, es aconsejable
utilizar únicamente sistemas comerciales para fines prácticos. Durante este curso se utilizará un
sistema hecho en casa sólo con fines didácticos, así como para practicar la habilidad para trabajos en
metal. Las termas solares hechas en casa no deben ser comercializadas en el mercado.

8.1

Diseño de la terma solar

El diseño consta de una red de tuberías de cobre, a las
que se sueldan aletas de cobre. Es necesario que las
tuberías y las aletas sean del mismo material, ya que
ambas serán soldadas. Si se emplean materiales
distintos (por ejemplo cobre y acero), la parte
absorbente se doblará (debido a los diferentes
factores de expansión) y sufrirá corrosión (debido a la
corrosión del contacto).
El calor del sol es absorbido por las aletas de cobre
pintadas de negro y transportado a través del agua
que corre dentro de las tuberías de cobre. Las
tuberías y aletas de cobre son colocadas dentro de
una caja de madera aislada y barnizada. Para tener
una idea general de una terma solar, ver el dibujo
técnico en la Figura 29.

Figura 29: Dibujo técnico del colector
de una terma solar

Proyecto ID 772: Promoviendo mercados locales articulados de energías renovables

42
El Cuadro 10 incluye los materiales necesarios para construir el colector de una terma solar de 1 m².
Cuadro 10: Materiales necesarios para la construcción de un colector solar de 1 m2 (3)

EL COLECTOR
Madera (las dimensiones son dadas en medidas terminadas en mm: por ejemplo 20 x 94 es la medida proyectada de 25 x
100 mm)
Tamaño
20 x 94
20 x 94
20 x 82
20 x 50
20 x 50

Longitud
1285 mm
860 mm
820 mm
820 mm
350 mm

Número
2 (lados)
1 (superior)
1 (borde inferior)
1 (estribo cruzado)
4 (estribos angulares)

Contraplacado
1 lámina de triplay de 9 mm cortada a 1350 x 860 mm
Reborde
35 x 10 = 3.5 metros

10 x 15 = 1.5 metros

Tornillos de bronce
N° 6 de 1” - 30 unidades (para reborde), N° 8 de 1” - 20 unidades y N° 8 de 2”- 20 unidades para panel de 25 mm
Tubería de cobre
15 mm: 5 metros, cortada en cuatro largos de 1180 mm y dos largos de 185 mm
22 mm: 1.25 metros, cortada en cuatro largos de 181 mm y dos largos de 260 mm
Lámina de cobre
4 x 200 x 1150 mm; 1 o 2 mm de grosor
Acoples
Codos: 15mm - 2 unidades; Acople T: 22/15mm - 4 unidades y 22/15/15mm - 2 unidades
Sujetadores
15 mm - 2 unidades

22 mm - 4 unidades

Aletas de cobre
4 x 200 x 1150 mm; 1 o 2 mm de grosor
Soldadura
Cautín, pasta para soldar y soldadura de estaño
Aislamiento
2
Aislamiento de lana de vidrio de 2” x 1,2 m , con papel aluminio en el reverso
Vidrio
Vidrio de 4 mm; 811 x 1297 mm
Varios
Pintura negro mate para interior del colector, sujetadores para el borde inferior del vidrio hechos de tubo de cobre de 15
mm con 50 mm de largo, 1 Kg. cola de carpintero, 2 tubos de silicona
Herramientas
Martillo, sierra, cinta de medir, escuadra, destornillador, perforadora + brocas (incl. broca plana de 25 mm), cuchilla
Stanley, soplete, cortatubos o sierra para metales, limas, y punzón centrador. Cepillo/cincel para limpiar los cortes de la
sierra.
3

La parte práctica de este módulo prevé la construcción de dos colectores solares, para esto se deberá tener en cuenta que
la lista de más arriba es solamente para un colector, debiéndose adquirir el doble de estos componentes.
Proyecto ID 772: Promoviendo mercados locales articulados de energías renovables

43
Primero, comience con el trabajo de plomería para asegurarse de que la caja tenga las medidas
adecuadas. También vale la pena esperar hasta que la caja esté terminada antes de cortar el vidrio,
de modo que encaje en forma exacta (Figura 30).
Figura 30: Dibujo de la red de tuberías y de las aletas sujetadoras

8.2

Trabajos de plomería de la red del colector y conexión de las aletas

A continuación describimos paso a paso el proceso de construcción:
Paso 1: Marque las tuberías en el lugar del corte y proceda a cortarlas de la siguiente manera: 6 x
181, 2 x 260 y 4 x 1180.
Paso 2: Corte las aletas de cobre del tamaño correcto, 4 x (200 x 1150). Limpie la parte del medio de
las aletas y de las tuberías de cobre con una lija y luego, con amoniaco.
Paso 3: Verifique que todas las aletas y tuberías encajen en el armazón, antes de comenzar a soldar.
Paso 4: Prepare los lugares donde va a soldar usando pasta de soldar.
Paso 5: Fije las tuberías en la aleta con una abrazadera con pegamento. Caliente la tubería y la aleta
con una flama y lentamente agregue soldadura de estaño. Asegúrese de que haya una unión de
soldadura apropiada y lisa entre la aleta y la tubería, a todo lo largo de toda la aleta.
Paso 6: Con el fin de asegurarse de que el armazón es cuadrado, clave soportes de madera al banco o
al piso. Suelde el armazón cuando esté en esta estructura. Construya el absorbente completo
soldando todas las conexiones entre los codos, tuberías y tuberías con aletas (recuerde no moverlo
hasta que todas las uniones hayan enfriado).
Paso 7: Al terminar de soldar, pruebe si en las uniones del absorbente hay filtraciones, introduciendo
presión de agua en la red. Suelde nuevamente las conexiones que presenten filtraciones.
Paso 8: Pinte la parte delantera y posterior del absorbente con pintura metálica negra con acabado
mate; déjelo secar mientras construye la caja.

Proyecto ID 772: Promoviendo mercados locales articulados de energías renovables

44
8.3

Construcción de la caja de madera

La caja consta de una estructura con estribos cruzados y angulares, parte posterior contraplacada,
aislamiento, reborde, agujeros de ventilación y vidriado. La Figura 31 presenta el diseño básico de la
caja. Sin embargo, detalles como las dimensiones exactas, la posición de los agujeros para las
tuberías, etc., dependen de la precisión de los trabajos de plomería.
Figura 31: Diseño básico de la caja

Antes de comenzar a construir la caja, analice el detalle de la caja en las Figuras 31 y 32.
Figura 32: Vista desarrollada de la construcción

A continuación describimos paso a paso el proceso de construcción de la caja:
Paso 1: Asegure los lados de la caja con tornillos de 2” y pegamento para hacer la estructura.
Paso 2: Coloque el armazón sobre el absorbente para verificar que entre en la caja.
Proyecto ID 772: Promoviendo mercados locales articulados de energías renovables

45
Paso 3: Atornille y pegue en un estribo cruzado usando tornillos de 2”.
Paso 4: Atornille y pegue los cuatro estribos angulares usando tornillos de 1.5”.
Paso 5: Pegue y clave el contraplacado en la parte posterior, con pernos para panel de 25 mm.
Paso 6: Peque y atornille el reborde donde colocará el vidrio encima y a ambos lados de la caja, a 8
mm del borde superior. Utilice tornillos de 1”.
Paso 7: Perfore dos agujeros de ventilación de 8 mm de diámetro en el borde inferior de la caja.
Estos pueden ser cubiertos con una malla de metal para evitar la entrada de mosquitos.
Paso 8: Coloque el absorbente sobre la caja con igual espacio arriba y abajo, y marque las
ubicaciones de las tuberías de entrada y de salida.
Paso 9: Perfore agujeros de 25 mm (justo sobre la esquina) en estos puntos y haga un corte en forma
de V.
Paso 10: Pinte la caja con pintura por dentro y por fuera.
Paso 11: Introduzca el aislamiento a una profundidad de 50 mm, la altura de los estribos.
Paso 12: Cubra todo el interior de la caja con láminas de metal y engrápelas a la madera.
Paso 13: Coloque el absorbente sobre el material aislante. Asegúrese de que no haya ninguna
abertura entre la capa de aislamiento y la superficie del colector.
Paso 14: Fije las tuberías a los estribos angulares empleando sujetadores.
Paso 15: Coloque nuevamente sobre las tuberías las cuñas que cortó en forma de V (en el paso 9) y
atorníllelas sobre el lugar (no las pegue porque, si fuera necesario sacarlas, podrá hacerlo sin causar
daño). Las grietas deben ser selladas con silicona.
Paso 16: Coloque una franja de espuma en el reborde y a lo largo del borde inferior para que el vidrio
descanse sobre ella.
Paso 17: Los ganchos que sujetan el vidrio deben ser de metal, de 50 mm de largo, doblados de
forma apropiada.
Paso 18: Coloque los sujetadores del vidrio en el borde inferior de la estructura.
Paso 19: Con cuidado, coloque el vidrio con un saliente de 12 mm en el fondo.
Paso 20: Coloque una franja de espuma adicional en el vidrio, en los bordes de los lados y en la parte
superior de la estructura.
Paso 21: Coloque un reborde de madera de 35 x 10 mm alrededor de la parte superior y de los lados.
Selle con silicona entre el reborde de madera y el vidrio.
Nota: Primero deberá pintar los rebordes de madera.
Proyecto ID 772: Promoviendo mercados locales articulados de energías renovables

46
Manual térmico solar
Manual térmico solar
Manual térmico solar
Manual térmico solar
Manual térmico solar
Manual térmico solar
Manual térmico solar
Manual térmico solar
Manual térmico solar
Manual térmico solar
Manual térmico solar
Manual térmico solar
Manual térmico solar
Manual térmico solar
Manual térmico solar

Más contenido relacionado

La actualidad más candente

263341066 problemas-propuestos-cap-1
263341066 problemas-propuestos-cap-1263341066 problemas-propuestos-cap-1
263341066 problemas-propuestos-cap-1cris10angel
 
Problemas de examen de admisión San Marcos
Problemas de examen de admisión San MarcosProblemas de examen de admisión San Marcos
Problemas de examen de admisión San MarcosChristiam3000
 
Razonamiento logico 1
Razonamiento logico 1Razonamiento logico 1
Razonamiento logico 1Victor Jara
 
1. ceprevi - aritmética
1.  ceprevi - aritmética1.  ceprevi - aritmética
1. ceprevi - aritméticaRenzo Urbina
 
Matemática Básica 1 - Ricardo Figueroa García-LIBROSVIRTUAL.COM (1).pdf
Matemática Básica 1 - Ricardo Figueroa García-LIBROSVIRTUAL.COM (1).pdfMatemática Básica 1 - Ricardo Figueroa García-LIBROSVIRTUAL.COM (1).pdf
Matemática Básica 1 - Ricardo Figueroa García-LIBROSVIRTUAL.COM (1).pdfJessALZ
 
27 polígonos y cuadriláteros
27 polígonos y cuadriláteros27 polígonos y cuadriláteros
27 polígonos y cuadriláterosMarcelo Calderón
 

La actualidad más candente (8)

263341066 problemas-propuestos-cap-1
263341066 problemas-propuestos-cap-1263341066 problemas-propuestos-cap-1
263341066 problemas-propuestos-cap-1
 
Problemas resueltos iluminancia
Problemas resueltos iluminanciaProblemas resueltos iluminancia
Problemas resueltos iluminancia
 
Problemas de examen de admisión San Marcos
Problemas de examen de admisión San MarcosProblemas de examen de admisión San Marcos
Problemas de examen de admisión San Marcos
 
Razonamiento logico 1
Razonamiento logico 1Razonamiento logico 1
Razonamiento logico 1
 
1. ceprevi - aritmética
1.  ceprevi - aritmética1.  ceprevi - aritmética
1. ceprevi - aritmética
 
Regla de tres
Regla de tresRegla de tres
Regla de tres
 
Matemática Básica 1 - Ricardo Figueroa García-LIBROSVIRTUAL.COM (1).pdf
Matemática Básica 1 - Ricardo Figueroa García-LIBROSVIRTUAL.COM (1).pdfMatemática Básica 1 - Ricardo Figueroa García-LIBROSVIRTUAL.COM (1).pdf
Matemática Básica 1 - Ricardo Figueroa García-LIBROSVIRTUAL.COM (1).pdf
 
27 polígonos y cuadriláteros
27 polígonos y cuadriláteros27 polígonos y cuadriláteros
27 polígonos y cuadriláteros
 

Destacado

Manual de Solar Térmica para Grandes Edificios y Piscinas Cubiertas
Manual de Solar Térmica para Grandes Edificios y Piscinas CubiertasManual de Solar Térmica para Grandes Edificios y Piscinas Cubiertas
Manual de Solar Térmica para Grandes Edificios y Piscinas CubiertasGogely The Great
 
colectores solares
colectores solarescolectores solares
colectores solaresCelina Silva
 
122806145 100682202-manual-de-calentadores-solares
122806145 100682202-manual-de-calentadores-solares122806145 100682202-manual-de-calentadores-solares
122806145 100682202-manual-de-calentadores-solaresFernando Martinez
 
Fabricación de Paneles Solares
Fabricación de Paneles SolaresFabricación de Paneles Solares
Fabricación de Paneles SolaresDianaEdy1
 
Diseño de instalaciones solares térmicas.
Diseño de instalaciones solares térmicas.Diseño de instalaciones solares térmicas.
Diseño de instalaciones solares térmicas.Junkers
 
Circuito mixto (paralelo de series) 2º ESO
Circuito mixto (paralelo de series) 2º ESOCircuito mixto (paralelo de series) 2º ESO
Circuito mixto (paralelo de series) 2º ESOJoanSerranoMulero
 
ESTUDIO PARA LA CLIMATIZACIÓN DE LA PISCINA Y LA PRODUCCION DE AGUA CALIENTE ...
ESTUDIO PARA LA CLIMATIZACIÓN DE LA PISCINA Y LA PRODUCCION DE AGUA CALIENTE ...ESTUDIO PARA LA CLIMATIZACIÓN DE LA PISCINA Y LA PRODUCCION DE AGUA CALIENTE ...
ESTUDIO PARA LA CLIMATIZACIÓN DE LA PISCINA Y LA PRODUCCION DE AGUA CALIENTE ...Roberto Valer
 
Sistemas de calentamiento solar
Sistemas de calentamiento solarSistemas de calentamiento solar
Sistemas de calentamiento solarEuler Macedo
 

Destacado (12)

Manual de Energia Solar Termica
Manual de Energia Solar TermicaManual de Energia Solar Termica
Manual de Energia Solar Termica
 
Manual de Solar Térmica para Grandes Edificios y Piscinas Cubiertas
Manual de Solar Térmica para Grandes Edificios y Piscinas CubiertasManual de Solar Térmica para Grandes Edificios y Piscinas Cubiertas
Manual de Solar Térmica para Grandes Edificios y Piscinas Cubiertas
 
colectores solares
colectores solarescolectores solares
colectores solares
 
122806145 100682202-manual-de-calentadores-solares
122806145 100682202-manual-de-calentadores-solares122806145 100682202-manual-de-calentadores-solares
122806145 100682202-manual-de-calentadores-solares
 
Energía y cambio climático
Energía y cambio climáticoEnergía y cambio climático
Energía y cambio climático
 
5. sistema solar de calentamiento de agua para usos productivos
5. sistema solar de calentamiento de agua para usos productivos5. sistema solar de calentamiento de agua para usos productivos
5. sistema solar de calentamiento de agua para usos productivos
 
Fabricación de Paneles Solares
Fabricación de Paneles SolaresFabricación de Paneles Solares
Fabricación de Paneles Solares
 
Diseño de instalaciones solares térmicas.
Diseño de instalaciones solares térmicas.Diseño de instalaciones solares térmicas.
Diseño de instalaciones solares térmicas.
 
Circuito mixto (paralelo de series) 2º ESO
Circuito mixto (paralelo de series) 2º ESOCircuito mixto (paralelo de series) 2º ESO
Circuito mixto (paralelo de series) 2º ESO
 
ESTUDIO PARA LA CLIMATIZACIÓN DE LA PISCINA Y LA PRODUCCION DE AGUA CALIENTE ...
ESTUDIO PARA LA CLIMATIZACIÓN DE LA PISCINA Y LA PRODUCCION DE AGUA CALIENTE ...ESTUDIO PARA LA CLIMATIZACIÓN DE LA PISCINA Y LA PRODUCCION DE AGUA CALIENTE ...
ESTUDIO PARA LA CLIMATIZACIÓN DE LA PISCINA Y LA PRODUCCION DE AGUA CALIENTE ...
 
Manual del instalador de gas lp becerril diego onesimo
Manual del instalador de gas lp becerril diego onesimoManual del instalador de gas lp becerril diego onesimo
Manual del instalador de gas lp becerril diego onesimo
 
Sistemas de calentamiento solar
Sistemas de calentamiento solarSistemas de calentamiento solar
Sistemas de calentamiento solar
 

Similar a Manual térmico solar

Manual solar t+®rmica instalador (1)
Manual solar t+®rmica instalador (1)Manual solar t+®rmica instalador (1)
Manual solar t+®rmica instalador (1)anibalespinoza9
 
documentos_10374_Energia_de_la_biomasa_07_b954457c.pdf
documentos_10374_Energia_de_la_biomasa_07_b954457c.pdfdocumentos_10374_Energia_de_la_biomasa_07_b954457c.pdf
documentos_10374_Energia_de_la_biomasa_07_b954457c.pdfLuisPedrero3
 
Minicentrales hidroelectricas
Minicentrales hidroelectricasMinicentrales hidroelectricas
Minicentrales hidroelectricasjiron19
 
Energia eolica. como aprovechar el viento.pdf
Energia eolica. como aprovechar el viento.pdfEnergia eolica. como aprovechar el viento.pdf
Energia eolica. como aprovechar el viento.pdfRubenDarioRestrepo1
 
Norma Aguacate Hass - ICONTEC
Norma Aguacate Hass - ICONTECNorma Aguacate Hass - ICONTEC
Norma Aguacate Hass - ICONTECTerravocado
 
Energía de la biomasa
Energía de la biomasaEnergía de la biomasa
Energía de la biomasaeHabilita
 
Plan de trabajo Alpamarca 2019.docx
Plan de trabajo Alpamarca 2019.docxPlan de trabajo Alpamarca 2019.docx
Plan de trabajo Alpamarca 2019.docxRolloRodrguez
 
La evolucion de internet reducido
La evolucion de internet reducidoLa evolucion de internet reducido
La evolucion de internet reducidocpjk
 
Manual de diseño de disipadores
Manual de diseño de disipadoresManual de diseño de disipadores
Manual de diseño de disipadorestatyilleras
 
Aislamiento idae poliestireno expandido eps
Aislamiento idae poliestireno expandido epsAislamiento idae poliestireno expandido eps
Aislamiento idae poliestireno expandido eps0BALSE
 
DISEÑO DE UNA PLANTA SOLAR FOTOVOLTAICA DE 1 000 MW CONECTADA A LA RED ELÉCTR...
DISEÑO DE UNA PLANTA SOLAR FOTOVOLTAICA DE 1 000 MW CONECTADA A LA RED ELÉCTR...DISEÑO DE UNA PLANTA SOLAR FOTOVOLTAICA DE 1 000 MW CONECTADA A LA RED ELÉCTR...
DISEÑO DE UNA PLANTA SOLAR FOTOVOLTAICA DE 1 000 MW CONECTADA A LA RED ELÉCTR...DiegoAlonsoVillegasC
 
16 eco-etiquetado un-instrumento_para_diferenciar_productos_e_incentivar_la_c...
16 eco-etiquetado un-instrumento_para_diferenciar_productos_e_incentivar_la_c...16 eco-etiquetado un-instrumento_para_diferenciar_productos_e_incentivar_la_c...
16 eco-etiquetado un-instrumento_para_diferenciar_productos_e_incentivar_la_c...Bibian Katherine Arguello Bernal
 
Formas de financiación para la construcción de una alameda
Formas de financiación para la construcción de una alamedaFormas de financiación para la construcción de una alameda
Formas de financiación para la construcción de una alamedaLeo Eduardo Bobadilla Atao
 

Similar a Manual térmico solar (20)

Manual es termica
Manual es termicaManual es termica
Manual es termica
 
Manual eolica
Manual eolicaManual eolica
Manual eolica
 
Manual mark ecoetica
Manual mark ecoeticaManual mark ecoetica
Manual mark ecoetica
 
Idae, biomasa
Idae, biomasaIdae, biomasa
Idae, biomasa
 
Manual solar t+®rmica instalador (1)
Manual solar t+®rmica instalador (1)Manual solar t+®rmica instalador (1)
Manual solar t+®rmica instalador (1)
 
documentos_10374_Energia_de_la_biomasa_07_b954457c.pdf
documentos_10374_Energia_de_la_biomasa_07_b954457c.pdfdocumentos_10374_Energia_de_la_biomasa_07_b954457c.pdf
documentos_10374_Energia_de_la_biomasa_07_b954457c.pdf
 
Manual usuario ce3
Manual usuario ce3Manual usuario ce3
Manual usuario ce3
 
Minicentrales hidroelectricas
Minicentrales hidroelectricasMinicentrales hidroelectricas
Minicentrales hidroelectricas
 
Energia eolica. como aprovechar el viento.pdf
Energia eolica. como aprovechar el viento.pdfEnergia eolica. como aprovechar el viento.pdf
Energia eolica. como aprovechar el viento.pdf
 
Manual Minicentrales Hidroelectricas
Manual Minicentrales HidroelectricasManual Minicentrales Hidroelectricas
Manual Minicentrales Hidroelectricas
 
Norma Aguacate Hass - ICONTEC
Norma Aguacate Hass - ICONTECNorma Aguacate Hass - ICONTEC
Norma Aguacate Hass - ICONTEC
 
Energía de la biomasa
Energía de la biomasaEnergía de la biomasa
Energía de la biomasa
 
Plan de trabajo Alpamarca 2019.docx
Plan de trabajo Alpamarca 2019.docxPlan de trabajo Alpamarca 2019.docx
Plan de trabajo Alpamarca 2019.docx
 
La evolucion de internet reducido
La evolucion de internet reducidoLa evolucion de internet reducido
La evolucion de internet reducido
 
Manual de diseño de disipadores
Manual de diseño de disipadoresManual de diseño de disipadores
Manual de diseño de disipadores
 
628445 r685
628445 r685628445 r685
628445 r685
 
Aislamiento idae poliestireno expandido eps
Aislamiento idae poliestireno expandido epsAislamiento idae poliestireno expandido eps
Aislamiento idae poliestireno expandido eps
 
DISEÑO DE UNA PLANTA SOLAR FOTOVOLTAICA DE 1 000 MW CONECTADA A LA RED ELÉCTR...
DISEÑO DE UNA PLANTA SOLAR FOTOVOLTAICA DE 1 000 MW CONECTADA A LA RED ELÉCTR...DISEÑO DE UNA PLANTA SOLAR FOTOVOLTAICA DE 1 000 MW CONECTADA A LA RED ELÉCTR...
DISEÑO DE UNA PLANTA SOLAR FOTOVOLTAICA DE 1 000 MW CONECTADA A LA RED ELÉCTR...
 
16 eco-etiquetado un-instrumento_para_diferenciar_productos_e_incentivar_la_c...
16 eco-etiquetado un-instrumento_para_diferenciar_productos_e_incentivar_la_c...16 eco-etiquetado un-instrumento_para_diferenciar_productos_e_incentivar_la_c...
16 eco-etiquetado un-instrumento_para_diferenciar_productos_e_incentivar_la_c...
 
Formas de financiación para la construcción de una alameda
Formas de financiación para la construcción de una alamedaFormas de financiación para la construcción de una alameda
Formas de financiación para la construcción de una alameda
 

Manual térmico solar

  • 1. Energía Solar Térmica Manual técnico para termas solares Autores M. Sc. Ing. Carlos Orbegozo Ing. Roberto Arivilca 2010 1 Proyecto ID 772: Promoviendo mercados locales articulados de energías renovables Green Energy Consultoría y Servicios SRL ©
  • 2. ENERGIA SOLAR TÉRMICA Manual técnico para termas solares Módulo Básico Proyecto ID 772: Promoviendo mercados locales articulados de energías renovables 2
  • 3. PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL La publicación del presente documento ha sido posible gracias a la ayuda financiera del Deutscher Entwicklungsdienst (DED). El contenido es responsabilidad exclusiva de GREEN ENERGY y no se debe considerar como opinión del DED. GREEN ENERGY desea que la información existente en el presente documento sirva para el desarrollo profesional de los (las) lectores (lectoras). Proyecto ID 772: Promoviendo mercados locales articulados de energías renovables 3
  • 4. CLÁUSULA DE EXENCIÓN DE RESPONSABILIDAD Mediante el presente documento, GREEN ENERGY pretende difundir conceptos básicos sobre la tecnología de los calentadores (termas) solares de agua y su utilización con respeto al medio ambiente, dentro del contexto social y económico de los países involucrados. Trataremos de corregir los errores que se nos señalen, aplicando el concepto de la mejora continua. No obstante, GREEN ENERGY no asume responsabilidad alguna en relación con el contenido de las siguientes páginas, puesto que:    consiste únicamente en información básica que no aborda circunstancias específicas relativas a los componentes y sistemas analizados; contiene en algunas ocasiones enlaces a páginas externas sobre las que las actividades de GREEN ENERGY no tienen control alguno y respecto de las cuales declina toda responsabilidad; no ofrece asesoría profesional o jurídica (si desea efectuar una consulta de este tipo, diríjase siempre a un profesional debidamente calificado). Pretendemos reducir al mínimo los problemas ocasionados por errores de carácter técnico. Sin embargo, algunos datos o informaciones contenidas en las siguientes páginas pueden haber sido creados o estructurados en archivos o formatos no exentos de errores, por lo que no podemos garantizar que nuestro servicio no quede interrumpido o afectado de cualquier otra forma por tales problemas. GREEN ENERGY no asume responsabilidad alguna respecto de dichos problemas, que puedan resultar de la consulta de las presentes páginas. La presente cláusula de exención de responsabilidad no tiene por objeto limitar la responsabilidad de GREEN ENERGY de forma contraria a lo dispuesto por las normativas nacionales aplicables, ni excluir su responsabilidad en los casos en los que, en virtud de dichas normativas, no pueda excluirse. Proyecto ID 772: Promoviendo mercados locales articulados de energías renovables 4
  • 5. TABLA DE CONTENIDOS 1. PRÓLOGO ................................................................................................................................................ 7 2. GLOSARIO DE TÉRMINOS TÉCNICOS ........................................................................................................ 8 3. INTRODUCCIÓN ..................................................................................................................................... 12 3.1 3.2 3.3 4. EL SOL: RECURSO ENERGÉTICO .............................................................................................................. 16 4.1 4.2 4.3 4.4 4.5 4.6 4.7 5. CÁLCULO DEL CONSUMO DE AGUA CALIENTE Y DEL PATRÓN DE DEMANDA ................................................................33 DISEÑO DE UNA TERMA SOLAR .........................................................................................................................33 TAMAÑO DEL TANQUE DE ALMACENAMIENTO .....................................................................................................34 EFICIENCIA DE UN SISTEMA..............................................................................................................................35 PÉRDIDA DE CALOR EN UNA TERMA SOLAR..........................................................................................................35 INSTALACIÓN DE UNA TERMA SOLAR ................................................................................................... 37 7.1 7.2 7.3 7.4 8. TERMA SOLAR CON CIRCULACIÓN NATURAL: EFECTO TERMOSIFÓN ..........................................................................22 TERMA SOLAR DE CIRCULACIÓN FORZADA...........................................................................................................22 EL COLECTOR................................................................................................................................................23 TANQUE DE ALMACENAMIENTO, USO DEL AGUA Y ABASTECIMIENTO DE AGUA CALIENTE ..............................................29 CONEXIÓN ENTRE EL TANQUE DE ALMACENAMIENTO Y EL COLECTOR .......................................................................30 DISEÑO Y DIMENSIONAMIENTO DE UNA TERMA SOLAR ....................................................................... 33 6.1 6.2 6.3 6.4 6.5 7. FLUCTUACIONES DIARIAS Y ESTACIONALES ..........................................................................................................16 RADIACIÓN SOLAR EN UN LUGAR ESPECÍFICO (INCLINACIÓN, ORIENTACIÓN) ..............................................................17 SOMBRAS Y REFLEJOS .....................................................................................................................................18 UNIDADES ...................................................................................................................................................19 INSTRUMENTOS DE MEDICIÓN .........................................................................................................................20 MIDIENDO LA RADIACIÓN TOTAL ......................................................................................................................20 CONCLUSIONES ............................................................................................................................................20 ¿COMO OPERA UNA TERMA SOLAR? .................................................................................................... 22 5.1 5.2 5.3 5.4 5.5 6. ¿QUÉ ES LA ENERGÍA SOLAR TÉRMICA? ..............................................................................................................12 APLICACIONES ..............................................................................................................................................12 POSIBILIDADES Y LIMITACIONES ........................................................................................................................15 INSTALACIÓN DE UNA TERMA SOLAR .................................................................................................................37 INSPECCIÓN DE UNA TERMA SOLAR INSTALADA ....................................................................................................38 MANTENIMIENTO DE UNA TERMA SOLAR (QUÉ HACER Y QUÉ NO HACER) ..................................................................38 GUÍA DE SOLUCIÓN DE PROBLEMAS...................................................................................................................39 CONSTRUCCIÓN DE UNA TERMA SOLAR SIMPLE ................................................................................... 42 8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9 8.10 8.11 DISEÑO DE LA TERMA SOLAR ...........................................................................................................................42 TRABAJOS DE PLOMERÍA DE LA RED DEL COLECTOR Y CONEXIÓN DE LAS ALETAS ..........................................................44 CONSTRUCCIÓN DE LA CAJA DE MADERA ............................................................................................................45 CONSTRUCCIÓN DEL TANQUE DE ALMACENAMIENTO Y DE LOS CONDUCTOS ..............................................................47 CONSTRUCCIÓN DE LA ESTRUCTURA DE SOPORTE .................................................................................................50 INSTALACIÓN DEL COLECTOR Y DEL TANQUE DE ALMACENAMIENTO .........................................................................51 INSTALACIÓN DEL COLECTOR............................................................................................................................52 INSTALACIÓN DEL TANQUE DE ALMACENAMIENTO DE AGUA ...................................................................................52 CONEXIÓN DEL COLECTOR, DEL TANQUE DE ALMACENAMIENTO Y DEL SUMINISTRO DE AGUA ........................................53 LLENADO DEL SISTEMA ..............................................................................................................................53 AISLAMIENTO Y FINALIZACIÓN DE LA TERMA SOLAR .........................................................................................54 Proyecto ID 772: Promoviendo mercados locales articulados de energías renovables 5
  • 6. ANEXOS .......................................................................................................................................................... 56 ANEXO 1: LISTA DE VERIFICACIÓN PARA LA INSPECCIÓN DE TERMAS SOLARES ...............................................57 ANEXO 2: LEGISLACIÓN Y NORMATIVA Y RENOVABLE ......................................................................................61 Proyecto ID 772: Promoviendo mercados locales articulados de energías renovables 6
  • 7. 1. PRÓLOGO El curso Energía solar térmica ha sido diseñado especialmente para el Proyecto ID/772. En él se tratarán los aspectos teóricos y prácticos básicos de esta tecnología, utilizando un lenguaje sencillo y acompañando cada tema con gráficos, tablas y fotos. El objetivo principal del curso es poner a disposición de los interesados, un conocimiento básico acerca de los fundamentos de la tecnología de los calentadores (termas) solares de agua a través de un enfoque práctico del tema, desarrollando únicamente los puntos más relevantes del aspecto teórico. De este modo, al finalizar el curso, el alumno habrá adquirido un conocimiento básico acerca de la tecnología de estos sistemas, sus posibilidades, restricciones y aplicaciones. A su vez, será capaz de dimensionar, instalar, inspeccionar y dar mantenimiento a calentadores solares de agua. Por último, aprenderá a realizar mediciones y a detectar errores en el sistema. ¿Porqué estudiar la energía solar térmica? Fuente: www.stinar.net El calentamiento de agua mediante energía solar es un sistema que permite el ahorro de dinero, ya que a lo largo de su vida útil, el combustible para que funcione es cero. Además, las termas solares son bastante eficientes en lugares soleados como el Perú. El Estado peruano y la empresa privada están moviendo el mercado para que existan las condiciones necesarias para masificar estos sistemas. Figura 1: Termas solares en un techo Entonces, existe hoy en día una demanda creciente de termas solares y la oferta aún no es suficiente. Sobre todo de tecnología nacional que pueda competir sanamente con tecnología extranjera. Este es un nicho que aún tiene mucho espacio para los fabricantes e instaladores de estos sistemas. Proyecto ID 772: Promoviendo mercados locales articulados de energías renovables 7
  • 8. 2. GLOSARIO DE TÉRMINOS TÉCNICOS Debido a la gran diversidad de especialidades técnicas que utilizan el presente manual, es necesario comenzar con una lista de definiciones que ayudarán a comprender mejor los términos técnicos utilizados. 1. Aerodinámica: Es la parte de la física que trata el movimiento del aire y los efectos producidos por su acción en los cuerpos. 2. Aerogenerador (turbina eólica): Dispositivo mediante el cual se puede llevar a cabo la captación de la energía eólica para transformarla en energía eléctrica. 3. Aislamiento térmico: Aquellos materiales de bajo coeficiente de conductividad térmica, cuyo empleo en los sistemas solares tiene por objeto reducir las pérdidas de calor. 4. Ángulo de inclinación del colector: Ángulo menor entre el plano de abertura de un colector solar y el plano horizontal. 5. Área total del colector: Área máxima proyectada del colector completo, excluyendo cualquier medio integral de montaje y de tuberías conectadas para transporte de fluido. 6. Área total de la red colectora (red colectora): Suma total de las áreas colectoras de los colectores individuales. 7. Bombas de circulación: Dispositivo que produce el movimiento forzado de un fluido. 8. Calentador auxiliar: Dispositivo o equipo que suministra calor mediante combustible o energía eléctrica. 9. Capacidad de almacenamiento solar: Cantidad de calor sensible por unidad de volumen que se puede almacenar, por cada grado de cambio de temperatura. 10. Capacidad del dispositivo de almacenamiento: Volumen del fluido en el dispositivo de almacenamiento, medido cuando está lleno. 11. Capacidad de entrega: Volumen de agua caliente que el sistema debe suministrar diariamente para el consumo, en las condiciones de máxima demanda y a la temperatura máxima prevista. 12. Circulación por termosifón o natural: Movimiento del fluido de trabajo a través del sistema de aprovechamiento de energía solar, inducido por la convección libre generada por la diferencia de densidades del agua fría y el agua caliente. 13. Circulación forzada: Movimiento del fluido de trabajo a través del sistema de aprovechamiento de energía solar, inducido por dispositivos externos o auxiliares. 14. Combustibles fósiles: Los combustibles fósiles convencionales son: carbón, petróleo, petróleo diáfano, diesel, combustóleo, gasóleo, gas licuado de petróleo, butano, propano, metano, isobutano, propileno, butileno, gas natural, o cualesquiera de sus combinaciones. 15. Componentes: Partes del sistema solar de calentamiento de agua incluyendo colectores, dispositivo de almacenamiento, bombas, intercambiador de calor, controles, etc. 16. Colector solar; colector solar térmico: Dispositivo que absorbe la energía solar incidente, la convierte en energía térmica y la transfiere al fluido que está en contacto con él. También llamado Calentador Solar. 17. Colector, placa plana: Colector solar no concentrador, en el que la superficie de absorción es esencialmente plana. Proyecto ID 772: Promoviendo mercados locales articulados de energías renovables 8
  • 9. 18. Control: Dispositivo de regulación del sistema solar térmico o componente en funcionamiento normal; puede ser manual o automático. 19. Cubierta del colector (colector solar): Material o materiales transparentes (o traslúcidos) que cubren el absorbedor para reducir las pérdidas de calor y proporcionar protección ante la intemperie. 20. Dispositivo de almacenamiento (térmico): Recipiente usado para almacenar energía térmica. Incluye todos los elementos contenidos en él1. 21. Doméstico: Para uso residencial y pequeños edificios comerciales. 22. Energía auxiliar: Energía proporcionada mediante una fuente térmica (calor) auxiliar. 23. Energía solar disponible: Es la cantidad de radiación solar estimada a partir de mediciones hechas en un lugar determinado, como un proceso diario (sobre cada mes) mensual. 24. Fuente térmica (calor) auxiliar: Fuente de energía térmica, diferente a la solar, usada para complementar la salida suministrada por el sistema de energía solar; usualmente en la forma de calor de resistencia eléctrica o energía térmica derivada de la combustión de combustibles fósiles. 25. Fluido: Agua o cualquier otro medio utilizado para el transporte de energía en un sistema de calentamiento de agua con la energía solar. 26. Fuente de calor auxiliar: Fuente de calor, diferente a la solar, usada para complementar la producción suministrada por el sistema de calentamiento solar. 27. Instalador: Se refiere a la persona que realiza la instalación del Sistema y responde por esta acción. 28. Intercambiador de calor: Dispositivo especialmente diseñado para transferir calor entre dos fluidos físicamente separados. Los intercambiadores de calor pueden tener paredes simples o dobles. 29. Manómetro: Dispositivo para medir la diferencia de presión entre un sistema y el medio ambiente. 30. Montaje a ras: Instalación de un colector de modo que queda montado en el mismo plano que la superficie del techo y nivelado de modo que la superficie del colector forme parte de la superficie del techo. 31. Potable: Apropiada para consumo humano; bebible. 32. Presión máxima de operación: Aquella definida por el fabricante como la mayor presión de trabajo para la cual fue diseñado el sistema de calentamiento de agua con energía solar. 33. Radiación solar (energía solar): Radiación emitida por el sol, prácticamente toda la que es incidente en la superficie terrestre en longitudes de onda menores que 3 µm; a menudo llamada radiación de onda corta. 34. Sistema: Se refiere al Sistema de Calentamiento de Agua con Energía Solar. 35. Sistema abierto: Sistema en que el fluido de transferencia de calor está en contacto permanente con la atmósfera. 36. Sistema cerrado; sistema sellado; sistema sin ventilación: Sistema en que el fluido de transferencia de calor no está en contacto con la atmósfera. 1 El fluido de transferencia y accesorios tales como intercambiadores de calor, dispositivos de conmutación de flujo, válvulas y desviadores, firmemente fijos al o los recipientes de almacenamiento térmico, se consideran parte del dispositivo de almacenamiento. Proyecto ID 772: Promoviendo mercados locales articulados de energías renovables 9
  • 10. 37. Sistema circulante: Sistema en que el fluido de transferencia de calor circula entre el colector y el dispositivo acumulador o el intercambiador de calor durante los períodos de funcionamiento2. 38. Sistema con almacenamiento cerrado – acoplado: Sistema en que el dispositivo acumulador está montado directamente adyacente al colector. 39. Sistema conectado en serie: Sistema de calentamiento solar en que el fluido a calentar pasa directamente desde un punto de suministro a través del colector a un dispositivo acumulador, o a un calentador que emplea una fuente de calor auxiliar, o a un punto de uso. 40. Sistema convencional de calentamiento de agua: Equipo que se utiliza para calentar agua, mediante la utilización de combustibles fósiles o electricidad. 41. Sistema de alivio de presión: Dispositivo de acción pasiva o activa que protege al sistema de calentamiento de agua, de incrementos de presión que pudiesen comprometer su integridad física u operacional. 42. Sistema de alivio de temperatura: Dispositivo de acción pasiva o activa que protege al sistema de calentamiento de agua, de incrementos de temperatura que pudiesen comprometer su integridad física u operacional. 43. Sistema de calentamiento de agua por medio del aprovechamiento de la energía solar: Conjunto formado por el colector(es) solar(es), el termotanque o sistema de acumulación de agua caliente, tuberías, accesorios, así como todos y cada uno de los componentes que permiten el aprovechamiento de la radiación electromagnética emitida por el sol para el calentamiento de agua. 44. Sistema de circulación forzada: Sistema que utiliza una bomba para hacer circular el fluido de transferencia de calor a través del (de los) colector (es). 45. Sistema de drenado: Tapón o válvula que se utiliza para permitir la salida de los sedimentos o partículas sólidas contenidas en el agua, de modo que se evite su acumulación. 46. Sistema de precalentamiento solar: Sistema de calentamiento solar para precalentar agua o aire, previo a su entrada dentro de cualquier otro tipo de calentador de agua o aire. 47. Sistema directo: Sistema de calentamiento solar en que el agua calentada para consumo final o circulado al usuario, pasa directamente a través del colector. 48. Sistema indirecto: Sistema de calentamiento solar en que un fluido de transferencia de calor, diferente del agua para consumo, pasa directamente a través del colector. 49. Sistema solamente solar: Sistema de calentamiento solar sin ninguna fuente de calor auxiliar. 50. Sistema solar más suplementario: Sistema de calentamiento solar que utiliza en forma integrada ambas fuentes de energía, solar y auxiliar, y que es capaz de proporcionar un servicio de calentamiento específico, independiente de la disponibilidad de energía solar. 51. Sistema termosifón: Sistema que utiliza sólo los cambios de densidad del fluido de transferencia de calor, para lograr la circulación entre el colector y el dispositivo acumulador o el colector y el intercambiador de calor. 52. Sistema ventilado: Sistema en que el contacto entre el fluido de transferencia de calor y la atmósfera está restringido a la superficie libre de una cisterna de alimentación y expansión o solamente a una tubería abierta ventilada. 53. Temperatura, aire ambiente: Temperatura del aire alrededor de un dispositivo de almacenamiento de energía térmica o colectores solares. 2 La circulación se lleva a cabo mediante una bomba, o mediante convección natural. Proyecto ID 772: Promoviendo mercados locales articulados de energías renovables 10
  • 11. 54. Temperatura de entrada del fluido: Temperatura a la entrada del colector. 55. Transporte de fluidos: Transferencia de aire, agua u otro fluido entre componentes del sistema. 56. Temperatura de salida del fluido: Temperatura a la salida del colector. 57. Termotanque o sistema de acumulación de agua caliente: Depósito en el que se almacena el fluido calentado mediante el aprovechamiento de la energía solar y que se utiliza para conservar su temperatura con las menores pérdidas térmicas posibles. Fuente: Norma Técnica Peruana NTP 399.482-2007, Sistemas de calentamiento de agua con energía solar: Procedimientos para su instalación eficiente. Proyecto ID 772: Promoviendo mercados locales articulados de energías renovables 11
  • 12. 3. INTRODUCCIÓN 3.1 ¿Qué es la energía solar térmica? En forma directa o indirecta, el trabajo diario de complejos y elegantes colectores solares, como son las hojas de las plantas y árboles, nos proporciona alimento y produce combustible para que millones de hogares en el mundo entero puedan cocinar, al igual que ha creado todas nuestras reservas de combustibles fósiles en el pasado. En el presente manual estudiaremos la generación de calor a partir de la energía solar, aprovechando la radiación infrarroja. En el método de conversión a calor, la luz solar es absorbida por una superficie de color negro, que por ende se calienta. A su vez, si aire o agua recorren o pasan a través de esta superficie caliente, también se calentarán. De esta forma, el calor podrá ser transportado a donde sea necesario. Este es, en resumen, el principio de conversión de la energía solar térmica. 3.2 Aplicaciones En el caso de la energía solar térmica, la radiación solar es convertida directamente en calor y puede ser empleada para el calentamiento de agua, aire u otros elementos. Las aplicaciones más conocidas son: – – – 3.2.1 Destiladores solares de agua Secadores solares Termas solares Destilador solar de agua El destilador solar de agua purifica el agua evaporándola y luego condensándola. El destilador no contiene sales, minerales ni impurezas orgánicas. El agua obtenida puede ser utilizada tanto para consumo directo, en hospitales, como agua para baterías, entre otros. Se aconseja su uso en áreas en los lugares donde haya abundante agua contaminada o salobre y, naturalmente, donde haya abundante sol. Por último, los materiales básicos, es decir, el vidrio o las láminas transparentes y resistentes a los rayos ultravioletas, deberán obtenerse fácilmente y tener un costo moderado. Como parámetro base, un destilador solar razonablemente funcional produce cuatro litros diarios de agua destilada por metro cuadrado de superficie útil. Figura 2: Ejemplo de destilador solar de agua Las principales características operativas son las mismas para todos los destiladores solares. A continuación encontrará la descripción de cómo opera un destilador. Proyecto ID 772: Promoviendo mercados locales articulados de energías renovables 12
  • 13. El agua que será destilada es colocada en un recipiente dentro de una caja con cubierta inclinada de vidrio. El agua ingresa al destilador solar a través de la entrada. La radiación solar penetra a través de la cubierta de vidrio y calienta el fondo del recipiente, es decir, la radiación solar es absorbida al igual que el calor, por la superficie negra ubicada bajo el agua almacenada. El agua sobre la superficie es calentada por el sol y convertida en vapor de agua. El vapor se condensa en la cubierta de vidrio, cuya temperatura es baja debido al contacto con el ambiente. El agua condensada baja por el vidrio hasta un canal que va al tanque de almacenamiento. Todo el destilador deberá ser lo más hermético posible para evitar pérdidas de vapor. De la descripción se deduce fácilmente que un destilador con esas características puede ser construido en forma artesanal. Cualquier mecánico o carpintero con experiencia podría construirlo. 3.2.2 Secador solar Todos los secadores solares cuentan con los mismos componentes básicos: a) b) c) d) Una cubierta transparente que permita el paso de la luz solar y limite las pérdidas de calor (vidrio o plástico) Una superficie absorbente, de color oscuro, que recoge la luz solar y la convierte en calor, para luego liberarlo en forma de aire. El aire caliente absorbe más agua que el frío, de modo que el aire caliente y seco es llevado a través del producto que se quiere secar Una capa de aislamiento por debajo Una entrada y una salida de aire, a través de las cuales el aire húmedo puede ser reemplazado por aire fresco y más seco. Los secadores solares pueden ser de dos clases: 1) Secadores en las que la luz solar se utiliza directamente. En este tipo de secadores, la absorción de calor la realiza principalmente el producto mismo. Figura 3: Secador solar, empleado directamente Fuente: www.alternative-technology.de 2) Secadores en las que la luz solar se utiliza indirectamente. En este tipo de secadores, el aire de secado se calienta en un espacio distinto de donde se coloca el producto. Los productos no son expuestos directamente a la luz solar. Proyecto ID 772: Promoviendo mercados locales articulados de energías renovables 13
  • 14. Figura 4: Secador solar, empleado indirectamente Fuente: www.terra.org A continuación detallamos cómo opera una secadora. El aire recorre la secadora por convección natural (en el Capítulo 5 se describe el principio de convección natural para el caso del agua, sin embargo, el principio básico es el mismo en este caso). El aire se calienta al pasar por el colector, y luego se enfría parcialmente mientras recoge la humedad del producto que se va a secar. El producto es calentado tanto por el aire caliente como por la luz solar directa. El aire de escape sale a través de la chimenea ubicada en la parte superior de la cámara de secado. 3.2.2 Terma solar Una terma solar consta de uno o más colectores, así como de un tanque de almacenamiento aislado; está diseñada para ser utilizada en casas, hospitales, lavanderías, etc. El mecanismo de operación de una terma solar es el siguiente: La luz solar es absorbida por una superficie de color negro cubierta por láminas de vidrio, que por ende se calientan. A su vez, si aire o agua recorren o pasan a través de esta superficie caliente, éstos también se calentarán. De esta forma, el calor podrá ser transportado a donde sea necesario. Este es, en resumen, el principio de una terma solar. El sistema de una terma solar está formado básicamente por un colector plano y un tanque de almacenamiento de agua. La Figura 5 ilustra el diseño más simple para una terma solar. Figura 5: Vista general de las partes principales de una terma solar Fuente: Elaboración propia Proyecto ID 772: Promoviendo mercados locales articulados de energías renovables 14
  • 15. 3.3 Posibilidades y limitaciones La fuente de energía, es decir, la radiación solar, no cuesta; sin embargo, el equipo necesario para poder aprovechar los rayos solares puede ser caro, y, por lo general, requiere mantenimiento. Además, el usuario deberá tener nociones básicas sobre su funcionamiento. Una de las características de las termas solares es que las hay de distintos grados de perfección y con un amplio rango de costos y tamaños. La tabla 1 presenta un listado de ventajas y desventajas del uso de termas solares. Cuadro 1: Ventajas y desventajas del uso de una terma solar VENTAJAS    Apropiadas para la producción local Bajo costo operativo Bajo costo de mantenimiento DESVENTAJAS     (Relativamente) altos costos de inversión Salida del agua dependiendo de la radiación solar Necesidad de personal técnico para su instalación Necesidad de materiales de construcción de alta calidad Proyecto ID 772: Promoviendo mercados locales articulados de energías renovables 15
  • 16. 4. EL SOL: RECURSO ENERGÉTICO Para determinar las dimensiones de un colector solar, usualmente no es necesario medir la radiación solar porque los valores promedios se conocen para muchos de los lugares sobre la Tierra. Los valores promedios pueden usarse y esto es suficientemente exacto para los estudios de factibilidad. Sólo se deben considerar mediciones in situ cuando se realizan estudios de factibilidad para sistemas muy grandes que demandan grandes inversiones. En el Perú tenemos ya un Atlas Solar, el cual nos da una primera aproximación de los lugares donde la radiación solar se puede aplicar. Para acceder a este Atlas, el enlace (link) es: http://dger.minem.gob.pe/atlassolar En esta sección aprenderemos a medir la radiación solar y a comprender las mediciones realizadas por terceros, ya que es lo primero que debemos hacer antes de dimensionar o instalar un sistema solar térmico. 4.1 Fluctuaciones diarias y estacionales Además de las variaciones de un lugar a otro, también las hay de una estación a otra (ver Figura 8). Las fluctuaciones estacionales para el Perú están registradas en un cuadro que muestra la radiación solar mensual. De este cuadro se puede concluir que la radiación para Tumbes varía de 3.0 kWh/m2-día en julio a 5.1 kWh/m2-día en marzo (ver Cuadro 2) Figura 6: Fluctuaciones estacionales del sol Las fluctuaciones estacionales son un problema común a muchas de las fuentes de energías renovables (es por ello que en ocasiones son llamadas fuentes intermitentes); y constituyen además una de sus mayores limitaciones. Por esta razón, es necesario usar algún tipo de almacenamiento. El almacenar energía siempre resulta costoso y disminuye la eficiencia del sistema. En lo posible, deberá evitarse almacenar energía y, en otras circunstancias, debería minimizarse su uso. Almacenar calor por un corto tiempo (por unas horas o por un par de días) es posible utilizando un buen tanque de almacenamiento. Los tanques de almacenamiento y el aislamiento son descritos en detalle más adelante. Por lo tanto, las fluctuaciones diarias pueden ser manejadas si se cuenta con un tanque. La mayor cantidad de energía es recibida sólo durante unas pocas horas, poco antes y después del mediodía. Por lo general, la demanda de calor tiene lugar durante la tarde o la noche, cuando el sol ya se ha ocultado. En estaciones de lluvia, puede haber una ausencia prolongada de sol. En caso de que sea necesario contar con suministro continuo de calor, se deberá aumentar tanto la capacidad del tanque como el tamaño de los colectores solares. Normalmente el sistema debería estar diseñado de manera que se pueda cubrir tranquilamente un día sin luz solar. Por otro lado, no es posible almacenar calor por un período más largo (dos /tres días) porque el almacenamiento óptimo y, otras opciones son muy costosas. Por lo tanto, en algunas ocasiones se utiliza otra solución para nivelar fluctuaciones estacionales; por ejemplo, un calentador eléctrico. Proyecto ID 772: Promoviendo mercados locales articulados de energías renovables 16
  • 17. Cuadro 2: Estimación de la media mensual de la radiación solar diaria del Perú LAT. ALT. IRRADIACION DIARIA MEDIA MENSUAL EN KWh/m2 Gra. m ENE FEB MAR ABR MAY JUN JUL AGO SET OCT Tumbes Tumbes Corales 3.6 85 4.6 4.9 5.1 4.9 4.5 4.1 3.0 3.9 4.2 4.2 Piura Talara El Alto 4.3 270 4.5 4.6 4.5 4.1 3.9 3.4 3.5 3.6 3.9 3.9 Piura Huancabamba Huancabamba 5.2 57 4.6 4.8 4.5 4.7 4.4 4.2 4.4 5.0 5.1 4.9 Lambayeque Lambayeque Lambayeque 6.7 10 5.4 5.4 5.2 5.0 4.6 3.9 3.8 4.3 4.9 5.1 Lambayeque Chiclayo Cayalti 7.1 150 5.9 5.9 5.5 5.5 5.0 4.4 4.5 4.9 5.6 5.8 La Libertad Ascope Casagrande 7.7 150 4.8 5.1 4.7 4.5 4.5 3.4 3.3 4.1 4.1 4.7 La Libertad Ascope Cartavio 7.9 51 5.0 6.1 5.0 4.7 4.8 3.8 3.6 4.4 4.3 4.9 Ancash Santa Nepena 9.2 203 5.5 6.4 5.9 5.3 5.5 3.5 3.7 4.6 4.5 5.6 Ancash Huaraz Huaraz 9.5 30 5.2 5.0 5.0 5.1 4.9 4.7 4.9 5.3 5.4 5.4 Lima Barranca Paramonga 10.7 15 5.3 4.4 5.1 4.7 2.7 1.9 2.3 2.1 2.7 4.3 Lima Lima Jesus Maria 12.1 10 5.5 5.3 5.2 5.0 5.6 2.3 2.0 2.2 2.4 3.3 Lima Lima La Molina 12.1 150 4.3 4.9 4.2 4.3 3.7 2.2 2.0 2.0 2.2 2.8 Ica Chincha Chincha Alta 13.4 94 5.3 4.7 4.9 5.0 3.5 2.7 2.6 3.2 3.9 4.8 Ica Inca Caucato 13.7 35 5.8 5.7 5.8 5.0 4.3 3.2 3.2 3.6 4.8 5.1 Ica Nazca Marcona 15.1 620 5.4 5.1 5.2 4.9 4.3 3.8 3.8 4.4 5.1 5.8 Arequipa Arequipa Arequipa 16.3 2150 5.4 5.1 5.0 5.2 4.5 4.4 4.5 5.1 5.7 6.1 Arequipa Arequipa Characato 16.4 2451 5.2 5.0 5.2 5.1 4.6 4.4 4.6 5.2 5.7 6.6 Arequipa Arequipa Pampa de Majes 16.5 140 5.8 5.5 5.7 5.4 4.7 4.5 4.8 5.3 5.0 6.7 Hoquegua Mariscal Nieto Moquegua 17.2 1412 5.5 5.2 5.8 5.2 4.6 4.3 4.4 4.8 5.7 6.4 Tacha Tarata Paucarani 17.5 4541 5.1 5.3 5.0 5.8 4.8 4.7 4.8 5.5 5.8 6.2 Tacha Tacna Cajana 17.9 875 5.6 5.5 5.2 4.8 4.2 3.8 4.0 4.4 4.9 5.7 Cajamarca Cajamarca Cajamarca 7.1 2640 4.5 4.4 4.3 4.2 4.2 4.1 4.8 4.5 4.4 4.6 Huanuco Leoncio Prado Tingo Maria 9.1 640 3.8 3.9 3.8 3.8 3.7 3.6 3.9 4.6 4.5 4.5 Huanuco Huanuco Huanuco 9.9 1895 4.5 4.3 4.4 4.4 4.3 4.2 4.4 4.7 4.7 4.9 Junin Chanchamayo Humaya 1.1 5.1 5.3 5.3 4.7 4.6 3.5 3.6 4.3 4.2 5.0 Junin Huanuco Huachac 12.0 1150 5.0 4.9 4.7 4.7 4.6 4.4 4.5 4.8 4.9 5.3 Huancavelica Castrovirreyna Aconococha 13.1 4520 4.9 3.7 4.1 4.3 4.2 4.6 4.3 4.6 4.9 4.9 Ayacucho Huamanga Ayacucho 13.2 2760 5.1 5.1 4.7 4.7 4.5 4.2 4.2 4.7 5.0 5.4 Apurinac Abancay Abancay 13.6 2378 4.8 4.7 4.7 4.6 4.4 4.2 4.2 4.7 5.0 5.5 Cuzco La Convencion Santa Ana 12.9 920 4.0 4.0 4.0 3.8 3.9 3.8 3.9 4.0 4.1 4.3 Cuzco Cuzco San Jeronimo 13.6 320 4.6 4.6 4.6 4.6 4.4 4.3 4.4 4.6 4.9 5.2 Puno Puno Duno 15.8 3875 5.1 5.2 5.1 5.1 4.6 4.4 4.6 5.0 5.5 6.0 Amazonas Bagua Had Valor 5.7 421 4.1 4.2 4.4 4.4 4.1 4.2 4.1 4.6 4.8 4.9 San Martin San Martin Juan Guerra 6.6 30 3.9 4.0 3.8 3.4 3.7 3.6 3.9 4.2 4.2 4.3 Loreto Maynas Iquitos 3.8 125 3.4 3.7 3.5 3.7 3.0 3.1 3.7 4.2 4.7 3.8 Loreto Requera Requena 5.0 180 3.9 4.0 3.7 3.5 3.4 3.4 3.7 4.2 4.3 4.4 Ucayali Padre Abad Padre Abad 8.5 270 4.0 3.9 3.8 3.5 3.7 3.5 4.0 4.6 4.6 4.5 Ucayali Atalaya Yurac-Yurua 9.0 -1 2.5 2.6 2.7 2.7 2.7 3.0 3.3 3.8 4.0 3.5 Madre de Dios Tahuamanu Iberia 1.4 150 3.7 3.7 3.7 3.7 3.5 3.5 3.8 4.3 4.3 4.1 Estos datos son calculados en base a mediciones de horas de sol, horas por dia, usando la formula de Angstromg. DEPARTAMENTO PROVINCIA DISTRITO NOV 4.6 4.0 4.4 5.3 6.1 4.9 5.3 5.7 5.5 4.9 4.0 3.3 5.6 5.1 5.8 6.5 6.5 6.6 6.6 6.1 6.0 4.9 4.2 4.9 4.9 5.4 5.2 5.7 5.4 4.3 5.2 6.0 5.3 4.2 4.2 4.2 4.2 3.4 4.2 DIC 4.9 4.4 4.9 5.3 6.2 5.1 5.5 5.7 5.2 5.5 4.8 4.2 4.9 5.5 5.7 6.2 5.9 6.4 6.3 5.6 5.9 4.7 3.9 4.7 5.3 5.2 4.9 5.3 5.0 4.9 4.8 5.6 4.8 4.1 3.8 3.8 4.1 3.2 3.9 MEDIA ANUAL kWh/m2 4.5 4.0 4.7 4.9 5.5 4.4 4.8 5.2 5.1 3.0 3.8 3.4 4.2 4.8 4.9 5.3 5.3 5.6 5.4 5.4 5.0 4.5 4.0 4.5 4.7 4.9 4.8 4.9 4.7 4.0 4.7 5.2 4.5 4.0 3.7 3.9 4.0 3.1 3.9 Es una adaptación de la fuente original, Vasques, J.W. & Lloyd, P, Estimacion de la energia solar en el Peru en Revista Energetica, OLADE, ANO 11 No 1, abril de 1987. 4.2 Radiación solar en un lugar específico (inclinación, orientación) Tome en cuenta que las cifras utilizadas en la sección anterior dan cantidades de energía por m2 en una superficie horizontal. Muchos de los colectores solares están inclinados para captar mayor radiación solar. La cantidad óptima de energía se capta cuando el colector está inclinado en el mismo ángulo que el de latitud. Este debería ser de por lo menos 15o para asegurar que el agua de las lluvias drene fácilmente, lavando el polvo al mismo tiempo. A latitudes mayores (> 30o N ó S), los colectores están más inclinados sobre el ángulo de latitud para tratar de nivelar fluctuaciones por estaciones. Si los colectores solares están inclinados para optimizar la recolección de energía, o si circunstancias locales rigen cuál debe ser el ángulo óptimo, entonces la radiación promedio recibida deberá ser corregida utilizando un factor de inclinación. Cuadro 3: Factores de inclinación determinados para el Perú Latitud 0 - 5º 5 - 10º 10 - 15º 15 - 20º Factores de inclinación 15º 0.99 1.01 1.03 1.06 20º 0.97 1.00 1.02 1.07 25º 0.94 0.98 1.02 1.06 30º 0.92 0.96 1.00 1.05 35º 0.88 0.93 0.98 1.04 40º 0.84 0.89 0.96 1.02 Proyecto ID 772: Promoviendo mercados locales articulados de energías renovables 17
  • 18. Ejemplo: Para un lugar en el norte del Perú (latitud 0 - 5o), el factor de inclinación para un sistema de calentadores solares de agua orientados hacia el norte a un ángulo de 15° N es de 0.99 o menor. Esto es debido a que el ángulo óptimo sería de 5°. Pero para evitar que el polvo se asiente y para permitir un adecuado drenaje del agua, el ángulo mínimo deberá ser de 15°. Por lo tanto, la energía real recibida en el lugar sobre los colectores debe ser 0.99 veces la radiación sobre la superficie horizontal. Para otros ángulos de inclinación y lugares, el factor de inclinación puede diferir sustancialmente de 1, desempeñando un papel importante en la determinación del tamaño y optimización del sistema. Tome en cuenta que en este cuadro se supone que los colectores están mirando hacia la dirección correcta. Esto significa que en nuestro hemisferio (Sur), los colectores están mirando exactamente hacia el norte. Si éste no es el caso, uno debe utilizar factores de corrección similares a los de desviación de ángulo de inclinación óptimo. Se pueden utilizar compases o mapas de la ciudad para determinar la orientación correcta. Hay circunstancias locales que impiden la correcta colocación de los colectores. Por ejemplo, los colectores deben acoplarse sobre un techo que no tiene la inclinación adecuada y que no está mirando exactamente al sol. En países cercanos al ecuador, las consecuencias de desviaciones de la inclinación óptima son poco importantes. El ángulo de inclinación es pequeño, así que los colectores solares normales (normal = línea haciendo ángulo de 90o con el colector) nunca se desvían mucho del ángulo promedio de incidencia sobre la radiación solar (que está cercana a la normal sobre la superficie de la tierra). Aún así, de ser posible, es mejor dejar que los colectores miren al sol. 4.3 Sombras y reflejos En lo posible, deben evitarse las sombras. Pero, cuál es exactamente la influencia de un pequeño árbol al Este del colector solar, de un edificio alto Figura 7: Sistema solar y algunos obstáculos a 100 metros o de una pared detrás de los bajos colectores solares. Cualquier sombra tiene una influencia negativa sobre el rendimiento de un sistema solar. Así que, aún un árbol pequeño (además del hecho de que muchos de los árboles pequeños eventualmente se convierten en árboles grandes) puede tener una influencia sustancial sobre el rendimiento si está justo en el lugar equivocado. Como regla, la influencia de objetos en los alrededores puede olvidarse cuando el ángulo de la línea, desde el colector solar hasta la cima del objeto, con la horizontal, es menor a 20°. Otro efecto, frecuentemente olvidado, es el de los reflejos de la radiación solar desde la superficie de la tierra u objetos en los alrededores. Diferentes materiales tienen diferentes coeficientes de reflexión. Por ejemplo, un edificio blanco refleja casi toda la radiación. Un edificio oscuro absorbe mucha radiación. El césped o los árboles reflejan parte de la radiación, mientras que la tierra oscura absorbe mucho más. Proyecto ID 772: Promoviendo mercados locales articulados de energías renovables 18
  • 19. Si uno tiene la oportunidad de escoger el color de las paredes en el vecindario directamente relacionado con un sistema solar, es aconsejable escoger el blanco. De lo contrario, si uno tiene la oportunidad de escoger el lugar, se puede tomar en consideración este reflejo. Bajo ciertas circunstancias, la reflexión puede ser de un 10% del total de la radiación o más, así que sí vale la pena (vea la Figura 8) Figura 8: Radiación directa indirecta 4.4 Unidades La radiación solar, la potencia solar, así como muchas otras variables pueden ser expresadas utilizando cualquier tipo de unidad. A pesar de muchos acuerdos para lograr una estandarización, aún se utiliza una gran diversidad de unidades. El siguiente cuadro presenta un panorama general de las unidades más utilizadas y sus factores de conversión. Cuadro 2: Unidades más utilizadas y sus factores de conversión UNIDAD Potencia Solar W KW W/m2 Energía solar KWh/m2/día kJ/cm2 MJ/m2 KCal/cm2 Btu/ft2 Langley EXPLICACIÓN CONVERSIÓN Watt Kilowatt (1000 W) Watt por metro cuadrado - kWh por metro cuadrado por día kJ por centímetro cuadrado MJ por metro cuadrado 1000 Calorías por centímetro cuadrado Unidades termales Británicas por pie cuadrado Caloría por centímetro cuadrado A kWh/m2 1 2.778 0.2778 11.67 0.0428 0.0116 Proyecto ID 772: Promoviendo mercados locales articulados de energías renovables 19
  • 20. Instrumentos de medición Fuente: vppx134.vp.ehu.es 4.5 El instrumento que sirve para medir la energía solar es el solarímetro. Básicamente hay dos tipos de solarímetros: el piranómetro y el medidor fotovoltaico. Ambos tipos miden la radiación solar tanto directa como indirecta (difusa). El piranómetro posee una pequeña plancha de metal negro en su interior, con una termocupla unida a ella. Esta plancha negra se calienta al sol y con la termocupla, el aumento de temperatura se puede medir. La plancha y la termocupla están cubiertas y aisladas por una cúpula de vidrio. La salida de la termocupla es medida para la radiación instantánea total en un momento dado. 4.6 Fuente: www.ufpel.tche.br Fuente: www.arquimedes.tv El medidor fotovoltaico no es nada más que una pequeña célula fotovoltaica que genera electricidad. La cantidad de electricidad es medida para conocer la radiación instantánea. Estos medidores son mucho más económicos que los piranómetros pero menos exactos. Figura 9: Modelos de piranómetro Figura 10: El medidor fotovoltaico Midiendo la radiación total La radiación instantánea es útil para determinar el comportamiento de una instalación en cierto momento. Por ejemplo, al término de una inspección. La mayor parte del tiempo sin embargo, uno está más interesado en la radiación durante un período más largo; por día, por mes o por año. Especialmente si uno desea monitorear el comportamiento de un sistema en detalle, entonces será necesario medir la entrada y salida del sistema por un período más largo (varios meses, un año). Sólo en esa forma los disturbios o problemas a corto plazo pueden reglamentarse y hacerse evaluaciones más exactas del comportamiento. Una ventaja de los medidores fotovoltaicos es que también están disponibles con un integrador, para que la radiación total diaria u horaria pueda ser medida sin dificultad. Si se utilizan los piranómetros, esto no puede realizarse automáticamente. Si la insolación total por hora o por día es requerida, tendrán que utilizarse los data loggers (acumuladores de datos) para almacenar las mediciones instantáneas. NOTA: ¡En un estudio de medición del recurso sol, la radiación solar debe medirse bajo el mismo ángulo en que están colocados los módulos! 4.7 Conclusiones Para determinar y usar la radiación solar de manera óptima deben seguirse los siguientes pasos: Proyecto ID 772: Promoviendo mercados locales articulados de energías renovables 20
  • 21. a) Calcular el promedio diario de radiación en el lugar, utilizando los mapas o altas de radiación solar del mundo o, mejor aún, los datos de radiación de una estación meteorológica cercana. Para sistemas solares costosos o a gran escala, la radiación debería medirse preferentemente, por varios años. b) Determinar el ángulo de inclinación óptimo y la orientación para el lugar: a. Inclinación = latitud, o b. Inclinación = latitud + 5o para optimización, orientación norte Angulo mínimo de inclinación: 15° (para que la lluvia y el polvo no se estanquen en el módulo) c) Calcular la influencia de sombras y reflejos. Si es necesario corregir el rendimiento de los módulos o buscar una mejor ubicación. Proyecto ID 772: Promoviendo mercados locales articulados de energías renovables 21
  • 22. 5. ¿COMO OPERA UNA TERMA SOLAR? Tal como figura en la sección 3.2.2, una terma solar consta principalmente de un colector y un tanque de almacenamiento de agua (vea la Figura 11). A continuación detallamos el principio de circulación natural del agua en el sistema. 5.1 Terma solar con circulación natural: Efecto termosifón La Figura 11 describe el principio de circulación natural en una terma solar. Cuando la radiación solar golpea la superficie del absorbente, se convierte rápidamente en calor. Las pérdidas de calor se reducen gracias a la cubierta y al aislamiento, de modo que el calor es recogido y transferido al agua en los tubos (ver 1). El agua se calienta y sube por el conducto superior (vea 2) hacia el tanque de almacenamiento (vea 3). El agua caliente es más ligera que el agua fría, por lo que siempre encuentra su camino hacia el punto más alto del circuito. Entonces, habrá un flujo que va desde el colector hacia el tanque de almacenamiento. A su vez, el agua caliente que sube desde el colector es sustituida por agua fría, vía el conducto inferior (ver 4). Por lo tanto, el agua fluirá desde la parte más baja del tanque de almacenamiento hacia la parte más baja del Figura 11: Circulación natural del agua colector. De este modo se genera una circulación natural: el agua caliente sube desde el colector y, simultáneamente, el agua fría fluye del tanque de agua al colector. El agua fría en el colector será calentada nuevamente por la radiación solar, cerrando así el circuito. Un sistema basado en el principio de circulación natural es denominado sistema de efecto termosifón; es decir, sistema donde el sol constituye la fuente de energía. Dependiendo de la temperatura del medio ambiente y del grado de aislamiento del sistema, éste alcanzará temperaturas entre los 40º C y 90º C. 5.2 Terma solar de circulación forzada El sistema de efecto termosifón es el más simple y adecuado para ser construido y utilizado en nuestro medio y a un costo mínimo. Por el hecho de trabajar sin una bomba eléctrica, no requiere conexión a la red de alumbrado público, cosa que es muy ventajosa en el Perú, ya que hay lugares que no cuentan con dicha conexión. Figura 12: Circulación forzada de agua Por otro lado, en los lugares donde hay electricidad, es posible instalar un sistema de circulación forzada (vea la Figura 12), es decir, un sistema en el que se emplea una bomba Proyecto ID 772: Promoviendo mercados locales articulados de energías renovables 22
  • 23. eléctrica para hacer circular el agua en el sistema. En un sistema de circulación forzada, los sensores de temperatura prenden la bomba eléctrica en el momento en que detectan una diferencia de temperatura mayor de 4º C entre la parte más baja del tanque de almacenamiento y la parte superior del panel. En comparación con el sistema de efecto termosifón, este sistema es ligeramente más eficiente en términos de energía. En términos de costos, el sistema de circulación forzada es más caro. Además del aumento de eficiencia, el sistema de circulación forzada permite, por lo general, colocar el tanque de almacenamiento más abajo que el panel, en el interior de los edificios, por ejemplo. Otra razón por la que se utilizan sistemas de circulación forzada, es porque hacen del sistema una instalación resistente a la congelación. En climas muy fríos, cuando la temperatura baja de cero grados, el colector deberá estar vacío, o de lo contrario, deberá agregarse anticongelante al fluido del colector. En el primer caso, el tanque de almacenamiento es colocado más abajo que el colector y, sólo en caso de que haya suficiente luz solar, la bomba se pondrá en funcionamiento y el colector se llenará de agua. En el segundo caso, el circuito del colector y el circuito de agua deberán estar separados por un intercambiador de calor que reducirá la eficiencia de la terma solar. Una terma solar consta de uno o más colectores, tuberías y un tanque de almacenamiento aislado. En las próximas secciones describiremos en forma detallada sus diferentes componentes. 5.3 El colector La parte más importante de una terma solar es el colector (vea la Figura 13). La función del colector es convertir la radiación solar en calor y conducirlo al fluido del colector, es decir, al agua en la mayoría de los casos. El colector consta de:  Un absorbente pintado de negro, del cual se extrae el calor mediante el fluido del colector, es decir, el agua  Una cubierta transparente  Aislamiento en la parte posterior y a los lados del absorbente  Una cubierta de protección para el absorbente y su aislamiento. Figura 13: Colector solar Proyecto ID 772: Promoviendo mercados locales articulados de energías renovables 23
  • 24. El absorbente deberá tener las siguientes características:  Alta eficiencia de absorción;  Bajo nivel de pérdidas de calor, es decir, un buen aislamiento;  Un buen sistema de tuberías;  Una buena conducción de calor entre la placa del absorbente y el fluido del colector. Existen tres tipos de absorbentes eficientes:  Absorbente de serpentín (vea la Figura 14)  Absorbente de registro tubular (vea la Figura 15)  Absorbente de placa (vea la Figura 16) Figura 14: Absorbente de serpentín Figura 15: Absorbente de registro tubular Figura 16: Absorbente de placa El Cuadro 4 presenta las diferencias entre los tres tipos de absorbentes. Hay que resaltar que esta tabla registra los resultados de un estudio limitado, y sólo presenta información general sobre los siguientes parámetros: calor absorbido, eficiencia, costos y horas de trabajo. En cada prueba, el tanque contenía 60 litros de agua. El ingreso de energía durante todo el periodo de medición fue de 5 kWh, es decir, el ingreso de energía medida e integrada por computadora. Se midió entonces la temperatura final del tanque, y a partir de ésta, se calculó el calor recogido. Todas las demás condiciones fueron idénticas. Cuadro 4: Prueba de comparación de los diferentes tipos de absorbente Tipo de absorbente Conectado a la placa Calor absorbido (kWh) Porcentaje de eficiencia del sistema Costo de materiales y energía Tiempo de trabajo necesario para su construcción (en horas) Absorbente de serpentín Absorbente de registro tubular Absorbente de placa Malla de alambre Entretejido - 2.67 3.29 3.22 -14% -2% -25% 10% 6h 8h 12 h Fuente: Streib, 1992 Proyecto ID 772: Promoviendo mercados locales articulados de energías renovables 24
  • 25. 5.3.1 Material absorbente El absorbente puede ser de diferentes metales, como cobre, aluminio y acero. La característica más importante del material empleado para la construcción de un absorbente es la conductividad del calor, la que deberá ser la mayor posible. Si se compara al aluminio con el cobre como material estándar, se puede decir que un absorbente hecho de aluminio es aproximadamente 4% menos eficiente, sin embargo, el aluminio es más fácil de usar. El acero es más barato en comparación con los otros dos materiales, pero es más difícil de utilizar y además, un absorbente de acero es aproximadamente 10% menos eficiente. Cuadro 5: Resultados de una prueba de comparación de diferentes materiales absorbentes Material Conductividad de calor W/m. 0C Eficiencia del absorbente Costo Facilidad de uso Hierro Aluminio Cobre 40 200 400 -10% -4% Estándar Menor, dependiendo del costo local 30% más difícil Menor, dependiendo del costo local 30% más fácil Estándar Estándar Además del tipo de material, la eficiencia del colector se ve afectada por los siguientes factores: el grosor de la placa absorbente, el diámetro de la tubería y el método de conexión de la placa y la tubería. Grosor de la placa absorbente Una placa absorbente gruesa tiene un nivel de eficiencia más elevado, en comparación con una placa delgada. Esto se ilustra en el siguiente cuadro: Cuadro 6: Prueba de comparación del grosor de una placa absorbente de aluminio Grosor(mm) 1 0.5 Eficiencia 8% más eficiente Estándar Fuente: Streib, 1992 En este ejemplo, una placa absorbente gruesa de aluminio es 8% más eficiente que una placa de 0.5 mm. Por supuesto, habrá un incremento en los costos de materiales y mano de obra. Efecto del método de conexión de la placa y la tubería En la conexión entre la placa y la tubería, la conducción de calor tiene lugar desde la placa absorbente hasta la tubería, e incluso hasta el fluido. La conexión entre la placa y la tubería es muy importante para lograr un eficiente transporte de calor. Existen varios métodos para conectar la placa y la tubería: Proyecto ID 772: Promoviendo mercados locales articulados de energías renovables 25
  • 26. - Vueltas de alambre; sólo hay contacto en ciertos puntos (vea la Figura 17) - Entretejido con tiras de metal; hay contacto en forma de líneas - Soldadura; se logra un contacto muy efectivo (vea la Figura 18) Figura 17: Serpentín Figura 18: Soldadura La soldadura logra muy buen contacto entre la tubería y la placa; se aconseja utilizar absorbentes soldados tanto como sea posible. Revestimiento del absorbente Un metal puro refleja mucha luz. Por esta razón, es necesario pintar o revestir el absorbente para aumentar su porcentaje de absorción de calor. El absorbente puede ser pintado con brocha o soplete y con pintura mate simple de color negro, cuyo porcentaje de absorción es, por lo general, de 90 - 95 (es decir, convierte en calor el 9095% de la energía que absorbe). Por un lado, el absorbente mismo irradia calor al aumentar la temperatura. Por otro lado, las pinturas negras normales no impiden la radiación (es decir, la emisión de calor) al entorno; por el contrario, las superficies negras también tienen una emisión muy elevada (90) (vea la Figura 19) Figura 19: Absorción y radiación del absorbente Figura 20: Absorción y radiación del absorbente con un revestimiento selectivo Sin embargo, utilizando revestimientos selectivos se logra minimizar las pérdidas de calor originadas por alzas de temperatura en las superficies negras. Tales revestimientos ayudan a la absorción de radiación solar (onda corta) y, al mismo tiempo, impiden la emisión de calor (onda larga). Los revestimientos selectivos pueden reducir la emisión de las superficies negras a porcentajes tan bajos como un 10% (vea la Figura 20). Proyecto ID 772: Promoviendo mercados locales articulados de energías renovables 26
  • 27. Resulta difícil fabricar un revestimiento selectivo espectral, por lo que la mayoría de fabricantes de termas solares adquieren piezas absorbentes completas, donde el revestimiento ya haya sido aplicado sobre un tubo y una aleta de cobre. También se pueden comprar revestimientos selectivosespectrales en forma de láminas, que pueden ser adheridas al absorbente. Para obtener una conexión efectiva y durable entre el revestimiento y el absorbente, es muy importante limpiar la placa de metal y las tuberías antes de sopletear, pegar o pintar. Utilice lija y solventes. 5.3.2 Cubierta transparente El colector cuenta con una cubierta transparente que ayuda a reducir las pérdidas de calor y a proteger la superficie del absorbente de la contaminación, alargando así la durabilidad del revestimiento. Se pueden utilizar los siguientes materiales: – – – vidrios láminas de plástico vidrio acrílico El siguiente cuadro presenta las ventajas y desventajas de estos tres materiales: Cuadro 7: Ventajas y desventajas de los diferentes materiales para cubiertas transparentes MATERIAL Vidrio Lámina de Plástico Vidrio acrílico VENTAJA DESVENTAJA   relativamente estable durable, especialmente a la radiación UV      pesado reducción de luz difícil de obtener puede ser muy costoso se rompe fácilmente     peso ligero fácil de manipular fácil de obtener alta transmisión de luz (hasta 98%)  durabilidad (dependiendo del tipo) que varía entre unos pocos meses y varios años  no es resistente a la radiación UV, se torna opaco y blando se rompe fácilmente difícil de obtener puede ser costoso    peso ligero fácil de manipular buena calidad insolación de    Fuente: Streib, 1992 5.3.3 Caja del colector La función principal de esta caja (vea la Figura 21) es proteger las diferentes partes del colector de elementos externos como la lluvia, la humedad y el viento. Puede ser construida de madera, metal y plástico. Proyecto ID 772: Promoviendo mercados locales articulados de energías renovables 27
  • 28. La ventaja de utilizar madera es que dicho material es aislante, por lo que no será necesario aislar el interior del colector. La madera debe revestirse con una capa de pintura, pues tiende a malograrse bajo los efectos del agua y la luz solar. Si la caja es de metal será necesario aplicar una capa de pintura protectora, excepto cuando se utiliza una lámina galvanizada o de aluminio. Los lados de la caja de metal deberán ser aislados para evitar las pérdidas de calor. El aislamiento servirá para minimizar la pérdida de calor desde la parte posterior y los lados del colector, y deberá ser resistente a temperaturas mayores a 100ºC. Los materiales aislantes más comunes son el tecnopor y la lana de vidrio. El colocar una lámina de aluminio entre el absorbente y el aislante permite una mayor reducción de pérdida de calor. Figura 21: Caja de colector Conexión de varios colectores En el caso de sistemas más grandes que operen con varios colectores, es muy importante que éstos estén conectados en forma eficiente, con el fin de obtener una óptima circulación de agua. Hay varias formas de hacerlo. La Figura 22 presenta las conexiones recomendables y no recomendables para los sistemas de calentadores solares. Figura 22: Conexiones recomendables y no recomendables para diferentes colectores Proyecto ID 772: Promoviendo mercados locales articulados de energías renovables 28
  • 29. 5.4 Tanque de almacenamiento, uso del agua y abastecimiento de agua caliente 5.4.1 Introducción Basándose en el contenido de las secciones anteriores, ya tiene una idea del funcionamiento del colector y de sus componentes. Esta sección describe los puntos referentes al almacenamiento de agua, la conexión del tanque y el colector, y el abastecimiento y uso del agua. 5.4.2 Tanque de almacenamiento Por lo general, el agua calentada por el colector no se utiliza inmediatamente, por lo que debe ser almacenada en un tanque. Puede construirlo o comprarlo (nuevo o usado). Para los sistemas más pequeños hasta los sistemas de 1000 litros, se pueden utilizar cilindros de aceite o contenedores de plástico en buenas condiciones. Existen dos tipos de tanques de almacenamiento (y de termas solares): – – Tanques no presurizados (vea la Figura 23) Tanques presurizados (vea la Figura 24) Figura 23: Tanque no presurizado Figura 24: Tanque presurizado Los tanques no presurizados son más simples y baratos (se pueden emplear materiales más ligeros) que los tanques presurizados. Un tanque presurizado soporta altas presiones causadas por el aumento de temperatura (el agua se expande cuando se calienta) y por la misma presión del agua. La Figura 23 ilustra las diversas entradas y salidas de un tanque de almacenamiento. En un sistema de calentamiento, es imprescindible que tanto la entrada de agua caliente que viene desde el colector como la salida hacia el usuario estén ubicadas por debajo del nivel de agua. En los sistemas no presurizados, es necesario instalar en el tanque de almacenamiento una tubería de ventilación sobre el nivel del agua fría. La tubería de escape/tubería de ventilación es colocada sobre el nivel del agua para permitir que ésta se expanda y que el aire salga del sistema. En un sistema presurizado, la tubería de ventilación es reemplazada por una válvula automática de salida de presión, pequeña válvula que libera gotas de agua del sistema cuando la presión es muy alta (por ejemplo, cuando sobrepasa la barra de los 3 - 4) En el sistema de la Figura 23, el usuario sólo puede obtener agua caliente cuando hay un flujo simultáneo de entrada de agua fría. La entrada de agua fría se encuentra cerca del fondo del tanque con el fin de minimizar la alteración de los patrones de los flujos de agua en el sistema. Observe que Proyecto ID 772: Promoviendo mercados locales articulados de energías renovables 29
  • 30. la entrada de agua fría al colector está ubicada a varios centímetros sobre el fondo del tanque para evitar que la suciedad y las partículas entren en los tubos del colector (vea la Figura 25) Puede encontrar tanques de almacenamiento de agua caliente de forma horizontal y vertical (vea la Figura 26). La estratificación del agua (agua caliente en la parte superior del tanque, agua fría en el fondo) es mejor en un tanque vertical que en un tanque horizontal. Ésta mejora el funcionamiento de la terma solar. Figura 25: Posición de la tubería de salida Figura 26: Tanques de almacenamiento vertical y horizontal 5.4.3 Aislamiento El tanque de almacenamiento de agua deberá ser aislado apropiadamente, con el fin de evitar pérdidas de calor durante la noche. Al colocar el aislamiento, es importante asegurarse de que no haya pérdidas de calor a través de las tuberías de entrada y salida. El mejor método para ello es aislar las conexiones de las tuberías de entrada y salida del tanque. Asimismo, el tanque de almacenamiento deberá ser colocado en un lugar más alto que el colector (por lo menos 30 cm más alto) para evitar la circulación natural invertida. El material aislante utilizado para el tanque deberá estar protegido contra la lluvia y la humedad, ya que pierde su poder al mojarse. Como material de protección se puede utilizar láminas de plástico o de metal galvanizado delgado. 5.5 5.5.1 Conexión entre el tanque de almacenamiento y el colector Tuberías de conexión Las tuberías de conexión deben ser lo más cortas posible para ahorrar en materiales y para reducir las pérdidas de calor. Proyecto ID 772: Promoviendo mercados locales articulados de energías renovables 30
  • 31. ADVERTENCIA La fuerza que rige la circulación natural es una fuerza débil (diferencia de gravedad específica entre agua fría y caliente). Por lo tanto, cada codo, angostura o válvula aumenta la fricción, y por ende, reduce la circulación. Las tuberías de conexión entre el colector y el tanque de almacenamiento deberán estar inclinadas ligeramente hacia arriba, en un ángulo de por lo menos 1º; es decir: una inclinación de 2 cm para 1 m de largo. Esta inclinación es necesaria para evitar la formación de burbujas de aire. Se debe evitar el uso de codos entre el tanque y el colector. Cada doblez angular aumenta la resistencia a la circulación y reduce el porcentaje de flujo que pasa por el absorbente, disminuyendo así la eficiencia. El aire entra en el sistema con el primer flujo de agua, y en cada uno de los flujos posteriores. Al calentarse, el aire y los gases que están disueltos en el agua se liberan y tienen que ser extraídos del sistema. Si hay una burbuja de aire, la circulación puede paralizarse completamente, evitando que el agua caliente llegue al tanque. 5.5.2 Materiales adecuados para las tuberías La temperatura de salida del colector rara vez excede los 90ºC, por lo que es factible instalar tuberías de metal o plástico. Sin embargo, es importante verificar si la textura de las tuberías de plástico no se deforma debido a las altas temperaturas. Vale decir, que las tuberías de plástico tienen mayores desventajas. Cuando el colector está vacío por un lapso determinado (problemas en el abastecimiento de agua), su temperatura puede alcanzar los 100ºC, 120ºC o más y, cuando el agua empieza a fluir nuevamente, se produce vapor. El plástico en tuberías o material aislante no puede resistir estas temperaturas. Por esta razón, es preferible colocar tuberías de metal que son más durables bajo cualquier circunstancia. 5.5.3 Diámetro de las tuberías Una tubería de diámetro muy pequeño, reducirá el flujo debido al aumento de resistencia por fricción. El efecto de un flujo más pequeño es que el agua caliente permanece en el sistema de tuberías y en los colectores, lo que origina una constante pérdida de calor. Una tubería de diámetro demasiado grande también ocasiona una reducción en el flujo, y subsecuentemente, una mayor pérdida de calor. Para un sistema pequeño con un solo panel de 1 m2 y un tanque de almacenamiento de 60 litros, es suficiente utilizar tuberías de 16 mm de diámetro. Para sistemas más grandes, consulte el Cuadro, que contiene sugerencias acerca del diámetro interior de las tuberías de conexión en proporción al área de la superficie de panel. Cuadro 8: Sugerencias para el diámetro interior de las tuberías de conexión (mm) en proporción al área de la superficie de panel (m2) Área de la superficie (m2) Diámetro interior 1-2 4-6 10-12 16-20 25-30 16 mm 1/2 " 20mm 3/4" 25mm 1" 32mm 1 1/4" 40mm 1 1/2" Fuente: Streib, 1992 (pag. 56) Proyecto ID 772: Promoviendo mercados locales articulados de energías renovables 31
  • 32. 5.5.4 Aislamiento de las tuberías El aislamiento de las tuberías de conexión que van hacia y desde el tanque de almacenamiento al colector, tiene como finalidad aumentar la eficiencia de las termas solares. El mejoramiento de la eficiencia depende de la calidad del aislamiento y de los materiales utilizados. 5.5.5 Abastecimiento de agua Para garantizar el abastecimiento de agua al tanque de almacenamiento, el tanque de la terma solar puede ser conectado a uno de agua fría o a la red de servicio público (si es lo suficientemente confiable). Cuando el colector está vacío, es esencial contar con un continuo suministro de agua fría para evitar daños ocasionados por altas temperaturas. El tanque de agua fría debe ser colocado a un nivel más alto que el de agua caliente para que el agua fluya con facilidad (vea la figura 27). Para regular el nivel del agua en el tanque de agua fría, se coloca una válvula de flotador. Figura 27: Válvula de flotador para la regulación del suministro de agua fría en el tanque de almacenamiento 5.5.6 Superar las pérdidas nocturnas de calor Por lo general, las tuberías de conexión de un sistema de efecto termosifón son colocadas fuera del tanque y del colector, y son aisladas (vea la Figura 28). Ligeros efectos tipo termosifón invertido se producen en las tuberías conectadas a la parte superior del tanque. Esto ocurre en periodos con ausencia de radiación y temperaturas externas más frías. De esta forma, se extrae calor del tanque de almacenamiento. Figura 28: Tuberías de conexión aisladas Esto puede evitarse aislando todas las conexiones de las tuberías del tanque, especialmente aquellas que se encuentran en la parte superior del mismo. Proyecto ID 772: Promoviendo mercados locales articulados de energías renovables 32
  • 33. 6. DISEÑO Y DIMENSIONAMIENTO DE UNA TERMA SOLAR 6.1 Cálculo del consumo de agua caliente y del patrón de demanda Para establecer el tamaño óptimo de una terma solar para determinados clientes, primero necesita conocer la demanda de agua caliente. Para calcular el consumo de agua caliente y el patrón de demanda de una casa, hotel o empresa, es preferible utilizar medidores de energía (para medir el flujo y la temperatura del agua fría y caliente) durante un periodo de un año aproximadamente. El resultado de esta medición permite un cálculo detallado de la demanda y del patrón de demanda (por día, por mes y por año). Si no fuera posible usar medidores de energía, por lo menos se puede medir el consumo de agua caliente de una semana, con lo cual se podrá calcular el consumo por mes y por año. Otra opción para calcular el uso de agua caliente en un hogar es analizar mensualmente los recibos de agua. Para el promedio de familias, la cantidad de agua caliente utilizada constituye aproximadamente 25% del consumo total de agua. Si ninguno de estos métodos es factible, la demanda será calculada mediante reglas básicas, utilizando el siguiente cuadro para demanda de agua caliente (LPD = litros por día) a 60ºC. Cuadro 9: Cantidad de agua caliente usada por diferentes sectores - baños - cocina y lavado 25 LPD/persona 5 LPD/persona Hoteles - por cama personal 30 LPD Hospitales - por cama personal 35 LPD Cafeterías - por turno 5 LPD/persona Uso doméstico 6.2 Diseño de una terma solar La energía necesaria para elevar la temperatura de una sustancia es una propiedad física conocida como el “calor específico” de dicha sustancia. El calor específico del agua (Cp) es 4200 J/kg/ºC. Eso significa que se necesitan 4200 joules de energía para elevar en un grado centígrado la temperatura de un kilogramo de agua. Tomando como base los siguientes parámetros, se puede diseñar el colector de una terma solar: Cp I M T1 T2 Eeff - calor específico (J/kg/ºC); radiación solar (kWh/m2); cantidad de agua caliente requerida (litros); temperatura del agua caliente requerida (ºC); temperatura del agua fría; eficiencia de la terma solar Proyecto ID 772: Promoviendo mercados locales articulados de energías renovables 33
  • 34. En primer lugar, se debe calcular la energía necesaria basándose en la diferencia de temperatura requerida entre el agua fría y caliente. La fórmula está dada en la siguiente ecuación (1). En el ejemplo 1 se realiza un cálculo basado en dicha fórmula. Q = M x Cp x (T 1 - T 2) (1) Ejemplo 1: Una familia consume 200 litros diarios de agua a 40º C. La temperatura del agua en la fuente es de 15º C. Calcule el coeficiente (Q) de energía de calor. Q = M x Cp x (T 1 - T 2) = 200 x 4200 x 25= 21 MJ = 5.8 kWh Una vez calculada la energía necesaria, se puede calcular el área de la superficie del colector, tomando en cuenta la radiación solar (I) y la eficiencia del sistema (Eef). Área del colector requerida = Q I x E ef (2) La radiación global varía durante el día, durante el año y también según la altitud y latitud. Para realizar los cálculos, puede utilizar el índice de radiación registrado para el Perú en el cuadro o utilizar. Para aplicar la fórmula, ver el ejemplo 2. La eficiencia del colector depende, entre otras cosas, del tipo de colector, el aislamiento, la instalación, etc. Por lo general, la eficiencia de un sistema completo (colector y tanque), si se utiliza adecuadamente (!), está entre 25 - 50%. Podemos decir, como regla básica, que se puede utilizar un promedio de 35 - 40%. Ejemplo 2: Use el resultado del ejemplo 1. La radiación solar es 4 kWh/m2 y la eficiencia de la terma solar es de 35%. ¿Cuál es el área de superficie necesaria para la familia? Superficie A = Q I x Eef = 5.8 0.35 x 4.0 = 4.1 m2 Entonces, se necesita un área de superficie de paneles total de 4.1 m2 para calentar 200 litros de agua a 40º C. 6.3 Tamaño del tanque de almacenamiento El tamaño del tanque deberá ser proporcional al requerimiento diario de agua. Si se instala un tanque más grande, el agua estará a una temperatura más baja durante los días de menor radiación. Un tanque más pequeño proporcionará agua caliente a temperatura más alta. Si un tanque es demasiado pequeño, se presentarán pérdidas de calor debido a la alta temperatura del flujo de Proyecto ID 772: Promoviendo mercados locales articulados de energías renovables 34
  • 35. entrada y probablemente, no pueda satisfacer la demanda completa de agua caliente. En días de mayor radiación, el tamaño del tanque deberá ser tal que la temperatura no exceda los 65 - 70º C. 6.4 Eficiencia de un sistema Se puede comparar la calidad de las termas solares y de los diversos tipos de colectores en base a su eficiencia. La eficiencia depende de cuánto de la energía suministrada se convierte en energía útil (ver fórmula 3). Eficiencia (%) = Energía útil (Qu) Energía suministrada (Qsum) x 100 (3) La energía suministrada por las termas solares es la radiación solar que cae sobre la superficie del colector. La energía útil es la energía sustraída de la terma solar en forma de agua caliente. La eficiencia de una terma solar está determinada, por supuesto, por la calidad de un sistema pero también, en gran medida, por su uso. En teoría, la eficiencia del sistema puede estar entre 0 y 100%, dependiendo del uso de agua caliente, que fluctúa entre 0 litros/día hasta una suma infinita por día. Esta es la razón por la que es más útil y común hablar de la capacidad de una terma solar expresada en litros por día, que hablar de eficiencia. Ahora, si Ud. desea comparar diferentes sistemas, puede ser útil medir la eficiencia de los mismos. Sin embargo, las circunstancias deberán estandarizarse y, al hablar de eficiencia, siempre deberán tomarse en cuenta los siguientes parámetros: – – – – Temperatura del agua fría; Radiación; Temperatura del ambiente; Consumo de agua caliente (por ejemplo 100 litros/día). Entonces, es posible calcular la salida de energía de la terma solar: Qsalida = m x Cp x (T1 - T2) La entrada de energía es: Qentrada= I x A Y la eficiencia es la relación entre las dos: 6.5 Eef = Qsalida Qentrada Pérdida de calor en una terma solar Si desea medir la capacidad del colector para permanecer caliente, puede llevar a cabo la prueba descrita en esta sección. Nota: Esta prueba no mide la capacidad del sistema para absorber el calor del sol. Para medir la pérdida de calor en el tanque de una terma solar, se deja enfriar poco a poco un tanque con agua caliente durante varias horas (de 8 a 24 horas). Durante ese lapso se mide la baja de temperatura del agua en el interior del tanque. Por lo general, un tanque de alto aislamiento tiene un valor de pérdida de calor de 1 - 2 W/ºC. Proyecto ID 772: Promoviendo mercados locales articulados de energías renovables 35
  • 36. Ejemplo 3: Un tanque con 100 litros de agua a una temperatura de 60ºC se deja enfriar en su entorno a una temperatura de 10ºC. Luego de 8 horas, la temperatura del agua es de 55ºC. Preguntas: Calcule la pérdida de energía del tanque y el valor de pérdida de calor del tanque (R) La pérdida de temperatura es de 60 ºC - 55 ºC = 5 ºC Pérdida de energía: Q perd = m x Cp x Tperd = 100 x 4200 x 5 = 2.1 MJ La diferencia entre las temperaturas del ambiente y del agua en el tanque en un inicio, es de 50ºC. El tiempo en el que el tanque se enfría (t) es de 8 horas, es decir 8 x 3600 segundos. R = Qperd t x (T2- T1) = 2.1 8 x 3600 x 50 = 1,5 W/oC Proyecto ID 772: Promoviendo mercados locales articulados de energías renovables 36
  • 37. 7. INSTALACIÓN DE UNA TERMA SOLAR 7.1 Instalación de una terma solar A pesar de parecer una acción simple y rápida, la instalación de una terma solar es, quizás, la parte más complicada de todo el proceso. Se cometen fallas y errores con mucha facilidad, y está comprobado que tales errores (por lo general pequeños) son la causa de la mayoría de problemas de funcionamiento. No importa cuán pequeños puedan ser, pero si podemos decir que estos errores pueden acarrear graves consecuencias. La primera posibilidad, obviamente, es que el sistema no funcione adecuadamente después de la instalación; por ejemplo, que haya filtraciones en el sistema o que el agua no se caliente, son signos de que hay una avería. En consecuencia, el cliente protestará. Si bien el problema puede ser arreglado, esto le dará una mala reputación tanto al técnico que realizó la instalación, como a la compañía que hizo la venta. Este tipo de fallas puede ser evitado o detectado con una inspección visual del sistema completo inmediatamente después de la instalación (ver lista de verificación para la inspección de termas solares). Otra posibilidad es que, no obstante el sistema aparentemente funciona bien (es decir, no presenta fallas detectables a simple vista, por lo que el cliente no protestará), no lo hace óptimamente. Por ejemplo, si en un sistema de efecto termosifón, la red de tuberías del colector no ha sido construida adecuadamente, la resistencia en el circuito será muy alta y, por ende, el sistema no funcionará óptimamente. Si bien suministrará agua caliente, no utilizará toda su capacidad. Otro ejemplo es el de las termas con sistema de apoyo, con los cuales hay que ser especialmente cuidadoso. En esos casos, es posible que las termas no estén suministrando ni una gota de agua caliente, pero nadie se dará cuenta debido a la presencia del sistema de apoyo. A largo plazo, esto tampoco satisfará las necesidades del usuario final. Este tipo de errores sólo puede ser detectado realizando mediciones (ver la lista de verificación): hay que comparar la radiación con la salida del sistema. Esto es muy difícil pero puede ser bastante provechoso. Ambas situaciones deben evitarse y pueden evitarse, si el técnico pone atención durante la instalación. Los errores más comunes son: Errores de instalación: Los más comunes (pequeños) durante la instalación son:  Filtraciones en las tuberías y conexiones entre las tuberías, el tanque de almacenamiento y el colector  Un trabajo de aislamiento inadecuado  Rotura de la cubierta de vidrio del colector  Error de inclinación de las tuberías del colector  Errores en los sensores de temperatura (cables equivocados, sensor “caliente” y “frío” prendido, conexiones eléctricas erradas) Esto son errores pequeños que pueden ser evitados si el técnico realiza la instalación con cuidado y si inspecciona su trabajo. Errores en el diseño: Entre estos errores encontramos: Proyecto ID 772: Promoviendo mercados locales articulados de energías renovables 37
  • 38.        Orientación completamente equivocada del colector Posición inadecuada del tanque de almacenamiento con respecto al colector Tuberías demasiado largas o de un diámetro muy grande entre el colector, el tanque y los caños de agua caliente Mala conexión de las tuberías Tamaño inadecuado del tanque en comparación con el colector Conexión inadecuada de los colectores (en el caso de los sistemas con más de un colector) Bombas demasiado pequeñas o demasiado grandes (en sistemas de circulación forzada) En realidad, estos errores son más serios porque evidencian que quien diseñó/instaló el sistema no conoce bien el funcionamiento de una terma solar. En la parte práctica de este módulo, se instalará una terma solar simple. Esto le servirá de práctica. Pero tenga en cuenta de que cada marca de termas solares tiene sus propios requerimientos de instalación. El fabricante deberá especificar claramente sus requerimientos especiales en el manual de instalación. Por lo tanto: ¡Siempre lea el manual de instalación antes de empezar el trabajo!. 7.2 Inspección de una terma solar instalada Después de instalar una terma solar, el sistema y su instalación deben ser inspeccionados para asegurar un buen funcionamiento por un periodo prolongado. Si se instala un sistema comercial, el distribuidor deberá inspeccionar el sistema después de realizada la instalación. El Anexo 1 presenta un ejemplo de lista de verificación detallada, comúnmente usada para la inspección de sistemas hechos en casas y sistemas de termas solares disponibles en el mercado. La lista de verificación consta de las siguientes partes: – – – – – Información general Inspección visual Prueba y medición Opinión del usuario Lista de acción Utilizando la lista de verificación es posible inspeccionar la correcta instalación y funcionamiento de todas las partes principales del sistema, y asegurarse de que haya sido bien instalado y funcione apropiadamente. 7.3 Mantenimiento de una terma solar (qué hacer y qué no hacer) Esta sección contiene un resumen sobre mantenimiento de termas solares, basado en un manual de operación y mantenimiento para los usuarios de termas solares. Las termas solares de efecto termosifón requieren escaso mantenimiento, o en algunos casos, ningún tipo de mantenimiento. Debido al principio termosifón, no hay piezas móviles ni unidades de control que puedan fallar. El sistema trabajará automáticamente; pero hay ciertos procedimientos básicos que pueden ser llevados a cabo para mejorar el funcionamiento de la terma solar. Proyecto ID 772: Promoviendo mercados locales articulados de energías renovables 38
  • 39. Las termas solares con bombas eléctricas y unidades de control requieren un mayor cuidado. El funcionamiento de la bomba y del colector deberá ser inspeccionado cada año. El siguiente resumen es aplicable a sistemas de efecto termosifón. ¿Qué hacer?  Limpie la cubierta de vidrio regularmente. El polvo y la suciedad en la cubierta de vidrio bloquearán el paso de los rayos solares y reducirán la salida del sistema. Dependiendo de los alrededores (cerca del camino, el entorno polvoriento, lluvia no frecuente, etc.), es aconsejable limpiar la cubierta de vidrio entre una vez al mes o varias al año.  Evite cualquier sombra en el colector. Pode las ramas posteriores de los árboles que rodean el colector para así permitir que reciba la mayor cantidad de luz solar posible.  Economice en el uso de agua caliente. Trate de minimizar su frecuencia de uso. Cada vez que Ud. abre el caño, tomará cierto tiempo calentar las tuberías desde el tanque hasta la terma. Quizás sólo hay una pequeña pérdida de energía, pero si las tuberías son largas y el uso de agua caliente es frecuente, la pérdida de energía aumentará.  Haga correr el agua caliente lentamente; esto impedirá la mezcla de agua caliente y fría en el tanque de almacenamiento.  Si hay un sistema eléctrico de apoyo, gradúe el termostato tan bajo como sea posible. Usualmente, una temperatura de 60º C es suficiente. Un punto de graduación más alta aumentará el recibo de la luz.  Asegúrese de que no falte suministro de agua fría para la terma solar. Deje siempre abierta la válvula de entrada de agua fría y observe que el tanque de agua fría esté siempre lleno.  Enjuague el sistema completo una vez al año para remover toda la suciedad. Si en su área el agua es pesada, utilice un suavizador de agua para evitar obstrucciones en las tuberías del colector.  Revise una vez al año el revestimiento del tanque de agua, del colector y de las tuberías entre el tanque y el colector. Asegúrese de que el revestimiento no esté dañado y repárelo si es necesario. Esto asegurará que no entre agua de lluvia en el aislamiento del colector, del tanque y de las tuberías, mejorará el funcionamiento de su sistema y aumentará su tiempo de vida. ¿Qué no hacer?  No cierre o bloquee la tubería de ventilación. Es muy importante que permanezca abierta y que esté colocada en un lugar más alto que el tanque de agua fría.  No coloque obstáculos que puedan sombrear el colector.  No utilice una escobilla dura o productos químicos para limpiar la cubierta de vidrio.  No deje prendido el sistema eléctrico de apoyo cuando no sea necesario. Si está prendido, el sol no tendrá oportunidad de calentar el agua y su recibo de luz aumentará considerablemente. 7.4 Guía de solución de problemas A continuación encontrará una guía de solución de problemas que incluye algunos de los más comunes que pueden presentarse con las termas solares y sus soluciones. Proyecto ID 772: Promoviendo mercados locales articulados de energías renovables 39
  • 40. a) No hay agua en el caño de agua caliente  Verifique el suministro de agua fría; la válvula colocada en la salida de agua fría deberá estar abierta y el tanque de almacenamiento de agua fría deberá estar lleno. b) El sistema sólo abastece agua fría  Esto es normal en días muy nublados. Una terma solar sólo calienta agua cuando hay sol o cuando hay pocas nubes. Para un suministro inmediato de agua caliente, use el sistema eléctrico de apoyo si es necesario.  Si el uso de agua excedió su capacidad máxima para ese día, la terma solar necesitará tiempo para calentar agua nuevamente. Para tener agua caliente inmediatamente, use el sistema eléctrico de apoyo si es necesario.  Si ninguno de los puntos anteriores es relevante, revise que no haya obstrucciones en el circuito del colector. La fuerza del efecto termosifón que hace circular el agua es bastante débil, y puede detenerse por causa de pequeñas burbujas de aire en el colector o por dobladuras en las tuberías entre el tanque de almacenamiento y el colector. Verifique la circulación estimando la temperatura en la entrada y salida de las tuberías cercanas al colector. Cuando hay sol, la temperatura de salida deberá ser mucho más alta que la temperatura de entrada. ¡Tenga cuidado: la tubería de salida puede estar muy caliente! Si no logra detectar una circulación de efecto termosifón (y no hay codos en las tuberías), es probable que haya burbujas de aire en el sistema. Desagüe el colector y vuelva a llenarlo. c) Por la noche hay un gran descenso en la temperatura del agua (más de 10ºC)  Verifique el aislamiento alrededor el tanque. Las paredes calientes del tanque y las tuberías cercanas al mismo no deben estar expuestas al frío de la noche.  Asegúrese de que el aislamiento esté seco. Si está mojado por causa de la lluvia que se filtra a través del revestimiento o de una filtración en el tanque, entonces el sistema no mantendrá el agua caliente.  Asegúrese de que el tanque esté colocado por lo menos a 1 pie (30 centímetros) más arriba que el colector. El flujo de circulación de un sistema de efecto termosifón puede enfriarse durante la noche si existe una diferencia de altura demasiado pequeña entre el tanque y el colector. d) El sistema abastece sólo agua tibia  Asegúrese de que la cubierta de vidrio esté limpia. Si está sucia, la eficiencia de la terma solar se reducirá. Limpie el vidrio cuando sea necesario.  Asegúrese de que los obstáculos no den sombra al colector. De ser posible, retírelos.  Asegúrese de haber instalado una válvula de retención en la tubería de salida de agua caliente. Si no ha instalado una, y si su sistema tiene caños que mezclan el agua (para la ducha), el agua fría puede fluir dentro del tanque de almacenamiento; ya que la presión en la línea de agua fría siempre es mayor que la presión en la línea de agua caliente. Si no cuenta con una válvula de retención, el agua fría podría mezclarse con la caliente, y la temperatura en el tanque descendería. La solución es instalar una válvula de retención o instalar líneas y caños independientes para agua fría y caliente.  Revise el aislamiento alrededor del tanque de agua, del colector y de las tuberías. Si el aislamiento está dañado o mojado, puede haber una gran pérdida de calor. Repare los pequeños agujeros en el revestimiento o aislamiento. Proyecto ID 772: Promoviendo mercados locales articulados de energías renovables 40
  • 41. e) Hay condensación en el interior de la cubierta de vidrio del colector  Si esto ocurre sólo en las mañanas frías, no hay problema. El aire en la caja del colector siempre contiene algo de humedad que puede condensarse sobre la cubierta de vidrio si ésta está fría. Tan pronto como salga el sol, la condensación deberá desaparecer.  Si la condensación no desaparece al salir el sol, probablemente se trate de una filtración ya sea en el sello de la cubierta de vidrio o en el absorbente. Ud. puede reparar filtraciones visibles en el sello de la cubierta de vidrio utilizando un juego de reparación resistente a la intemperie. Un colector con filtraciones debe ser cambiado o reparado. f) La terma solar está filtrando agua  Trate de determinar el origen del agua. Si no se trata de agua de lluvia, localice y repare la filtración. g) No hay suministro de agua caliente aún cuando la terma eléctrica está prendida  Prenda el sistema eléctrico de apoyo. Si no hay agua después de 30 minutos, verifique que el termostato haya sido regulado a la temperatura correcta. Para tomar una ducha confortable bastará con 40 º C, y para lavar unos 50º-60º C.  Si el termostato ha sido regulado correctamente, verifique si el fusible se ha quemado (reemplácelo), o si ha habido un corte de corriente (en ese caso, espere hasta que regrese la corriente).  Verifique que el sistema eléctrico de apoyo esté bien conectado. Si continúa sin funcionar, consulte a un electricista o a su instalador. Proyecto ID 772: Promoviendo mercados locales articulados de energías renovables 41
  • 42. 8. CONSTRUCCIÓN DE UNA TERMA SOLAR SIMPLE Esta sección le enseñará cómo construir una terma solar simple. El sistema hecho en casa es utilizado con fines didácticos y para practicar la destreza para trabajos en metal y plomería. La construcción de una terma solar le permitirá apreciar cómo funciona y cuáles son sus partes más importantes. Advertencia: En la práctica, los sistemas hechos en casa son de menor calidad y tienen un ciclo de vida más corto en comparación con las termas solares disponibles en el mercado. Por lo tanto, es aconsejable utilizar únicamente sistemas comerciales para fines prácticos. Durante este curso se utilizará un sistema hecho en casa sólo con fines didácticos, así como para practicar la habilidad para trabajos en metal. Las termas solares hechas en casa no deben ser comercializadas en el mercado. 8.1 Diseño de la terma solar El diseño consta de una red de tuberías de cobre, a las que se sueldan aletas de cobre. Es necesario que las tuberías y las aletas sean del mismo material, ya que ambas serán soldadas. Si se emplean materiales distintos (por ejemplo cobre y acero), la parte absorbente se doblará (debido a los diferentes factores de expansión) y sufrirá corrosión (debido a la corrosión del contacto). El calor del sol es absorbido por las aletas de cobre pintadas de negro y transportado a través del agua que corre dentro de las tuberías de cobre. Las tuberías y aletas de cobre son colocadas dentro de una caja de madera aislada y barnizada. Para tener una idea general de una terma solar, ver el dibujo técnico en la Figura 29. Figura 29: Dibujo técnico del colector de una terma solar Proyecto ID 772: Promoviendo mercados locales articulados de energías renovables 42
  • 43. El Cuadro 10 incluye los materiales necesarios para construir el colector de una terma solar de 1 m². Cuadro 10: Materiales necesarios para la construcción de un colector solar de 1 m2 (3) EL COLECTOR Madera (las dimensiones son dadas en medidas terminadas en mm: por ejemplo 20 x 94 es la medida proyectada de 25 x 100 mm) Tamaño 20 x 94 20 x 94 20 x 82 20 x 50 20 x 50 Longitud 1285 mm 860 mm 820 mm 820 mm 350 mm Número 2 (lados) 1 (superior) 1 (borde inferior) 1 (estribo cruzado) 4 (estribos angulares) Contraplacado 1 lámina de triplay de 9 mm cortada a 1350 x 860 mm Reborde 35 x 10 = 3.5 metros 10 x 15 = 1.5 metros Tornillos de bronce N° 6 de 1” - 30 unidades (para reborde), N° 8 de 1” - 20 unidades y N° 8 de 2”- 20 unidades para panel de 25 mm Tubería de cobre 15 mm: 5 metros, cortada en cuatro largos de 1180 mm y dos largos de 185 mm 22 mm: 1.25 metros, cortada en cuatro largos de 181 mm y dos largos de 260 mm Lámina de cobre 4 x 200 x 1150 mm; 1 o 2 mm de grosor Acoples Codos: 15mm - 2 unidades; Acople T: 22/15mm - 4 unidades y 22/15/15mm - 2 unidades Sujetadores 15 mm - 2 unidades 22 mm - 4 unidades Aletas de cobre 4 x 200 x 1150 mm; 1 o 2 mm de grosor Soldadura Cautín, pasta para soldar y soldadura de estaño Aislamiento 2 Aislamiento de lana de vidrio de 2” x 1,2 m , con papel aluminio en el reverso Vidrio Vidrio de 4 mm; 811 x 1297 mm Varios Pintura negro mate para interior del colector, sujetadores para el borde inferior del vidrio hechos de tubo de cobre de 15 mm con 50 mm de largo, 1 Kg. cola de carpintero, 2 tubos de silicona Herramientas Martillo, sierra, cinta de medir, escuadra, destornillador, perforadora + brocas (incl. broca plana de 25 mm), cuchilla Stanley, soplete, cortatubos o sierra para metales, limas, y punzón centrador. Cepillo/cincel para limpiar los cortes de la sierra. 3 La parte práctica de este módulo prevé la construcción de dos colectores solares, para esto se deberá tener en cuenta que la lista de más arriba es solamente para un colector, debiéndose adquirir el doble de estos componentes. Proyecto ID 772: Promoviendo mercados locales articulados de energías renovables 43
  • 44. Primero, comience con el trabajo de plomería para asegurarse de que la caja tenga las medidas adecuadas. También vale la pena esperar hasta que la caja esté terminada antes de cortar el vidrio, de modo que encaje en forma exacta (Figura 30). Figura 30: Dibujo de la red de tuberías y de las aletas sujetadoras 8.2 Trabajos de plomería de la red del colector y conexión de las aletas A continuación describimos paso a paso el proceso de construcción: Paso 1: Marque las tuberías en el lugar del corte y proceda a cortarlas de la siguiente manera: 6 x 181, 2 x 260 y 4 x 1180. Paso 2: Corte las aletas de cobre del tamaño correcto, 4 x (200 x 1150). Limpie la parte del medio de las aletas y de las tuberías de cobre con una lija y luego, con amoniaco. Paso 3: Verifique que todas las aletas y tuberías encajen en el armazón, antes de comenzar a soldar. Paso 4: Prepare los lugares donde va a soldar usando pasta de soldar. Paso 5: Fije las tuberías en la aleta con una abrazadera con pegamento. Caliente la tubería y la aleta con una flama y lentamente agregue soldadura de estaño. Asegúrese de que haya una unión de soldadura apropiada y lisa entre la aleta y la tubería, a todo lo largo de toda la aleta. Paso 6: Con el fin de asegurarse de que el armazón es cuadrado, clave soportes de madera al banco o al piso. Suelde el armazón cuando esté en esta estructura. Construya el absorbente completo soldando todas las conexiones entre los codos, tuberías y tuberías con aletas (recuerde no moverlo hasta que todas las uniones hayan enfriado). Paso 7: Al terminar de soldar, pruebe si en las uniones del absorbente hay filtraciones, introduciendo presión de agua en la red. Suelde nuevamente las conexiones que presenten filtraciones. Paso 8: Pinte la parte delantera y posterior del absorbente con pintura metálica negra con acabado mate; déjelo secar mientras construye la caja. Proyecto ID 772: Promoviendo mercados locales articulados de energías renovables 44
  • 45. 8.3 Construcción de la caja de madera La caja consta de una estructura con estribos cruzados y angulares, parte posterior contraplacada, aislamiento, reborde, agujeros de ventilación y vidriado. La Figura 31 presenta el diseño básico de la caja. Sin embargo, detalles como las dimensiones exactas, la posición de los agujeros para las tuberías, etc., dependen de la precisión de los trabajos de plomería. Figura 31: Diseño básico de la caja Antes de comenzar a construir la caja, analice el detalle de la caja en las Figuras 31 y 32. Figura 32: Vista desarrollada de la construcción A continuación describimos paso a paso el proceso de construcción de la caja: Paso 1: Asegure los lados de la caja con tornillos de 2” y pegamento para hacer la estructura. Paso 2: Coloque el armazón sobre el absorbente para verificar que entre en la caja. Proyecto ID 772: Promoviendo mercados locales articulados de energías renovables 45
  • 46. Paso 3: Atornille y pegue en un estribo cruzado usando tornillos de 2”. Paso 4: Atornille y pegue los cuatro estribos angulares usando tornillos de 1.5”. Paso 5: Pegue y clave el contraplacado en la parte posterior, con pernos para panel de 25 mm. Paso 6: Peque y atornille el reborde donde colocará el vidrio encima y a ambos lados de la caja, a 8 mm del borde superior. Utilice tornillos de 1”. Paso 7: Perfore dos agujeros de ventilación de 8 mm de diámetro en el borde inferior de la caja. Estos pueden ser cubiertos con una malla de metal para evitar la entrada de mosquitos. Paso 8: Coloque el absorbente sobre la caja con igual espacio arriba y abajo, y marque las ubicaciones de las tuberías de entrada y de salida. Paso 9: Perfore agujeros de 25 mm (justo sobre la esquina) en estos puntos y haga un corte en forma de V. Paso 10: Pinte la caja con pintura por dentro y por fuera. Paso 11: Introduzca el aislamiento a una profundidad de 50 mm, la altura de los estribos. Paso 12: Cubra todo el interior de la caja con láminas de metal y engrápelas a la madera. Paso 13: Coloque el absorbente sobre el material aislante. Asegúrese de que no haya ninguna abertura entre la capa de aislamiento y la superficie del colector. Paso 14: Fije las tuberías a los estribos angulares empleando sujetadores. Paso 15: Coloque nuevamente sobre las tuberías las cuñas que cortó en forma de V (en el paso 9) y atorníllelas sobre el lugar (no las pegue porque, si fuera necesario sacarlas, podrá hacerlo sin causar daño). Las grietas deben ser selladas con silicona. Paso 16: Coloque una franja de espuma en el reborde y a lo largo del borde inferior para que el vidrio descanse sobre ella. Paso 17: Los ganchos que sujetan el vidrio deben ser de metal, de 50 mm de largo, doblados de forma apropiada. Paso 18: Coloque los sujetadores del vidrio en el borde inferior de la estructura. Paso 19: Con cuidado, coloque el vidrio con un saliente de 12 mm en el fondo. Paso 20: Coloque una franja de espuma adicional en el vidrio, en los bordes de los lados y en la parte superior de la estructura. Paso 21: Coloque un reborde de madera de 35 x 10 mm alrededor de la parte superior y de los lados. Selle con silicona entre el reborde de madera y el vidrio. Nota: Primero deberá pintar los rebordes de madera. Proyecto ID 772: Promoviendo mercados locales articulados de energías renovables 46