SlideShare una empresa de Scribd logo
1 de 28
Descargar para leer sin conexión
Moisés Villena Muñoz                                                        Coordenadas Polares




                       1 EL SISTEMA POLAR
                       2 ECUACIONES EN COORDENADAS POLARES
                       3 GRÁFICAS: RECTAS, CIRCUNFERENCIAS, PARÁBOLAS,
                         ELIPSES, HIPÉRBOLAS, LIMACONS, ROSAS, LEMNISCATAS,
                         ESPIRALES.




                           Objetivos:
                           Se pretende que el estudiante:
                               • Grafique Rectas, circunferencias, parábolas, elipses,
                                    hipérbolas, limacons, rosas, lemniscatas, espirales en
                                    coordenadas polares




                                                                                             1
Moisés Villena Muñoz                                                             Coordenadas Polares


        1. EL SISTEMA POLAR

       El plano cartesiano es un sistema rectangular, debido a que las
coordenadas de un punto geométricamente describen un rectángulo. Si
hacemos que este punto represente un vector de magnitud r que parte
desde el origen y que tiene ángulo de giro θ , tendríamos otra forma de
definir un punto.




     Sería suficiente, para denotar al punto de esta manera,
mencionar el valor de r y el valor de θ . Esto se lo va a hacer indicando
                        (     )
el par ordenado r ,θ , en este caso se dice que son las coordenadas
polares del punto.

        Se deducen las siguientes transformaciones:

                                                        ⎧       2    2
                                                        ⎪r = x + y
                            De rectangulares a polares: ⎨
                                                        ⎪θ = arctg y
                                                        ⎩          x


                                                        ⎧ x = r cos θ
                            De polares a rectangulares: ⎨
                                                        ⎩ y = r sen θ

        Una utilidad de lo anterior la observamos ahora.



                       Ejemplo
                       Encuentre las coordenadas polares del punto P (1,1)

                       SOLUCIÓN:

                       Representando el punto en el plano cartesiano, tenemos:




2
Moisés Villena Muñoz                                                                      Coordenadas Polares




                                                       ⎧r = 1 2 + 1 2 = 2
                                                       ⎪
                       Utilizando las transformaciones ⎨              π
                                                       ⎪θ = arctg 1 =
                                                       ⎩          1
                                                                      4

                       Además se podría utilizar otras equivalencias polares:


                                     ( 2 , π ) = ( 2 ,−7 π ) = (− 2 ,5 π ) = (− 2 ,−3 π ) (Analícelas)
                                           4             4             4              4




      Para representar un punto en el plano, conociendo sus
coordenadas polares, no es necesario hallar sus coordenadas
rectangulares; se lo puede hacer directamente. Este trabajo puede ser
muy sencillo si se dispone de un plano que tenga como referencia
ángulos y magnitudes.

     Un plano con estas características se lo llama Sistema Polar o
Plano Polar. Consiste de circunferencias concéntricas al origen y rectas
concurrentes al origen con diferentes ángulos de inclinación.

      Al eje horizontal se lo llama “Eje Polar”, al eje vertical se lo llama
      π
“Eje 2 ”. El punto de intersección entre estos dos ejes se lo llama
“Polo”.




                                                                                                           3
Moisés Villena Muñoz                                                                         Coordenadas Polares


                                                            Eje   π
                                                                  2




                                                                                             Eje Polar

                                                     Polo




                       Ejercicios propuestos 1
                       1.   Construya un plano polar y marque los puntos cuyas coordenadas polares son dadas.
                            Exprese dichos puntos con r > 0 y con r < 0 .
                                        π
                                 a. (1, )                         b. (3,0)
                                        2
                                          π                               3π
                                 c. ( −1, )                       d. ( 2, )
                                          5                                7
                                          2π
                                e. ( 4,− )                        f. ( −1, π)
                                           3
                                          3π
                                 g. ( −2, )                       h. ( −3,5π)
                                           2
                       2.   Construya un plano polar y marque los puntos cuyas coordenadas polares son dadas. Luego
                            encuentre las coordenadas cartesianas de dichos puntos.
                                           π
                                 a. ( 2 , )                                   e. ( 4,3π)
                                           4
                                          π                                           2π
                                 b. ( −1, )                                   f. ( 2, )
                                          3                                            3
                                          7π                                              5π
                                 c. ( 4,− )                                   g. ( −2,− )
                                           6                                               3
                                      3 3π                                              5π
                                 d. ( , )                                     h. ( −4, )
                                      2 2                                                4

                       3.   Encuentre las coordenadas polares de los siguientes puntos.
                                a. (−1,1)                                     b. (2 3 ,−2)
                                 c. (−1,− 3 )                               d. (3,4)

                       4.   (INVESTIGACIÓN) Encuentre la distancia entre los puntos dados en coordenadas polares.
                            Verifique su respuesta hallando la distancia, utilizando coordenadas cartesianas.
                                   π        3π                          π                               π       π
                            a. (1, ) − (3, ) .                  b. ( 2 , ) − (1,4π)               c. (1, ) − (1, )
                                   6         4                           4                              3       6

4
Moisés Villena Muñoz                                                                                    Coordenadas Polares


        2. ECUACIONES EN COORDENADAS POLARES

      Una ecuación en coordenadas polares la presentaremos de la
forma r = f (θ) . Por tanto para obtener la gráfica, en primera instancia,
podemos obtener una tabla de valores para ciertos puntos y luego
representarlos en el sistema polar; luego sería cuestión de trazar la
gráfica siguiendo estos puntos.


                       Ejercicio Propuesto 2
                       1.   Encuentre la ecuación cartesiana de la curva descrita por la ecuación polar dada.
                            a. r sen(θ) = 2                                    b. r = 2 sen(θ)
                                         1
                            c. r =                                             d. r 2 = sen(2θ)
                                   1 − cos(θ)
                                                                                                     3
                            e. r 2 = θ                                                f. r =
                                                                                               2 − 4 cos(θ)

                       2.   Encuentre la ecuación polar de la curva descrita por la ecuación cartesiana dada.
                            a. y = 5                                           e. y = x + 1
                            b. x 2 + y 2 = 25                                        f. x 2 = 4 y
                            c. 2 xy = 1                                              g. x 2 − y 2 = 1
                                                                                               x2
                            d. b 2 x 2 + a 2 y 2 = a 2 b 2                           h. y =
                                                                                               4p

                       3.   Realice una tabla de valores y trace punto a punto en un plano polar, la gráfica de:
                                                 6
                                    1.    r=
                                              cos θ
                                                 6
                                    2.    r=
                                              sen θ
                                    3.    r = 6 cos θ
                                    4.    r = 3 + 3 cos θ
                                    5.    r = 6 + 3 cos θ
                                    6.    r = 3 + 6 cos θ
                                                  9
                                    7.    r=
                                             3 + 3 cos θ
                                                  9
                                    8.    r=
                                             6 + 3 cos θ
                                                  9
                                    9.    r=
                                             3 + 6 cos θ




                                                                                                                         5
Moisés Villena Muñoz                                                                Coordenadas Polares


        3. GRÁFICAS DE ECUACIONES EN COORDENADAS
            POLARES

     Se trata ahora de presentar ecuaciones polares típicas que
permitan por inspección describir su lugar geométrico.

                 3.1 RECTAS

                        3.1.1 Rectas tales que contienen al polo.




                       La ecuación cartesiana de una recta tal que el origen
                 pertenece a ella, es de la forma y = mx

                        Realizando las transformaciones respectivas:

                                                 y = mx
                                           r sen θ = m r cos θ
                                             sen θ
                                                    =m
                                             cos θ
                                               tg θ = tg φ

                        Resulta, finalmente:

                                                             θ=φ




                       Ejemplo
                                      π
                       Graficar θ =
                                      4

                       Por inspección de la ecuación dada concluimos rápidamente que el lugar geométrico es
                       una recta, que pasa por el polo con un ángulo de π . Es decir:
                                                                        4




6
Moisés Villena Muñoz                                                    Coordenadas Polares




                 3.1.2 Rectas tales que NO contienen al polo y se
                        encuentran a una distancia "d" del polo.

                 Observemos la siguiente representación gráfica:




                 Del triangulo tenemos: cos(θ − φ ) =
                                                                  d
                                                                  r

                 Por tanto, la ecuación del mencionado lugar geométrico
        sería:

                                                               d
                                                      r=
                                                           cos(θ − φ)

                       Ejemplo

                                          4
                       Graficar r =
                                         (
                                      cos θ − π
                                              6
                                                  )

                                                                                         7
Moisés Villena Muñoz                                                                Coordenadas Polares


                       SOLUCIÓN:
                       Por inspección de la ecuación dada concluimos rápidamente que el lugar geométrico es
                       una recta, que se encuentra a una distancia de 4 unidades del polo y la medida del
                       ángulo de la perpendicular a la recta es π . ES decir:
                                                                6




        Ahora veamos casos especiales:

                                                                                    d
             1. Si φ = 0 o entonces la ecuación resulta r =                             . Una recta
                                                                                  cos θ
                 vertical.




                 Al despejar resulta r cos θ = d              es decir x = d .

             2. Si φ =   π
                         2
                             entonces la ecuación resulta:

                                           d                   d               d
                                  r=              =                          =
                                       cos(θ − 2 ) cos θ cos 2 + sen θ sen 2 sen θ
                                               π             π             π




                 Una recta horizontal.




8
Moisés Villena Muñoz                                                     Coordenadas Polares


             3. Si φ = π entonces la ecuación resulta:

                                      d                   d                d
                             r=              =                         =
                                  cos(θ − π ) cos θ cos π + sen θ sen π − cos θ

                 Una recta vertical.

             4. Si φ = 3 π entonces la ecuación resulta:
                         2


                                       d                      d                  d
                             r=                =                              =
                                  cos(θ − 3 π ) cos θ cos 3 π + sen θ sen 3 π − sen θ
                                            2               2               2



                 Una recta horizontal.



        3.2 CIRCUNFERENCIAS

                 3.2.1 Circunferencias con centro el polo.




                       La ecuación cartesiana de una circunferencia es:

                                                    x2 + y2 = a2

                       Aplicando transformaciones tenemos:

                                       x2 + y2 = a2
                                       (r cos θ)2 + (r sen θ)2 = a 2
                                       r 2 cos 2 θ + r 2 sen 2 θ = a 2
                                            (                 )
                                       r 2 cos 2 θ + sen 2 θ = a 2
                                       r =a
                                        2       2



                       Resultando, finamente:

                                                           r=a

                                                                                          9
Moisés Villena Muñoz                                                          Coordenadas Polares


                       Ejemplo
                       Graficar r = 2

                       SOLUCIÓN:

                       Por inspección de la ecuación dada concluimos que el lugar geométrico es una
                       circunferencia con centro el polo y que tiene radio 2.




                 3.2.2 Circunferencias tales que contienen al polo y
                        tienen centro el punto (a, φ)

                        Observemos el gráfico:




                        De allí obtenemos el triángulo:




10
Moisés Villena Muñoz                                                                     Coordenadas Polares


            Aplicando la ley del coseno y despejando, tenemos:

                                                                   a 2 = r 2 + a 2 − 2ar cos(θ − φ)
                                                                   r 2 = 2ar cos(θ − φ)

                         Resultando, finalmente:

                                                          r = 2a cos(θ − φ)



                       Ejemplo
                                          (
                       Graficar r = 4 cos θ − π
                                              3
                                                   )
                       SOLUCIÓN:

                         Por inspección de la ecuación dada concluimos que el lugar geométrico es una
                                                                                              ( )
                       circunferencia tal que el polo pertenece a ella y su centro es el punto 2, π . Por tanto su
                                                                                                  3
                       gráfico es:




             Casos especiales, serían:

                                                              (
             1. Si φ = 0 o tenemos r = 2a cos θ − 0 o = 2a cos θ       )
                 Que transformándola a su ecuación cartesiana, tenemos:

                                              r = 2a cos θ
                                                    x
                                              r = 2a
                                                    r
                                              r = 2ax
                                               2


                                              x 2 + y 2 = 2ax
                                              (x   2
                                                                   )
                                                       − 2ax + a 2 + y 2 = 0 + a 2
                                              (x − a )    2
                                                              + y2 = a2

                                                                                                              11
Moisés Villena Muñoz                                                 Coordenadas Polares


                 Una circunferencia con centro el punto (a,0) y radio r = a




             2. Si φ = π tenemos r = 2a cos(θ − π) = −2a cos θ

                 Una circunferencia con centro el punto (− a,0) y radio r = a




             3. Si φ =   π
                         2   tenemos r = 2a cos(θ − π ) = 2a sen θ
                                                    2


                 Una circunferencia con centro el punto (0, a ) y radio r = a




12
Moisés Villena Muñoz                                                  Coordenadas Polares


             4. Si φ = 3 π tenemos r = 2a cos(θ − 3 π ) = −2a sen θ
                         2                          2


                 Una circunferencia con centro el punto (0,− a ) y radio r = a




        3.3 CÓNICAS tales que el foco es el polo y su recta
             directriz está a una distancia "d" del polo

        Observe la figura.




         Se define a la parábola ( e = 1), a la elipse ( 0 < e < 1 ) y a la hipérbola
( e > 1) como el conjunto de puntos del plano tales que:

                                      d ( P, F ) = e d ( P, l )

                                                                                      13
Moisés Villena Muñoz                                                                  Coordenadas Polares


        Entonces:

                                         d ( P, F ) = e d ( P, l )
                                                  r = e[d − r cos(θ − φ)]
                                                  r = ed − er cos(θ − φ)
                                         r + er cos(θ − φ) = ed
                                         r [1 + e cos(θ − φ)] = ed
                                                          ed
                                            r=
                                                   1 + e cos(θ − φ)

        Casos especiales son:

                                    ed
        1. Si φ = 0 o tenemos                r=
                               1 + e cos θ
                                   ed
        2. Si φ = π tenemos r=
                               1 − e cos θ
                  π                 ed
        3. Si φ = tenemos   r=
                  2            1 + e sen θ
                    π                 ed
        4. Si φ = 3 tenemos  r=
                    2            1 − e sen θ

                       Ejemplo 1
                                          6
                       Graficar r =
                                      1 + cos θ

                       SOLUCIÓN:

                       En este caso " e = 1 " (el coeficiente del coseno) por tanto tenemos una parábola con
                       foco el polo (el origen) y directriz con ecuación cartesiana " x = 6 " (a la derecha y
                                         π
                       paralela al eje     ). Parábola cóncava a la izquierda.
                                         2




14
Moisés Villena Muñoz                                                                     Coordenadas Polares


                       Ejemplo 2
                                          6
                       Graficar r =
                                      1 − cos θ

                       SOLUCIÓN:

                       Como el ejemplo anterior, es una parábola; pero ahora como hay un signo negativo en
                       la función trigonométrica, la recta directriz tendrá ecuación cartesiana “ x = −6 " (a la
                                                     π
                       izquierda y paralela al eje       ). Cóncava hacia la derecha.
                                                     2




                       Ejemplo 3
                                          6
                       Graficar r =
                                      1 + sen θ

                       SOLUCIÓN:
                       Es una parábola con foco el polo y recta directriz y = 6 (paralela y arriba del eje polar).
                       Cóncava hacia abajo.




                                                                                                              15
Moisés Villena Muñoz                                                                        Coordenadas Polares


                       Ejemplo 4
                                           6
                       Graficar r =
                                       1 − sen θ

                       SOLUCIÓN:

                       Es una parábola con foco el polo y recta directriz y = −6 (paralela y abajo del eje polar).
                       Cóncava hacia arriba.




                       Ejemplo 5
                                            6
                       Graficar r =
                                       1 + 1 cos θ
                                           2


                       SOLUCIÓN:

                       En este caso " e = 1 " (el coeficiente del coseno), por tanto tenemos una elipse con un foco el
                                            2
                       polo y el otro foco a su izquierda en el eje polar.




                       NOTA: La ecuación de esta cónica pudo haber sido dada de la siguiente forma también:

                                       12
                               r=             ¿Por qué?
                                    2 + cos θ




16
Moisés Villena Muñoz                                                                            Coordenadas Polares


                       Ejemplo 6
                                          6
                       Graficar r =
                                      1 − 1 cos θ
                                          2


                       SOLUCIÓN:

                        Es una elipse con un foco el polo y el otro a su derecha en el eje polar.




                       Ejemplo 7
                                           6
                       Graficar r =
                                      1 + 1 sen θ
                                          2
                       SOLUCIÓN:
                        Es una elipse con un foco el polo y el otro en el eje π hacia abajo.
                                                                              2




                                                                                                                17
Moisés Villena Muñoz                                                                             Coordenadas Polares


                       Ejemplo 8
                                           6
                       Graficar r =
                                      1 − 1 sen θ
                                          2
                       SOLUCIÓN:
                         Es una elipse con un foco el polo y el otro en el eje π hacia arriba.
                                                                              2




                       Ejemplo 9
                                           6
                       Graficar r =
                                      1 + 2 cos θ
                       SOLUCIÓN:
                       En este caso " e = 2 " (el coeficiente del coseno), por tanto tenemos una hipérbola con un foco el
                       polo y el otro foco a su derecha en el eje polar.




18
Moisés Villena Muñoz                                                                             Coordenadas Polares


                       Ejemplo 10
                                           6
                       Graficar r =
                                      1 − 2 cos θ

                       SOLUCIÓN:

                       Es una hipérbola con un foco el polo y el otro foco a su izquierda en el eje polar.




                       Ejemplo 11
                                           6
                       Graficar r =
                                      1 + 2 sen θ
                       SOLUCIÓN:
                       Es una hipérbola con un foco el polo y el otro foco en el eje π hacia arriba.
                                                                                      2




                                                                                                                 19
Moisés Villena Muñoz                                                                           Coordenadas Polares


                       Ejemplo 12
                                           6
                       Graficar r =
                                      1 − 2 sen θ
                       SOLUCIÓN:
                       Es una hipérbola con un foco el polo y el otro foco en el eje π hacia abajo.
                                                                                    2




        3.4 CARACOLES

      Los caracoles tienen ecuación polar de la forma: r = a ± b cos θ o de
la forma r = a ± b sen θ

     Consideremos tres casos:

     1. Si a = b se llama CARDIOIDES

                       Ejemplo 1
                       Graficar r = 6 + 6 cos θ




                         Esta gráfica presenta simetría al eje polar, es decir: f (θ) = f ( −θ)



20
Moisés Villena Muñoz                              Coordenadas Polares


                       Ejemplo 2
                       Graficar r = 6 − 6 cos θ




                       Ejemplo 3
                       Graficar r = 6 + 6 sen θ




                       Ejemplo 4
                       Graficar r = 6 − 6 sen θ




                                                                  21
Moisés Villena Muñoz                                                                    Coordenadas Polares


     2. Si a > b se llaman LIMACON O CARACOL SIN RIZO

                       Ejemplo 1
                       Graficar r = 6 + 3 cos θ




                       Ejemplo 2
                       Graficar r = 6 − 3 cos θ




                       Ejemplo 3
                       Graficar r = 6 + 3 sen θ




                                                               π
                       Esta gráfica presenta simetría al eje     , es decir: f ( π − θ) = f (θ)
                                                               2

22
Moisés Villena Muñoz                                                        Coordenadas Polares


                       Ejemplo 4
                       Graficar r = 6 − 3 sen θ




    3. Si a < b se llaman LIMACON O CARACOL CON RIZO

                       Ejemplo 1
                       Graficar r = 3 + 6 cos θ




                       Nota: Determine los ángulos de formación del rizo.


                       Ejemplo 2
                       Graficar r = 3 − 6 cos θ




                                                                                            23
Moisés Villena Muñoz                                 Coordenadas Polares


                       Ejemplo 3
                       Graficar   r = 3 + 6 sen θ




                       Ejemplo 4
                       Graficar r = 3 − 6 sen θ




                 3.5 ROSAS

        Estos lugares geométricos tienen ecuación polar de la forma
     r = a cos (n θ ) o r = a sen (n θ ) para n > 1 ∧ n ∈ N

        De aquí consideramos dos casos:



     1. Si n es PAR es una rosa de 2 n petálos




24
Moisés Villena Muñoz                                                            Coordenadas Polares


                       Ejemplo
                       Graficar r = 4 sen (2 θ )

                       SOLUCIÓN:

                       Por inspección concluimos que es una rosa de 4 pétalos




    2. Si n es IMPAR es una rosa de n petálos

                       Ejemplo
                       Graficar r = 4 cos (3θ )

                       SOLUCIÓN:

                       Por inspección concluimos que es una rosa de 3 pétalos




                                                                                                25
Moisés Villena Muñoz                                       Coordenadas Polares


                 3.6 LEMNISCATAS

          Tienen ecuación polar de la forma r 2 = a cos 2 θ o de la forma
     r = a sen 2 θ
      2




                       Ejemplo 1
                       Graficar r = 4 cos 2 θ
                                 2




                       Ejemplo 2
                       Graficar r 2 = − 4 cos 2 θ




26
Moisés Villena Muñoz                               Coordenadas Polares


                       Ejemplo 3
                       Graficar r = 4 sen 2 θ
                                 2




                 3.7 ESPIRALES

                 Consideramos dos tipos:

        1. Espiral de Arquímedes.

        Su ecuación polar es de la forma r = a θ

                       Ejemplo
                       Graficar r = 2 θ




                                                                   27
Moisés Villena Muñoz                                                                                   Coordenadas Polares


        2. Espiral de Logarítmica.

        Su ecuación polar es de la forma r = ae bθ

                       Ejemplo
                       Graficar r = 2e 3θ




                       Ejercicios propuestos 3
                       1.   Trace la gráfica representada por la ecuación polar dada.
                            1.     r =5                                           12.   r = 3(1 − cos( θ))
                                      π                                           13.   r = 2 + 4 sen( θ)
                            2.    θ=
                                      4                                           14.   r − 2 + 5 sen( θ) = 0
                            3.    r = 2 sen(θ)                                    15.   r = sen(3θ)
                            4.    r = − cos(θ)                                    16.   r = sen( 5θ)
                            5.    r = −3 cos( θ)                                  17.   r = 2 cos( 4θ)
                                           2
                            6.    r=                                              18.   r 2 = 4 cos(2θ)
                                      1 − sen(θ)
                                          2                                       19.   r 2 = 3 sen(2θ)
                            7.    r=                                              20.   r = −6 cos(3θ)
                                     2 − sen(θ)
                                                                                  21.   r = − 4 sen 3θ
                                             2
                            8.    r=                                              22.   r = sen( θ) + cos( θ)
                                       1 − 2 sen(θ)
                                                                                  23.   sen(θ) + cos( θ) = 0
                            9.    r = 1 − 2 cos( θ)
                                                                                  24.   r = θ, θ > 0
                            10.   r = 3 + 2 sen( θ)
                            11.   r = 2 − 4 sen θ     ;    0≤θ≤π


                                                          ⎧ r = 3 cos θ
                       2.   Graficar en un mismo plano ⎨                  y determine los puntos de intersección.
                                                          ⎩ r = 1 + cos θ
                                                       ⎧
                       3.   Graficar en un mismo plano ⎪ r = 3 sen θ y determine los puntos de intersección.
                                                       ⎨
                                                       ⎪ r = 1 + cos θ
                                                       ⎩
                                                       ⎧ 2
                       4.   Graficar en un mismo plano ⎪ r = − 8 cos 2 θ y determine los puntos de intersección.
                                                       ⎨
                                                       ⎪r = 2
                                                       ⎩
                       5.   Represente en el plano polar la región comprendida en el interior de r = 4 cos (2θ ) y exterior a r = 2



28

Más contenido relacionado

Similar a Coordenadas polares: ecuaciones y gráficas

Coordenadas Polares
Coordenadas PolaresCoordenadas Polares
Coordenadas PolaresERICK CONDE
 
Coordenadas Polares
Coordenadas PolaresCoordenadas Polares
Coordenadas PolaresERICK CONDE
 
11. coordenadas polares
11. coordenadas polares11. coordenadas polares
11. coordenadas polaresSALINAS
 
Coordenadas polares - Matemática II
Coordenadas polares - Matemática IICoordenadas polares - Matemática II
Coordenadas polares - Matemática IIJoe Arroyo Suárez
 
Villena coordenadas polares
Villena coordenadas polaresVillena coordenadas polares
Villena coordenadas polaresdarien lopez
 
Coordenadas polares
Coordenadas polaresCoordenadas polares
Coordenadas polaresKike Prieto
 
Precalculo de villena 04 - coordenadas polares
Precalculo de villena   04 - coordenadas polaresPrecalculo de villena   04 - coordenadas polares
Precalculo de villena 04 - coordenadas polaresrojasdavid1001
 
5. parabola
5. parabola5. parabola
5. parabolaSALINAS
 
Geometria analitica shadai crea
Geometria analitica shadai creaGeometria analitica shadai crea
Geometria analitica shadai creaMANUEL ZEGARRA
 
Mat Iii PresentacióN 06
Mat Iii   PresentacióN 06Mat Iii   PresentacióN 06
Mat Iii PresentacióN 06ignaciovitales
 

Similar a Coordenadas polares: ecuaciones y gráficas (20)

Coordenadas Polares
Coordenadas PolaresCoordenadas Polares
Coordenadas Polares
 
Coordenadas Polares
Coordenadas PolaresCoordenadas Polares
Coordenadas Polares
 
11. coordenadas polares
11. coordenadas polares11. coordenadas polares
11. coordenadas polares
 
Coordenadas polares
Coordenadas polaresCoordenadas polares
Coordenadas polares
 
Coordenadas polares - Matemática II
Coordenadas polares - Matemática IICoordenadas polares - Matemática II
Coordenadas polares - Matemática II
 
Villena coordenadas polares
Villena coordenadas polaresVillena coordenadas polares
Villena coordenadas polares
 
Capitulo de polares de villena
Capitulo de polares de villena Capitulo de polares de villena
Capitulo de polares de villena
 
Coordenadas polares
Coordenadas polaresCoordenadas polares
Coordenadas polares
 
Precalculo de villena 04 - coordenadas polares
Precalculo de villena   04 - coordenadas polaresPrecalculo de villena   04 - coordenadas polares
Precalculo de villena 04 - coordenadas polares
 
La parabola
La parabolaLa parabola
La parabola
 
La parabola
La parabolaLa parabola
La parabola
 
5. parabola
5. parabola5. parabola
5. parabola
 
Geometria+analitica++ +parabola
Geometria+analitica++ +parabolaGeometria+analitica++ +parabola
Geometria+analitica++ +parabola
 
Parabola
ParabolaParabola
Parabola
 
Parabola
ParabolaParabola
Parabola
 
Parabola
ParabolaParabola
Parabola
 
8448149726
84481497268448149726
8448149726
 
Geometria analitica shadai crea
Geometria analitica shadai creaGeometria analitica shadai crea
Geometria analitica shadai crea
 
Mat Iii PresentacióN 06
Mat Iii   PresentacióN 06Mat Iii   PresentacióN 06
Mat Iii PresentacióN 06
 
Coordenadas Polares parte 1.pdf
Coordenadas Polares parte 1.pdfCoordenadas Polares parte 1.pdf
Coordenadas Polares parte 1.pdf
 

Más de José Encalada

solucionario de purcell 3
solucionario de purcell 3solucionario de purcell 3
solucionario de purcell 3José Encalada
 
solucionario de purcell 3
solucionario de purcell 3solucionario de purcell 3
solucionario de purcell 3José Encalada
 
solucionario de purcell 2
solucionario de purcell 2solucionario de purcell 2
solucionario de purcell 2José Encalada
 
solucionario de purcell 1
solucionario de purcell 1solucionario de purcell 1
solucionario de purcell 1José Encalada
 
solucionario de purcell 0
solucionario de purcell 0solucionario de purcell 0
solucionario de purcell 0José Encalada
 
Determinacion Del Punto De Ebullicion
Determinacion Del Punto De EbullicionDeterminacion Del Punto De Ebullicion
Determinacion Del Punto De EbullicionJosé Encalada
 
Propiedades Quimicas De Los Elementos
Propiedades Quimicas De Los ElementosPropiedades Quimicas De Los Elementos
Propiedades Quimicas De Los ElementosJosé Encalada
 
Determinacion De La Densidad
Determinacion De La DensidadDeterminacion De La Densidad
Determinacion De La DensidadJosé Encalada
 
Materiales De Laboratorio
Materiales De LaboratorioMateriales De Laboratorio
Materiales De LaboratorioJosé Encalada
 
Ayudas%2 Bcifras%2 Bsignificativas
Ayudas%2 Bcifras%2 BsignificativasAyudas%2 Bcifras%2 Bsignificativas
Ayudas%2 Bcifras%2 BsignificativasJosé Encalada
 
Rubrica Para Elaboracion De Proyectos De Curso
Rubrica Para Elaboracion De Proyectos De CursoRubrica Para Elaboracion De Proyectos De Curso
Rubrica Para Elaboracion De Proyectos De CursoJosé Encalada
 
Funciones De Dos Variables
Funciones De Dos VariablesFunciones De Dos Variables
Funciones De Dos VariablesJosé Encalada
 
Funciones De Dos Variables
Funciones De Dos VariablesFunciones De Dos Variables
Funciones De Dos VariablesJosé Encalada
 

Más de José Encalada (18)

solucionario de purcell 3
solucionario de purcell 3solucionario de purcell 3
solucionario de purcell 3
 
solucionario de purcell 3
solucionario de purcell 3solucionario de purcell 3
solucionario de purcell 3
 
solucionario de purcell 2
solucionario de purcell 2solucionario de purcell 2
solucionario de purcell 2
 
solucionario de purcell 1
solucionario de purcell 1solucionario de purcell 1
solucionario de purcell 1
 
solucionario de purcell 0
solucionario de purcell 0solucionario de purcell 0
solucionario de purcell 0
 
Determinacion Del Punto De Ebullicion
Determinacion Del Punto De EbullicionDeterminacion Del Punto De Ebullicion
Determinacion Del Punto De Ebullicion
 
Propiedades Quimicas De Los Elementos
Propiedades Quimicas De Los ElementosPropiedades Quimicas De Los Elementos
Propiedades Quimicas De Los Elementos
 
Determinacion De La Densidad
Determinacion De La DensidadDeterminacion De La Densidad
Determinacion De La Densidad
 
Materiales De Laboratorio
Materiales De LaboratorioMateriales De Laboratorio
Materiales De Laboratorio
 
Diapositivas C11
Diapositivas C11Diapositivas C11
Diapositivas C11
 
Etilenglicol
EtilenglicolEtilenglicol
Etilenglicol
 
eteretilico
eteretilicoeteretilico
eteretilico
 
Pendiente
PendientePendiente
Pendiente
 
Ayudas%2 Bcifras%2 Bsignificativas
Ayudas%2 Bcifras%2 BsignificativasAyudas%2 Bcifras%2 Bsignificativas
Ayudas%2 Bcifras%2 Bsignificativas
 
Rubrica Para Elaboracion De Proyectos De Curso
Rubrica Para Elaboracion De Proyectos De CursoRubrica Para Elaboracion De Proyectos De Curso
Rubrica Para Elaboracion De Proyectos De Curso
 
Funciones De Dos Variables
Funciones De Dos VariablesFunciones De Dos Variables
Funciones De Dos Variables
 
Corordenadas Polares
Corordenadas PolaresCorordenadas Polares
Corordenadas Polares
 
Funciones De Dos Variables
Funciones De Dos VariablesFunciones De Dos Variables
Funciones De Dos Variables
 

Último

VOLUMEN 1 COLECCION PRODUCCION BOVINA . SERIE SANIDAD ANIMAL
VOLUMEN 1 COLECCION PRODUCCION BOVINA . SERIE SANIDAD ANIMALVOLUMEN 1 COLECCION PRODUCCION BOVINA . SERIE SANIDAD ANIMAL
VOLUMEN 1 COLECCION PRODUCCION BOVINA . SERIE SANIDAD ANIMALEDUCCUniversidadCatl
 
Día de la Madre Tierra-1.pdf día mundial
Día de la Madre Tierra-1.pdf día mundialDía de la Madre Tierra-1.pdf día mundial
Día de la Madre Tierra-1.pdf día mundialpatriciaines1993
 
Estrategias de enseñanza - aprendizaje. Seminario de Tecnologia..pptx.pdf
Estrategias de enseñanza - aprendizaje. Seminario de Tecnologia..pptx.pdfEstrategias de enseñanza - aprendizaje. Seminario de Tecnologia..pptx.pdf
Estrategias de enseñanza - aprendizaje. Seminario de Tecnologia..pptx.pdfAlfredoRamirez953210
 
5° SEM29 CRONOGRAMA PLANEACIÓN DOCENTE DARUKEL 23-24.pdf
5° SEM29 CRONOGRAMA PLANEACIÓN DOCENTE DARUKEL 23-24.pdf5° SEM29 CRONOGRAMA PLANEACIÓN DOCENTE DARUKEL 23-24.pdf
5° SEM29 CRONOGRAMA PLANEACIÓN DOCENTE DARUKEL 23-24.pdfOswaldoGonzalezCruz
 
TUTORIA II - CIRCULO DORADO UNIVERSIDAD CESAR VALLEJO
TUTORIA II - CIRCULO DORADO UNIVERSIDAD CESAR VALLEJOTUTORIA II - CIRCULO DORADO UNIVERSIDAD CESAR VALLEJO
TUTORIA II - CIRCULO DORADO UNIVERSIDAD CESAR VALLEJOweislaco
 
LA ECUACIÓN DEL NÚMERO PI EN LOS JUEGOS OLÍMPICOS DE PARÍS. Por JAVIER SOLIS ...
LA ECUACIÓN DEL NÚMERO PI EN LOS JUEGOS OLÍMPICOS DE PARÍS. Por JAVIER SOLIS ...LA ECUACIÓN DEL NÚMERO PI EN LOS JUEGOS OLÍMPICOS DE PARÍS. Por JAVIER SOLIS ...
LA ECUACIÓN DEL NÚMERO PI EN LOS JUEGOS OLÍMPICOS DE PARÍS. Por JAVIER SOLIS ...JAVIER SOLIS NOYOLA
 
Unidad II Doctrina de la Iglesia 1 parte
Unidad II Doctrina de la Iglesia 1 parteUnidad II Doctrina de la Iglesia 1 parte
Unidad II Doctrina de la Iglesia 1 parteJuan Hernandez
 
BIOLOGIA_banco de preguntas_editorial icfes examen de estado .pdf
BIOLOGIA_banco de preguntas_editorial icfes examen de estado .pdfBIOLOGIA_banco de preguntas_editorial icfes examen de estado .pdf
BIOLOGIA_banco de preguntas_editorial icfes examen de estado .pdfCESARMALAGA4
 
programa dia de las madres 10 de mayo para evento
programa dia de las madres 10 de mayo  para eventoprograma dia de las madres 10 de mayo  para evento
programa dia de las madres 10 de mayo para eventoDiegoMtsS
 
c3.hu3.p1.p2.El ser humano y el sentido de su existencia.pptx
c3.hu3.p1.p2.El ser humano y el sentido de su existencia.pptxc3.hu3.p1.p2.El ser humano y el sentido de su existencia.pptx
c3.hu3.p1.p2.El ser humano y el sentido de su existencia.pptxMartín Ramírez
 
Estrategia de Enseñanza y Aprendizaje.pdf
Estrategia de Enseñanza y Aprendizaje.pdfEstrategia de Enseñanza y Aprendizaje.pdf
Estrategia de Enseñanza y Aprendizaje.pdfromanmillans
 
Mapa Mental de estrategias de articulación de las areas curriculares.pdf
Mapa Mental de estrategias de articulación de las areas curriculares.pdfMapa Mental de estrategias de articulación de las areas curriculares.pdf
Mapa Mental de estrategias de articulación de las areas curriculares.pdfvictorbeltuce
 
PLANIFICACION ANUAL 2024 - INICIAL UNIDOCENTE.docx
PLANIFICACION ANUAL 2024 - INICIAL UNIDOCENTE.docxPLANIFICACION ANUAL 2024 - INICIAL UNIDOCENTE.docx
PLANIFICACION ANUAL 2024 - INICIAL UNIDOCENTE.docxJUANSIMONPACHIN
 

Último (20)

VOLUMEN 1 COLECCION PRODUCCION BOVINA . SERIE SANIDAD ANIMAL
VOLUMEN 1 COLECCION PRODUCCION BOVINA . SERIE SANIDAD ANIMALVOLUMEN 1 COLECCION PRODUCCION BOVINA . SERIE SANIDAD ANIMAL
VOLUMEN 1 COLECCION PRODUCCION BOVINA . SERIE SANIDAD ANIMAL
 
VISITA À PROTEÇÃO CIVIL _
VISITA À PROTEÇÃO CIVIL                  _VISITA À PROTEÇÃO CIVIL                  _
VISITA À PROTEÇÃO CIVIL _
 
Día de la Madre Tierra-1.pdf día mundial
Día de la Madre Tierra-1.pdf día mundialDía de la Madre Tierra-1.pdf día mundial
Día de la Madre Tierra-1.pdf día mundial
 
Estrategias de enseñanza - aprendizaje. Seminario de Tecnologia..pptx.pdf
Estrategias de enseñanza - aprendizaje. Seminario de Tecnologia..pptx.pdfEstrategias de enseñanza - aprendizaje. Seminario de Tecnologia..pptx.pdf
Estrategias de enseñanza - aprendizaje. Seminario de Tecnologia..pptx.pdf
 
Power Point: "Defendamos la verdad".pptx
Power Point: "Defendamos la verdad".pptxPower Point: "Defendamos la verdad".pptx
Power Point: "Defendamos la verdad".pptx
 
Sesión La luz brilla en la oscuridad.pdf
Sesión  La luz brilla en la oscuridad.pdfSesión  La luz brilla en la oscuridad.pdf
Sesión La luz brilla en la oscuridad.pdf
 
5° SEM29 CRONOGRAMA PLANEACIÓN DOCENTE DARUKEL 23-24.pdf
5° SEM29 CRONOGRAMA PLANEACIÓN DOCENTE DARUKEL 23-24.pdf5° SEM29 CRONOGRAMA PLANEACIÓN DOCENTE DARUKEL 23-24.pdf
5° SEM29 CRONOGRAMA PLANEACIÓN DOCENTE DARUKEL 23-24.pdf
 
TUTORIA II - CIRCULO DORADO UNIVERSIDAD CESAR VALLEJO
TUTORIA II - CIRCULO DORADO UNIVERSIDAD CESAR VALLEJOTUTORIA II - CIRCULO DORADO UNIVERSIDAD CESAR VALLEJO
TUTORIA II - CIRCULO DORADO UNIVERSIDAD CESAR VALLEJO
 
LA ECUACIÓN DEL NÚMERO PI EN LOS JUEGOS OLÍMPICOS DE PARÍS. Por JAVIER SOLIS ...
LA ECUACIÓN DEL NÚMERO PI EN LOS JUEGOS OLÍMPICOS DE PARÍS. Por JAVIER SOLIS ...LA ECUACIÓN DEL NÚMERO PI EN LOS JUEGOS OLÍMPICOS DE PARÍS. Por JAVIER SOLIS ...
LA ECUACIÓN DEL NÚMERO PI EN LOS JUEGOS OLÍMPICOS DE PARÍS. Por JAVIER SOLIS ...
 
Unidad II Doctrina de la Iglesia 1 parte
Unidad II Doctrina de la Iglesia 1 parteUnidad II Doctrina de la Iglesia 1 parte
Unidad II Doctrina de la Iglesia 1 parte
 
BIOLOGIA_banco de preguntas_editorial icfes examen de estado .pdf
BIOLOGIA_banco de preguntas_editorial icfes examen de estado .pdfBIOLOGIA_banco de preguntas_editorial icfes examen de estado .pdf
BIOLOGIA_banco de preguntas_editorial icfes examen de estado .pdf
 
programa dia de las madres 10 de mayo para evento
programa dia de las madres 10 de mayo  para eventoprograma dia de las madres 10 de mayo  para evento
programa dia de las madres 10 de mayo para evento
 
DIA INTERNACIONAL DAS FLORESTAS .
DIA INTERNACIONAL DAS FLORESTAS         .DIA INTERNACIONAL DAS FLORESTAS         .
DIA INTERNACIONAL DAS FLORESTAS .
 
Sesión de clase: Defendamos la verdad.pdf
Sesión de clase: Defendamos la verdad.pdfSesión de clase: Defendamos la verdad.pdf
Sesión de clase: Defendamos la verdad.pdf
 
c3.hu3.p1.p2.El ser humano y el sentido de su existencia.pptx
c3.hu3.p1.p2.El ser humano y el sentido de su existencia.pptxc3.hu3.p1.p2.El ser humano y el sentido de su existencia.pptx
c3.hu3.p1.p2.El ser humano y el sentido de su existencia.pptx
 
Estrategia de Enseñanza y Aprendizaje.pdf
Estrategia de Enseñanza y Aprendizaje.pdfEstrategia de Enseñanza y Aprendizaje.pdf
Estrategia de Enseñanza y Aprendizaje.pdf
 
Mapa Mental de estrategias de articulación de las areas curriculares.pdf
Mapa Mental de estrategias de articulación de las areas curriculares.pdfMapa Mental de estrategias de articulación de las areas curriculares.pdf
Mapa Mental de estrategias de articulación de las areas curriculares.pdf
 
PLANIFICACION ANUAL 2024 - INICIAL UNIDOCENTE.docx
PLANIFICACION ANUAL 2024 - INICIAL UNIDOCENTE.docxPLANIFICACION ANUAL 2024 - INICIAL UNIDOCENTE.docx
PLANIFICACION ANUAL 2024 - INICIAL UNIDOCENTE.docx
 
Tema 7.- E-COMMERCE SISTEMAS DE INFORMACION.pdf
Tema 7.- E-COMMERCE SISTEMAS DE INFORMACION.pdfTema 7.- E-COMMERCE SISTEMAS DE INFORMACION.pdf
Tema 7.- E-COMMERCE SISTEMAS DE INFORMACION.pdf
 
TL/CNL – 2.ª FASE .
TL/CNL – 2.ª FASE                       .TL/CNL – 2.ª FASE                       .
TL/CNL – 2.ª FASE .
 

Coordenadas polares: ecuaciones y gráficas

  • 1. Moisés Villena Muñoz Coordenadas Polares 1 EL SISTEMA POLAR 2 ECUACIONES EN COORDENADAS POLARES 3 GRÁFICAS: RECTAS, CIRCUNFERENCIAS, PARÁBOLAS, ELIPSES, HIPÉRBOLAS, LIMACONS, ROSAS, LEMNISCATAS, ESPIRALES. Objetivos: Se pretende que el estudiante: • Grafique Rectas, circunferencias, parábolas, elipses, hipérbolas, limacons, rosas, lemniscatas, espirales en coordenadas polares 1
  • 2. Moisés Villena Muñoz Coordenadas Polares 1. EL SISTEMA POLAR El plano cartesiano es un sistema rectangular, debido a que las coordenadas de un punto geométricamente describen un rectángulo. Si hacemos que este punto represente un vector de magnitud r que parte desde el origen y que tiene ángulo de giro θ , tendríamos otra forma de definir un punto. Sería suficiente, para denotar al punto de esta manera, mencionar el valor de r y el valor de θ . Esto se lo va a hacer indicando ( ) el par ordenado r ,θ , en este caso se dice que son las coordenadas polares del punto. Se deducen las siguientes transformaciones: ⎧ 2 2 ⎪r = x + y De rectangulares a polares: ⎨ ⎪θ = arctg y ⎩ x ⎧ x = r cos θ De polares a rectangulares: ⎨ ⎩ y = r sen θ Una utilidad de lo anterior la observamos ahora. Ejemplo Encuentre las coordenadas polares del punto P (1,1) SOLUCIÓN: Representando el punto en el plano cartesiano, tenemos: 2
  • 3. Moisés Villena Muñoz Coordenadas Polares ⎧r = 1 2 + 1 2 = 2 ⎪ Utilizando las transformaciones ⎨ π ⎪θ = arctg 1 = ⎩ 1 4 Además se podría utilizar otras equivalencias polares: ( 2 , π ) = ( 2 ,−7 π ) = (− 2 ,5 π ) = (− 2 ,−3 π ) (Analícelas) 4 4 4 4 Para representar un punto en el plano, conociendo sus coordenadas polares, no es necesario hallar sus coordenadas rectangulares; se lo puede hacer directamente. Este trabajo puede ser muy sencillo si se dispone de un plano que tenga como referencia ángulos y magnitudes. Un plano con estas características se lo llama Sistema Polar o Plano Polar. Consiste de circunferencias concéntricas al origen y rectas concurrentes al origen con diferentes ángulos de inclinación. Al eje horizontal se lo llama “Eje Polar”, al eje vertical se lo llama π “Eje 2 ”. El punto de intersección entre estos dos ejes se lo llama “Polo”. 3
  • 4. Moisés Villena Muñoz Coordenadas Polares Eje π 2 Eje Polar Polo Ejercicios propuestos 1 1. Construya un plano polar y marque los puntos cuyas coordenadas polares son dadas. Exprese dichos puntos con r > 0 y con r < 0 . π a. (1, ) b. (3,0) 2 π 3π c. ( −1, ) d. ( 2, ) 5 7 2π e. ( 4,− ) f. ( −1, π) 3 3π g. ( −2, ) h. ( −3,5π) 2 2. Construya un plano polar y marque los puntos cuyas coordenadas polares son dadas. Luego encuentre las coordenadas cartesianas de dichos puntos. π a. ( 2 , ) e. ( 4,3π) 4 π 2π b. ( −1, ) f. ( 2, ) 3 3 7π 5π c. ( 4,− ) g. ( −2,− ) 6 3 3 3π 5π d. ( , ) h. ( −4, ) 2 2 4 3. Encuentre las coordenadas polares de los siguientes puntos. a. (−1,1) b. (2 3 ,−2) c. (−1,− 3 ) d. (3,4) 4. (INVESTIGACIÓN) Encuentre la distancia entre los puntos dados en coordenadas polares. Verifique su respuesta hallando la distancia, utilizando coordenadas cartesianas. π 3π π π π a. (1, ) − (3, ) . b. ( 2 , ) − (1,4π) c. (1, ) − (1, ) 6 4 4 3 6 4
  • 5. Moisés Villena Muñoz Coordenadas Polares 2. ECUACIONES EN COORDENADAS POLARES Una ecuación en coordenadas polares la presentaremos de la forma r = f (θ) . Por tanto para obtener la gráfica, en primera instancia, podemos obtener una tabla de valores para ciertos puntos y luego representarlos en el sistema polar; luego sería cuestión de trazar la gráfica siguiendo estos puntos. Ejercicio Propuesto 2 1. Encuentre la ecuación cartesiana de la curva descrita por la ecuación polar dada. a. r sen(θ) = 2 b. r = 2 sen(θ) 1 c. r = d. r 2 = sen(2θ) 1 − cos(θ) 3 e. r 2 = θ f. r = 2 − 4 cos(θ) 2. Encuentre la ecuación polar de la curva descrita por la ecuación cartesiana dada. a. y = 5 e. y = x + 1 b. x 2 + y 2 = 25 f. x 2 = 4 y c. 2 xy = 1 g. x 2 − y 2 = 1 x2 d. b 2 x 2 + a 2 y 2 = a 2 b 2 h. y = 4p 3. Realice una tabla de valores y trace punto a punto en un plano polar, la gráfica de: 6 1. r= cos θ 6 2. r= sen θ 3. r = 6 cos θ 4. r = 3 + 3 cos θ 5. r = 6 + 3 cos θ 6. r = 3 + 6 cos θ 9 7. r= 3 + 3 cos θ 9 8. r= 6 + 3 cos θ 9 9. r= 3 + 6 cos θ 5
  • 6. Moisés Villena Muñoz Coordenadas Polares 3. GRÁFICAS DE ECUACIONES EN COORDENADAS POLARES Se trata ahora de presentar ecuaciones polares típicas que permitan por inspección describir su lugar geométrico. 3.1 RECTAS 3.1.1 Rectas tales que contienen al polo. La ecuación cartesiana de una recta tal que el origen pertenece a ella, es de la forma y = mx Realizando las transformaciones respectivas: y = mx r sen θ = m r cos θ sen θ =m cos θ tg θ = tg φ Resulta, finalmente: θ=φ Ejemplo π Graficar θ = 4 Por inspección de la ecuación dada concluimos rápidamente que el lugar geométrico es una recta, que pasa por el polo con un ángulo de π . Es decir: 4 6
  • 7. Moisés Villena Muñoz Coordenadas Polares 3.1.2 Rectas tales que NO contienen al polo y se encuentran a una distancia "d" del polo. Observemos la siguiente representación gráfica: Del triangulo tenemos: cos(θ − φ ) = d r Por tanto, la ecuación del mencionado lugar geométrico sería: d r= cos(θ − φ) Ejemplo 4 Graficar r = ( cos θ − π 6 ) 7
  • 8. Moisés Villena Muñoz Coordenadas Polares SOLUCIÓN: Por inspección de la ecuación dada concluimos rápidamente que el lugar geométrico es una recta, que se encuentra a una distancia de 4 unidades del polo y la medida del ángulo de la perpendicular a la recta es π . ES decir: 6 Ahora veamos casos especiales: d 1. Si φ = 0 o entonces la ecuación resulta r = . Una recta cos θ vertical. Al despejar resulta r cos θ = d es decir x = d . 2. Si φ = π 2 entonces la ecuación resulta: d d d r= = = cos(θ − 2 ) cos θ cos 2 + sen θ sen 2 sen θ π π π Una recta horizontal. 8
  • 9. Moisés Villena Muñoz Coordenadas Polares 3. Si φ = π entonces la ecuación resulta: d d d r= = = cos(θ − π ) cos θ cos π + sen θ sen π − cos θ Una recta vertical. 4. Si φ = 3 π entonces la ecuación resulta: 2 d d d r= = = cos(θ − 3 π ) cos θ cos 3 π + sen θ sen 3 π − sen θ 2 2 2 Una recta horizontal. 3.2 CIRCUNFERENCIAS 3.2.1 Circunferencias con centro el polo. La ecuación cartesiana de una circunferencia es: x2 + y2 = a2 Aplicando transformaciones tenemos: x2 + y2 = a2 (r cos θ)2 + (r sen θ)2 = a 2 r 2 cos 2 θ + r 2 sen 2 θ = a 2 ( ) r 2 cos 2 θ + sen 2 θ = a 2 r =a 2 2 Resultando, finamente: r=a 9
  • 10. Moisés Villena Muñoz Coordenadas Polares Ejemplo Graficar r = 2 SOLUCIÓN: Por inspección de la ecuación dada concluimos que el lugar geométrico es una circunferencia con centro el polo y que tiene radio 2. 3.2.2 Circunferencias tales que contienen al polo y tienen centro el punto (a, φ) Observemos el gráfico: De allí obtenemos el triángulo: 10
  • 11. Moisés Villena Muñoz Coordenadas Polares Aplicando la ley del coseno y despejando, tenemos: a 2 = r 2 + a 2 − 2ar cos(θ − φ) r 2 = 2ar cos(θ − φ) Resultando, finalmente: r = 2a cos(θ − φ) Ejemplo ( Graficar r = 4 cos θ − π 3 ) SOLUCIÓN: Por inspección de la ecuación dada concluimos que el lugar geométrico es una ( ) circunferencia tal que el polo pertenece a ella y su centro es el punto 2, π . Por tanto su 3 gráfico es: Casos especiales, serían: ( 1. Si φ = 0 o tenemos r = 2a cos θ − 0 o = 2a cos θ ) Que transformándola a su ecuación cartesiana, tenemos: r = 2a cos θ x r = 2a r r = 2ax 2 x 2 + y 2 = 2ax (x 2 ) − 2ax + a 2 + y 2 = 0 + a 2 (x − a ) 2 + y2 = a2 11
  • 12. Moisés Villena Muñoz Coordenadas Polares Una circunferencia con centro el punto (a,0) y radio r = a 2. Si φ = π tenemos r = 2a cos(θ − π) = −2a cos θ Una circunferencia con centro el punto (− a,0) y radio r = a 3. Si φ = π 2 tenemos r = 2a cos(θ − π ) = 2a sen θ 2 Una circunferencia con centro el punto (0, a ) y radio r = a 12
  • 13. Moisés Villena Muñoz Coordenadas Polares 4. Si φ = 3 π tenemos r = 2a cos(θ − 3 π ) = −2a sen θ 2 2 Una circunferencia con centro el punto (0,− a ) y radio r = a 3.3 CÓNICAS tales que el foco es el polo y su recta directriz está a una distancia "d" del polo Observe la figura. Se define a la parábola ( e = 1), a la elipse ( 0 < e < 1 ) y a la hipérbola ( e > 1) como el conjunto de puntos del plano tales que: d ( P, F ) = e d ( P, l ) 13
  • 14. Moisés Villena Muñoz Coordenadas Polares Entonces: d ( P, F ) = e d ( P, l ) r = e[d − r cos(θ − φ)] r = ed − er cos(θ − φ) r + er cos(θ − φ) = ed r [1 + e cos(θ − φ)] = ed ed r= 1 + e cos(θ − φ) Casos especiales son: ed 1. Si φ = 0 o tenemos r= 1 + e cos θ ed 2. Si φ = π tenemos r= 1 − e cos θ π ed 3. Si φ = tenemos r= 2 1 + e sen θ π ed 4. Si φ = 3 tenemos r= 2 1 − e sen θ Ejemplo 1 6 Graficar r = 1 + cos θ SOLUCIÓN: En este caso " e = 1 " (el coeficiente del coseno) por tanto tenemos una parábola con foco el polo (el origen) y directriz con ecuación cartesiana " x = 6 " (a la derecha y π paralela al eje ). Parábola cóncava a la izquierda. 2 14
  • 15. Moisés Villena Muñoz Coordenadas Polares Ejemplo 2 6 Graficar r = 1 − cos θ SOLUCIÓN: Como el ejemplo anterior, es una parábola; pero ahora como hay un signo negativo en la función trigonométrica, la recta directriz tendrá ecuación cartesiana “ x = −6 " (a la π izquierda y paralela al eje ). Cóncava hacia la derecha. 2 Ejemplo 3 6 Graficar r = 1 + sen θ SOLUCIÓN: Es una parábola con foco el polo y recta directriz y = 6 (paralela y arriba del eje polar). Cóncava hacia abajo. 15
  • 16. Moisés Villena Muñoz Coordenadas Polares Ejemplo 4 6 Graficar r = 1 − sen θ SOLUCIÓN: Es una parábola con foco el polo y recta directriz y = −6 (paralela y abajo del eje polar). Cóncava hacia arriba. Ejemplo 5 6 Graficar r = 1 + 1 cos θ 2 SOLUCIÓN: En este caso " e = 1 " (el coeficiente del coseno), por tanto tenemos una elipse con un foco el 2 polo y el otro foco a su izquierda en el eje polar. NOTA: La ecuación de esta cónica pudo haber sido dada de la siguiente forma también: 12 r= ¿Por qué? 2 + cos θ 16
  • 17. Moisés Villena Muñoz Coordenadas Polares Ejemplo 6 6 Graficar r = 1 − 1 cos θ 2 SOLUCIÓN: Es una elipse con un foco el polo y el otro a su derecha en el eje polar. Ejemplo 7 6 Graficar r = 1 + 1 sen θ 2 SOLUCIÓN: Es una elipse con un foco el polo y el otro en el eje π hacia abajo. 2 17
  • 18. Moisés Villena Muñoz Coordenadas Polares Ejemplo 8 6 Graficar r = 1 − 1 sen θ 2 SOLUCIÓN: Es una elipse con un foco el polo y el otro en el eje π hacia arriba. 2 Ejemplo 9 6 Graficar r = 1 + 2 cos θ SOLUCIÓN: En este caso " e = 2 " (el coeficiente del coseno), por tanto tenemos una hipérbola con un foco el polo y el otro foco a su derecha en el eje polar. 18
  • 19. Moisés Villena Muñoz Coordenadas Polares Ejemplo 10 6 Graficar r = 1 − 2 cos θ SOLUCIÓN: Es una hipérbola con un foco el polo y el otro foco a su izquierda en el eje polar. Ejemplo 11 6 Graficar r = 1 + 2 sen θ SOLUCIÓN: Es una hipérbola con un foco el polo y el otro foco en el eje π hacia arriba. 2 19
  • 20. Moisés Villena Muñoz Coordenadas Polares Ejemplo 12 6 Graficar r = 1 − 2 sen θ SOLUCIÓN: Es una hipérbola con un foco el polo y el otro foco en el eje π hacia abajo. 2 3.4 CARACOLES Los caracoles tienen ecuación polar de la forma: r = a ± b cos θ o de la forma r = a ± b sen θ Consideremos tres casos: 1. Si a = b se llama CARDIOIDES Ejemplo 1 Graficar r = 6 + 6 cos θ Esta gráfica presenta simetría al eje polar, es decir: f (θ) = f ( −θ) 20
  • 21. Moisés Villena Muñoz Coordenadas Polares Ejemplo 2 Graficar r = 6 − 6 cos θ Ejemplo 3 Graficar r = 6 + 6 sen θ Ejemplo 4 Graficar r = 6 − 6 sen θ 21
  • 22. Moisés Villena Muñoz Coordenadas Polares 2. Si a > b se llaman LIMACON O CARACOL SIN RIZO Ejemplo 1 Graficar r = 6 + 3 cos θ Ejemplo 2 Graficar r = 6 − 3 cos θ Ejemplo 3 Graficar r = 6 + 3 sen θ π Esta gráfica presenta simetría al eje , es decir: f ( π − θ) = f (θ) 2 22
  • 23. Moisés Villena Muñoz Coordenadas Polares Ejemplo 4 Graficar r = 6 − 3 sen θ 3. Si a < b se llaman LIMACON O CARACOL CON RIZO Ejemplo 1 Graficar r = 3 + 6 cos θ Nota: Determine los ángulos de formación del rizo. Ejemplo 2 Graficar r = 3 − 6 cos θ 23
  • 24. Moisés Villena Muñoz Coordenadas Polares Ejemplo 3 Graficar r = 3 + 6 sen θ Ejemplo 4 Graficar r = 3 − 6 sen θ 3.5 ROSAS Estos lugares geométricos tienen ecuación polar de la forma r = a cos (n θ ) o r = a sen (n θ ) para n > 1 ∧ n ∈ N De aquí consideramos dos casos: 1. Si n es PAR es una rosa de 2 n petálos 24
  • 25. Moisés Villena Muñoz Coordenadas Polares Ejemplo Graficar r = 4 sen (2 θ ) SOLUCIÓN: Por inspección concluimos que es una rosa de 4 pétalos 2. Si n es IMPAR es una rosa de n petálos Ejemplo Graficar r = 4 cos (3θ ) SOLUCIÓN: Por inspección concluimos que es una rosa de 3 pétalos 25
  • 26. Moisés Villena Muñoz Coordenadas Polares 3.6 LEMNISCATAS Tienen ecuación polar de la forma r 2 = a cos 2 θ o de la forma r = a sen 2 θ 2 Ejemplo 1 Graficar r = 4 cos 2 θ 2 Ejemplo 2 Graficar r 2 = − 4 cos 2 θ 26
  • 27. Moisés Villena Muñoz Coordenadas Polares Ejemplo 3 Graficar r = 4 sen 2 θ 2 3.7 ESPIRALES Consideramos dos tipos: 1. Espiral de Arquímedes. Su ecuación polar es de la forma r = a θ Ejemplo Graficar r = 2 θ 27
  • 28. Moisés Villena Muñoz Coordenadas Polares 2. Espiral de Logarítmica. Su ecuación polar es de la forma r = ae bθ Ejemplo Graficar r = 2e 3θ Ejercicios propuestos 3 1. Trace la gráfica representada por la ecuación polar dada. 1. r =5 12. r = 3(1 − cos( θ)) π 13. r = 2 + 4 sen( θ) 2. θ= 4 14. r − 2 + 5 sen( θ) = 0 3. r = 2 sen(θ) 15. r = sen(3θ) 4. r = − cos(θ) 16. r = sen( 5θ) 5. r = −3 cos( θ) 17. r = 2 cos( 4θ) 2 6. r= 18. r 2 = 4 cos(2θ) 1 − sen(θ) 2 19. r 2 = 3 sen(2θ) 7. r= 20. r = −6 cos(3θ) 2 − sen(θ) 21. r = − 4 sen 3θ 2 8. r= 22. r = sen( θ) + cos( θ) 1 − 2 sen(θ) 23. sen(θ) + cos( θ) = 0 9. r = 1 − 2 cos( θ) 24. r = θ, θ > 0 10. r = 3 + 2 sen( θ) 11. r = 2 − 4 sen θ ; 0≤θ≤π ⎧ r = 3 cos θ 2. Graficar en un mismo plano ⎨ y determine los puntos de intersección. ⎩ r = 1 + cos θ ⎧ 3. Graficar en un mismo plano ⎪ r = 3 sen θ y determine los puntos de intersección. ⎨ ⎪ r = 1 + cos θ ⎩ ⎧ 2 4. Graficar en un mismo plano ⎪ r = − 8 cos 2 θ y determine los puntos de intersección. ⎨ ⎪r = 2 ⎩ 5. Represente en el plano polar la región comprendida en el interior de r = 4 cos (2θ ) y exterior a r = 2 28