SlideShare una empresa de Scribd logo
1 de 36
Descargar para leer sin conexión
INSTALACION DE UN SISTEMA SOLAR TERMICO PARA UN CHALET UNIFAMILIAR EN
PELAHUSTAN (TOLEDO)
Energía solar térmica y pasiva
JAVIER TRESPALACIOS INSIGNARES
15 de junio de 2011
INSTALACION	DE	UN	SISTEMA	SOLAR	TERMICO	PARA	UN	CHALET	UNIFAMILIAR	EN	PELAHUSTAN		(TOLEDO)																																																																																										Javier		TRESPALACIOS	
IMF		CEU	-	Máster	Oficial	Universitario	en	Energías	Renovables	 																																																						 	 																					Energía	solar,	térmica	y	pasiva-	2011	
	 	
	
i	
	
TABLA DE CONTENIDO
ENUNCIADO	.....................................................................................................................................	vi
INTRODUCCIÓN	.............................................................................................................................	vii
1. PELAHUSTAN (TOLEDO)	.........................................................................................................	8
2. ZONA CLIMATICA - Pelahustán	..............................................................................................	8
3. DEMANDA DIARIA DE REFERENCIA DE ACS – Pelahustán	...............................................	9
4. ESTIMACION DE LA DEMANDA ENERGETICA ACS	...........................................................	10
5. CONTRIBUCION SOLAR MINIMA DE ACS	...........................................................................	12
6. RADIACION SOLAR INCIDENTE	...........................................................................................	13
7. CÁLCULO NÚMERO DE CAPTADORES PARA ACS: METODO DE F-CHART	....................	15
7.1. Relación entre el volumen de acumulador y superficie de captadores para ACS -
exigencia CTE	.............................................................................................................................	19
7.2. Contribución solar anual para ACS: f	.........................................................................	19
7.3. Rendimiento medio anual para ACS: ηsistema,ano	........................................................	19
8. CÁLCULO DE NÚMERO DE CAPTADORES Y VOLUMEN DE ACUMULACIÓN TOTAL DE
NUESTRA INSTALACION: METODO DE F-CHART	.....................................................................	20
8.1. Relación entre el volumen del acumulador y superficie de captadores - exigencia
CTE	 23
8.2. Contribución solar anual total: f	.................................................................................	23
8.3. Rendimiento medio anual total : ηsistema,ano	...............................................................	23
9. CALCULO DEL DEPOSITO DE INERCIA Y DEPOSITO ACS	...............................................	24
10. CALCULO DEL VASO DE EXPANSION DEL CIRCUITO PRIMARIO	..............................	25
11. CALCULO DEL VASO DE EXPANSION DEL CIRCUITO SECUNDARIO	........................	28
12. CALCULO SUPERFICIE INTERCAMBIADOR	...................................................................	28
13. CALCULO DEL BOMBA DEL CIRCUITO PRIMARIO	.......................................................	29
INSTALACION	DE	UN	SISTEMA	SOLAR	TERMICO	PARA	UN	CHALET	UNIFAMILIAR	EN	PELAHUSTAN		(TOLEDO)																																																																																										Javier		TRESPALACIOS	
IMF		CEU	-	Máster	Oficial	Universitario	en	Energías	Renovables	 																																																						 	 																					Energía	solar,	térmica	y	pasiva-	2011	
	 	
	
ii	
	
14. CALCULO POTENCIA DE DISIPACION	...........................................................................	33
15. CONCLUSIONES	................................................................................................................	34
16. REFERENCIAS	....................................................................................................................	35
INSTALACION	DE	UN	SISTEMA	SOLAR	TERMICO	PARA	UN	CHALET	UNIFAMILIAR	EN	PELAHUSTAN		(TOLEDO)																																																																																										Javier		TRESPALACIOS	
IMF		CEU	-	Máster	Oficial	Universitario	en	Energías	Renovables	 																																																						 	 																					Energía	solar,	térmica	y	pasiva-	2011	
	 	
	
iii	
	
TABLA DE GRÁFICAS
Gráfica 1: Energía solar incidente sobre Pelahustan.	...............................................................	15
Gráfica 2: Demanda vs aporte solar en Pelahustan.	.................................................................	18
Gráfica 3: Demanda mensual vs. Contribución solar mesual - Total.	....................................	22
INSTALACION	DE	UN	SISTEMA	SOLAR	TERMICO	PARA	UN	CHALET	UNIFAMILIAR	EN	PELAHUSTAN		(TOLEDO)																																																																																										Javier		TRESPALACIOS	
IMF		CEU	-	Máster	Oficial	Universitario	en	Energías	Renovables	 																																																						 	 																					Energía	solar,	térmica	y	pasiva-	2011	
	 	
	
iv	
	
TABLA DE FIGURAS
Figura 1: Ubicación geográfica de Pelahustán (Toledo).	
	...........................................................	8
Figura 2: Zonas climáticas, ubicación Pelahustán (Toledo).	......................................................	9
Figura 3: Determinación del numero de personas por habitación.	
	..........................................	9
Figura 4: Demanda diaria de referencia ACS a 60°C según el CTE DB HE4.	........................	10
Figura 5: Temperatura media de la red general.	......................................................................	11
Figura 6: Contribución solar mínima %. Caso general.	............................................................	12
Figura 7: Valores de radiación mensual media en Toledo.	......................................................	13
Figura 8: Factor de corrección k para latitud 40°	.....................................................................	14
Figura 9: Acumulador combinado para calefacción y ACS (SONNENKRAFT).	.......................	24
Figura 10: Información tecnica, acumulador combinado (SONNENKRAFT).	.........................	25
Figura 11: Información tecnica, intercambiador acumulador (SONNENKRAFT).	..................	27
Figura 10: Vaso de expansion, circuito primario (Ibaiondo)	...................................................	28
Figura 11: Vaso de expansion, circuito secundario (Ibaiondo)	...............................................	28
Figura 12: Intercambiador del acumulador combinado para calefacción y ACS.	....	Erreur	!	Le	
signet	n’est	pas	défini.
Figura 13: Abaco perdidas de carga (libro guia del master).	..................................................	30
Figura 14: bomba a seleccionar (Grundfos).	.............................................................................	32
INSTALACION	DE	UN	SISTEMA	SOLAR	TERMICO	PARA	UN	CHALET	UNIFAMILIAR	EN	PELAHUSTAN		(TOLEDO)																																																																																										Javier		TRESPALACIOS	
IMF		CEU	-	Máster	Oficial	Universitario	en	Energías	Renovables	 																																																						 	 																					Energía	solar,	térmica	y	pasiva-	2011	
	 	
	
v	
	
LISTA DE TABLAS
Tabla 1: Demanda energética mensual - Pelahustán.	..............................................................	12
Tabla 2: Valores de la radiación solar mensual a Pelahustán.	................................................	14
Tabla 3: Valores con diferentes captadores.	..............................................................................	15
Tabla 4: Valores de FCacs, D1 y D2.	..............................................................................................	17
Tabla 5: Valores de la fracción solar mensual y la energía solar útil.	....................................	18
Tabla 6: Demanda Anual total.	....................................................................................................	21
Tabla 7: Aporte Solar anual - Total.	............................................................................................	22
INSTALACION	DE	UN	SISTEMA	SOLAR	TERMICO	PARA	UN	CHALET	UNIFAMILIAR	EN	PELAHUSTAN		(TOLEDO)																																																																																										Javier		TRESPALACIOS	
IMF		CEU	-	Máster	Oficial	Universitario	en	Energías	Renovables	 																																																						 	 																					Energía	solar,	térmica	y	pasiva-	2011	
	 	
	
vi	
	
ENUNCIADO
Un chalet unifamiliar de 280 m2
situado en Pelahustán (Toledo) tiene una superficie
calefactada por suelo radiante de 200 m2
con una carga térmica media de 66 W/m2
. A
pesar de que la vivienda tiene 5 habitaciones, únicamente viven 2 personas. Consta de
dos plantas (10x10m) y sótano dónde se ubica el cuarto de calderas y el garaje. La
cubierta es de teja árabe con una inclinación de 15º y orientación N-S. Disponen de una
piscina en el exterior de la vivienda. Quieren instalar energía solar térmica para suplir
parte de la demanda de calefacción con el siguiente colector:
- MARCA: Módulo Solar
- MODELO: Maxol MS 2.5 4T
- LONGITUD: 2240 mm.
- ANCHURA: 1120 mm.
- PESO: 44 Kg.
- ÁREA TOTAL: 2,51 m2
- ÁREA DE APERTURA: 1,32 m2
- ÁREA DEL ABSORBEDOR: 1,32 m2
- MATERIAL CUBIERTA: vidrio solar endurecido, 4mm. espesor.
- VOLUMEN ABSORBEDOR: 1,6 l.
- RENDIMIENTO: 0,795%
- K1: 3,543 W/m2
K
- K2: 0,01 W/m2
K
- CAUDAL RECOMENDADO: 25 l/hm2
- MONTAJE: Vertical
- CONEXIÓN EN LÍNEA: máx 10 captadores.
Se pide:
Ø Cálculo del depósito de inercia y depósito de ACS.
Ø Vaso de expansión del circuito primario.
Ø Vaso/s de expansión del circuito secundario.
Ø Superficie del intercambiador.
Ø Bomba del circuito primario.
Ø Potencia de disipación estival.
INSTALACION	DE	UN	SISTEMA	SOLAR	TERMICO	PARA	UN	CHALET	UNIFAMILIAR	EN	PELAHUSTAN		(TOLEDO)																																																																																										Javier		TRESPALACIOS	
IMF		CEU	-	Máster	Oficial	Universitario	en	Energías	Renovables	 																																																						 	 																					Energía	solar,	térmica	y	pasiva-	2011	
	 	
	
vii	
	
INTRODUCCIÓN
En este trabajo veran la manera en que se puede realizar un proyecto Solar-Termico, para
un chalet unifamiliar; haciendo un aporte auxiliar a la calefacción y el ACS.
INSTALACION	DE	UN	SISTEMA	SOLAR	TERMICO	PARA	UN	CHALET	UNIFAMILIAR	EN	PELAHUSTAN		(TOLEDO)																																																																																										Javier		TRESPALACIOS	
IMF		CEU	-	Máster	Oficial	Universitario	en	Energías	Renovables	 																																																						 	 																					Energía	solar,	térmica	y	pasiva-	2011	
	 	
	
8	
	
	
1. PELAHUSTAN (TOLEDO)
“Pelahustán es una población española de la provincia de Toledo en Castilla-La Mancha.
Linda con los términos municipales de Higuera de las Dueñas en la provincia de Ávila y
Nombela, Nuño Gómez, Garciotum y El Real de San Vicente en la de Toledo y Cenicientos
en la provincia de Madrid.”	1	
Figura 1: Ubicación geográfica de Pelahustán (Toledo).
	2
La posición geográfica de Pelahustán es: 40°2 Norte.
2. ZONA CLIMATICA - Pelahustán
La distribución de zonas climáticas se establece en el propio CTE, a partir de los datos de
radiación solar global anual incidente sobre superficie horizontal.
																																																													
1
Pelahustan	:	http://es.wikipedia.org/wiki/Pelahustan_(Toledo)		.	Consultado	20.05.2011	
2
Figura	1	http://re.jrc.ec.europa.eu/pvgis/apps4/pvest.php	.	Consultado	20.05.2011
INSTALACION	DE	UN	SISTEMA	SOLAR	TERMICO	PARA	UN	CHALET	UNIFAMILIAR	EN	PELAHUSTAN		(TOLEDO)																																																																																										Javier		TRESPALACIOS	
IMF		CEU	-	Máster	Oficial	Universitario	en	Energías	Renovables	 																																																						 	 																					Energía	solar,	térmica	y	pasiva-	2011	
	 	
	
9	
	
El CTE DB HE4 exige que toda vivienda sea capaz de suministrar, en diseño, una
contribución solar mínima, en función del agua caliente sanitaria de una vivienda, a una
temperatura de referencia de 60°C.
Para saber en qué zona climática esta Pelahustán, utilizamos la figura 2.
Figura 2: Zonas climáticas, ubicación Pelahustán (Toledo). 3
Pelahustan está en la zona climática IV.
3. DEMANDA DIARIA DE REFERENCIA DE ACS – Pelahustán
Para calcular el consumo diario de la vivienda a (Ddia) en Pelahustán; tenemos en cuenta
que es una vivienda unifamiliar con 5 habitaciones; según el CTE se determinan 7
personas (ver figura 3).
Figura 3: Determinación del numero de personas por habitación.
	4
																																																													
3
Figura	2:	http://www.energiasrenovables.ciemat.es/especiales/solar_termica/3.htm.	Consultado	20.05.2011	
4
Figura	3:	CTE
INSTALACION	DE	UN	SISTEMA	SOLAR	TERMICO	PARA	UN	CHALET	UNIFAMILIAR	EN	PELAHUSTAN		(TOLEDO)																																																																																										Javier		TRESPALACIOS	
IMF		CEU	-	Máster	Oficial	Universitario	en	Energías	Renovables	 																																																						 	 																					Energía	solar,	térmica	y	pasiva-	2011	
	 	
	
10	
	
Luego miramos los datos de la figura 4, para una vivienda unifamiliar.
Figura 4: Demanda diaria de referencia ACS a 60°C según el CTE DB HE4.5
Hacemos el cálculo de la demanda total por día, con la ecuación:
7 personas · 30 l/día = 210l/día = 0.21m3
/día
4. ESTIMACION DE LA DEMANDA ENERGETICA ACS
Para calcular la Demanda Energética mensual (DEmes), que nos indica cuanta energía
se necesita para calentar el agua desde la temperatura ambiente, hasta la temperatura
asignada; para esto utilizamos la ecuación:
Ddia : volumen de agua diaria en m3
(0,21 m3
/día)
Ndia : número de días del mes
Cp : calor especifico del agua (1 kcal/kg · °C)
ρ : densidad del agua (1000 kg/m3
)
TACS : temperatura final de calentamiento ACS (60°C)
Tred : temperatura media del agua de red en el mes (ver figura 7)
1,16 · 10-3
: factor de conversión
																																																													
5
Figura	3:	http://ocw.upm.es/ingenieria-agroforestal/climatologia-aplicada-a-la-ingenieria-y-
medioambiente/contenidos/CTE_Ministerio_Vivienda/CTEHEzonasclimaticasradiacion.pdf/view		.	Consultado	10.05.2011
INSTALACION	DE	UN	SISTEMA	SOLAR	TERMICO	PARA	UN	CHALET	UNIFAMILIAR	EN	PELAHUSTAN		(TOLEDO)																																																																																										Javier		TRESPALACIOS	
IMF		CEU	-	Máster	Oficial	Universitario	en	Energías	Renovables	 																																																						 	 																					Energía	solar,	térmica	y	pasiva-	2011	
	 	
	
11	
	
La temperatura de la red (Tred) en Pelahustán la tomamos de la figura 5.
Figura 5: Temperatura media de la red general. 6
Ya tenemos todos los valores de la ecuación de DEmes; pasamos hacer los cálculos y
obtener los valores por mes, que nos da el resultado anual:
																																																													
6
Figura	5:	http://ocw.upm.es/ingenieria-agroforestal/climatologia-aplicada-a-la-ingenieria-y-
medioambiente/contenidos/CTE_Ministerio_Vivienda/CTEHEzonasclimaticasradiacion.pdf/view		.	Consultado	10.05.2011
INSTALACION	DE	UN	SISTEMA	SOLAR	TERMICO	PARA	UN	CHALET	UNIFAMILIAR	EN	PELAHUSTAN		(TOLEDO)																																																																																										Javier		TRESPALACIOS	
IMF		CEU	-	Máster	Oficial	Universitario	en	Energías	Renovables	 																																																						 	 																					Energía	solar,	térmica	y	pasiva-	2011	
	 	
	
12	
	
MES Ndia Tred (°C) DEacs,mes(kWh/mes)
Enero 31 6 407,8
Febrero 28 7 361,5
Marzo 31 9 385,1
Abril 30 11 358,1
Mayo 31 12 362,5
Junio 30 13 343,5
Julio 31 14 347,4
Agosto 31 13 354,9
Septiembre 30 12 350,8
Octubre 31 11 370
Noviembre 30 9 372,7
Diciembre 31 6 407,8
Demanda Energética anual - ACS 4'422
Tabla 1: Demanda energética mensual - Pelahustán. 7
El periodo de mayor consumo es enero y diciembre; el valor anual es DEacs,ano = 4’422
(kWh/ano).
5. CONTRIBUCION SOLAR MINIMA DE ACS
El CTE DB HE4 exige un aporte solar mínimo anual; expresado en porcentaje; este valor
lo da la demanda total diaria (0.21m3
/día) y la zona climática (IV); teniendo encuentra
el aporte auxiliar (caso general: gas, gasóleo, propano, …).
Figura 6: Contribución solar mínima %. Caso general. 8
																																																													
7
Tabla	1:	elaboración	propia	
8
Figura	6:	http://ocw.upm.es/ingenieria-agroforestal/climatologia-aplicada-a-la-ingenieria-y-
medioambiente/contenidos/CTE_Ministerio_Vivienda/CTEHEzonasclimaticasradiacion.pdf/view		.	Consultado	10.05.2011
INSTALACION	DE	UN	SISTEMA	SOLAR	TERMICO	PARA	UN	CHALET	UNIFAMILIAR	EN	PELAHUSTAN		(TOLEDO)																																																																																										Javier		TRESPALACIOS	
IMF		CEU	-	Máster	Oficial	Universitario	en	Energías	Renovables	 																																																						 	 																					Energía	solar,	térmica	y	pasiva-	2011	
	 	
	
13	
	
En la figura 6, obtenemos como contribución solar anual o fracción solar f = 60%.
Tenemos todo para calcular la Demanda Mínima a cubrir con nuestro sistema
solar, con la ecuación:
EUsolar,ano = 2653.2kWh/ano
6. RADIACION SOLAR INCIDENTE
Para dimensionar la instalación, debemos conocer los datos de radiación solar
incidente para la orientación e inclinación de los captadores Gdi(β) (KW·h/m2
·dia):
Para utilizar esta ecuación, necesitamos:
- Los 12 valores medios mensuales de irradiación diaria global incidente Gdi(0),
sobre una superficie horizontal, expresadas en MJ/m2 y que convertiremos a
KWh/m2 (ver figura 7).
Figura 7: Valores de radiación mensual media en Toledo. 9
																																																													
9
Figura	7:	Censolar
INSTALACION	DE	UN	SISTEMA	SOLAR	TERMICO	PARA	UN	CHALET	UNIFAMILIAR	EN	PELAHUSTAN		(TOLEDO)																																																																																										Javier		TRESPALACIOS	
IMF		CEU	-	Máster	Oficial	Universitario	en	Energías	Renovables	 																																																						 	 																					Energía	solar,	térmica	y	pasiva-	2011	
	 	
	
14	
	
- El factor de corrección k; que nos permite relacionar los valores de radiación solar
sobre la superficie inclinada con los de la superficie horizontal; para nuestro trabajo
tomamos los valores para una latitud 40° y una inclinación de 15° que es el angulo del
techo (ver figura 7).
Figura 8: Factor de corrección k para latitud 40°
Teniendo ya todos los valores, podemos encontrar Gdi(15°) tabla 2 y la energía solar
incidente EImes (KW·h/m2
·mes) mensual (ver tabla 2); la suma de todos los meses
nos da el valor anual; estos valores los encontramos con la ecuación:
MES
Gdi(0°)
(MJ/m2
·dia)
Gdi(0°)
(KW·h/m2
·dia)
k(15°)
Gdi(15)
(KW·h/m2
·dia)
EIacs,es
(KW·h/m2
·mes)
Enero 6,2 1,72 1,2 2,07 64
Febrero 9,5 2,64 1,16 3,06 86
Marzo 14 3,89 1,12 4,36 135
Abril 19,3 5,36 1,07 5,74 172
Mayo 21 5,83 1,03 6,01 186
Junio 24,4 6,78 1,02 6,91 207
Julio 27,2 7,56 1,04 7,86 244
Agosto 24,5 6,81 1,08 7,35 228
Septiembre 18,1 5,03 1,14 5,73 172
Octubre 11,9 3,31 1,21 4,00 124
Noviembre 7,6 2,11 1,25 2,64 79
Diciembre 5,6 1,56 1,24 1,93 60
EIano 1'757
Tabla 2: Valores de la radiación solar mensual a Pelahustán. 10
																																																													
10
Tabla	2:	elaboración	propia
INSTALACION	DE	UN	SISTEMA	SOLAR	TERMICO	PARA	UN	CHALET	UNIFAMILIAR	EN	PELAHUSTAN		(TOLEDO)																																																																																										Javier		TRESPALACIOS	
IMF		CEU	-	Máster	Oficial	Universitario	en	Energías	Renovables	 																																																						 	 																					Energía	solar,	térmica	y	pasiva-	2011	
	 	
	
15	
	
Con los valores de la tabla 2, podemos ver mejor con una grafica, la energía solar
incidente sobre Pelahustan:
ENERGIA SOLAR INCIDENTE - Pelahustan
0
50
100
150
200
250
300
Enero
Febrero
Marzo
Abril
Mayo
Junio
Julio
Agosto
Septiembre
Octubre
Noviembre
Diciembre
Mes
EImes(KW•h/m2•mes)
EImes (KW·h/m2·mes)
Gráfica 1: Energía solar incidente sobre Pelahustan. 11
En la grafica 1, vemos que el mayor aporte se hace en julio.
7. CÁLCULO NÚMERO DE CAPTADORES PARA ACS: METODO DE
F-CHART
Los primeros cálculos con 1 y 2 captadores solar, no cumplieron con las condiciones
exigidas por el CTE (ver tabla 3):
CAPTADORES
50l/m2 < x < 180
l/m2
f > 60%
ηsistema,ano >
40%
1 160 31% 58%
2 80 52% 50%
Tabla 3: Valores con diferentes captadores. 12
																																																													
11
Grafica	1:	elaboración	propia	
12
Tabla	3:	elaboración	propia
INSTALACION	DE	UN	SISTEMA	SOLAR	TERMICO	PARA	UN	CHALET	UNIFAMILIAR	EN	PELAHUSTAN		(TOLEDO)																																																																																										Javier		TRESPALACIOS	
IMF		CEU	-	Máster	Oficial	Universitario	en	Energías	Renovables	 																																																						 	 																					Energía	solar,	térmica	y	pasiva-	2011	
	 	
	
16	
	
Realizaremos nuestros cálculos con 3 captadores para el suministro ACS; daremos a
continuación los datos técnicos de nuestro captador:
Modelo captador: Maxol MS 2.5 4T
Superficie apertura: Sc = 1.32m2
Rendimiento: 0.795
Eficiencia K1: 3.543 W/m2 · k
Eficiencia K2: 0.01 W/m2 · k
Modificación del Angulo de incidencia: MAI = 0.95
Factor de corrección del conjunto captador-intercambiador. 13
: FCint = 0.95
Gdm: irradiación solar diaria en un mes, ver tabla 2 (Gdi(15°))
DEmes: ver la tabla 1
Coeficiente global de perdidas: Kglobal = K1 + 30 · K2 = 3.843x10-3 (KW/m2
·°C)
Sc_total: 3Captadores · Sc = 3.96m2
Ahora buscamos definir los valores D1 y D2, relacionados con la energía absorbida por los
captadores y con la energía perdida respectivamente; estos valores nos llevan a la
fracción solar mensual fmes.
Seguimos con el cálculo de D2:
																																																													
13
Valor	recomendado	por:	CTE
INSTALACION	DE	UN	SISTEMA	SOLAR	TERMICO	PARA	UN	CHALET	UNIFAMILIAR	EN	PELAHUSTAN		(TOLEDO)																																																																																										Javier		TRESPALACIOS	
IMF		CEU	-	Máster	Oficial	Universitario	en	Energías	Renovables	 																																																						 	 																					Energía	solar,	térmica	y	pasiva-	2011	
	 	
	
17	
	
Antes de calcular D2, buscamos el factor de corrección del acumulador FCacum. (Donde
Vacum-solar = 210l):
FCacum = 1.091
También procedemos a calcular FCacs, que es el factor de corrección para la temperatura
del agua (Tamb ver figura 6):
MES FCACS D1 D2
Enero 0.946 0.446 2.502
Febrero 0.973 0.674 2.595
Marzo 1.000 0.996 2.649
Abril 1.060 1.366 2.855
Mayo 1.045 1.460 2.739
Junio 1.012 1.716 2.541
Julio 0.993 1.992 2.414
Agosto 0.958 1.824 2.312
Septiembre 0.979 1.393 2.439
Octubre 1.029 0.952 2.708
Noviembre 1.015 0.604 2.720
Diciembre 0.946 0.417 2.502
Tabla 4: Valores de FCacs, D1 y D2. 14
Teniendo D1 y D2, calculamos la fracción solar mensual fmes:
																																																													
14
Tabla	4:	elaboración	propia
INSTALACION	DE	UN	SISTEMA	SOLAR	TERMICO	PARA	UN	CHALET	UNIFAMILIAR	EN	PELAHUSTAN		(TOLEDO)																																																																																										Javier		TRESPALACIOS	
IMF		CEU	-	Máster	Oficial	Universitario	en	Energías	Renovables	 																																																						 	 																					Energía	solar,	térmica	y	pasiva-	2011	
	 	
	
18	
	
Teniendo los valores de fmes de cada mes podremos obtenerla la energía solar útil
mensual con la ecuación:
MES fmes EUsolar,mes (KWh)
Enero 26.11% 106.46
Febrero 43.21% 156.19
Marzo 64.37% 247.88
Abril 83.21% 297.99
Mayo 88.25% 319.90
Junio 99.93% 343.25
Julio 110.13% 382.58
Agosto 105.17% 373.25
Septiembre 86.82% 304.57
Octubre 61.34% 226.97
Noviembre 37.31% 139.04
Diciembre 23.64% 96.39
Aporte solar anual 2'994
Tabla 5: Valores de la fracción solar mensual y la energía solar útil. 15
	
0.00
50.00
100.00
150.00
200.00
250.00
300.00
350.00
400.00
450.00
Enero
Febrero
Marzo
Abril
Mayo
Junio
Julio
Agosto
Septiembre
Octubre
Noviembre
Diciembre
Mes
kWh/mes
EUsolar,mes (KWh) DEacs,mes(kWh/mes)
Gráfica 2: Demanda vs aporte solar en Pelahustan. 16
																																																													
15
Tabla	5:	elaboración	propia	
16
Grafica	2:	elaboración	propia
INSTALACION	DE	UN	SISTEMA	SOLAR	TERMICO	PARA	UN	CHALET	UNIFAMILIAR	EN	PELAHUSTAN		(TOLEDO)																																																																																										Javier		TRESPALACIOS	
IMF		CEU	-	Máster	Oficial	Universitario	en	Energías	Renovables	 																																																						 	 																					Energía	solar,	térmica	y	pasiva-	2011	
	 	
	
19	
	
Vemos que en los meses de junio, julio y agosto, tenemos valores superiores al 100%
(ver grafica 2).
El CTE dice que en ningun mes la energia producida por las instalacion solar debe superar
el 110% del consumo estimado y no mas de 3 meses el 100%.17
7.1. Relación entre el volumen de acumulador y superficie de
captadores para ACS - exigencia CTE
Antes de calcular el valor de FCacum, analizamos la relación entre el volumen de
acumulación y superficie de captadores que el CTE DB HE4 sitúa entre:
50l/m2
< 53 l/m2
< 180 l/m2
7.2. Contribución solar anual para ACS: f
Ahora verificamos si la fracción solar o contribución solar anual f es superior a la
exigida por el CTE :
f = 68% > 60% (cumple lo exigido por el CTE, ver figura 6)
7.3. Rendimiento medio anual para ACS: ηsistema,ano
Y el rendimiento medio anual de la instalación:
																																																													
17
Libro	guia	del	master.
INSTALACION	DE	UN	SISTEMA	SOLAR	TERMICO	PARA	UN	CHALET	UNIFAMILIAR	EN	PELAHUSTAN		(TOLEDO)																																																																																										Javier		TRESPALACIOS	
IMF		CEU	-	Máster	Oficial	Universitario	en	Energías	Renovables	 																																																						 	 																					Energía	solar,	térmica	y	pasiva-	2011	
	 	
	
20	
	
ηsistema,ano = 43.04% > 40% (cumple lo exigido por el CTE)
8. CÁLCULO DE NÚMERO DE CAPTADORES Y VOLUMEN DE
ACUMULACIÓN TOTAL DE NUESTRA INSTALACION: METODO
DE F-CHART
Ahora haremos los calculos para la acumulación total (ACS y calefaccion); en la parte 7 de
este trabajo se definieron 3 captadores para el suministro de ACS.
Comenzamos calculando la demanda energética (200m2
de suelo radiante) utilizando la
ecuación:
DEmes,i_demanda_Energetica = Q(kWh/mes) · S(m2
) · Ndias,i · hmes,i
Q : carga térmica calefacción = 66 · 10-3
(kWh/mes)
S : superficie suelo radiante = 200m2
Ndias,i : días del mes
hmes,i : horas de utilización (los datos son tomados de manera personal)
Teniendo los valores de DEmes,i_demanda_Energetica, obtendremos la demanda total
DEmes,i_demanda_TOTAL, adicionando los valores para el ACS DEacs,mes (ver tabla 1):
INSTALACION	DE	UN	SISTEMA	SOLAR	TERMICO	PARA	UN	CHALET	UNIFAMILIAR	EN	PELAHUSTAN		(TOLEDO)																																																																																										Javier		TRESPALACIOS	
IMF		CEU	-	Máster	Oficial	Universitario	en	Energías	Renovables	 																																																						 	 																					Energía	solar,	térmica	y	pasiva-	2011	
	 	
	
21	
	
MES hmes,i DEmes,i_demanda_Energetica DEmes,i_demanda_TOTAL
Enero 11 4'501.20 4'909.00
Febrero 10 3'696.00 4'057.50
Marzo 9 3'682.80 4'067.90
Abril 8 3'168.00 3'526.10
Mayo 6 2'455.20 2'817.70
Junio 0 0.00 343.50
Julio 0 0.00 347.40
Agosto 0 0.00 354.90
Septiembre 6 2'376.00 2'726.80
Octubre 8 3'273.60 3'643.60
Noviembre 10 3'960.00 4'332.70
Diciembre 11 4'501.20 4'909.00
Aporte anual 31'614 36'022.8
Tabla 6: Demanda Anual total. 18
En la tabla 6 obtenemos los valores mensuales y anual.
A criterio de este proyecto escogeremos un intervalo entre 10% - 30% de aporte solar
térmico total; un volumen total de 950l, (250l para ACS y 700l para calefacción); y 7
captores solares adicionales. En total tomamos 10 captores.
Volvemos a calcular los valores FCACS, D1, D2, fmes y EUsolar,mes (KWh); donde Sc_total =
13,2 m2
y FCacum = 1,010:
																																																													
18
Tabla	6:	elaboración	propia
INSTALACION	DE	UN	SISTEMA	SOLAR	TERMICO	PARA	UN	CHALET	UNIFAMILIAR	EN	PELAHUSTAN		(TOLEDO)																																																																																										Javier		TRESPALACIOS	
IMF		CEU	-	Máster	Oficial	Universitario	en	Energías	Renovables	 																																																						 	 																					Energía	solar,	térmica	y	pasiva-	2011	
	 	
	
22	
	
MES FCACS D1 D2 fmes
EUsolar,mes
(KWh)
Enero 0.946 0.124 0.642 8.25% 405.02
Febrero 0.973 0.200 0.714 15.08% 611.68
Marzo 1.000 0.314 0.775 25.07% 1019.76
Abril 1.060 0.462 0.895 36.87% 1300.00
Mayo 1.045 0.626 1.088 48.49% 1366.28
Junio 1.012 5.719 7.848 149.39% 513.16
Julio 0.993 6.641 7.454 194.12% 674.36
Agosto 0.958 6.081 7.139 165.99% 589.09
Septiembre 0.979 0.597 0.969 47.05% 1282.92
Octubre 1.029 0.322 0.849 25.30% 921.93
Noviembre 1.015 0.173 0.723 12.48% 540.85
Diciembre 0.946 0.115 0.642 7.45% 365.72
Aporte solar anual 9'705
Tabla 7: Aporte Solar anual - Total. 19
El excedente producido (valores más del 100%) en junio, julio y agosto, podrían ser
utilizados para la piscina exterior. En la grafica siguiente apreciamos mejor las tendencias:
0.00
1'000.00
2'000.00
3'000.00
4'000.00
5'000.00
6'000.00
Enero
Febrero
Marzo
Abril
Mayo
Junio
Julio
Agosto
Septiembre
Octubre
Noviembre
Diciembre
Mes
KWh.mes
DEmes,i_demanda_TOTAL EUsolar,mes (KWh.mes)
Gráfica 3: Demanda mensual vs. Contribución solar mesual - Total. 20
																																																													
19
Tabla	7:	elaboración	propia	
20
Grafica	3:	elaboración	propia
INSTALACION	DE	UN	SISTEMA	SOLAR	TERMICO	PARA	UN	CHALET	UNIFAMILIAR	EN	PELAHUSTAN		(TOLEDO)																																																																																										Javier		TRESPALACIOS	
IMF		CEU	-	Máster	Oficial	Universitario	en	Energías	Renovables	 																																																						 	 																					Energía	solar,	térmica	y	pasiva-	2011	
	 	
	
23	
	
8.1. Relación entre el volumen del acumulador y superficie de
captadores - exigencia CTE
Antes de calcular el valor de FCacum, analizamos la relación entre el volumen de
acumulación y superficie de captadores que el CTE DB HE4 sitúa entre:
50l/m2
< 72 l/m2
< 180 l/m2
8.2. Contribución solar anual total: f
Hemos colocado un valor, entre 10% y 30%:
f : 10% > 27% > 30%
8.3. Rendimiento medio anual total : ηsistema,ano
Y el rendimiento medio anual de la instalación:
ηsistema,ano = 41% > 40% (cumple lo exigido por el CTE)
INSTALACION	DE	UN	SISTEMA	SOLAR	TERMICO	PARA	UN	CHALET	UNIFAMILIAR	EN	PELAHUSTAN		(TOLEDO)																																																																																										Javier		TRESPALACIOS	
IMF		CEU	-	Máster	Oficial	Universitario	en	Energías	Renovables	 																																																						 	 																					Energía	solar,	térmica	y	pasiva-	2011	
	 	
	
24	
	
9. CALCULO DEL DEPOSITO DE INERCIA Y DEPOSITO ACS
Para nuestra instalación hemos calculado con anterioridad 210l para el ACS y 700l para la
calefacción (el valor es tomado para que el total nos de una cifra correcta para escoger
en el catalogo); nos da un total de 950l.
Hemos escogido un acumulador combinado (acumulador de inercia de calefacción con
depósito de ACS integrado – figura 9).
Figura 9: Acumulador combinado para calefacción y ACS (SONNENKRAFT).21
La información general está en la figura 10, acumulador PSK950:	
																																																													
21
Figura 9:	http://www.sonnenkraft.es/Products/Accumulator/COMBI_Speicher_PSK/Pages/default.aspx. Consultado
20.05.2011
INSTALACION	DE	UN	SISTEMA	SOLAR	TERMICO	PARA	UN	CHALET	UNIFAMILIAR	EN	PELAHUSTAN		(TOLEDO)																																																																																										Javier		TRESPALACIOS	
IMF		CEU	-	Máster	Oficial	Universitario	en	Energías	Renovables	 																																																						 	 																					Energía	solar,	térmica	y	pasiva-	2011	
	 	
	
25	
	
Figura 10: Información tecnica, acumulador combinado (SONNENKRAFT).22
10. CALCULO DEL VASO DE EXPANSION DEL CIRCUITO
PRIMARIO
El circuito hidraulico primario es el que pasa por los captadores, que toma la energia solar
y la transmite hasta el sotano donde esta el cuarto de calderas y nuestro intercambiador.
Como condicion el CTE, coloca como requisito utilizar en las tuberías materiales como el
cobre o el acero inoxidable, conecciones roscadas, soldadas o embriadas y proteccion
anticorrosivo.
																																																													
22
Figura 10:	http://www.sonnenkraft.es/Products/Accumulator/COMBI_Speicher_PSK/Pages/default.aspx. Consultado
20.05.2011
INSTALACION	DE	UN	SISTEMA	SOLAR	TERMICO	PARA	UN	CHALET	UNIFAMILIAR	EN	PELAHUSTAN		(TOLEDO)																																																																																										Javier		TRESPALACIOS	
IMF		CEU	-	Máster	Oficial	Universitario	en	Energías	Renovables	 																																																						 	 																					Energía	solar,	térmica	y	pasiva-	2011	
	 	
	
26	
	
El vaso de expansion es acoplado al circuito primario (como medida tecnica de
seguridad), “Cuando el fluido del circuito primario se calienta experimenta una dilatación.
El aumento de volumen se recoge en el vaso”.23
Su capacidad de define:
k: coeficiente de dilatación del fluido = 0.0700 W/mK (50% agua + 50%
propilenglicol).
Vcircuito: cantidad de volumen del fluido caloportador (desde los captadores hasta el
intercambiador);
1. Nuestro captador tiene 1.6l · 10 capatadores = 16l = V1
2. Ahora el volumen desde los captadores hasta el intercambiador. Tenemos en
cuenta que es un chalet con dos plantas, cada una de 5m (suposición
personal) mas 3m hasta el sotano; hay que tener encuenta que es un ida
vuelta nuestra ecuación del volumen 2:
(r2
) · Π · (5m · 2 + 3m) · 2 = V2
Nos olvidamos del diamtreo que obtenemos a partir del caudal de cada tramo del
circuito, de la velocidad (esta limitada entre 1.5m/s y 0.5m/s; tomaremos v =
0.5m/s); utillizamos la ecuacion siguiente, despejando D (mm):
Donde Qcaptores es el caudal recomendado (low-flow) 25l/hm2
x 13.2m2 (de los 10
captores):
																																																													
23
Intercambiador: Libro guia master pag. 203.
INSTALACION	DE	UN	SISTEMA	SOLAR	TERMICO	PARA	UN	CHALET	UNIFAMILIAR	EN	PELAHUSTAN		(TOLEDO)																																																																																										Javier		TRESPALACIOS	
IMF		CEU	-	Máster	Oficial	Universitario	en	Energías	Renovables	 																																																						 	 																					Energía	solar,	térmica	y	pasiva-	2011	
	 	
	
27	
	
Dtuberias = 15mm : r = 0.0075m
Ahora si podemos tener: V2 = 4.5 l
3. El volumen del intercambiador, es dado por el fabricante del acumulador, (ver
figura 11); V3 = 18,8l
Figura 11: Información tecnica, intercambiador acumulador (SONNENKRAFT).24
Vcircuito = V1 + V2 + V3 =
Vcircuito_1 = 16 + 4.5 + 18,8 = 39.3l
Pf : la presion absoluta final del vaso de expansion (bar o kg/cm2
); podemos utilizar el
valor de válvula de seguridad que es entre 10bar y 6bar; tomamos Pf = 7bar.
Pi : la presion absoluta inicial, tomamos como el valor minimo Pi = 1.5bar (todo depende
del lugar donde establezcamos el vaso).
Ya tenemos todos los valores para Vvaso:
Vvaso_Circuito_1 > 4.45l
																																																													
24
Figura 11:	http://www.sonnenkraft.es/Products/Accumulator/COMBI_Speicher_PSK/Pages/default.aspx. Consultado
20.05.2011
INSTALACION	DE	UN	SISTEMA	SOLAR	TERMICO	PARA	UN	CHALET	UNIFAMILIAR	EN	PELAHUSTAN		(TOLEDO)																																																																																										Javier		TRESPALACIOS	
IMF		CEU	-	Máster	Oficial	Universitario	en	Energías	Renovables	 																																																						 	 																					Energía	solar,	térmica	y	pasiva-	2011	
	 	
	
28	
	
Figura 12: Vaso de expansion, circuito primario (Ibaiondo)
11. CALCULO DEL VASO DE EXPANSION DEL CIRCUITO
SECUNDARIO
Podemos obtener nuestro segundo vaso de expansion con la misma ecuacion que el
primero. Utilizamos como volumen total del deposito mas el 10% por seguridad;
Vacumulador = 1000l + 10% = 1100l, para k consideramos el valor para agua caliente a
una maxima temperatura 100°C; como presiones consideramos las mismas del primer
vaso:
Vvaso_Circuito_2 > 51.6l
Figura 13: Vaso de expansion, circuito secundario (Ibaiondo)
12. CALCULO SUPERFICIE INTERCAMBIADOR
“Para el caso de intercambiador incorporado al acumulador, la relacion entre la superficie
util de intercambio y la superficie total de captación no sera inferior a 0.15”25
. En la figura
siguiente podemos ver que nuestro intercambiador tiene una Sinter = 3m2
(ver figura 11):
																																																													
25
Vaso de expansion: Libro guia master pag. 142.
INSTALACION	DE	UN	SISTEMA	SOLAR	TERMICO	PARA	UN	CHALET	UNIFAMILIAR	EN	PELAHUSTAN		(TOLEDO)																																																																																										Javier		TRESPALACIOS	
IMF		CEU	-	Máster	Oficial	Universitario	en	Energías	Renovables	 																																																						 	 																					Energía	solar,	térmica	y	pasiva-	2011	
	 	
	
29	
	
El CTE DB HE4, exige que:
Sinter ≥ 0.15 · Sc_total
Sc_total = 10 · 1.32m2
= 13.2m2
2.3m2
≥ 1.98m2
13. CALCULO DEL BOMBA DEL CIRCUITO PRIMARIO
El CTE indica que la Bomba se instalara en el lugar mas frio del circuito, siendo la tubería
de retorno el mejro lugar.
Para calcular la escogencia de una bomba, necesitamos conocer la altura de bombeo
frente al caudal, las perdidas de carga del circuito (rectas y codos), HT:
HT = Pdctuberias + Pdcintercambiadores + Pdccaptadores
Pdcintercambiadores : no tenemos estos valores en la ficha termica; tomaremos un valor
comun de otro intercambiador, y tendremos encuante el intercambiador de disipación
estival; Pdcintercambiadores = 4m.c.a.
Pdccaptadores: para los captadores sucede los mismo; y tomamos un valor de Pdccaptadores
= 0.04m.c.a.
Pdctuberias: la ecuación es:
Donde según el pliego de condiciones tecnicas de instalaciones de baja temperatura del
IDAE. Anexo VII. 6 Tuberias: "El diametro de las tuberias se seleccionara de forma que la
velocidad de circulacion del fluido sea inferior a 2 m/s cuando la tuberia discurra por
locales habitados y a 3 m/s cuando el trazado sea exterior o por locales no habitados. El
INSTALACION	DE	UN	SISTEMA	SOLAR	TERMICO	PARA	UN	CHALET	UNIFAMILIAR	EN	PELAHUSTAN		(TOLEDO)																																																																																										Javier		TRESPALACIOS	
IMF		CEU	-	Máster	Oficial	Universitario	en	Energías	Renovables	 																																																						 	 																					Energía	solar,	térmica	y	pasiva-	2011	
	 	
	
30	
	
dimensionado de las tuberias se realizara de forma que la perdida de carga unitaria en
tuberias nunca sea superior a 40 mm de columna de agua por metro lineal.".26
.
Utilizamos los valores de Q = 330(l/h) et Dtuberias = 15mm; para calcular en la grafiaca
de perdidas:
Figura 14: Abaco perdidas de carga (libro guia del master).
Para nuestro proyecto tomamos Pdcunit = 40 (mm.c.a./m), multiplicado por un valor de
40m, que seria la cantidad aproximada de la tubería a utilizar, Pdctuberías = 1.6m.c.a.
HT = 1.6 + 4 + 0.04 = 5.64m.ca
Qnecesario = Q = 330m3
/h
Hmaxi = 20m
Ahora vamos a la pagina de Grundfos para seleccionar una bomba; la cual nos resulta la
UPS Solar 25-120 180:
																																																													
26
Perdidas tuberias: http://www.solarweb.net/forosolar/solar-termica/3623-calculo-diametro-tuberias-perdida-rozamiento-
2.html . Consultado 27.05.2011
INSTALACION	DE	UN	SISTEMA	SOLAR	TERMICO	PARA	UN	CHALET	UNIFAMILIAR	EN	PELAHUSTAN		(TOLEDO)																																																																																										Javier		TRESPALACIOS	
IMF		CEU	-	Máster	Oficial	Universitario	en	Energías	Renovables	 																																																						 	 																					Energía	solar,	térmica	y	pasiva-	2011	
	 	
	
31
INSTALACION	DE	UN	SISTEMA	SOLAR	TERMICO	PARA	UN	CHALET	UNIFAMILIAR	EN	PELAHUSTAN		(TOLEDO)																																																																																										Javier		TRESPALACIOS	
IMF		CEU	-	Máster	Oficial	Universitario	en	Energías	Renovables	 																																																						 	 																					Energía	solar,	térmica	y	pasiva-	2011	
	 	
	
32	
	
Figura 15: bomba a seleccionar (Grundfos).
INSTALACION	DE	UN	SISTEMA	SOLAR	TERMICO	PARA	UN	CHALET	UNIFAMILIAR	EN	PELAHUSTAN		(TOLEDO)																																																																																										Javier		TRESPALACIOS	
IMF		CEU	-	Máster	Oficial	Universitario	en	Energías	Renovables	 																																																						 	 																					Energía	solar,	térmica	y	pasiva-	2011	
	 	
	
33	
	
14. CALCULO POTENCIA DE DISIPACION
Como vimos en la grafica 3, hay un excedente producto de la radiación incidente y la
demanda durante los mes de junio, julio y agosto.
Este excedente lo podemos utilizar para la piscina exterior. Esta potencia de disipación
estival ; la máxima potencia que pueden dar nuestros captadores es Gmax =1000 W/m2
.
Para este cálculo utilizamos la ecuación:
Pdisipacion_estival = Gmax · Sc_total = 1000 W/m2
· 13.2m2
Pdisipacion_estival = 13’200 W
INSTALACION	DE	UN	SISTEMA	SOLAR	TERMICO	PARA	UN	CHALET	UNIFAMILIAR	EN	PELAHUSTAN		(TOLEDO)																																																																																										Javier		TRESPALACIOS	
IMF		CEU	-	Máster	Oficial	Universitario	en	Energías	Renovables	 																																																						 	 																					Energía	solar,	térmica	y	pasiva-	2011	
	 	
	
34	
	
15. CONCLUSIONES
Al final de este trabajo vemos que hay que cambiar el angulo de inclinación optimo, por el
de 55°, que nos aporta una mejor utilización durante los prediodos de frio; como
podemos ver en la grafiaca:
Los cambio no se hicieron porque, solo se vieron al final.
INSTALACION	DE	UN	SISTEMA	SOLAR	TERMICO	PARA	UN	CHALET	UNIFAMILIAR	EN	PELAHUSTAN		(TOLEDO)																																																																																										Javier		TRESPALACIOS	
IMF		CEU	-	Máster	Oficial	Universitario	en	Energías	Renovables	 																																																						 	 																					Energía	solar,	térmica	y	pasiva-	2011	
	 	
	
35	
	
16. REFERENCIAS
Principal referencia :
- El libro guia del master
Vínculos :
- Catalogo: http://www.bartl.es/products/ssap.php . Consultado 10.05.2011

Más contenido relacionado

Similar a INSTALACION DE UN SISTEMA SOLAR TERMICO PARA UN CHALET UNIFAMILIAR - Energía solar térmica y pasiva

M2 a maritza figueroa-ciencias y tecnicas estadistica
M2 a maritza figueroa-ciencias y tecnicas estadisticaM2 a maritza figueroa-ciencias y tecnicas estadistica
M2 a maritza figueroa-ciencias y tecnicas estadisticaGeme Figueroa
 
AtlasSolar.pdf
AtlasSolar.pdfAtlasSolar.pdf
AtlasSolar.pdfJessFrere
 
Impacto Macroeconómico Del Sector Solar
Impacto Macroeconómico Del Sector SolarImpacto Macroeconómico Del Sector Solar
Impacto Macroeconómico Del Sector SolarSteve Reeve
 
ENSAYO 5-12_final.pdf
ENSAYO  5-12_final.pdfENSAYO  5-12_final.pdf
ENSAYO 5-12_final.pdfEbertArone
 
Tarea 4 programación del módulo ed02
Tarea 4 programación del módulo ed02Tarea 4 programación del módulo ed02
Tarea 4 programación del módulo ed02pedrochan2
 
LA ENERGIA SOLAR COMO DESARROLLO SUSTENTABLE
LA ENERGIA SOLAR COMO DESARROLLO SUSTENTABLELA ENERGIA SOLAR COMO DESARROLLO SUSTENTABLE
LA ENERGIA SOLAR COMO DESARROLLO SUSTENTABLEfatima resendiz trejo
 
Energía solar térmica elena y miriam
Energía solar térmica elena y miriamEnergía solar térmica elena y miriam
Energía solar térmica elena y miriamMiriaamSmac
 
Energía solar térmica elena y miriam
Energía solar térmica elena y miriamEnergía solar térmica elena y miriam
Energía solar térmica elena y miriamMiriaamSmac
 
Energia electrica en el canton cuenca
Energia electrica en el canton cuencaEnergia electrica en el canton cuenca
Energia electrica en el canton cuencafranklinzhagui
 
Ensayo energias alternativas
Ensayo energias alternativasEnsayo energias alternativas
Ensayo energias alternativaslufcochab
 
La energía solar como energía alternativa
La energía solar como energía alternativaLa energía solar como energía alternativa
La energía solar como energía alternativaGera Vqz
 
Energía eólica
Energía eólicaEnergía eólica
Energía eólicaeljihe
 
Parcero iglesias alejandro_tfm_2014
Parcero iglesias alejandro_tfm_2014Parcero iglesias alejandro_tfm_2014
Parcero iglesias alejandro_tfm_2014logander2
 
16870154 diseno-de-un-colector-solar
16870154 diseno-de-un-colector-solar16870154 diseno-de-un-colector-solar
16870154 diseno-de-un-colector-solarCandy
 
los paneles solares
 los paneles solares los paneles solares
los paneles solaresCRAjULIO
 

Similar a INSTALACION DE UN SISTEMA SOLAR TERMICO PARA UN CHALET UNIFAMILIAR - Energía solar térmica y pasiva (20)

M2 a maritza figueroa-ciencias y tecnicas estadistica
M2 a maritza figueroa-ciencias y tecnicas estadisticaM2 a maritza figueroa-ciencias y tecnicas estadistica
M2 a maritza figueroa-ciencias y tecnicas estadistica
 
AtlasSolar.pdf
AtlasSolar.pdfAtlasSolar.pdf
AtlasSolar.pdf
 
Impacto Macroeconómico Del Sector Solar
Impacto Macroeconómico Del Sector SolarImpacto Macroeconómico Del Sector Solar
Impacto Macroeconómico Del Sector Solar
 
ENSAYO 5-12_final.pdf
ENSAYO  5-12_final.pdfENSAYO  5-12_final.pdf
ENSAYO 5-12_final.pdf
 
Desastres Nucleares
Desastres NuclearesDesastres Nucleares
Desastres Nucleares
 
Tarea 4 programación del módulo ed02
Tarea 4 programación del módulo ed02Tarea 4 programación del módulo ed02
Tarea 4 programación del módulo ed02
 
Ensayo energia solar
Ensayo energia solarEnsayo energia solar
Ensayo energia solar
 
LA ENERGIA SOLAR COMO DESARROLLO SUSTENTABLE
LA ENERGIA SOLAR COMO DESARROLLO SUSTENTABLELA ENERGIA SOLAR COMO DESARROLLO SUSTENTABLE
LA ENERGIA SOLAR COMO DESARROLLO SUSTENTABLE
 
Energía solar térmica elena y miriam
Energía solar térmica elena y miriamEnergía solar térmica elena y miriam
Energía solar térmica elena y miriam
 
Energía solar térmica elena y miriam
Energía solar térmica elena y miriamEnergía solar térmica elena y miriam
Energía solar térmica elena y miriam
 
Maikel trabajo
Maikel trabajoMaikel trabajo
Maikel trabajo
 
Energia electrica en el canton cuenca
Energia electrica en el canton cuencaEnergia electrica en el canton cuenca
Energia electrica en el canton cuenca
 
Quimica BQU01X
Quimica BQU01XQuimica BQU01X
Quimica BQU01X
 
Ensayo energias alternativas
Ensayo energias alternativasEnsayo energias alternativas
Ensayo energias alternativas
 
La energía solar como energía alternativa
La energía solar como energía alternativaLa energía solar como energía alternativa
La energía solar como energía alternativa
 
Energia solar
Energia solarEnergia solar
Energia solar
 
Energía eólica
Energía eólicaEnergía eólica
Energía eólica
 
Parcero iglesias alejandro_tfm_2014
Parcero iglesias alejandro_tfm_2014Parcero iglesias alejandro_tfm_2014
Parcero iglesias alejandro_tfm_2014
 
16870154 diseno-de-un-colector-solar
16870154 diseno-de-un-colector-solar16870154 diseno-de-un-colector-solar
16870154 diseno-de-un-colector-solar
 
los paneles solares
 los paneles solares los paneles solares
los paneles solares
 

Más de Energía para TOdos - ETO - Ecotechsy

Propuesta inicial para el desarrollo Social y Económico en las tierras resti...
Propuesta inicial para el desarrollo Social y Económico en las tierras resti...Propuesta inicial para el desarrollo Social y Económico en las tierras resti...
Propuesta inicial para el desarrollo Social y Económico en las tierras resti...Energía para TOdos - ETO - Ecotechsy
 
Los problemas actuales y futuros de la energía y como podemos crear empresas
Los problemas actuales y futuros de la energía y como podemos crear empresasLos problemas actuales y futuros de la energía y como podemos crear empresas
Los problemas actuales y futuros de la energía y como podemos crear empresasEnergía para TOdos - ETO - Ecotechsy
 
Planificación territorial del desarrollo sostenible en la restitución de ti...
Planificación territorial del desarrollo sostenible en la restitución de ti...Planificación territorial del desarrollo sostenible en la restitución de ti...
Planificación territorial del desarrollo sostenible en la restitución de ti...Energía para TOdos - ETO - Ecotechsy
 
Planification Energétique Territoriale - PET - PET - PET Quartier à Sion
Planification Energétique Territoriale - PET - PET - PET Quartier à SionPlanification Energétique Territoriale - PET - PET - PET Quartier à Sion
Planification Energétique Territoriale - PET - PET - PET Quartier à SionEnergía para TOdos - ETO - Ecotechsy
 
ANALYSE ET ETUDE D’UN CHAUFFAGE A DISTANCE A ORBE-SUD GRUVATIEZ-EN-LAVEGNY ET...
ANALYSE ET ETUDE D’UN CHAUFFAGE A DISTANCE A ORBE-SUD GRUVATIEZ-EN-LAVEGNY ET...ANALYSE ET ETUDE D’UN CHAUFFAGE A DISTANCE A ORBE-SUD GRUVATIEZ-EN-LAVEGNY ET...
ANALYSE ET ETUDE D’UN CHAUFFAGE A DISTANCE A ORBE-SUD GRUVATIEZ-EN-LAVEGNY ET...Energía para TOdos - ETO - Ecotechsy
 
Métodos de planificación energética territorial y Creación de empleo
Métodos de planificación energética territorial y Creación de empleoMétodos de planificación energética territorial y Creación de empleo
Métodos de planificación energética territorial y Creación de empleoEnergía para TOdos - ETO - Ecotechsy
 

Más de Energía para TOdos - ETO - Ecotechsy (12)

Eto - La historia fotovoltaica
Eto - La historia fotovoltaicaEto - La historia fotovoltaica
Eto - La historia fotovoltaica
 
ETO - Entender la energía fotovoltaica
ETO - Entender la energía fotovoltaicaETO - Entender la energía fotovoltaica
ETO - Entender la energía fotovoltaica
 
ETO - Que esta pasando en el planeta y el hombre
ETO - Que esta pasando en el planeta y el hombreETO - Que esta pasando en el planeta y el hombre
ETO - Que esta pasando en el planeta y el hombre
 
Eto : las bombas de calor y la temperatura del medio ambiente
Eto : las bombas de calor y la temperatura del medio ambienteEto : las bombas de calor y la temperatura del medio ambiente
Eto : las bombas de calor y la temperatura del medio ambiente
 
Propuesta inicial para el desarrollo Social y Económico en las tierras resti...
Propuesta inicial para el desarrollo Social y Económico en las tierras resti...Propuesta inicial para el desarrollo Social y Económico en las tierras resti...
Propuesta inicial para el desarrollo Social y Económico en las tierras resti...
 
Los problemas actuales y futuros de la energía y como podemos crear empresas
Los problemas actuales y futuros de la energía y como podemos crear empresasLos problemas actuales y futuros de la energía y como podemos crear empresas
Los problemas actuales y futuros de la energía y como podemos crear empresas
 
Transición Energética en Colombia
Transición Energética en ColombiaTransición Energética en Colombia
Transición Energética en Colombia
 
Planificación territorial del desarrollo sostenible en la restitución de ti...
Planificación territorial del desarrollo sostenible en la restitución de ti...Planificación territorial del desarrollo sostenible en la restitución de ti...
Planificación territorial del desarrollo sostenible en la restitución de ti...
 
Planification Energétique Territoriale - PET - PET - PET Quartier à Sion
Planification Energétique Territoriale - PET - PET - PET Quartier à SionPlanification Energétique Territoriale - PET - PET - PET Quartier à Sion
Planification Energétique Territoriale - PET - PET - PET Quartier à Sion
 
ANALYSE ET ETUDE D’UN CHAUFFAGE A DISTANCE A ORBE-SUD GRUVATIEZ-EN-LAVEGNY ET...
ANALYSE ET ETUDE D’UN CHAUFFAGE A DISTANCE A ORBE-SUD GRUVATIEZ-EN-LAVEGNY ET...ANALYSE ET ETUDE D’UN CHAUFFAGE A DISTANCE A ORBE-SUD GRUVATIEZ-EN-LAVEGNY ET...
ANALYSE ET ETUDE D’UN CHAUFFAGE A DISTANCE A ORBE-SUD GRUVATIEZ-EN-LAVEGNY ET...
 
Métodos de planificación energética territorial y Creación de empleo
Métodos de planificación energética territorial y Creación de empleoMétodos de planificación energética territorial y Creación de empleo
Métodos de planificación energética territorial y Creación de empleo
 
Eto - Ecobarrios y Barrios Sostenibles
Eto - Ecobarrios y Barrios SosteniblesEto - Ecobarrios y Barrios Sostenibles
Eto - Ecobarrios y Barrios Sostenibles
 

Último

PPT SERVIDOR ESCUELA PERU EDUCA LINUX v7.pptx
PPT SERVIDOR ESCUELA PERU EDUCA LINUX v7.pptxPPT SERVIDOR ESCUELA PERU EDUCA LINUX v7.pptx
PPT SERVIDOR ESCUELA PERU EDUCA LINUX v7.pptxSergioGJimenezMorean
 
El proyecto “ITC SE Lambayeque Norte 220 kV con seccionamiento de la LT 220 kV
El proyecto “ITC SE Lambayeque Norte 220 kV con seccionamiento de la LT 220 kVEl proyecto “ITC SE Lambayeque Norte 220 kV con seccionamiento de la LT 220 kV
El proyecto “ITC SE Lambayeque Norte 220 kV con seccionamiento de la LT 220 kVSebastianPaez47
 
Propositos del comportamiento de fases y aplicaciones
Propositos del comportamiento de fases y aplicacionesPropositos del comportamiento de fases y aplicaciones
Propositos del comportamiento de fases y aplicaciones025ca20
 
Elaboración de la estructura del ADN y ARN en papel.pdf
Elaboración de la estructura del ADN y ARN en papel.pdfElaboración de la estructura del ADN y ARN en papel.pdf
Elaboración de la estructura del ADN y ARN en papel.pdfKEVINYOICIAQUINOSORI
 
presentacion medidas de seguridad riesgo eléctrico
presentacion medidas de seguridad riesgo eléctricopresentacion medidas de seguridad riesgo eléctrico
presentacion medidas de seguridad riesgo eléctricoalexcala5
 
Reporte de simulación de flujo del agua en un volumen de control MNVA.pdf
Reporte de simulación de flujo del agua en un volumen de control MNVA.pdfReporte de simulación de flujo del agua en un volumen de control MNVA.pdf
Reporte de simulación de flujo del agua en un volumen de control MNVA.pdfMikkaelNicolae
 
¿QUE SON LOS AGENTES FISICOS Y QUE CUIDADOS TENER.pptx
¿QUE SON LOS AGENTES FISICOS Y QUE CUIDADOS TENER.pptx¿QUE SON LOS AGENTES FISICOS Y QUE CUIDADOS TENER.pptx
¿QUE SON LOS AGENTES FISICOS Y QUE CUIDADOS TENER.pptxguillermosantana15
 
hitos del desarrollo psicomotor en niños.docx
hitos del desarrollo psicomotor en niños.docxhitos del desarrollo psicomotor en niños.docx
hitos del desarrollo psicomotor en niños.docxMarcelaArancibiaRojo
 
Ingeniería de Tránsito. Proyecto Geométrico de calles y carreteras, es el pro...
Ingeniería de Tránsito. Proyecto Geométrico de calles y carreteras, es el pro...Ingeniería de Tránsito. Proyecto Geométrico de calles y carreteras, es el pro...
Ingeniería de Tránsito. Proyecto Geométrico de calles y carreteras, es el pro...wvernetlopez
 
2. UPN PPT - SEMANA 02 GESTION DE PROYECTOS MG CHERYL QUEZADA(1).pdf
2. UPN PPT - SEMANA 02 GESTION DE PROYECTOS MG CHERYL QUEZADA(1).pdf2. UPN PPT - SEMANA 02 GESTION DE PROYECTOS MG CHERYL QUEZADA(1).pdf
2. UPN PPT - SEMANA 02 GESTION DE PROYECTOS MG CHERYL QUEZADA(1).pdfAnthonyTiclia
 
Unidad 3 Administracion de inventarios.pptx
Unidad 3 Administracion de inventarios.pptxUnidad 3 Administracion de inventarios.pptx
Unidad 3 Administracion de inventarios.pptxEverardoRuiz8
 
Curso intensivo de soldadura electrónica en pdf
Curso intensivo de soldadura electrónica  en pdfCurso intensivo de soldadura electrónica  en pdf
Curso intensivo de soldadura electrónica en pdfFernandaGarca788912
 
Falla de san andres y el gran cañon : enfoque integral
Falla de san andres y el gran cañon : enfoque integralFalla de san andres y el gran cañon : enfoque integral
Falla de san andres y el gran cañon : enfoque integralsantirangelcor
 
Seleccion de Fusibles en media tension fusibles
Seleccion de Fusibles en media tension fusiblesSeleccion de Fusibles en media tension fusibles
Seleccion de Fusibles en media tension fusiblesSaulSantiago25
 
Sesión 02 TIPOS DE VALORIZACIONES CURSO Cersa
Sesión 02 TIPOS DE VALORIZACIONES CURSO CersaSesión 02 TIPOS DE VALORIZACIONES CURSO Cersa
Sesión 02 TIPOS DE VALORIZACIONES CURSO CersaXimenaFallaLecca1
 
Una estrategia de seguridad en la nube alineada al NIST
Una estrategia de seguridad en la nube alineada al NISTUna estrategia de seguridad en la nube alineada al NIST
Una estrategia de seguridad en la nube alineada al NISTFundación YOD YOD
 
PPT ELABORARACION DE ADOBES 2023 (1).pdf
PPT ELABORARACION DE ADOBES 2023 (1).pdfPPT ELABORARACION DE ADOBES 2023 (1).pdf
PPT ELABORARACION DE ADOBES 2023 (1).pdfalexquispenieto2
 
Obras paralizadas en el sector construcción
Obras paralizadas en el sector construcciónObras paralizadas en el sector construcción
Obras paralizadas en el sector construcciónXimenaFallaLecca1
 
Magnetismo y electromagnetismo principios
Magnetismo y electromagnetismo principiosMagnetismo y electromagnetismo principios
Magnetismo y electromagnetismo principiosMarceloQuisbert6
 

Último (20)

PPT SERVIDOR ESCUELA PERU EDUCA LINUX v7.pptx
PPT SERVIDOR ESCUELA PERU EDUCA LINUX v7.pptxPPT SERVIDOR ESCUELA PERU EDUCA LINUX v7.pptx
PPT SERVIDOR ESCUELA PERU EDUCA LINUX v7.pptx
 
El proyecto “ITC SE Lambayeque Norte 220 kV con seccionamiento de la LT 220 kV
El proyecto “ITC SE Lambayeque Norte 220 kV con seccionamiento de la LT 220 kVEl proyecto “ITC SE Lambayeque Norte 220 kV con seccionamiento de la LT 220 kV
El proyecto “ITC SE Lambayeque Norte 220 kV con seccionamiento de la LT 220 kV
 
Propositos del comportamiento de fases y aplicaciones
Propositos del comportamiento de fases y aplicacionesPropositos del comportamiento de fases y aplicaciones
Propositos del comportamiento de fases y aplicaciones
 
Elaboración de la estructura del ADN y ARN en papel.pdf
Elaboración de la estructura del ADN y ARN en papel.pdfElaboración de la estructura del ADN y ARN en papel.pdf
Elaboración de la estructura del ADN y ARN en papel.pdf
 
presentacion medidas de seguridad riesgo eléctrico
presentacion medidas de seguridad riesgo eléctricopresentacion medidas de seguridad riesgo eléctrico
presentacion medidas de seguridad riesgo eléctrico
 
Reporte de simulación de flujo del agua en un volumen de control MNVA.pdf
Reporte de simulación de flujo del agua en un volumen de control MNVA.pdfReporte de simulación de flujo del agua en un volumen de control MNVA.pdf
Reporte de simulación de flujo del agua en un volumen de control MNVA.pdf
 
VALORIZACION Y LIQUIDACION MIGUEL SALINAS.pdf
VALORIZACION Y LIQUIDACION MIGUEL SALINAS.pdfVALORIZACION Y LIQUIDACION MIGUEL SALINAS.pdf
VALORIZACION Y LIQUIDACION MIGUEL SALINAS.pdf
 
¿QUE SON LOS AGENTES FISICOS Y QUE CUIDADOS TENER.pptx
¿QUE SON LOS AGENTES FISICOS Y QUE CUIDADOS TENER.pptx¿QUE SON LOS AGENTES FISICOS Y QUE CUIDADOS TENER.pptx
¿QUE SON LOS AGENTES FISICOS Y QUE CUIDADOS TENER.pptx
 
hitos del desarrollo psicomotor en niños.docx
hitos del desarrollo psicomotor en niños.docxhitos del desarrollo psicomotor en niños.docx
hitos del desarrollo psicomotor en niños.docx
 
Ingeniería de Tránsito. Proyecto Geométrico de calles y carreteras, es el pro...
Ingeniería de Tránsito. Proyecto Geométrico de calles y carreteras, es el pro...Ingeniería de Tránsito. Proyecto Geométrico de calles y carreteras, es el pro...
Ingeniería de Tránsito. Proyecto Geométrico de calles y carreteras, es el pro...
 
2. UPN PPT - SEMANA 02 GESTION DE PROYECTOS MG CHERYL QUEZADA(1).pdf
2. UPN PPT - SEMANA 02 GESTION DE PROYECTOS MG CHERYL QUEZADA(1).pdf2. UPN PPT - SEMANA 02 GESTION DE PROYECTOS MG CHERYL QUEZADA(1).pdf
2. UPN PPT - SEMANA 02 GESTION DE PROYECTOS MG CHERYL QUEZADA(1).pdf
 
Unidad 3 Administracion de inventarios.pptx
Unidad 3 Administracion de inventarios.pptxUnidad 3 Administracion de inventarios.pptx
Unidad 3 Administracion de inventarios.pptx
 
Curso intensivo de soldadura electrónica en pdf
Curso intensivo de soldadura electrónica  en pdfCurso intensivo de soldadura electrónica  en pdf
Curso intensivo de soldadura electrónica en pdf
 
Falla de san andres y el gran cañon : enfoque integral
Falla de san andres y el gran cañon : enfoque integralFalla de san andres y el gran cañon : enfoque integral
Falla de san andres y el gran cañon : enfoque integral
 
Seleccion de Fusibles en media tension fusibles
Seleccion de Fusibles en media tension fusiblesSeleccion de Fusibles en media tension fusibles
Seleccion de Fusibles en media tension fusibles
 
Sesión 02 TIPOS DE VALORIZACIONES CURSO Cersa
Sesión 02 TIPOS DE VALORIZACIONES CURSO CersaSesión 02 TIPOS DE VALORIZACIONES CURSO Cersa
Sesión 02 TIPOS DE VALORIZACIONES CURSO Cersa
 
Una estrategia de seguridad en la nube alineada al NIST
Una estrategia de seguridad en la nube alineada al NISTUna estrategia de seguridad en la nube alineada al NIST
Una estrategia de seguridad en la nube alineada al NIST
 
PPT ELABORARACION DE ADOBES 2023 (1).pdf
PPT ELABORARACION DE ADOBES 2023 (1).pdfPPT ELABORARACION DE ADOBES 2023 (1).pdf
PPT ELABORARACION DE ADOBES 2023 (1).pdf
 
Obras paralizadas en el sector construcción
Obras paralizadas en el sector construcciónObras paralizadas en el sector construcción
Obras paralizadas en el sector construcción
 
Magnetismo y electromagnetismo principios
Magnetismo y electromagnetismo principiosMagnetismo y electromagnetismo principios
Magnetismo y electromagnetismo principios
 

INSTALACION DE UN SISTEMA SOLAR TERMICO PARA UN CHALET UNIFAMILIAR - Energía solar térmica y pasiva

  • 1. INSTALACION DE UN SISTEMA SOLAR TERMICO PARA UN CHALET UNIFAMILIAR EN PELAHUSTAN (TOLEDO) Energía solar térmica y pasiva JAVIER TRESPALACIOS INSIGNARES 15 de junio de 2011
  • 2. INSTALACION DE UN SISTEMA SOLAR TERMICO PARA UN CHALET UNIFAMILIAR EN PELAHUSTAN (TOLEDO) Javier TRESPALACIOS IMF CEU - Máster Oficial Universitario en Energías Renovables Energía solar, térmica y pasiva- 2011 i TABLA DE CONTENIDO ENUNCIADO ..................................................................................................................................... vi INTRODUCCIÓN ............................................................................................................................. vii 1. PELAHUSTAN (TOLEDO) ......................................................................................................... 8 2. ZONA CLIMATICA - Pelahustán .............................................................................................. 8 3. DEMANDA DIARIA DE REFERENCIA DE ACS – Pelahustán ............................................... 9 4. ESTIMACION DE LA DEMANDA ENERGETICA ACS ........................................................... 10 5. CONTRIBUCION SOLAR MINIMA DE ACS ........................................................................... 12 6. RADIACION SOLAR INCIDENTE ........................................................................................... 13 7. CÁLCULO NÚMERO DE CAPTADORES PARA ACS: METODO DE F-CHART .................... 15 7.1. Relación entre el volumen de acumulador y superficie de captadores para ACS - exigencia CTE ............................................................................................................................. 19 7.2. Contribución solar anual para ACS: f ......................................................................... 19 7.3. Rendimiento medio anual para ACS: ηsistema,ano ........................................................ 19 8. CÁLCULO DE NÚMERO DE CAPTADORES Y VOLUMEN DE ACUMULACIÓN TOTAL DE NUESTRA INSTALACION: METODO DE F-CHART ..................................................................... 20 8.1. Relación entre el volumen del acumulador y superficie de captadores - exigencia CTE 23 8.2. Contribución solar anual total: f ................................................................................. 23 8.3. Rendimiento medio anual total : ηsistema,ano ............................................................... 23 9. CALCULO DEL DEPOSITO DE INERCIA Y DEPOSITO ACS ............................................... 24 10. CALCULO DEL VASO DE EXPANSION DEL CIRCUITO PRIMARIO .............................. 25 11. CALCULO DEL VASO DE EXPANSION DEL CIRCUITO SECUNDARIO ........................ 28 12. CALCULO SUPERFICIE INTERCAMBIADOR ................................................................... 28 13. CALCULO DEL BOMBA DEL CIRCUITO PRIMARIO ....................................................... 29
  • 3. INSTALACION DE UN SISTEMA SOLAR TERMICO PARA UN CHALET UNIFAMILIAR EN PELAHUSTAN (TOLEDO) Javier TRESPALACIOS IMF CEU - Máster Oficial Universitario en Energías Renovables Energía solar, térmica y pasiva- 2011 ii 14. CALCULO POTENCIA DE DISIPACION ........................................................................... 33 15. CONCLUSIONES ................................................................................................................ 34 16. REFERENCIAS .................................................................................................................... 35
  • 4. INSTALACION DE UN SISTEMA SOLAR TERMICO PARA UN CHALET UNIFAMILIAR EN PELAHUSTAN (TOLEDO) Javier TRESPALACIOS IMF CEU - Máster Oficial Universitario en Energías Renovables Energía solar, térmica y pasiva- 2011 iii TABLA DE GRÁFICAS Gráfica 1: Energía solar incidente sobre Pelahustan. ............................................................... 15 Gráfica 2: Demanda vs aporte solar en Pelahustan. ................................................................. 18 Gráfica 3: Demanda mensual vs. Contribución solar mesual - Total. .................................... 22
  • 5. INSTALACION DE UN SISTEMA SOLAR TERMICO PARA UN CHALET UNIFAMILIAR EN PELAHUSTAN (TOLEDO) Javier TRESPALACIOS IMF CEU - Máster Oficial Universitario en Energías Renovables Energía solar, térmica y pasiva- 2011 iv TABLA DE FIGURAS Figura 1: Ubicación geográfica de Pelahustán (Toledo). ........................................................... 8 Figura 2: Zonas climáticas, ubicación Pelahustán (Toledo). ...................................................... 9 Figura 3: Determinación del numero de personas por habitación. .......................................... 9 Figura 4: Demanda diaria de referencia ACS a 60°C según el CTE DB HE4. ........................ 10 Figura 5: Temperatura media de la red general. ...................................................................... 11 Figura 6: Contribución solar mínima %. Caso general. ............................................................ 12 Figura 7: Valores de radiación mensual media en Toledo. ...................................................... 13 Figura 8: Factor de corrección k para latitud 40° ..................................................................... 14 Figura 9: Acumulador combinado para calefacción y ACS (SONNENKRAFT). ....................... 24 Figura 10: Información tecnica, acumulador combinado (SONNENKRAFT). ......................... 25 Figura 11: Información tecnica, intercambiador acumulador (SONNENKRAFT). .................. 27 Figura 10: Vaso de expansion, circuito primario (Ibaiondo) ................................................... 28 Figura 11: Vaso de expansion, circuito secundario (Ibaiondo) ............................................... 28 Figura 12: Intercambiador del acumulador combinado para calefacción y ACS. .... Erreur ! Le signet n’est pas défini. Figura 13: Abaco perdidas de carga (libro guia del master). .................................................. 30 Figura 14: bomba a seleccionar (Grundfos). ............................................................................. 32
  • 6. INSTALACION DE UN SISTEMA SOLAR TERMICO PARA UN CHALET UNIFAMILIAR EN PELAHUSTAN (TOLEDO) Javier TRESPALACIOS IMF CEU - Máster Oficial Universitario en Energías Renovables Energía solar, térmica y pasiva- 2011 v LISTA DE TABLAS Tabla 1: Demanda energética mensual - Pelahustán. .............................................................. 12 Tabla 2: Valores de la radiación solar mensual a Pelahustán. ................................................ 14 Tabla 3: Valores con diferentes captadores. .............................................................................. 15 Tabla 4: Valores de FCacs, D1 y D2. .............................................................................................. 17 Tabla 5: Valores de la fracción solar mensual y la energía solar útil. .................................... 18 Tabla 6: Demanda Anual total. .................................................................................................... 21 Tabla 7: Aporte Solar anual - Total. ............................................................................................ 22
  • 7. INSTALACION DE UN SISTEMA SOLAR TERMICO PARA UN CHALET UNIFAMILIAR EN PELAHUSTAN (TOLEDO) Javier TRESPALACIOS IMF CEU - Máster Oficial Universitario en Energías Renovables Energía solar, térmica y pasiva- 2011 vi ENUNCIADO Un chalet unifamiliar de 280 m2 situado en Pelahustán (Toledo) tiene una superficie calefactada por suelo radiante de 200 m2 con una carga térmica media de 66 W/m2 . A pesar de que la vivienda tiene 5 habitaciones, únicamente viven 2 personas. Consta de dos plantas (10x10m) y sótano dónde se ubica el cuarto de calderas y el garaje. La cubierta es de teja árabe con una inclinación de 15º y orientación N-S. Disponen de una piscina en el exterior de la vivienda. Quieren instalar energía solar térmica para suplir parte de la demanda de calefacción con el siguiente colector: - MARCA: Módulo Solar - MODELO: Maxol MS 2.5 4T - LONGITUD: 2240 mm. - ANCHURA: 1120 mm. - PESO: 44 Kg. - ÁREA TOTAL: 2,51 m2 - ÁREA DE APERTURA: 1,32 m2 - ÁREA DEL ABSORBEDOR: 1,32 m2 - MATERIAL CUBIERTA: vidrio solar endurecido, 4mm. espesor. - VOLUMEN ABSORBEDOR: 1,6 l. - RENDIMIENTO: 0,795% - K1: 3,543 W/m2 K - K2: 0,01 W/m2 K - CAUDAL RECOMENDADO: 25 l/hm2 - MONTAJE: Vertical - CONEXIÓN EN LÍNEA: máx 10 captadores. Se pide: Ø Cálculo del depósito de inercia y depósito de ACS. Ø Vaso de expansión del circuito primario. Ø Vaso/s de expansión del circuito secundario. Ø Superficie del intercambiador. Ø Bomba del circuito primario. Ø Potencia de disipación estival.
  • 8. INSTALACION DE UN SISTEMA SOLAR TERMICO PARA UN CHALET UNIFAMILIAR EN PELAHUSTAN (TOLEDO) Javier TRESPALACIOS IMF CEU - Máster Oficial Universitario en Energías Renovables Energía solar, térmica y pasiva- 2011 vii INTRODUCCIÓN En este trabajo veran la manera en que se puede realizar un proyecto Solar-Termico, para un chalet unifamiliar; haciendo un aporte auxiliar a la calefacción y el ACS.
  • 9. INSTALACION DE UN SISTEMA SOLAR TERMICO PARA UN CHALET UNIFAMILIAR EN PELAHUSTAN (TOLEDO) Javier TRESPALACIOS IMF CEU - Máster Oficial Universitario en Energías Renovables Energía solar, térmica y pasiva- 2011 8 1. PELAHUSTAN (TOLEDO) “Pelahustán es una población española de la provincia de Toledo en Castilla-La Mancha. Linda con los términos municipales de Higuera de las Dueñas en la provincia de Ávila y Nombela, Nuño Gómez, Garciotum y El Real de San Vicente en la de Toledo y Cenicientos en la provincia de Madrid.” 1 Figura 1: Ubicación geográfica de Pelahustán (Toledo). 2 La posición geográfica de Pelahustán es: 40°2 Norte. 2. ZONA CLIMATICA - Pelahustán La distribución de zonas climáticas se establece en el propio CTE, a partir de los datos de radiación solar global anual incidente sobre superficie horizontal. 1 Pelahustan : http://es.wikipedia.org/wiki/Pelahustan_(Toledo) . Consultado 20.05.2011 2 Figura 1 http://re.jrc.ec.europa.eu/pvgis/apps4/pvest.php . Consultado 20.05.2011
  • 10. INSTALACION DE UN SISTEMA SOLAR TERMICO PARA UN CHALET UNIFAMILIAR EN PELAHUSTAN (TOLEDO) Javier TRESPALACIOS IMF CEU - Máster Oficial Universitario en Energías Renovables Energía solar, térmica y pasiva- 2011 9 El CTE DB HE4 exige que toda vivienda sea capaz de suministrar, en diseño, una contribución solar mínima, en función del agua caliente sanitaria de una vivienda, a una temperatura de referencia de 60°C. Para saber en qué zona climática esta Pelahustán, utilizamos la figura 2. Figura 2: Zonas climáticas, ubicación Pelahustán (Toledo). 3 Pelahustan está en la zona climática IV. 3. DEMANDA DIARIA DE REFERENCIA DE ACS – Pelahustán Para calcular el consumo diario de la vivienda a (Ddia) en Pelahustán; tenemos en cuenta que es una vivienda unifamiliar con 5 habitaciones; según el CTE se determinan 7 personas (ver figura 3). Figura 3: Determinación del numero de personas por habitación. 4 3 Figura 2: http://www.energiasrenovables.ciemat.es/especiales/solar_termica/3.htm. Consultado 20.05.2011 4 Figura 3: CTE
  • 11. INSTALACION DE UN SISTEMA SOLAR TERMICO PARA UN CHALET UNIFAMILIAR EN PELAHUSTAN (TOLEDO) Javier TRESPALACIOS IMF CEU - Máster Oficial Universitario en Energías Renovables Energía solar, térmica y pasiva- 2011 10 Luego miramos los datos de la figura 4, para una vivienda unifamiliar. Figura 4: Demanda diaria de referencia ACS a 60°C según el CTE DB HE4.5 Hacemos el cálculo de la demanda total por día, con la ecuación: 7 personas · 30 l/día = 210l/día = 0.21m3 /día 4. ESTIMACION DE LA DEMANDA ENERGETICA ACS Para calcular la Demanda Energética mensual (DEmes), que nos indica cuanta energía se necesita para calentar el agua desde la temperatura ambiente, hasta la temperatura asignada; para esto utilizamos la ecuación: Ddia : volumen de agua diaria en m3 (0,21 m3 /día) Ndia : número de días del mes Cp : calor especifico del agua (1 kcal/kg · °C) ρ : densidad del agua (1000 kg/m3 ) TACS : temperatura final de calentamiento ACS (60°C) Tred : temperatura media del agua de red en el mes (ver figura 7) 1,16 · 10-3 : factor de conversión 5 Figura 3: http://ocw.upm.es/ingenieria-agroforestal/climatologia-aplicada-a-la-ingenieria-y- medioambiente/contenidos/CTE_Ministerio_Vivienda/CTEHEzonasclimaticasradiacion.pdf/view . Consultado 10.05.2011
  • 12. INSTALACION DE UN SISTEMA SOLAR TERMICO PARA UN CHALET UNIFAMILIAR EN PELAHUSTAN (TOLEDO) Javier TRESPALACIOS IMF CEU - Máster Oficial Universitario en Energías Renovables Energía solar, térmica y pasiva- 2011 11 La temperatura de la red (Tred) en Pelahustán la tomamos de la figura 5. Figura 5: Temperatura media de la red general. 6 Ya tenemos todos los valores de la ecuación de DEmes; pasamos hacer los cálculos y obtener los valores por mes, que nos da el resultado anual: 6 Figura 5: http://ocw.upm.es/ingenieria-agroforestal/climatologia-aplicada-a-la-ingenieria-y- medioambiente/contenidos/CTE_Ministerio_Vivienda/CTEHEzonasclimaticasradiacion.pdf/view . Consultado 10.05.2011
  • 13. INSTALACION DE UN SISTEMA SOLAR TERMICO PARA UN CHALET UNIFAMILIAR EN PELAHUSTAN (TOLEDO) Javier TRESPALACIOS IMF CEU - Máster Oficial Universitario en Energías Renovables Energía solar, térmica y pasiva- 2011 12 MES Ndia Tred (°C) DEacs,mes(kWh/mes) Enero 31 6 407,8 Febrero 28 7 361,5 Marzo 31 9 385,1 Abril 30 11 358,1 Mayo 31 12 362,5 Junio 30 13 343,5 Julio 31 14 347,4 Agosto 31 13 354,9 Septiembre 30 12 350,8 Octubre 31 11 370 Noviembre 30 9 372,7 Diciembre 31 6 407,8 Demanda Energética anual - ACS 4'422 Tabla 1: Demanda energética mensual - Pelahustán. 7 El periodo de mayor consumo es enero y diciembre; el valor anual es DEacs,ano = 4’422 (kWh/ano). 5. CONTRIBUCION SOLAR MINIMA DE ACS El CTE DB HE4 exige un aporte solar mínimo anual; expresado en porcentaje; este valor lo da la demanda total diaria (0.21m3 /día) y la zona climática (IV); teniendo encuentra el aporte auxiliar (caso general: gas, gasóleo, propano, …). Figura 6: Contribución solar mínima %. Caso general. 8 7 Tabla 1: elaboración propia 8 Figura 6: http://ocw.upm.es/ingenieria-agroforestal/climatologia-aplicada-a-la-ingenieria-y- medioambiente/contenidos/CTE_Ministerio_Vivienda/CTEHEzonasclimaticasradiacion.pdf/view . Consultado 10.05.2011
  • 14. INSTALACION DE UN SISTEMA SOLAR TERMICO PARA UN CHALET UNIFAMILIAR EN PELAHUSTAN (TOLEDO) Javier TRESPALACIOS IMF CEU - Máster Oficial Universitario en Energías Renovables Energía solar, térmica y pasiva- 2011 13 En la figura 6, obtenemos como contribución solar anual o fracción solar f = 60%. Tenemos todo para calcular la Demanda Mínima a cubrir con nuestro sistema solar, con la ecuación: EUsolar,ano = 2653.2kWh/ano 6. RADIACION SOLAR INCIDENTE Para dimensionar la instalación, debemos conocer los datos de radiación solar incidente para la orientación e inclinación de los captadores Gdi(β) (KW·h/m2 ·dia): Para utilizar esta ecuación, necesitamos: - Los 12 valores medios mensuales de irradiación diaria global incidente Gdi(0), sobre una superficie horizontal, expresadas en MJ/m2 y que convertiremos a KWh/m2 (ver figura 7). Figura 7: Valores de radiación mensual media en Toledo. 9 9 Figura 7: Censolar
  • 15. INSTALACION DE UN SISTEMA SOLAR TERMICO PARA UN CHALET UNIFAMILIAR EN PELAHUSTAN (TOLEDO) Javier TRESPALACIOS IMF CEU - Máster Oficial Universitario en Energías Renovables Energía solar, térmica y pasiva- 2011 14 - El factor de corrección k; que nos permite relacionar los valores de radiación solar sobre la superficie inclinada con los de la superficie horizontal; para nuestro trabajo tomamos los valores para una latitud 40° y una inclinación de 15° que es el angulo del techo (ver figura 7). Figura 8: Factor de corrección k para latitud 40° Teniendo ya todos los valores, podemos encontrar Gdi(15°) tabla 2 y la energía solar incidente EImes (KW·h/m2 ·mes) mensual (ver tabla 2); la suma de todos los meses nos da el valor anual; estos valores los encontramos con la ecuación: MES Gdi(0°) (MJ/m2 ·dia) Gdi(0°) (KW·h/m2 ·dia) k(15°) Gdi(15) (KW·h/m2 ·dia) EIacs,es (KW·h/m2 ·mes) Enero 6,2 1,72 1,2 2,07 64 Febrero 9,5 2,64 1,16 3,06 86 Marzo 14 3,89 1,12 4,36 135 Abril 19,3 5,36 1,07 5,74 172 Mayo 21 5,83 1,03 6,01 186 Junio 24,4 6,78 1,02 6,91 207 Julio 27,2 7,56 1,04 7,86 244 Agosto 24,5 6,81 1,08 7,35 228 Septiembre 18,1 5,03 1,14 5,73 172 Octubre 11,9 3,31 1,21 4,00 124 Noviembre 7,6 2,11 1,25 2,64 79 Diciembre 5,6 1,56 1,24 1,93 60 EIano 1'757 Tabla 2: Valores de la radiación solar mensual a Pelahustán. 10 10 Tabla 2: elaboración propia
  • 16. INSTALACION DE UN SISTEMA SOLAR TERMICO PARA UN CHALET UNIFAMILIAR EN PELAHUSTAN (TOLEDO) Javier TRESPALACIOS IMF CEU - Máster Oficial Universitario en Energías Renovables Energía solar, térmica y pasiva- 2011 15 Con los valores de la tabla 2, podemos ver mejor con una grafica, la energía solar incidente sobre Pelahustan: ENERGIA SOLAR INCIDENTE - Pelahustan 0 50 100 150 200 250 300 Enero Febrero Marzo Abril Mayo Junio Julio Agosto Septiembre Octubre Noviembre Diciembre Mes EImes(KW•h/m2•mes) EImes (KW·h/m2·mes) Gráfica 1: Energía solar incidente sobre Pelahustan. 11 En la grafica 1, vemos que el mayor aporte se hace en julio. 7. CÁLCULO NÚMERO DE CAPTADORES PARA ACS: METODO DE F-CHART Los primeros cálculos con 1 y 2 captadores solar, no cumplieron con las condiciones exigidas por el CTE (ver tabla 3): CAPTADORES 50l/m2 < x < 180 l/m2 f > 60% ηsistema,ano > 40% 1 160 31% 58% 2 80 52% 50% Tabla 3: Valores con diferentes captadores. 12 11 Grafica 1: elaboración propia 12 Tabla 3: elaboración propia
  • 17. INSTALACION DE UN SISTEMA SOLAR TERMICO PARA UN CHALET UNIFAMILIAR EN PELAHUSTAN (TOLEDO) Javier TRESPALACIOS IMF CEU - Máster Oficial Universitario en Energías Renovables Energía solar, térmica y pasiva- 2011 16 Realizaremos nuestros cálculos con 3 captadores para el suministro ACS; daremos a continuación los datos técnicos de nuestro captador: Modelo captador: Maxol MS 2.5 4T Superficie apertura: Sc = 1.32m2 Rendimiento: 0.795 Eficiencia K1: 3.543 W/m2 · k Eficiencia K2: 0.01 W/m2 · k Modificación del Angulo de incidencia: MAI = 0.95 Factor de corrección del conjunto captador-intercambiador. 13 : FCint = 0.95 Gdm: irradiación solar diaria en un mes, ver tabla 2 (Gdi(15°)) DEmes: ver la tabla 1 Coeficiente global de perdidas: Kglobal = K1 + 30 · K2 = 3.843x10-3 (KW/m2 ·°C) Sc_total: 3Captadores · Sc = 3.96m2 Ahora buscamos definir los valores D1 y D2, relacionados con la energía absorbida por los captadores y con la energía perdida respectivamente; estos valores nos llevan a la fracción solar mensual fmes. Seguimos con el cálculo de D2: 13 Valor recomendado por: CTE
  • 18. INSTALACION DE UN SISTEMA SOLAR TERMICO PARA UN CHALET UNIFAMILIAR EN PELAHUSTAN (TOLEDO) Javier TRESPALACIOS IMF CEU - Máster Oficial Universitario en Energías Renovables Energía solar, térmica y pasiva- 2011 17 Antes de calcular D2, buscamos el factor de corrección del acumulador FCacum. (Donde Vacum-solar = 210l): FCacum = 1.091 También procedemos a calcular FCacs, que es el factor de corrección para la temperatura del agua (Tamb ver figura 6): MES FCACS D1 D2 Enero 0.946 0.446 2.502 Febrero 0.973 0.674 2.595 Marzo 1.000 0.996 2.649 Abril 1.060 1.366 2.855 Mayo 1.045 1.460 2.739 Junio 1.012 1.716 2.541 Julio 0.993 1.992 2.414 Agosto 0.958 1.824 2.312 Septiembre 0.979 1.393 2.439 Octubre 1.029 0.952 2.708 Noviembre 1.015 0.604 2.720 Diciembre 0.946 0.417 2.502 Tabla 4: Valores de FCacs, D1 y D2. 14 Teniendo D1 y D2, calculamos la fracción solar mensual fmes: 14 Tabla 4: elaboración propia
  • 19. INSTALACION DE UN SISTEMA SOLAR TERMICO PARA UN CHALET UNIFAMILIAR EN PELAHUSTAN (TOLEDO) Javier TRESPALACIOS IMF CEU - Máster Oficial Universitario en Energías Renovables Energía solar, térmica y pasiva- 2011 18 Teniendo los valores de fmes de cada mes podremos obtenerla la energía solar útil mensual con la ecuación: MES fmes EUsolar,mes (KWh) Enero 26.11% 106.46 Febrero 43.21% 156.19 Marzo 64.37% 247.88 Abril 83.21% 297.99 Mayo 88.25% 319.90 Junio 99.93% 343.25 Julio 110.13% 382.58 Agosto 105.17% 373.25 Septiembre 86.82% 304.57 Octubre 61.34% 226.97 Noviembre 37.31% 139.04 Diciembre 23.64% 96.39 Aporte solar anual 2'994 Tabla 5: Valores de la fracción solar mensual y la energía solar útil. 15 0.00 50.00 100.00 150.00 200.00 250.00 300.00 350.00 400.00 450.00 Enero Febrero Marzo Abril Mayo Junio Julio Agosto Septiembre Octubre Noviembre Diciembre Mes kWh/mes EUsolar,mes (KWh) DEacs,mes(kWh/mes) Gráfica 2: Demanda vs aporte solar en Pelahustan. 16 15 Tabla 5: elaboración propia 16 Grafica 2: elaboración propia
  • 20. INSTALACION DE UN SISTEMA SOLAR TERMICO PARA UN CHALET UNIFAMILIAR EN PELAHUSTAN (TOLEDO) Javier TRESPALACIOS IMF CEU - Máster Oficial Universitario en Energías Renovables Energía solar, térmica y pasiva- 2011 19 Vemos que en los meses de junio, julio y agosto, tenemos valores superiores al 100% (ver grafica 2). El CTE dice que en ningun mes la energia producida por las instalacion solar debe superar el 110% del consumo estimado y no mas de 3 meses el 100%.17 7.1. Relación entre el volumen de acumulador y superficie de captadores para ACS - exigencia CTE Antes de calcular el valor de FCacum, analizamos la relación entre el volumen de acumulación y superficie de captadores que el CTE DB HE4 sitúa entre: 50l/m2 < 53 l/m2 < 180 l/m2 7.2. Contribución solar anual para ACS: f Ahora verificamos si la fracción solar o contribución solar anual f es superior a la exigida por el CTE : f = 68% > 60% (cumple lo exigido por el CTE, ver figura 6) 7.3. Rendimiento medio anual para ACS: ηsistema,ano Y el rendimiento medio anual de la instalación: 17 Libro guia del master.
  • 21. INSTALACION DE UN SISTEMA SOLAR TERMICO PARA UN CHALET UNIFAMILIAR EN PELAHUSTAN (TOLEDO) Javier TRESPALACIOS IMF CEU - Máster Oficial Universitario en Energías Renovables Energía solar, térmica y pasiva- 2011 20 ηsistema,ano = 43.04% > 40% (cumple lo exigido por el CTE) 8. CÁLCULO DE NÚMERO DE CAPTADORES Y VOLUMEN DE ACUMULACIÓN TOTAL DE NUESTRA INSTALACION: METODO DE F-CHART Ahora haremos los calculos para la acumulación total (ACS y calefaccion); en la parte 7 de este trabajo se definieron 3 captadores para el suministro de ACS. Comenzamos calculando la demanda energética (200m2 de suelo radiante) utilizando la ecuación: DEmes,i_demanda_Energetica = Q(kWh/mes) · S(m2 ) · Ndias,i · hmes,i Q : carga térmica calefacción = 66 · 10-3 (kWh/mes) S : superficie suelo radiante = 200m2 Ndias,i : días del mes hmes,i : horas de utilización (los datos son tomados de manera personal) Teniendo los valores de DEmes,i_demanda_Energetica, obtendremos la demanda total DEmes,i_demanda_TOTAL, adicionando los valores para el ACS DEacs,mes (ver tabla 1):
  • 22. INSTALACION DE UN SISTEMA SOLAR TERMICO PARA UN CHALET UNIFAMILIAR EN PELAHUSTAN (TOLEDO) Javier TRESPALACIOS IMF CEU - Máster Oficial Universitario en Energías Renovables Energía solar, térmica y pasiva- 2011 21 MES hmes,i DEmes,i_demanda_Energetica DEmes,i_demanda_TOTAL Enero 11 4'501.20 4'909.00 Febrero 10 3'696.00 4'057.50 Marzo 9 3'682.80 4'067.90 Abril 8 3'168.00 3'526.10 Mayo 6 2'455.20 2'817.70 Junio 0 0.00 343.50 Julio 0 0.00 347.40 Agosto 0 0.00 354.90 Septiembre 6 2'376.00 2'726.80 Octubre 8 3'273.60 3'643.60 Noviembre 10 3'960.00 4'332.70 Diciembre 11 4'501.20 4'909.00 Aporte anual 31'614 36'022.8 Tabla 6: Demanda Anual total. 18 En la tabla 6 obtenemos los valores mensuales y anual. A criterio de este proyecto escogeremos un intervalo entre 10% - 30% de aporte solar térmico total; un volumen total de 950l, (250l para ACS y 700l para calefacción); y 7 captores solares adicionales. En total tomamos 10 captores. Volvemos a calcular los valores FCACS, D1, D2, fmes y EUsolar,mes (KWh); donde Sc_total = 13,2 m2 y FCacum = 1,010: 18 Tabla 6: elaboración propia
  • 23. INSTALACION DE UN SISTEMA SOLAR TERMICO PARA UN CHALET UNIFAMILIAR EN PELAHUSTAN (TOLEDO) Javier TRESPALACIOS IMF CEU - Máster Oficial Universitario en Energías Renovables Energía solar, térmica y pasiva- 2011 22 MES FCACS D1 D2 fmes EUsolar,mes (KWh) Enero 0.946 0.124 0.642 8.25% 405.02 Febrero 0.973 0.200 0.714 15.08% 611.68 Marzo 1.000 0.314 0.775 25.07% 1019.76 Abril 1.060 0.462 0.895 36.87% 1300.00 Mayo 1.045 0.626 1.088 48.49% 1366.28 Junio 1.012 5.719 7.848 149.39% 513.16 Julio 0.993 6.641 7.454 194.12% 674.36 Agosto 0.958 6.081 7.139 165.99% 589.09 Septiembre 0.979 0.597 0.969 47.05% 1282.92 Octubre 1.029 0.322 0.849 25.30% 921.93 Noviembre 1.015 0.173 0.723 12.48% 540.85 Diciembre 0.946 0.115 0.642 7.45% 365.72 Aporte solar anual 9'705 Tabla 7: Aporte Solar anual - Total. 19 El excedente producido (valores más del 100%) en junio, julio y agosto, podrían ser utilizados para la piscina exterior. En la grafica siguiente apreciamos mejor las tendencias: 0.00 1'000.00 2'000.00 3'000.00 4'000.00 5'000.00 6'000.00 Enero Febrero Marzo Abril Mayo Junio Julio Agosto Septiembre Octubre Noviembre Diciembre Mes KWh.mes DEmes,i_demanda_TOTAL EUsolar,mes (KWh.mes) Gráfica 3: Demanda mensual vs. Contribución solar mesual - Total. 20 19 Tabla 7: elaboración propia 20 Grafica 3: elaboración propia
  • 24. INSTALACION DE UN SISTEMA SOLAR TERMICO PARA UN CHALET UNIFAMILIAR EN PELAHUSTAN (TOLEDO) Javier TRESPALACIOS IMF CEU - Máster Oficial Universitario en Energías Renovables Energía solar, térmica y pasiva- 2011 23 8.1. Relación entre el volumen del acumulador y superficie de captadores - exigencia CTE Antes de calcular el valor de FCacum, analizamos la relación entre el volumen de acumulación y superficie de captadores que el CTE DB HE4 sitúa entre: 50l/m2 < 72 l/m2 < 180 l/m2 8.2. Contribución solar anual total: f Hemos colocado un valor, entre 10% y 30%: f : 10% > 27% > 30% 8.3. Rendimiento medio anual total : ηsistema,ano Y el rendimiento medio anual de la instalación: ηsistema,ano = 41% > 40% (cumple lo exigido por el CTE)
  • 25. INSTALACION DE UN SISTEMA SOLAR TERMICO PARA UN CHALET UNIFAMILIAR EN PELAHUSTAN (TOLEDO) Javier TRESPALACIOS IMF CEU - Máster Oficial Universitario en Energías Renovables Energía solar, térmica y pasiva- 2011 24 9. CALCULO DEL DEPOSITO DE INERCIA Y DEPOSITO ACS Para nuestra instalación hemos calculado con anterioridad 210l para el ACS y 700l para la calefacción (el valor es tomado para que el total nos de una cifra correcta para escoger en el catalogo); nos da un total de 950l. Hemos escogido un acumulador combinado (acumulador de inercia de calefacción con depósito de ACS integrado – figura 9). Figura 9: Acumulador combinado para calefacción y ACS (SONNENKRAFT).21 La información general está en la figura 10, acumulador PSK950: 21 Figura 9: http://www.sonnenkraft.es/Products/Accumulator/COMBI_Speicher_PSK/Pages/default.aspx. Consultado 20.05.2011
  • 26. INSTALACION DE UN SISTEMA SOLAR TERMICO PARA UN CHALET UNIFAMILIAR EN PELAHUSTAN (TOLEDO) Javier TRESPALACIOS IMF CEU - Máster Oficial Universitario en Energías Renovables Energía solar, térmica y pasiva- 2011 25 Figura 10: Información tecnica, acumulador combinado (SONNENKRAFT).22 10. CALCULO DEL VASO DE EXPANSION DEL CIRCUITO PRIMARIO El circuito hidraulico primario es el que pasa por los captadores, que toma la energia solar y la transmite hasta el sotano donde esta el cuarto de calderas y nuestro intercambiador. Como condicion el CTE, coloca como requisito utilizar en las tuberías materiales como el cobre o el acero inoxidable, conecciones roscadas, soldadas o embriadas y proteccion anticorrosivo. 22 Figura 10: http://www.sonnenkraft.es/Products/Accumulator/COMBI_Speicher_PSK/Pages/default.aspx. Consultado 20.05.2011
  • 27. INSTALACION DE UN SISTEMA SOLAR TERMICO PARA UN CHALET UNIFAMILIAR EN PELAHUSTAN (TOLEDO) Javier TRESPALACIOS IMF CEU - Máster Oficial Universitario en Energías Renovables Energía solar, térmica y pasiva- 2011 26 El vaso de expansion es acoplado al circuito primario (como medida tecnica de seguridad), “Cuando el fluido del circuito primario se calienta experimenta una dilatación. El aumento de volumen se recoge en el vaso”.23 Su capacidad de define: k: coeficiente de dilatación del fluido = 0.0700 W/mK (50% agua + 50% propilenglicol). Vcircuito: cantidad de volumen del fluido caloportador (desde los captadores hasta el intercambiador); 1. Nuestro captador tiene 1.6l · 10 capatadores = 16l = V1 2. Ahora el volumen desde los captadores hasta el intercambiador. Tenemos en cuenta que es un chalet con dos plantas, cada una de 5m (suposición personal) mas 3m hasta el sotano; hay que tener encuenta que es un ida vuelta nuestra ecuación del volumen 2: (r2 ) · Π · (5m · 2 + 3m) · 2 = V2 Nos olvidamos del diamtreo que obtenemos a partir del caudal de cada tramo del circuito, de la velocidad (esta limitada entre 1.5m/s y 0.5m/s; tomaremos v = 0.5m/s); utillizamos la ecuacion siguiente, despejando D (mm): Donde Qcaptores es el caudal recomendado (low-flow) 25l/hm2 x 13.2m2 (de los 10 captores): 23 Intercambiador: Libro guia master pag. 203.
  • 28. INSTALACION DE UN SISTEMA SOLAR TERMICO PARA UN CHALET UNIFAMILIAR EN PELAHUSTAN (TOLEDO) Javier TRESPALACIOS IMF CEU - Máster Oficial Universitario en Energías Renovables Energía solar, térmica y pasiva- 2011 27 Dtuberias = 15mm : r = 0.0075m Ahora si podemos tener: V2 = 4.5 l 3. El volumen del intercambiador, es dado por el fabricante del acumulador, (ver figura 11); V3 = 18,8l Figura 11: Información tecnica, intercambiador acumulador (SONNENKRAFT).24 Vcircuito = V1 + V2 + V3 = Vcircuito_1 = 16 + 4.5 + 18,8 = 39.3l Pf : la presion absoluta final del vaso de expansion (bar o kg/cm2 ); podemos utilizar el valor de válvula de seguridad que es entre 10bar y 6bar; tomamos Pf = 7bar. Pi : la presion absoluta inicial, tomamos como el valor minimo Pi = 1.5bar (todo depende del lugar donde establezcamos el vaso). Ya tenemos todos los valores para Vvaso: Vvaso_Circuito_1 > 4.45l 24 Figura 11: http://www.sonnenkraft.es/Products/Accumulator/COMBI_Speicher_PSK/Pages/default.aspx. Consultado 20.05.2011
  • 29. INSTALACION DE UN SISTEMA SOLAR TERMICO PARA UN CHALET UNIFAMILIAR EN PELAHUSTAN (TOLEDO) Javier TRESPALACIOS IMF CEU - Máster Oficial Universitario en Energías Renovables Energía solar, térmica y pasiva- 2011 28 Figura 12: Vaso de expansion, circuito primario (Ibaiondo) 11. CALCULO DEL VASO DE EXPANSION DEL CIRCUITO SECUNDARIO Podemos obtener nuestro segundo vaso de expansion con la misma ecuacion que el primero. Utilizamos como volumen total del deposito mas el 10% por seguridad; Vacumulador = 1000l + 10% = 1100l, para k consideramos el valor para agua caliente a una maxima temperatura 100°C; como presiones consideramos las mismas del primer vaso: Vvaso_Circuito_2 > 51.6l Figura 13: Vaso de expansion, circuito secundario (Ibaiondo) 12. CALCULO SUPERFICIE INTERCAMBIADOR “Para el caso de intercambiador incorporado al acumulador, la relacion entre la superficie util de intercambio y la superficie total de captación no sera inferior a 0.15”25 . En la figura siguiente podemos ver que nuestro intercambiador tiene una Sinter = 3m2 (ver figura 11): 25 Vaso de expansion: Libro guia master pag. 142.
  • 30. INSTALACION DE UN SISTEMA SOLAR TERMICO PARA UN CHALET UNIFAMILIAR EN PELAHUSTAN (TOLEDO) Javier TRESPALACIOS IMF CEU - Máster Oficial Universitario en Energías Renovables Energía solar, térmica y pasiva- 2011 29 El CTE DB HE4, exige que: Sinter ≥ 0.15 · Sc_total Sc_total = 10 · 1.32m2 = 13.2m2 2.3m2 ≥ 1.98m2 13. CALCULO DEL BOMBA DEL CIRCUITO PRIMARIO El CTE indica que la Bomba se instalara en el lugar mas frio del circuito, siendo la tubería de retorno el mejro lugar. Para calcular la escogencia de una bomba, necesitamos conocer la altura de bombeo frente al caudal, las perdidas de carga del circuito (rectas y codos), HT: HT = Pdctuberias + Pdcintercambiadores + Pdccaptadores Pdcintercambiadores : no tenemos estos valores en la ficha termica; tomaremos un valor comun de otro intercambiador, y tendremos encuante el intercambiador de disipación estival; Pdcintercambiadores = 4m.c.a. Pdccaptadores: para los captadores sucede los mismo; y tomamos un valor de Pdccaptadores = 0.04m.c.a. Pdctuberias: la ecuación es: Donde según el pliego de condiciones tecnicas de instalaciones de baja temperatura del IDAE. Anexo VII. 6 Tuberias: "El diametro de las tuberias se seleccionara de forma que la velocidad de circulacion del fluido sea inferior a 2 m/s cuando la tuberia discurra por locales habitados y a 3 m/s cuando el trazado sea exterior o por locales no habitados. El
  • 31. INSTALACION DE UN SISTEMA SOLAR TERMICO PARA UN CHALET UNIFAMILIAR EN PELAHUSTAN (TOLEDO) Javier TRESPALACIOS IMF CEU - Máster Oficial Universitario en Energías Renovables Energía solar, térmica y pasiva- 2011 30 dimensionado de las tuberias se realizara de forma que la perdida de carga unitaria en tuberias nunca sea superior a 40 mm de columna de agua por metro lineal.".26 . Utilizamos los valores de Q = 330(l/h) et Dtuberias = 15mm; para calcular en la grafiaca de perdidas: Figura 14: Abaco perdidas de carga (libro guia del master). Para nuestro proyecto tomamos Pdcunit = 40 (mm.c.a./m), multiplicado por un valor de 40m, que seria la cantidad aproximada de la tubería a utilizar, Pdctuberías = 1.6m.c.a. HT = 1.6 + 4 + 0.04 = 5.64m.ca Qnecesario = Q = 330m3 /h Hmaxi = 20m Ahora vamos a la pagina de Grundfos para seleccionar una bomba; la cual nos resulta la UPS Solar 25-120 180: 26 Perdidas tuberias: http://www.solarweb.net/forosolar/solar-termica/3623-calculo-diametro-tuberias-perdida-rozamiento- 2.html . Consultado 27.05.2011
  • 34. INSTALACION DE UN SISTEMA SOLAR TERMICO PARA UN CHALET UNIFAMILIAR EN PELAHUSTAN (TOLEDO) Javier TRESPALACIOS IMF CEU - Máster Oficial Universitario en Energías Renovables Energía solar, térmica y pasiva- 2011 33 14. CALCULO POTENCIA DE DISIPACION Como vimos en la grafica 3, hay un excedente producto de la radiación incidente y la demanda durante los mes de junio, julio y agosto. Este excedente lo podemos utilizar para la piscina exterior. Esta potencia de disipación estival ; la máxima potencia que pueden dar nuestros captadores es Gmax =1000 W/m2 . Para este cálculo utilizamos la ecuación: Pdisipacion_estival = Gmax · Sc_total = 1000 W/m2 · 13.2m2 Pdisipacion_estival = 13’200 W
  • 35. INSTALACION DE UN SISTEMA SOLAR TERMICO PARA UN CHALET UNIFAMILIAR EN PELAHUSTAN (TOLEDO) Javier TRESPALACIOS IMF CEU - Máster Oficial Universitario en Energías Renovables Energía solar, térmica y pasiva- 2011 34 15. CONCLUSIONES Al final de este trabajo vemos que hay que cambiar el angulo de inclinación optimo, por el de 55°, que nos aporta una mejor utilización durante los prediodos de frio; como podemos ver en la grafiaca: Los cambio no se hicieron porque, solo se vieron al final.
  • 36. INSTALACION DE UN SISTEMA SOLAR TERMICO PARA UN CHALET UNIFAMILIAR EN PELAHUSTAN (TOLEDO) Javier TRESPALACIOS IMF CEU - Máster Oficial Universitario en Energías Renovables Energía solar, térmica y pasiva- 2011 35 16. REFERENCIAS Principal referencia : - El libro guia del master Vínculos : - Catalogo: http://www.bartl.es/products/ssap.php . Consultado 10.05.2011