Capítulo 27. Corriente y
resistencia
Presentación PowerPoint de
Paul E. Tippens, Profesor de Física
Southern Polytechnic State University
© 2007
Objetivos: Después de completar
este módulo deberá:
• Definir corriente eléctrica y fuerza
electromotriz.
• Escribir y aplicar la ley de Ohm a circuitos
que contengan resistencia y fem.
• Definir la resistividad de un material y
aplicar fórmulas para su cálculo.
• Definir y aplicar el concepto de coeficiente
de temperatura de la resistencia.
Corriente eléctrica
La corriente eléctrica I es la tasa
del flujo de carga Q a través de
una sección transversal A en
una unidad de tiempo t.
Q
I
t

1C
1 A
1 s

Un ampere A es la carga que fluye a
la tasa de un coulomb por segundo.
A
+
-
Alambre
+Q
t
Ejemplo 1. La corriente eléctrica en un alambre
es de 6 A. ¿Cuántos electrones fluyen a través
de un punto dado en un tiempo de 3 s?
I = 6 A
;
q
I q It
t
 
q = (6 A)(3 s) = 18 C
Recuerde que: 1 e- = 1.6 x 10-19 C, luego convierta:
 
-
20
-19
1e
18 C 18 C 1,125 x 10 electrons
1.6 x 10 C
 
 
 
 
En 3 s: 1.12 x 1020 electrones
Corriente convencional
Imagine un capacitor cargado con Q = CV al que
se permite descargarse.
Flujo de electrones: La dirección
de e- que fluye de – a +.
Corriente convencional: El
movimiento de +q de + a –
tiene el mismo efecto.
Los campos eléctricos y el potencial se definen en
términos de +q, así que se supondrá corriente
convencional (incluso si el flujo de electrones puede
ser el flujo real).
+
+
-
-
+ -
Flujo de
electrones
+ -
+ -
e-
Flujo convencional
+
Fuerza electromotriz
Una fuente de fuerza electromotriz (fem) es un
dispositivo que usa energía química, mecánica u
otra para proporcionar la diferencia de potencial
necesaria para corriente eléctrica.
Líneas de
transmisión
Batería Generador
eólico
Analogía de agua para FEM
Presión
baja
Bomba
Agua
Presión
alta
Válvula
Flujo
de agua
Constricción
Fuente de
FEM
Resistor
Potencial
alto
Potencial
bajo
Interruptor
E
R
I
+ -
La fuente de fem (bomba) proporciona el voltaje
(presión) para forzar electrones (agua) a través de
una resistencia eléctrica (constricción estrecha).
Símbolos de circuito eléctrico
Con frecuencia, los circuitos eléctricos contienen
uno o más resistores agrupados y unidos a una
fuente de energía, como una batería.
Con frecuencia se usan los siguientes símbolos:
+ - + -
- + - + -
Tierra Batería
-
+
Resistor
Resistencia eléctrica
Suponga que se aplica una diferencia de potencial constante
de 4 V a los extremos de barras geométricamente similares
de, por decir, acero, cobre y vidrio.
4 V 4 V 4 V
Acero Cobre Vidrio
Is Ic Ig
La corriente en el vidrio es mucho menor
para el acero o el hierro, lo que sugiere una
propiedad de los materiales llamada
resistencia eléctrica R.
Ley de Ohm
La ley de Ohm afirma que la corriente I a través de un
conductor dado es directamente proporcional a la
diferencia de potencial V entre sus puntos extremos.
La ley de Ohm permite definir la resistencia
R y escribir las siguientes formas de la ley:
; ;
V V
I V IR R
R I
  
V
I
Ohm
de
Ley 

Ejemplo 2. Cuando una batería de 3 V se
conecta a una luz, se observa una corriente
de 6 mA. ¿Cuál es la resistencia del filamento
de la luz?
Fuente de
FEM
R
I
+ -
V = 3 V
6 mA
3.0 V
0.006 A
V
R
I
 
R = 500 W
La unidad SI para la resistencia
eléctrica es el ohm, W:
1 V
1
1 A
W 
Amperímetro
Voltímetro Reóstato
Fuente de
FEM
Reóstato
A
Símbolos de circuito de laboratorio
V fem
-
+
Factores que afectan la resistencia
1. La longitud L del material. Los materiales
más largos tienen mayor resistencia.
1 W
L
2 W
2L
2. El área A de sección transversal del material. Las
áreas más grandes ofrecen MENOS resistencia.
2 W
A
1 W
2A
Factores que afectan R (Cont.)
3. La temperatura T del material. Las temperaturas
más altas resultan en resistencias más altas.
4. El tipo del material. El hierro tiene más
resistencia eléctrica que un conductor de
cobre geométricamente similar.
Ro
R > Ro
Ri > Rc
Cobre Hierro
Resistividad de un material
La resistividad r es una propiedad de un material
que determina su resistencia eléctrica R.
Al recordar que R es directamente
proporcional a la longitud L e inversamente
proporcional al área A, se puede escribir:
or
L RA
R
A L
r r
 
La unidad de resistividad es el ohm-metro (Wm)
Ejemplo 3. ¿Qué longitud L de alambre de
cobre se requiere para producir un resistor de
4 mW? Suponga que el diámetro del alambre
es 1 mm y que la resistividad r del cobre es
1.72 x 10-8 W.m .
2 2
(0.001 m)
4 4
D
A
 
  A = 7.85 x 10-7 m2
L
R
A
r

-7 2
-8
(0.004 )(7.85 x 10 m )
1.72 x 10 m
RA
L
r
W
 
W
L = 0.183 m
La longitud requerida es:
Coeficiente de temperatura
Para la mayoría de los materiales, la resistencia
R cambia en proporción a la resistencia inicial
Ro y al cambio en temperatura Dt.
0
R R t

D  D
Cambio en
resistencia:
El coeficiente de temperatura de la resistencia,  es
el cambio en resistencia por unidad de resistencia
por unidad de grado en cambio de temperatura.

D
D

C
1
:
es
Unidad
;
0 t
R
R

Ejemplo 4. La resistencia de un alambre de cobre
es 4.00 mW a 200C. ¿Cuál será su resistencia si se
calienta a 800C? Suponga que  = 0.004 /Co.
0 0
0 ; (0.004/C )(4 m )(60 C )
R R t R

D  D D  W
Ro = 4.00 mW; Dt = 80oC – 20oC = 60 Co
DR = 1.03 mW R = Ro + DR
R = 4.00 mW + 1.03 mW
R = 5.03 mW
Potencia eléctrica
La potencia eléctrica P es la tasa a la que se gasta la
energía eléctrica, o trabajo por unidad de tiempo.
V q
V
Para cargar C: Trabajo = qV
Sustituya q = It , entonces:
VIt
P
t
 P = VI
I
t
q
I
t
qV
t
Trabajo
P 

 e
Cálculo de potencia
Al usar la ley de Ohm, se puede encontrar la
potencia eléctrica a partir de cualquier par de los
siguientes parámetros: corriente I, voltaje V y
resistencia R.
Ley de Ohm: V = IR
2
2
; ;
V
P VI P I R P
R
  
Ejemplo 5. Una herramienta se clasifica en 9 A
cuando se usa con un circuito que proporciona 120 V.
¿Qué potencia se usa para operar esta herramienta?
P = VI = (120 V)(9 A) P = 1080 W
Ejemplo 6. Un calentador de 500 W extrae
una corriente de 10 A. ¿Cuál es la
resistencia?
R = 5.00 W
2
2 2
500 W
;
(10 A)
P
P I R R
I
  
Resumen de fórmulas
Q
I
t

1C
1 A
1 s

Corriente
eléctrica:
; ;
V V
I V IR R
R I
  
Ley de Ohm
ampere
1
volt
1
ohm
1
a
Resistenci 

Coeficiente de temperatura de la resistencia:
Resumen (Cont.)
or
L RA
R
A L
r r
 
2
2
; ;
V
P VI P I R P
R
  
0
R R t

D  D
Resistividad
de materiales:
Potencia
eléctrica P:

D
D

C
1
:
s
Unidade
;
0 t
R
R

CONCLUSIÓN: Capítulo 27
Corriente y resistencia

Tippens_fisica_7e_diapositivas_27.ppt

  • 1.
    Capítulo 27. Corrientey resistencia Presentación PowerPoint de Paul E. Tippens, Profesor de Física Southern Polytechnic State University © 2007
  • 2.
    Objetivos: Después decompletar este módulo deberá: • Definir corriente eléctrica y fuerza electromotriz. • Escribir y aplicar la ley de Ohm a circuitos que contengan resistencia y fem. • Definir la resistividad de un material y aplicar fórmulas para su cálculo. • Definir y aplicar el concepto de coeficiente de temperatura de la resistencia.
  • 3.
    Corriente eléctrica La corrienteeléctrica I es la tasa del flujo de carga Q a través de una sección transversal A en una unidad de tiempo t. Q I t  1C 1 A 1 s  Un ampere A es la carga que fluye a la tasa de un coulomb por segundo. A + - Alambre +Q t
  • 4.
    Ejemplo 1. Lacorriente eléctrica en un alambre es de 6 A. ¿Cuántos electrones fluyen a través de un punto dado en un tiempo de 3 s? I = 6 A ; q I q It t   q = (6 A)(3 s) = 18 C Recuerde que: 1 e- = 1.6 x 10-19 C, luego convierta:   - 20 -19 1e 18 C 18 C 1,125 x 10 electrons 1.6 x 10 C         En 3 s: 1.12 x 1020 electrones
  • 5.
    Corriente convencional Imagine uncapacitor cargado con Q = CV al que se permite descargarse. Flujo de electrones: La dirección de e- que fluye de – a +. Corriente convencional: El movimiento de +q de + a – tiene el mismo efecto. Los campos eléctricos y el potencial se definen en términos de +q, así que se supondrá corriente convencional (incluso si el flujo de electrones puede ser el flujo real). + + - - + - Flujo de electrones + - + - e- Flujo convencional +
  • 6.
    Fuerza electromotriz Una fuentede fuerza electromotriz (fem) es un dispositivo que usa energía química, mecánica u otra para proporcionar la diferencia de potencial necesaria para corriente eléctrica. Líneas de transmisión Batería Generador eólico
  • 7.
    Analogía de aguapara FEM Presión baja Bomba Agua Presión alta Válvula Flujo de agua Constricción Fuente de FEM Resistor Potencial alto Potencial bajo Interruptor E R I + - La fuente de fem (bomba) proporciona el voltaje (presión) para forzar electrones (agua) a través de una resistencia eléctrica (constricción estrecha).
  • 8.
    Símbolos de circuitoeléctrico Con frecuencia, los circuitos eléctricos contienen uno o más resistores agrupados y unidos a una fuente de energía, como una batería. Con frecuencia se usan los siguientes símbolos: + - + - - + - + - Tierra Batería - + Resistor
  • 9.
    Resistencia eléctrica Suponga quese aplica una diferencia de potencial constante de 4 V a los extremos de barras geométricamente similares de, por decir, acero, cobre y vidrio. 4 V 4 V 4 V Acero Cobre Vidrio Is Ic Ig La corriente en el vidrio es mucho menor para el acero o el hierro, lo que sugiere una propiedad de los materiales llamada resistencia eléctrica R.
  • 10.
    Ley de Ohm Laley de Ohm afirma que la corriente I a través de un conductor dado es directamente proporcional a la diferencia de potencial V entre sus puntos extremos. La ley de Ohm permite definir la resistencia R y escribir las siguientes formas de la ley: ; ; V V I V IR R R I    V I Ohm de Ley  
  • 11.
    Ejemplo 2. Cuandouna batería de 3 V se conecta a una luz, se observa una corriente de 6 mA. ¿Cuál es la resistencia del filamento de la luz? Fuente de FEM R I + - V = 3 V 6 mA 3.0 V 0.006 A V R I   R = 500 W La unidad SI para la resistencia eléctrica es el ohm, W: 1 V 1 1 A W 
  • 12.
  • 13.
    Factores que afectanla resistencia 1. La longitud L del material. Los materiales más largos tienen mayor resistencia. 1 W L 2 W 2L 2. El área A de sección transversal del material. Las áreas más grandes ofrecen MENOS resistencia. 2 W A 1 W 2A
  • 14.
    Factores que afectanR (Cont.) 3. La temperatura T del material. Las temperaturas más altas resultan en resistencias más altas. 4. El tipo del material. El hierro tiene más resistencia eléctrica que un conductor de cobre geométricamente similar. Ro R > Ro Ri > Rc Cobre Hierro
  • 15.
    Resistividad de unmaterial La resistividad r es una propiedad de un material que determina su resistencia eléctrica R. Al recordar que R es directamente proporcional a la longitud L e inversamente proporcional al área A, se puede escribir: or L RA R A L r r   La unidad de resistividad es el ohm-metro (Wm)
  • 16.
    Ejemplo 3. ¿Quélongitud L de alambre de cobre se requiere para producir un resistor de 4 mW? Suponga que el diámetro del alambre es 1 mm y que la resistividad r del cobre es 1.72 x 10-8 W.m . 2 2 (0.001 m) 4 4 D A     A = 7.85 x 10-7 m2 L R A r  -7 2 -8 (0.004 )(7.85 x 10 m ) 1.72 x 10 m RA L r W   W L = 0.183 m La longitud requerida es:
  • 17.
    Coeficiente de temperatura Parala mayoría de los materiales, la resistencia R cambia en proporción a la resistencia inicial Ro y al cambio en temperatura Dt. 0 R R t  D  D Cambio en resistencia: El coeficiente de temperatura de la resistencia,  es el cambio en resistencia por unidad de resistencia por unidad de grado en cambio de temperatura.  D D  C 1 : es Unidad ; 0 t R R 
  • 18.
    Ejemplo 4. Laresistencia de un alambre de cobre es 4.00 mW a 200C. ¿Cuál será su resistencia si se calienta a 800C? Suponga que  = 0.004 /Co. 0 0 0 ; (0.004/C )(4 m )(60 C ) R R t R  D  D D  W Ro = 4.00 mW; Dt = 80oC – 20oC = 60 Co DR = 1.03 mW R = Ro + DR R = 4.00 mW + 1.03 mW R = 5.03 mW
  • 19.
    Potencia eléctrica La potenciaeléctrica P es la tasa a la que se gasta la energía eléctrica, o trabajo por unidad de tiempo. V q V Para cargar C: Trabajo = qV Sustituya q = It , entonces: VIt P t  P = VI I t q I t qV t Trabajo P    e
  • 20.
    Cálculo de potencia Alusar la ley de Ohm, se puede encontrar la potencia eléctrica a partir de cualquier par de los siguientes parámetros: corriente I, voltaje V y resistencia R. Ley de Ohm: V = IR 2 2 ; ; V P VI P I R P R   
  • 21.
    Ejemplo 5. Unaherramienta se clasifica en 9 A cuando se usa con un circuito que proporciona 120 V. ¿Qué potencia se usa para operar esta herramienta? P = VI = (120 V)(9 A) P = 1080 W Ejemplo 6. Un calentador de 500 W extrae una corriente de 10 A. ¿Cuál es la resistencia? R = 5.00 W 2 2 2 500 W ; (10 A) P P I R R I   
  • 22.
    Resumen de fórmulas Q I t  1C 1A 1 s  Corriente eléctrica: ; ; V V I V IR R R I    Ley de Ohm ampere 1 volt 1 ohm 1 a Resistenci  
  • 23.
    Coeficiente de temperaturade la resistencia: Resumen (Cont.) or L RA R A L r r   2 2 ; ; V P VI P I R P R    0 R R t  D  D Resistividad de materiales: Potencia eléctrica P:  D D  C 1 : s Unidade ; 0 t R R 
  • 24.