FÍSICA
1. MEDICIÓN Y RESOLUCIÓN DE
PROBLEMAS
CIFRAS SIGNIFICATIVAS
COMPILADO POR: Dra. Zully Carvache Franco, MSc.
Las cifras significativas de un número son
aquellas que pueden ser usadas en forma
confiable; también se puede decir que s...
 Imaginemos que realizamos una medición, como
seria por ejemplo la longitud de una barra,
considere que la menor división...
 El error absoluto es un valor que da un
intervalo de confianza donde probablemente
se encuentra el valor medio.
 En est...
1. Todas las cifras escritas comprendidas entres 1-
9 son significativas.
2. Los ceros a la izquierda nunca son significat...
 Suma y resta
Al sumar o restar 2 números decimales, el
numero de cifras decimales del resultado es
igual al de la cantid...
 Multiplicación y división
Es el resultado de una multiplicación,
división o elevación a una cierta potencia,
tiene el mi...
Clase   cifras significativas (1)
Próxima SlideShare
Cargando en…5
×

Clase cifras significativas (1)

200 visualizaciones

Publicado el

0 comentarios
0 recomendaciones
Estadísticas
Notas
  • Sé el primero en comentar

  • Sé el primero en recomendar esto

Sin descargas
Visualizaciones
Visualizaciones totales
200
En SlideShare
0
De insertados
0
Número de insertados
7
Acciones
Compartido
0
Descargas
1
Comentarios
0
Recomendaciones
0
Insertados 0
No insertados

No hay notas en la diapositiva.

Clase cifras significativas (1)

  1. 1. FÍSICA 1. MEDICIÓN Y RESOLUCIÓN DE PROBLEMAS CIFRAS SIGNIFICATIVAS COMPILADO POR: Dra. Zully Carvache Franco, MSc.
  2. 2. Las cifras significativas de un número son aquellas que pueden ser usadas en forma confiable; también se puede decir que son los dígitos de un número que consideramos no nulos. Las cifras significativas aparecen en todo el proceso de mediciones directas o indirectas. Están constituidas por cifras correctas y una cifra estimada o dudosa.
  3. 3.  Imaginemos que realizamos una medición, como seria por ejemplo la longitud de una barra, considere que la menor división de la regla utilizada es de 1mm. Al interpretar el resultado de esa medida. Se da cuenta que esta comprendido entre 14.3 cm y 14.4 cm, la fracción de milímetro que deberá aumentarse a 14.3 tendrá que ser aproximada, pues la regla no presenta divisiones inferiores a 1mm.  Para efectuar esta aproximación, deberá imaginar el intervalo entre 14.3 y 14.4 cm subdividido en 10 partes iguales, y con ello la fracción de milímetro que debe aumentarse a 14.3 cm se podrá obtener con una estimación razonable
  4. 4.  El error absoluto es un valor que da un intervalo de confianza donde probablemente se encuentra el valor medio.  En esta medición de 2.6 ± 0.1 m el error absoluto ±0.1 de un intervalo de confianza de 2.5m hasta 2.7m donde probablemente se encuentre la medición.
  5. 5. 1. Todas las cifras escritas comprendidas entres 1- 9 son significativas. 2. Los ceros a la izquierda nunca son significativas independientemente que estén en la parte entera o decimal del numero. Ej.: 0.082058, los dos primeros ceros no son significativos. 3. Los 0 intermedios son significativos. 4. Los 0 finales de un dato real (14.00) son significativos. 5. Los ceros finales de un dato entero (300) no son significativos, si se desea expresar que son significativos se añade un punto final (300.) o se expresa en notación de potencia de diez (3.00 x 102 ).
  6. 6.  Suma y resta Al sumar o restar 2 números decimales, el numero de cifras decimales del resultado es igual al de la cantidad con el menor numero de ellas. Ej.: 30.3475 – 30.3472 = 0.0003
  7. 7.  Multiplicación y división Es el resultado de una multiplicación, división o elevación a una cierta potencia, tiene el mismo numero de cifras significativas que la cantidad de la operación que tenga el menor numero de cifras significativas. Ej.: 2.62 / 8.14732116 = 0.322

×