SlideShare una empresa de Scribd logo
1 de 7
Física Aplicada: Técnicas Experimentales Básicas
PRÁCTICA Nº 22
CIRCUITOS DE CORRIENTE ALTERNA
OBJETIVO:
Estudiar los circuitos en serie RL, RC y RLC en corriente alterna.
Aplicación al cálculo de L y C.
MATERIAL:
Alimentación de potencia: c.a. 6.3 V a 50 Hz. Voltímetro electrónico (c.a.
0-10 V) u osciloscopio. Miliamperímetro (1 mA) Resistencias: 47 KQ
Condensadores: 470 nF. Autoinducciones: bobina de 8 H a 1 mA
(aproximadamente). Interruptor y cable de conexión.
FUNDAMENTO:
Cuando a Los extremos de una resistencia óhmica se aplica una
tensión alterna, V = VM sen ω t, la intensidad de la corriente que se origina
se deduce a partir de la ley de Ohm:
tsenItsen
R
V
i m
m
ωω == (1)
resultando que la intensidad también varía
sinusoidalmente con el tiempo, con la misma
frecuencia que la tensión aplicada, y que su valor
máximo vale
R
V
I m
m = (2)
Por tanto, cuando un circuito sólo contiene resistencia óhmica, la
intensidad de la corriente no presenta diferencia de fase respecto a la tensión
aplicada que la origina (fig. 1).
En general, en los circuitos de corriente alterna se suelen utilizar otros
elementos además de las resistencias óhmicas. Supongamos que existan,
conectadas en serie con una resistencia R, una bobina L y un condensador
C. Al aplicar una tensión alterna a los extremos de dicho circuito en serie, se
establece, una vez desaparecidos los efectos transitorios de corta duración,
una corriente estacionaria que viene expresada por
)( φω −= tsenIi m (3)
en la que se pone claramente de manifiesto que la frecuencia f = ω/2π de la
intensidad es la misma que la correspondiente a la tensión, pero que la
intensidad está desfasada en un ángulo φ (ángulo de desfase o desfase)
respecto a la tensión.
1
Fig.1
V,I
V
I
Los valores instantáneos de una intensidad de corriente, f.e.m. o
diferencia de potencial alternas, varían de un modo continuo desde un valor
máximo en un sentido, pasando por cero, hasta un valor máximo en el sentido
opuesto, y así sucesivamente. El comportamiento de un determinado circuito
en serie queda expresado por los valores máximos de la intensidad (Im) y de la
tensión (Vm) (también del valor del desfase φ), pero es mucho más interesante
estudiar los circuitos de corriente alterna en función de los valores eficaces, lef y
Vef, en lugar de los valores máximos, porque los valores que se miden con los
voltímetros y amperímetros de c.a. son precisamente los eficaces.
La intensidad eficaz de una corriente alterna se define como el valor de
la intensidad de una corriente continua que desarrollase la misma cantidad de
calor en la misma resistencia y en el mismo tiempo. Se demuestra que
m
m
ef I
I
I 707.0
2
== (4)
y análogamente, la tensión eficaz,
m
m
ef V
V
V 707.0
2
== (5)
De ahora en adelante, se interpretará que las letras I y V sin subíndices
hacen referencia a los valores eficaces de las magnitudes correspondientes.
La intensidad máxima Im está relacionada con la tensión máxima Vm
por una expresión que tiene la misma forma que la que expresa la ley de
Ohm para corrientes continuas
Z
V
I m
m = (6)
denominándose la magnitud Z, impedancia del circuito, que es una
generalización de la resistencia R de la ley de Ohm en corriente continua.
Naturalmente, dividiendo los dos miembros de (6) por 2 , se obtiene para los
valores eficaces
Z
V
I = (7)
La relación que existe entre la impedancia Z del circuto RLC en serie y
las características R, L y C de los tres elementos considerados es
22
))/1(( CLRZ ωω −+= (8)
que, introduciendo las siguientes simplificaciones,
XL = ωL XC = 1/ωC X = XL-XC (9)
se escribe
2
22
XRZ += (10)
Por otra parte, el desfase φ, viene dado por la expresión
R
X
arctg=φ (11)
La magnitud X recibe el nombre de reactancia; XL y XC son la reactancia
inductiva o inductancia y la reactancia capacitativa o capacitancia. Tanto la
impedancia como la reactancia se miden en ohmios (Ω).
Los papeles de la inductancia y de la capacitancia son contrapuestos,
tanto en lo que se refiere a la limitación de la corriente, como al desfase que
introducen entre la intensidad y la tensión. Así, mientras que un aumento de
inductancia reduce la intensidad, un aumento de capacitancia la hace
aumentar. Además, la inductancia retrasa la
intensidad respecto a la tensión, en tanto que la
capacitancia la adelanta. Tanto la inductancia
como la capacitancia dependen de la frecuencia
de la tensión alterna aplicada.
La relación que existe entre la impedancia
Z de un circuito RLC en serie y los valores de R,
XL y XC puede representarse gráficamente
considerando estas magnitudes como vectores.
La resistencia R se representa por un vector
situado sobre el eje Ox en sentido positivo del
mismo; y las reactancias XL y XC, por vectores
situados sobre el eje Oy, en los sentidos positivo
y negativo, respectivamente. La impedancia Z
será el vector suma de los tres vectores. Véase la figura 2, denominada
diagrama del vector impedancia del circuito. En dicha figura, se ha considerado
el caso en que XL > XC, y por tanto X es positiva, y también es positivo el
desfase φ. Diremos que el circuito representado por dicho diagrama es
"inductivo". En el caso contrario, esto es XC > XL, el circuito sería "capacitivo".
Como casos especiales, es evidente que si el circuito sólo contiene una
resistencia pura, entonces X = 0; Z = R y φ = 0, y la intensidad está en fase con
la tensión aplicada.
Si el circuito contiene autoinducción pura, será R = 0, Z = XL = ωL y φ = +
π/2, y la intensidad se retrasa 90° respecto a la tensión aplicada.
Pero si el circuito se compone de capacidad pura, se tendrá R = 0, Z =
XC = 1/ωC y φ = - π/2, y la intensidad adelanta en un ángulo de 90° a la tensión.
La intensidad de la corriente tiene la misma fase en todas las partes de
3
X
R
Z
XC
XL
Fig.2
V
I
φ
φ
Fig.3
un circuito en serie. Es decir: es máxima en la resistencia, autoinducción y
condensador al mismo tiempo; nula en los tres un instante después; máxima,
pero de sentido opuesto, otro instante todavía posterior, y así sucesivamente.
La diferencia de potencial
(d.d.p.) entre dos puntos
cualesquiera de un circuito es igual
al producto de la intensidad por la
impedancia del mismo entre los
dos puntos considerados, siempre
que no exista ninguna f.e.m.
comprendida entre dichos puntos.
Así,
Vab=IZab (12)
La diferencia de fase φ entre Vab e I será
φ = arctg (Xab/Rab) (13)
En la figura 4, la impedancia Zab entre a y b es R y, por consiguiente, Vab
= IR y φ = arctg0 = 0. Esto es, la d.d.p. entre los terminales de una resistencia
pura está en fase con la intensidad de la corriente.
Entre los puntos b y c es Zbe = XL, Vbe= IXL y φ = arctg π/2. Esto es, la
d.d.p. entre los terminales de una autoinducción pura está adelantada 90°
respecto a la intensidad.
Entre los puntos c y d es Zed = XC, Ved = IXC y φ = arctg -π/2. Esto es, la
d.d.p. entre los terminales de una capacidad pura está retrasada 90° respecto a
la intensidad.
Debido a estos desfases, la suma de
la diferencia de potenciales eficaces entre
los extremos de un cierto número de
elementos de un circuito en serie no es
igual a la diferencia de potencial entre los
extremos del conjunto. La suma de
tensiones deberá efectuarse
geométricamente, como se indica en la
figura 5, donde VR, VL y VC son las
tensiones entre los extremos de la
resistencia R, autoinducción L y capacidad
C, respectivamente, y V es la tensión entre
los extremos de la asociación en serie
RLC.
MÉTODO:
(a) Circuito RL en serie
(1) Mídase con el
óhmetro (o con un puente de
Wheatstone) la resistencia R de
la resistencia suministrada para
esta práctica. Anótese el valor
medido.
(2) Procédase,
4
R L C
a b c d
Fig.4
VLC
VRVC
VL
Fig.5
6.3V 50Hz
L4,7K
Fig.6
análogamente, a medir la resistencia óhmica de la bobina, RL. Anótese.
(3) Móntese el circuito de la figura 6. Ciérrese el interruptor.
(4) Con el voltímetro (o con el osciloscopio), mídanse las diferencias
de potencial eficaz entre los extremos de la resistencia, VR, de la
autoinducción, VL, y del conjunto, V. Anótense los resultados.
(5) Mídase, con el miliamperímetro, la intensidad eficaz, I, del circuito.
(6) Calcúlese la intensidad eficaz del circuito a partir de la fórmula (12).
(7) Utilizando la ec. (12), determínese la inductancia, XL, de la bobina
y, a partir de dicho valor, calcúlese la autoinducción, L, de la misma.
(8) Determínese la impedancia Z del circuito RL en serie a partir de los
valores de V e I.
(9) Calcúlese la impedancia Z del circuito RL a partir de la fórmula (10).
(10) Calcúlese el desfase φ entre la intensidad y la tensión a partir de
(11).
(11) Dibújense los diagramas vectoriales de impedancias y de
tensiones.
(b) Circuito RC en serie
(12) Móntese el circuito de la figura
7. Ciérrese el interruptor.
(13) Mídase la tensión eficaz entre
los extremos de la resistencia, VR, de la
capacidad, VC, y del conjunto RC, V.
(14) Mídase la intensidad eficaz
del circuito, I, con el miliamperímetro.
(15) Aplicando la ec. (12),
calcúlense la capacitancia del
condensador y la capacidad del mismo.
(16) Determínese la impedancia Z del circuito RC en serie a partir de
los valores de V e I.
(17) Calcúlese el desfase φ entre la intensidad y la tensión aplicada.
(18) Dibújense los diagramas vectoriales de impedancias y de
tensiones.
(c) Circuito RLC en serie
(19) Móntese el
circuito de la figura 8.
Ciérrese el interruptor.
(20) Mídanse las
5
6.3V 50Hz
C4,7K
Fig.7
6.3V 50Hz
L4,7K
Fig.8
C
tensiones eficaces entre los extremos de la resistencia, VR, de la
autoinducción, VL, del condensador, VC, y del montaje RLC en serie.
(21) Mídase con el miliamperímetro la intensidad eficaz en el circuito.
(22) Calcúlese, aplicando la ec. (12), la intensidad eficaz en el circuito.
(23) Calcúlense XL, XC, L y C, como en los circuitos anteriores.
(24) Calcúlese la impedancia Z del circuito RLC en serie a partir de los
valores de la intensidad I y de la tensión total V.
(25) Calcúlese la impedancia del circuito RLC en serie aplicando la ec.
(10).
(26) Determínese el desfase entre la intensidad y la tensión total.
(27) Dibújense los diagramas vectoriales de impedancias y de
tensiones.
(28) Represéntesen gráficamente las funciones intensidad instantánea,
i, y tensión instantánea, v, en función del tiempo para cada uno de los
circuitos estudiados en la práctica.
6
tensiones eficaces entre los extremos de la resistencia, VR, de la
autoinducción, VL, del condensador, VC, y del montaje RLC en serie.
(21) Mídase con el miliamperímetro la intensidad eficaz en el circuito.
(22) Calcúlese, aplicando la ec. (12), la intensidad eficaz en el circuito.
(23) Calcúlense XL, XC, L y C, como en los circuitos anteriores.
(24) Calcúlese la impedancia Z del circuito RLC en serie a partir de los
valores de la intensidad I y de la tensión total V.
(25) Calcúlese la impedancia del circuito RLC en serie aplicando la ec.
(10).
(26) Determínese el desfase entre la intensidad y la tensión total.
(27) Dibújense los diagramas vectoriales de impedancias y de
tensiones.
(28) Represéntesen gráficamente las funciones intensidad instantánea,
i, y tensión instantánea, v, en función del tiempo para cada uno de los
circuitos estudiados en la práctica.
6

Más contenido relacionado

La actualidad más candente

Carga y descarga de un capacitor
Carga y descarga de un capacitorCarga y descarga de un capacitor
Carga y descarga de un capacitorCarlos Caicedo
 
Carga y descarga de un condensador y transformadores
Carga y descarga de un condensador y transformadoresCarga y descarga de un condensador y transformadores
Carga y descarga de un condensador y transformadoresJavier García Molleja
 
Circuito Rc
Circuito RcCircuito Rc
Circuito RcLuzpere
 
Circuito rc en cc
Circuito rc en ccCircuito rc en cc
Circuito rc en ccMafe Filipo
 
Laboratorio 2 circuitos ac carga y descarga condensador
Laboratorio 2 circuitos ac carga y descarga condensadorLaboratorio 2 circuitos ac carga y descarga condensador
Laboratorio 2 circuitos ac carga y descarga condensadorSENA
 
Informe de circuitos rc
Informe de circuitos rcInforme de circuitos rc
Informe de circuitos rcafrodita123
 
Carga y descarga de eun condensador
Carga y descarga de eun condensadorCarga y descarga de eun condensador
Carga y descarga de eun condensadorMafe Filipo
 
Carga y descarga de los condensadores t
Carga y descarga de los condensadores tCarga y descarga de los condensadores t
Carga y descarga de los condensadores tFabian B. Aguilar
 
Circuito electrico rl y rc , lrc todo en serie
Circuito electrico rl y rc , lrc todo en serieCircuito electrico rl y rc , lrc todo en serie
Circuito electrico rl y rc , lrc todo en seriejacson chipana castro
 
Carga Y Descarga De Un Capacitor.
Carga Y Descarga De Un Capacitor.Carga Y Descarga De Un Capacitor.
Carga Y Descarga De Un Capacitor.yesid
 
Análisis circuitos rc, rl, lc y rlc
Análisis   circuitos rc, rl, lc y rlcAnálisis   circuitos rc, rl, lc y rlc
Análisis circuitos rc, rl, lc y rlcAlejandra Ceballos
 
EL CONDENSADOR, CIRCUITO RC Y RL DE 1ER ORDEN SENCILLO
EL CONDENSADOR, CIRCUITO RC Y RL DE 1ER ORDEN SENCILLOEL CONDENSADOR, CIRCUITO RC Y RL DE 1ER ORDEN SENCILLO
EL CONDENSADOR, CIRCUITO RC Y RL DE 1ER ORDEN SENCILLOGilber Briceño
 

La actualidad más candente (20)

Carga y descarga de un capacitor
Carga y descarga de un capacitorCarga y descarga de un capacitor
Carga y descarga de un capacitor
 
Carga y descarga de un condensador y transformadores
Carga y descarga de un condensador y transformadoresCarga y descarga de un condensador y transformadores
Carga y descarga de un condensador y transformadores
 
Circuito Rc
Circuito RcCircuito Rc
Circuito Rc
 
Circuito rc en cc
Circuito rc en ccCircuito rc en cc
Circuito rc en cc
 
Laboratorio 2 circuitos ac carga y descarga condensador
Laboratorio 2 circuitos ac carga y descarga condensadorLaboratorio 2 circuitos ac carga y descarga condensador
Laboratorio 2 circuitos ac carga y descarga condensador
 
Informe de circuitos rc
Informe de circuitos rcInforme de circuitos rc
Informe de circuitos rc
 
Practica 1 circuitos r c
Practica 1 circuitos r cPractica 1 circuitos r c
Practica 1 circuitos r c
 
Carga y descarga de eun condensador
Carga y descarga de eun condensadorCarga y descarga de eun condensador
Carga y descarga de eun condensador
 
Carga y descarga de los condensadores t
Carga y descarga de los condensadores tCarga y descarga de los condensadores t
Carga y descarga de los condensadores t
 
Carga y Descarga de un Condensador
Carga y Descarga de un CondensadorCarga y Descarga de un Condensador
Carga y Descarga de un Condensador
 
Lito el maxime
Lito el maximeLito el maxime
Lito el maxime
 
Conservación de la carga
Conservación de la cargaConservación de la carga
Conservación de la carga
 
Informe 4 - Física III
Informe 4 - Física IIIInforme 4 - Física III
Informe 4 - Física III
 
Circuito electrico rl y rc , lrc todo en serie
Circuito electrico rl y rc , lrc todo en serieCircuito electrico rl y rc , lrc todo en serie
Circuito electrico rl y rc , lrc todo en serie
 
Carga Y Descarga De Un Capacitor.
Carga Y Descarga De Un Capacitor.Carga Y Descarga De Un Capacitor.
Carga Y Descarga De Un Capacitor.
 
Circuitos rc
Circuitos rcCircuitos rc
Circuitos rc
 
Circuitos rc
Circuitos rcCircuitos rc
Circuitos rc
 
Análisis circuitos rc, rl, lc y rlc
Análisis   circuitos rc, rl, lc y rlcAnálisis   circuitos rc, rl, lc y rlc
Análisis circuitos rc, rl, lc y rlc
 
EL CONDENSADOR, CIRCUITO RC Y RL DE 1ER ORDEN SENCILLO
EL CONDENSADOR, CIRCUITO RC Y RL DE 1ER ORDEN SENCILLOEL CONDENSADOR, CIRCUITO RC Y RL DE 1ER ORDEN SENCILLO
EL CONDENSADOR, CIRCUITO RC Y RL DE 1ER ORDEN SENCILLO
 
CIRCUITOS RC
CIRCUITOS RCCIRCUITOS RC
CIRCUITOS RC
 

Similar a circuitos en rc fisica 3

Analisis de circuitos en corriente alterna
Analisis de circuitos en corriente alternaAnalisis de circuitos en corriente alterna
Analisis de circuitos en corriente alternaYeyin94
 
ejercicioscircuitosresueltos.pdf
ejercicioscircuitosresueltos.pdfejercicioscircuitosresueltos.pdf
ejercicioscircuitosresueltos.pdfssuserb98ae5
 
Ejercicioscircuitosresueltos
EjercicioscircuitosresueltosEjercicioscircuitosresueltos
EjercicioscircuitosresueltosCceilia Palominos
 
Ejercicioscircuitosresueltos
EjercicioscircuitosresueltosEjercicioscircuitosresueltos
EjercicioscircuitosresueltosCceilia Palominos
 
Tema 6 corriente alterna
Tema 6 corriente alternaTema 6 corriente alterna
Tema 6 corriente alternaceimin haquira
 
Lab. informe de electricidad 12
Lab. informe  de electricidad 12Lab. informe  de electricidad 12
Lab. informe de electricidad 12Wilmer Martel
 
Tema 6 corriente alterna
Tema 6 corriente alternaTema 6 corriente alterna
Tema 6 corriente alternajorihuela12
 
Exposicio ncapitulo5 circuitoselectricos
Exposicio ncapitulo5 circuitoselectricosExposicio ncapitulo5 circuitoselectricos
Exposicio ncapitulo5 circuitoselectricoshellomariel
 
Exposicio ncapitulo5 circuitoselectricos
Exposicio ncapitulo5 circuitoselectricosExposicio ncapitulo5 circuitoselectricos
Exposicio ncapitulo5 circuitoselectricosmaria_amanta
 
Informe previo laboratorio1
Informe previo laboratorio1Informe previo laboratorio1
Informe previo laboratorio1William Quiroz
 
Tecnológico vida-nueva-power-point proyecto
Tecnológico vida-nueva-power-point proyectoTecnológico vida-nueva-power-point proyecto
Tecnológico vida-nueva-power-point proyectobryan santafe
 

Similar a circuitos en rc fisica 3 (20)

Lab 01_CIRCUITO RL RC RLC
Lab 01_CIRCUITO RL RC RLCLab 01_CIRCUITO RL RC RLC
Lab 01_CIRCUITO RL RC RLC
 
FVC-BeteluGonzalo.pdf
FVC-BeteluGonzalo.pdfFVC-BeteluGonzalo.pdf
FVC-BeteluGonzalo.pdf
 
Analisis de circuitos en corriente alterna
Analisis de circuitos en corriente alternaAnalisis de circuitos en corriente alterna
Analisis de circuitos en corriente alterna
 
ejercicioscircuitosresueltos.pdf
ejercicioscircuitosresueltos.pdfejercicioscircuitosresueltos.pdf
ejercicioscircuitosresueltos.pdf
 
Ejercicioscircuitosresueltos
EjercicioscircuitosresueltosEjercicioscircuitosresueltos
Ejercicioscircuitosresueltos
 
Ejercicioscircuitosresueltos
EjercicioscircuitosresueltosEjercicioscircuitosresueltos
Ejercicioscircuitosresueltos
 
SERIE CIRCUITOS
SERIE CIRCUITOSSERIE CIRCUITOS
SERIE CIRCUITOS
 
Ejercicioscircuitosresueltos
EjercicioscircuitosresueltosEjercicioscircuitosresueltos
Ejercicioscircuitosresueltos
 
Tema 6 corriente alterna
Tema 6 corriente alternaTema 6 corriente alterna
Tema 6 corriente alterna
 
Lab. informe de electricidad 12
Lab. informe  de electricidad 12Lab. informe  de electricidad 12
Lab. informe de electricidad 12
 
Analisis_de_circuitos_RLC.pptx
Analisis_de_circuitos_RLC.pptxAnalisis_de_circuitos_RLC.pptx
Analisis_de_circuitos_RLC.pptx
 
Alterna
AlternaAlterna
Alterna
 
Corriente Alterna
Corriente AlternaCorriente Alterna
Corriente Alterna
 
Corriente alterna
Corriente alternaCorriente alterna
Corriente alterna
 
Tema 6 corriente alterna
Tema 6 corriente alternaTema 6 corriente alterna
Tema 6 corriente alterna
 
Exposicio ncapitulo5 circuitoselectricos
Exposicio ncapitulo5 circuitoselectricosExposicio ncapitulo5 circuitoselectricos
Exposicio ncapitulo5 circuitoselectricos
 
Circuitos rc y rl
Circuitos rc y rlCircuitos rc y rl
Circuitos rc y rl
 
Exposicio ncapitulo5 circuitoselectricos
Exposicio ncapitulo5 circuitoselectricosExposicio ncapitulo5 circuitoselectricos
Exposicio ncapitulo5 circuitoselectricos
 
Informe previo laboratorio1
Informe previo laboratorio1Informe previo laboratorio1
Informe previo laboratorio1
 
Tecnológico vida-nueva-power-point proyecto
Tecnológico vida-nueva-power-point proyectoTecnológico vida-nueva-power-point proyecto
Tecnológico vida-nueva-power-point proyecto
 

Último

CENTROIDES Y MOMENTOS DE INERCIA DE AREAS PLANAS.pdf
CENTROIDES Y MOMENTOS DE INERCIA DE AREAS PLANAS.pdfCENTROIDES Y MOMENTOS DE INERCIA DE AREAS PLANAS.pdf
CENTROIDES Y MOMENTOS DE INERCIA DE AREAS PLANAS.pdfpaola110264
 
Final Ashto método mecánica de suelos info
Final Ashto método mecánica de suelos infoFinal Ashto método mecánica de suelos info
Final Ashto método mecánica de suelos infoMEYERQuitoSalas
 
CLASE 2 MUROS CARAVISTA EN CONCRETO Y UNIDAD DE ALBAÑILERIA
CLASE 2 MUROS CARAVISTA EN CONCRETO  Y UNIDAD DE ALBAÑILERIACLASE 2 MUROS CARAVISTA EN CONCRETO  Y UNIDAD DE ALBAÑILERIA
CLASE 2 MUROS CARAVISTA EN CONCRETO Y UNIDAD DE ALBAÑILERIAMayraOchoa35
 
3039_ftg_01Entregable 003_Matematica.pptx
3039_ftg_01Entregable 003_Matematica.pptx3039_ftg_01Entregable 003_Matematica.pptx
3039_ftg_01Entregable 003_Matematica.pptxJhordanGonzalo
 
AMBIENTES SEDIMENTARIOS GEOLOGIA TIPOS .pptx
AMBIENTES SEDIMENTARIOS GEOLOGIA TIPOS .pptxAMBIENTES SEDIMENTARIOS GEOLOGIA TIPOS .pptx
AMBIENTES SEDIMENTARIOS GEOLOGIA TIPOS .pptxLuisvila35
 
Edificio residencial Tarsia de AEDAS Homes Granada
Edificio residencial Tarsia de AEDAS Homes GranadaEdificio residencial Tarsia de AEDAS Homes Granada
Edificio residencial Tarsia de AEDAS Homes GranadaANDECE
 
Topografía 1 Nivelación y Carretera en la Ingenierías
Topografía 1 Nivelación y Carretera en la IngenieríasTopografía 1 Nivelación y Carretera en la Ingenierías
Topografía 1 Nivelación y Carretera en la IngenieríasSegundo Silva Maguiña
 
3.3 Tipos de conexiones en los transformadores trifasicos.pdf
3.3 Tipos de conexiones en los transformadores trifasicos.pdf3.3 Tipos de conexiones en los transformadores trifasicos.pdf
3.3 Tipos de conexiones en los transformadores trifasicos.pdfRicardoRomeroUrbano
 
CHARLA DE INDUCCIÓN SEGURIDAD Y SALUD OCUPACIONAL
CHARLA DE INDUCCIÓN SEGURIDAD Y SALUD OCUPACIONALCHARLA DE INDUCCIÓN SEGURIDAD Y SALUD OCUPACIONAL
CHARLA DE INDUCCIÓN SEGURIDAD Y SALUD OCUPACIONALKATHIAMILAGRITOSSANC
 
Flujo multifásico en tuberias de ex.pptx
Flujo multifásico en tuberias de ex.pptxFlujo multifásico en tuberias de ex.pptx
Flujo multifásico en tuberias de ex.pptxEduardoSnchezHernnde5
 
AVANCE EXPEDIENTE TECNICO POROTO - TRUJILLO
AVANCE EXPEDIENTE TECNICO POROTO - TRUJILLOAVANCE EXPEDIENTE TECNICO POROTO - TRUJILLO
AVANCE EXPEDIENTE TECNICO POROTO - TRUJILLOSANTOSESTANISLAORODR
 
Edificio residencial Becrux en Madrid. Fachada de GRC
Edificio residencial Becrux en Madrid. Fachada de GRCEdificio residencial Becrux en Madrid. Fachada de GRC
Edificio residencial Becrux en Madrid. Fachada de GRCANDECE
 
produccion de cerdos. 2024 abril 20..pptx
produccion de cerdos. 2024 abril 20..pptxproduccion de cerdos. 2024 abril 20..pptx
produccion de cerdos. 2024 abril 20..pptxEtse9
 
Diagrama de flujo metalurgia del cobre..pptx
Diagrama de flujo metalurgia del cobre..pptxDiagrama de flujo metalurgia del cobre..pptx
Diagrama de flujo metalurgia del cobre..pptxHarryArmandoLazaroBa
 
Peligros de Excavaciones y Zanjas presentacion
Peligros de Excavaciones y Zanjas presentacionPeligros de Excavaciones y Zanjas presentacion
Peligros de Excavaciones y Zanjas presentacionOsdelTacusiPancorbo
 
SEGURIDAD EN CONSTRUCCION PPT PARA EL CIP
SEGURIDAD EN CONSTRUCCION PPT PARA EL CIPSEGURIDAD EN CONSTRUCCION PPT PARA EL CIP
SEGURIDAD EN CONSTRUCCION PPT PARA EL CIPJosLuisFrancoCaldern
 
CONSTRUCCIONES II - SEMANA 01 - REGLAMENTO NACIONAL DE EDIFICACIONES.pdf
CONSTRUCCIONES II - SEMANA 01 - REGLAMENTO NACIONAL DE EDIFICACIONES.pdfCONSTRUCCIONES II - SEMANA 01 - REGLAMENTO NACIONAL DE EDIFICACIONES.pdf
CONSTRUCCIONES II - SEMANA 01 - REGLAMENTO NACIONAL DE EDIFICACIONES.pdfErikNivor
 
Flujo potencial, conceptos básicos y ejemplos resueltos.
Flujo potencial, conceptos básicos y ejemplos resueltos.Flujo potencial, conceptos básicos y ejemplos resueltos.
Flujo potencial, conceptos básicos y ejemplos resueltos.ALEJANDROLEONGALICIA
 
Manual de Usuario Estacion total Sokkia SERIE SET10K.pdf
Manual de Usuario Estacion total Sokkia SERIE SET10K.pdfManual de Usuario Estacion total Sokkia SERIE SET10K.pdf
Manual de Usuario Estacion total Sokkia SERIE SET10K.pdfSandXmovex
 
183045401-Terminal-Terrestre-de-Trujillo.pdf
183045401-Terminal-Terrestre-de-Trujillo.pdf183045401-Terminal-Terrestre-de-Trujillo.pdf
183045401-Terminal-Terrestre-de-Trujillo.pdfEdwinAlexanderSnchez2
 

Último (20)

CENTROIDES Y MOMENTOS DE INERCIA DE AREAS PLANAS.pdf
CENTROIDES Y MOMENTOS DE INERCIA DE AREAS PLANAS.pdfCENTROIDES Y MOMENTOS DE INERCIA DE AREAS PLANAS.pdf
CENTROIDES Y MOMENTOS DE INERCIA DE AREAS PLANAS.pdf
 
Final Ashto método mecánica de suelos info
Final Ashto método mecánica de suelos infoFinal Ashto método mecánica de suelos info
Final Ashto método mecánica de suelos info
 
CLASE 2 MUROS CARAVISTA EN CONCRETO Y UNIDAD DE ALBAÑILERIA
CLASE 2 MUROS CARAVISTA EN CONCRETO  Y UNIDAD DE ALBAÑILERIACLASE 2 MUROS CARAVISTA EN CONCRETO  Y UNIDAD DE ALBAÑILERIA
CLASE 2 MUROS CARAVISTA EN CONCRETO Y UNIDAD DE ALBAÑILERIA
 
3039_ftg_01Entregable 003_Matematica.pptx
3039_ftg_01Entregable 003_Matematica.pptx3039_ftg_01Entregable 003_Matematica.pptx
3039_ftg_01Entregable 003_Matematica.pptx
 
AMBIENTES SEDIMENTARIOS GEOLOGIA TIPOS .pptx
AMBIENTES SEDIMENTARIOS GEOLOGIA TIPOS .pptxAMBIENTES SEDIMENTARIOS GEOLOGIA TIPOS .pptx
AMBIENTES SEDIMENTARIOS GEOLOGIA TIPOS .pptx
 
Edificio residencial Tarsia de AEDAS Homes Granada
Edificio residencial Tarsia de AEDAS Homes GranadaEdificio residencial Tarsia de AEDAS Homes Granada
Edificio residencial Tarsia de AEDAS Homes Granada
 
Topografía 1 Nivelación y Carretera en la Ingenierías
Topografía 1 Nivelación y Carretera en la IngenieríasTopografía 1 Nivelación y Carretera en la Ingenierías
Topografía 1 Nivelación y Carretera en la Ingenierías
 
3.3 Tipos de conexiones en los transformadores trifasicos.pdf
3.3 Tipos de conexiones en los transformadores trifasicos.pdf3.3 Tipos de conexiones en los transformadores trifasicos.pdf
3.3 Tipos de conexiones en los transformadores trifasicos.pdf
 
CHARLA DE INDUCCIÓN SEGURIDAD Y SALUD OCUPACIONAL
CHARLA DE INDUCCIÓN SEGURIDAD Y SALUD OCUPACIONALCHARLA DE INDUCCIÓN SEGURIDAD Y SALUD OCUPACIONAL
CHARLA DE INDUCCIÓN SEGURIDAD Y SALUD OCUPACIONAL
 
Flujo multifásico en tuberias de ex.pptx
Flujo multifásico en tuberias de ex.pptxFlujo multifásico en tuberias de ex.pptx
Flujo multifásico en tuberias de ex.pptx
 
AVANCE EXPEDIENTE TECNICO POROTO - TRUJILLO
AVANCE EXPEDIENTE TECNICO POROTO - TRUJILLOAVANCE EXPEDIENTE TECNICO POROTO - TRUJILLO
AVANCE EXPEDIENTE TECNICO POROTO - TRUJILLO
 
Edificio residencial Becrux en Madrid. Fachada de GRC
Edificio residencial Becrux en Madrid. Fachada de GRCEdificio residencial Becrux en Madrid. Fachada de GRC
Edificio residencial Becrux en Madrid. Fachada de GRC
 
produccion de cerdos. 2024 abril 20..pptx
produccion de cerdos. 2024 abril 20..pptxproduccion de cerdos. 2024 abril 20..pptx
produccion de cerdos. 2024 abril 20..pptx
 
Diagrama de flujo metalurgia del cobre..pptx
Diagrama de flujo metalurgia del cobre..pptxDiagrama de flujo metalurgia del cobre..pptx
Diagrama de flujo metalurgia del cobre..pptx
 
Peligros de Excavaciones y Zanjas presentacion
Peligros de Excavaciones y Zanjas presentacionPeligros de Excavaciones y Zanjas presentacion
Peligros de Excavaciones y Zanjas presentacion
 
SEGURIDAD EN CONSTRUCCION PPT PARA EL CIP
SEGURIDAD EN CONSTRUCCION PPT PARA EL CIPSEGURIDAD EN CONSTRUCCION PPT PARA EL CIP
SEGURIDAD EN CONSTRUCCION PPT PARA EL CIP
 
CONSTRUCCIONES II - SEMANA 01 - REGLAMENTO NACIONAL DE EDIFICACIONES.pdf
CONSTRUCCIONES II - SEMANA 01 - REGLAMENTO NACIONAL DE EDIFICACIONES.pdfCONSTRUCCIONES II - SEMANA 01 - REGLAMENTO NACIONAL DE EDIFICACIONES.pdf
CONSTRUCCIONES II - SEMANA 01 - REGLAMENTO NACIONAL DE EDIFICACIONES.pdf
 
Flujo potencial, conceptos básicos y ejemplos resueltos.
Flujo potencial, conceptos básicos y ejemplos resueltos.Flujo potencial, conceptos básicos y ejemplos resueltos.
Flujo potencial, conceptos básicos y ejemplos resueltos.
 
Manual de Usuario Estacion total Sokkia SERIE SET10K.pdf
Manual de Usuario Estacion total Sokkia SERIE SET10K.pdfManual de Usuario Estacion total Sokkia SERIE SET10K.pdf
Manual de Usuario Estacion total Sokkia SERIE SET10K.pdf
 
183045401-Terminal-Terrestre-de-Trujillo.pdf
183045401-Terminal-Terrestre-de-Trujillo.pdf183045401-Terminal-Terrestre-de-Trujillo.pdf
183045401-Terminal-Terrestre-de-Trujillo.pdf
 

circuitos en rc fisica 3

  • 1. Física Aplicada: Técnicas Experimentales Básicas PRÁCTICA Nº 22 CIRCUITOS DE CORRIENTE ALTERNA OBJETIVO: Estudiar los circuitos en serie RL, RC y RLC en corriente alterna. Aplicación al cálculo de L y C. MATERIAL: Alimentación de potencia: c.a. 6.3 V a 50 Hz. Voltímetro electrónico (c.a. 0-10 V) u osciloscopio. Miliamperímetro (1 mA) Resistencias: 47 KQ Condensadores: 470 nF. Autoinducciones: bobina de 8 H a 1 mA (aproximadamente). Interruptor y cable de conexión. FUNDAMENTO: Cuando a Los extremos de una resistencia óhmica se aplica una tensión alterna, V = VM sen ω t, la intensidad de la corriente que se origina se deduce a partir de la ley de Ohm: tsenItsen R V i m m ωω == (1) resultando que la intensidad también varía sinusoidalmente con el tiempo, con la misma frecuencia que la tensión aplicada, y que su valor máximo vale R V I m m = (2) Por tanto, cuando un circuito sólo contiene resistencia óhmica, la intensidad de la corriente no presenta diferencia de fase respecto a la tensión aplicada que la origina (fig. 1). En general, en los circuitos de corriente alterna se suelen utilizar otros elementos además de las resistencias óhmicas. Supongamos que existan, conectadas en serie con una resistencia R, una bobina L y un condensador C. Al aplicar una tensión alterna a los extremos de dicho circuito en serie, se establece, una vez desaparecidos los efectos transitorios de corta duración, una corriente estacionaria que viene expresada por )( φω −= tsenIi m (3) en la que se pone claramente de manifiesto que la frecuencia f = ω/2π de la intensidad es la misma que la correspondiente a la tensión, pero que la intensidad está desfasada en un ángulo φ (ángulo de desfase o desfase) respecto a la tensión. 1 Fig.1 V,I V I
  • 2. Los valores instantáneos de una intensidad de corriente, f.e.m. o diferencia de potencial alternas, varían de un modo continuo desde un valor máximo en un sentido, pasando por cero, hasta un valor máximo en el sentido opuesto, y así sucesivamente. El comportamiento de un determinado circuito en serie queda expresado por los valores máximos de la intensidad (Im) y de la tensión (Vm) (también del valor del desfase φ), pero es mucho más interesante estudiar los circuitos de corriente alterna en función de los valores eficaces, lef y Vef, en lugar de los valores máximos, porque los valores que se miden con los voltímetros y amperímetros de c.a. son precisamente los eficaces. La intensidad eficaz de una corriente alterna se define como el valor de la intensidad de una corriente continua que desarrollase la misma cantidad de calor en la misma resistencia y en el mismo tiempo. Se demuestra que m m ef I I I 707.0 2 == (4) y análogamente, la tensión eficaz, m m ef V V V 707.0 2 == (5) De ahora en adelante, se interpretará que las letras I y V sin subíndices hacen referencia a los valores eficaces de las magnitudes correspondientes. La intensidad máxima Im está relacionada con la tensión máxima Vm por una expresión que tiene la misma forma que la que expresa la ley de Ohm para corrientes continuas Z V I m m = (6) denominándose la magnitud Z, impedancia del circuito, que es una generalización de la resistencia R de la ley de Ohm en corriente continua. Naturalmente, dividiendo los dos miembros de (6) por 2 , se obtiene para los valores eficaces Z V I = (7) La relación que existe entre la impedancia Z del circuto RLC en serie y las características R, L y C de los tres elementos considerados es 22 ))/1(( CLRZ ωω −+= (8) que, introduciendo las siguientes simplificaciones, XL = ωL XC = 1/ωC X = XL-XC (9) se escribe 2
  • 3. 22 XRZ += (10) Por otra parte, el desfase φ, viene dado por la expresión R X arctg=φ (11) La magnitud X recibe el nombre de reactancia; XL y XC son la reactancia inductiva o inductancia y la reactancia capacitativa o capacitancia. Tanto la impedancia como la reactancia se miden en ohmios (Ω). Los papeles de la inductancia y de la capacitancia son contrapuestos, tanto en lo que se refiere a la limitación de la corriente, como al desfase que introducen entre la intensidad y la tensión. Así, mientras que un aumento de inductancia reduce la intensidad, un aumento de capacitancia la hace aumentar. Además, la inductancia retrasa la intensidad respecto a la tensión, en tanto que la capacitancia la adelanta. Tanto la inductancia como la capacitancia dependen de la frecuencia de la tensión alterna aplicada. La relación que existe entre la impedancia Z de un circuito RLC en serie y los valores de R, XL y XC puede representarse gráficamente considerando estas magnitudes como vectores. La resistencia R se representa por un vector situado sobre el eje Ox en sentido positivo del mismo; y las reactancias XL y XC, por vectores situados sobre el eje Oy, en los sentidos positivo y negativo, respectivamente. La impedancia Z será el vector suma de los tres vectores. Véase la figura 2, denominada diagrama del vector impedancia del circuito. En dicha figura, se ha considerado el caso en que XL > XC, y por tanto X es positiva, y también es positivo el desfase φ. Diremos que el circuito representado por dicho diagrama es "inductivo". En el caso contrario, esto es XC > XL, el circuito sería "capacitivo". Como casos especiales, es evidente que si el circuito sólo contiene una resistencia pura, entonces X = 0; Z = R y φ = 0, y la intensidad está en fase con la tensión aplicada. Si el circuito contiene autoinducción pura, será R = 0, Z = XL = ωL y φ = + π/2, y la intensidad se retrasa 90° respecto a la tensión aplicada. Pero si el circuito se compone de capacidad pura, se tendrá R = 0, Z = XC = 1/ωC y φ = - π/2, y la intensidad adelanta en un ángulo de 90° a la tensión. La intensidad de la corriente tiene la misma fase en todas las partes de 3 X R Z XC XL Fig.2 V I φ φ Fig.3
  • 4. un circuito en serie. Es decir: es máxima en la resistencia, autoinducción y condensador al mismo tiempo; nula en los tres un instante después; máxima, pero de sentido opuesto, otro instante todavía posterior, y así sucesivamente. La diferencia de potencial (d.d.p.) entre dos puntos cualesquiera de un circuito es igual al producto de la intensidad por la impedancia del mismo entre los dos puntos considerados, siempre que no exista ninguna f.e.m. comprendida entre dichos puntos. Así, Vab=IZab (12) La diferencia de fase φ entre Vab e I será φ = arctg (Xab/Rab) (13) En la figura 4, la impedancia Zab entre a y b es R y, por consiguiente, Vab = IR y φ = arctg0 = 0. Esto es, la d.d.p. entre los terminales de una resistencia pura está en fase con la intensidad de la corriente. Entre los puntos b y c es Zbe = XL, Vbe= IXL y φ = arctg π/2. Esto es, la d.d.p. entre los terminales de una autoinducción pura está adelantada 90° respecto a la intensidad. Entre los puntos c y d es Zed = XC, Ved = IXC y φ = arctg -π/2. Esto es, la d.d.p. entre los terminales de una capacidad pura está retrasada 90° respecto a la intensidad. Debido a estos desfases, la suma de la diferencia de potenciales eficaces entre los extremos de un cierto número de elementos de un circuito en serie no es igual a la diferencia de potencial entre los extremos del conjunto. La suma de tensiones deberá efectuarse geométricamente, como se indica en la figura 5, donde VR, VL y VC son las tensiones entre los extremos de la resistencia R, autoinducción L y capacidad C, respectivamente, y V es la tensión entre los extremos de la asociación en serie RLC. MÉTODO: (a) Circuito RL en serie (1) Mídase con el óhmetro (o con un puente de Wheatstone) la resistencia R de la resistencia suministrada para esta práctica. Anótese el valor medido. (2) Procédase, 4 R L C a b c d Fig.4 VLC VRVC VL Fig.5 6.3V 50Hz L4,7K Fig.6
  • 5. análogamente, a medir la resistencia óhmica de la bobina, RL. Anótese. (3) Móntese el circuito de la figura 6. Ciérrese el interruptor. (4) Con el voltímetro (o con el osciloscopio), mídanse las diferencias de potencial eficaz entre los extremos de la resistencia, VR, de la autoinducción, VL, y del conjunto, V. Anótense los resultados. (5) Mídase, con el miliamperímetro, la intensidad eficaz, I, del circuito. (6) Calcúlese la intensidad eficaz del circuito a partir de la fórmula (12). (7) Utilizando la ec. (12), determínese la inductancia, XL, de la bobina y, a partir de dicho valor, calcúlese la autoinducción, L, de la misma. (8) Determínese la impedancia Z del circuito RL en serie a partir de los valores de V e I. (9) Calcúlese la impedancia Z del circuito RL a partir de la fórmula (10). (10) Calcúlese el desfase φ entre la intensidad y la tensión a partir de (11). (11) Dibújense los diagramas vectoriales de impedancias y de tensiones. (b) Circuito RC en serie (12) Móntese el circuito de la figura 7. Ciérrese el interruptor. (13) Mídase la tensión eficaz entre los extremos de la resistencia, VR, de la capacidad, VC, y del conjunto RC, V. (14) Mídase la intensidad eficaz del circuito, I, con el miliamperímetro. (15) Aplicando la ec. (12), calcúlense la capacitancia del condensador y la capacidad del mismo. (16) Determínese la impedancia Z del circuito RC en serie a partir de los valores de V e I. (17) Calcúlese el desfase φ entre la intensidad y la tensión aplicada. (18) Dibújense los diagramas vectoriales de impedancias y de tensiones. (c) Circuito RLC en serie (19) Móntese el circuito de la figura 8. Ciérrese el interruptor. (20) Mídanse las 5 6.3V 50Hz C4,7K Fig.7 6.3V 50Hz L4,7K Fig.8 C
  • 6. tensiones eficaces entre los extremos de la resistencia, VR, de la autoinducción, VL, del condensador, VC, y del montaje RLC en serie. (21) Mídase con el miliamperímetro la intensidad eficaz en el circuito. (22) Calcúlese, aplicando la ec. (12), la intensidad eficaz en el circuito. (23) Calcúlense XL, XC, L y C, como en los circuitos anteriores. (24) Calcúlese la impedancia Z del circuito RLC en serie a partir de los valores de la intensidad I y de la tensión total V. (25) Calcúlese la impedancia del circuito RLC en serie aplicando la ec. (10). (26) Determínese el desfase entre la intensidad y la tensión total. (27) Dibújense los diagramas vectoriales de impedancias y de tensiones. (28) Represéntesen gráficamente las funciones intensidad instantánea, i, y tensión instantánea, v, en función del tiempo para cada uno de los circuitos estudiados en la práctica. 6
  • 7. tensiones eficaces entre los extremos de la resistencia, VR, de la autoinducción, VL, del condensador, VC, y del montaje RLC en serie. (21) Mídase con el miliamperímetro la intensidad eficaz en el circuito. (22) Calcúlese, aplicando la ec. (12), la intensidad eficaz en el circuito. (23) Calcúlense XL, XC, L y C, como en los circuitos anteriores. (24) Calcúlese la impedancia Z del circuito RLC en serie a partir de los valores de la intensidad I y de la tensión total V. (25) Calcúlese la impedancia del circuito RLC en serie aplicando la ec. (10). (26) Determínese el desfase entre la intensidad y la tensión total. (27) Dibújense los diagramas vectoriales de impedancias y de tensiones. (28) Represéntesen gráficamente las funciones intensidad instantánea, i, y tensión instantánea, v, en función del tiempo para cada uno de los circuitos estudiados en la práctica. 6