SlideShare una empresa de Scribd logo

Fisica labo-9

fisica

1 de 27
Descargar para leer sin conexión
I. OBJETIVOS
 Determinar experimentalmente el momento de inercia de la polea
 Determinar experimentalmente el momento de inercia del cilindro
 Comparar los resultados experimentales con los resultados teóricos y verificar su
validez.
PRACTICA N°9: MOMENTO DE INERCIA
II.MARCO TEORICO
MOMENTO DE INERCIA
El Momento de Inercia también denominado Segundo Momento de Área; Segundo Momento de
Inercia o Momento de Inercia de Área,es una propiedad geométrica de la sección transversalde
los elementos estructurales.
Tomando en cuenta, un cuerpo alrededor de un eje, el momento de inercia, es la suma de los
productos que se obtiene de multiplicar cada elemento de la masa por el cuadrado de su distancia
al eje.
LA ROTACION EN LA INERCIA
Cualquier cuerpo que efectúa un giro alrededor de un eje, desarrolla inercia a la rotación, es decir,
una resistencia a cambiar su velocidad de rotación y la dirección de su eje de giro. La inercia de
un objeto a la rotación está determinada por su Momento de Inercia, siendo ésta ‘’la resistencia
que un cuerpo en rotación opone al cambio de su velocidad de giro’’.
El momento de inercia es pues similar a la inercia, con la diferencia que es aplicable a la rotación
más que al movimiento lineal. La inercia es la tendencia de un objeto a permanecer en reposo o a
continuar moviéndose en línea recta a la misma velocidad. La inercia puede interpretarse como
una nueva definición de masa. El momento de inercia es, masa rotacional y depende de la
distribución de masa en un objeto. Cuanta mayor distancia hay entre la masa y el centro de
rotación, mayor es el momento de inercia. El momento de inercia se relaciona con las tensiones
y deformaciones máximas producidas por los esfuerzosde flexión en un elemento estructural, por
lo cual este valor determina la resistencia máxima de un elemento estructural bajo flexión junto
con las propiedades de dicho material.
PROPIEDADES DELMOMENTO DE INERCIA
El momento de inercia de un área respecto al eje polar,
momento polar de inercia Jo, es igual a la suma de los
momentos de inercia respectoa dos ejes perpendiculares entre
sí, contenidos en el plano del área y que se intercepta en el eje
polar. El momento polar de inercia es de gran importancia en
los problemas relacionados con la torsión de barrascilíndricas
y en los problemas relacionados con la rotación de placas.
ENERGÍA CINÉTICA DE ROTACIÓN.
Para un cuerpo rígido formado por una colección de partículas que gira alrededor del eje z fijo
con velocidad angular ω, cada partícula del cuerpo rígido tiene energía cinética de traslación. Si
la partícula de masa mi se mueve con velocidad vi, su energía cinética es:
𝐸 𝑐𝑖 =
1
2
𝑚 𝑖 𝑣𝑖
2
Cada partícula del cuerpo rígido tiene la misma velocidad angular
ω, pero distintas velocidades lineales, porque estas dependen de la
distancia r al eje de rotación, y se relacionan por
vi = ω ri.
Entonces la energía cinética de la partícula i es:
𝐸𝑖 =
1
2
𝑚 𝑖(𝑟𝑖⍵)2
La energía cinética total del cuerpo rígido en rotación es la suma de las energías cinéticas de cada
partícula individual, esto es:
∑ 𝐸𝐼 =
1
2
∑𝑚 𝑖(𝑟𝑖⍵)2
Donde:
𝐼 = ∑𝑚 𝑖 𝑟2
𝑖
RELACIÓN ENTRE TORQUE YACELERACIÓNANGULAR.
Para una partícula de masa m, que gira, en una circunferencia de radio r con la acción de una
fuerza tangencial Ft, además de la fuerza centrípeta necesaria
para mantener la rotación. La fuerza tangencial se relaciona
con la aceleración tangencial at por
Ft = mat.
El torque alrededor del centro del círculo producido por Ft es:
Como la at se relaciona con la aceleración angular por at = rα, el torque se puede escribir como:
τ
y como mr2
es el momento de inercia de la masa m que gira en torno al centro de la trayectoria
circular, entonces:
𝜏 = 𝛪𝛼
El torque que actúa sobre una partícula es proporcional a su aceleración angular α, donde Ι es la
constante de proporcionalidad
. Observar que τ = Ια es el análogo rotacional de la segunda
ley de Newton F = ma. Se puede extender este análisis a un
cuerpo rígido arbitrario que rota en torno a un eje fijo que
pase por Ο, como se ve en la figura. El cuerpo rígido se
puede considerar formado por elementos de masa dm, que
giran en torno a Ο en una circunferencia de radio r, por
efecto de alguna fuerza tangencial externa dFt que actúa
sobre dm. Por la segunda ley de Newton aplicada a dm, se tiene:
dFt = (dm) at El torque dt producido por la fuerza dFt es:
𝑑𝑡 = 𝑟𝑑𝐹𝑡 = (𝑟𝑑𝑚)𝑎𝑡 = (𝑟𝑑𝑚)𝑟𝛼 = (𝑟𝑡 𝑑𝑚 ) 𝛼
El torque neto se obtiene integrando esta expresión, considerando que α tiene el mismo valor en
todo el cuerpo rígido
Pero la integral es el momento de inercia I del cuerpo rígido alrededor del eje de rotación que
pasa por Ο, entonces,
La siguiente solución es derivada de la convención de que hacia arriba es positivo y hacia abajo
es negativo, la dirección de las agujas del reloj es positiva y viceversa. Aplicando la segunda
Ley de Newton para la masa en suspensión, m, resulta:
resolviendo par la tensión:
La aceleración lineal a de la masa en suspensión es la aceleración tangencial, aT, del dispositivo
que gira. La aceleración angular está relacionada con la aceleración tangencial como sigue
Operando las ecuaciones anteriores tenemos:
CALCULOS DE MOMENTO DE INECIA
Publicidad

Recomendados

Dinámica Rotacional
Dinámica RotacionalDinámica Rotacional
Dinámica Rotacionalicano7
 
Friccion estatica y dinamica
Friccion estatica y dinamicaFriccion estatica y dinamica
Friccion estatica y dinamicadenimega
 
Conservacion de la energia. laboratorio
Conservacion de la energia. laboratorioConservacion de la energia. laboratorio
Conservacion de la energia. laboratorioCatalina Sendler
 
Movimiento parabólico de caída libre ( mpcl )
Movimiento parabólico de caída libre ( mpcl )Movimiento parabólico de caída libre ( mpcl )
Movimiento parabólico de caída libre ( mpcl )Diana Carolina Vela Garcia
 
Diapositivas de cantidad de movimiento angular
Diapositivas de cantidad de movimiento angularDiapositivas de cantidad de movimiento angular
Diapositivas de cantidad de movimiento angularkevinstalinpuninarui
 

Más contenido relacionado

La actualidad más candente

Movimiento rectilíneo uniformemente acelerado practica 1 cinemática y dinámica
Movimiento rectilíneo uniformemente acelerado practica 1 cinemática y dinámicaMovimiento rectilíneo uniformemente acelerado practica 1 cinemática y dinámica
Movimiento rectilíneo uniformemente acelerado practica 1 cinemática y dinámicaJezus Infante
 
Practica V. “Comprobación del principio de Arquímedes. Medidas de densidades”
Practica V. “Comprobación del principio de Arquímedes. Medidas de densidades” Practica V. “Comprobación del principio de Arquímedes. Medidas de densidades”
Practica V. “Comprobación del principio de Arquímedes. Medidas de densidades” Cliffor Jerry Herrera Castrillo
 
La cinemática de la partícula
La cinemática de la partículaLa cinemática de la partícula
La cinemática de la partículanuriainformatica
 
laboratorio de física i equilibrio de fuerzas
laboratorio de física i equilibrio de fuerzaslaboratorio de física i equilibrio de fuerzas
laboratorio de física i equilibrio de fuerzasgerson14-2
 
Lab 04 informe movimiento oscilatorio de un sistema masa resorte zarzosa
Lab 04 informe movimiento oscilatorio de un sistema masa resorte  zarzosaLab 04 informe movimiento oscilatorio de un sistema masa resorte  zarzosa
Lab 04 informe movimiento oscilatorio de un sistema masa resorte zarzosaJordy Yaringaño Hernandez
 
INFORME TECNICO -ESTATICA-PRIMERA CONDICION DE EQUILIBRIO
INFORME TECNICO -ESTATICA-PRIMERA CONDICION DE EQUILIBRIOINFORME TECNICO -ESTATICA-PRIMERA CONDICION DE EQUILIBRIO
INFORME TECNICO -ESTATICA-PRIMERA CONDICION DE EQUILIBRIOAny Valencia Quispe
 
Informe practica-movimiento-circular
Informe practica-movimiento-circularInforme practica-movimiento-circular
Informe practica-movimiento-circularDARWIN LIMONES
 
Problemas resueltos fluidos
Problemas resueltos fluidosProblemas resueltos fluidos
Problemas resueltos fluidosedeive
 
Momento de inercia
Momento de inerciaMomento de inercia
Momento de inerciamazariegos
 
Problemas 615 y 625
Problemas 615 y 625Problemas 615 y 625
Problemas 615 y 625UO
 
Dinámica de las partículas
Dinámica de las partículasDinámica de las partículas
Dinámica de las partículasSebas Abril
 
Fuerza y movimiento. leyes de newton
Fuerza y movimiento. leyes de newtonFuerza y movimiento. leyes de newton
Fuerza y movimiento. leyes de newtonJeryk Torres
 

La actualidad más candente (20)

Reporte 6 Laboratorio de Estática FI
Reporte 6 Laboratorio de Estática FIReporte 6 Laboratorio de Estática FI
Reporte 6 Laboratorio de Estática FI
 
Movimiento rectilíneo uniformemente acelerado practica 1 cinemática y dinámica
Movimiento rectilíneo uniformemente acelerado practica 1 cinemática y dinámicaMovimiento rectilíneo uniformemente acelerado practica 1 cinemática y dinámica
Movimiento rectilíneo uniformemente acelerado practica 1 cinemática y dinámica
 
Practica V. “Comprobación del principio de Arquímedes. Medidas de densidades”
Practica V. “Comprobación del principio de Arquímedes. Medidas de densidades” Practica V. “Comprobación del principio de Arquímedes. Medidas de densidades”
Practica V. “Comprobación del principio de Arquímedes. Medidas de densidades”
 
La cinemática de la partícula
La cinemática de la partículaLa cinemática de la partícula
La cinemática de la partícula
 
Laboratorio de Arquimedes
Laboratorio de ArquimedesLaboratorio de Arquimedes
Laboratorio de Arquimedes
 
Impulso y momento lineal Física A
Impulso y momento lineal Física AImpulso y momento lineal Física A
Impulso y momento lineal Física A
 
laboratorio de física i equilibrio de fuerzas
laboratorio de física i equilibrio de fuerzaslaboratorio de física i equilibrio de fuerzas
laboratorio de física i equilibrio de fuerzas
 
Lab 04 informe movimiento oscilatorio de un sistema masa resorte zarzosa
Lab 04 informe movimiento oscilatorio de un sistema masa resorte  zarzosaLab 04 informe movimiento oscilatorio de un sistema masa resorte  zarzosa
Lab 04 informe movimiento oscilatorio de un sistema masa resorte zarzosa
 
INFORME TECNICO -ESTATICA-PRIMERA CONDICION DE EQUILIBRIO
INFORME TECNICO -ESTATICA-PRIMERA CONDICION DE EQUILIBRIOINFORME TECNICO -ESTATICA-PRIMERA CONDICION DE EQUILIBRIO
INFORME TECNICO -ESTATICA-PRIMERA CONDICION DE EQUILIBRIO
 
Informe practica-movimiento-circular
Informe practica-movimiento-circularInforme practica-movimiento-circular
Informe practica-movimiento-circular
 
Problemas resueltos fluidos
Problemas resueltos fluidosProblemas resueltos fluidos
Problemas resueltos fluidos
 
Momento de inercia
Momento de inerciaMomento de inercia
Momento de inercia
 
Laboratorio rozamiento
Laboratorio rozamientoLaboratorio rozamiento
Laboratorio rozamiento
 
Problemas 615 y 625
Problemas 615 y 625Problemas 615 y 625
Problemas 615 y 625
 
Hidrodinámica 1
Hidrodinámica 1Hidrodinámica 1
Hidrodinámica 1
 
MOMENTO DE INERCIA
MOMENTO DE INERCIAMOMENTO DE INERCIA
MOMENTO DE INERCIA
 
Formulario fluidos
Formulario fluidosFormulario fluidos
Formulario fluidos
 
Dinámica de las partículas
Dinámica de las partículasDinámica de las partículas
Dinámica de las partículas
 
Fuerza y movimiento. leyes de newton
Fuerza y movimiento. leyes de newtonFuerza y movimiento. leyes de newton
Fuerza y movimiento. leyes de newton
 
Dinámica de fluidos
Dinámica de fluidosDinámica de fluidos
Dinámica de fluidos
 

Destacado

Pollution banque mondiale
Pollution banque mondialePollution banque mondiale
Pollution banque mondialeDaniel BASTIEN
 
Don’t Drown in a Sea of Cyberthreats: Mitigate Attacks with IBM BigFix & QRadar
Don’t Drown in a Sea of Cyberthreats: Mitigate Attacks with IBM BigFix & QRadarDon’t Drown in a Sea of Cyberthreats: Mitigate Attacks with IBM BigFix & QRadar
Don’t Drown in a Sea of Cyberthreats: Mitigate Attacks with IBM BigFix & QRadarIBM Security
 
Utilizing Noninvasive Blood Flow Velocity Measurements for Cardiovascular Phe...
Utilizing Noninvasive Blood Flow Velocity Measurements for Cardiovascular Phe...Utilizing Noninvasive Blood Flow Velocity Measurements for Cardiovascular Phe...
Utilizing Noninvasive Blood Flow Velocity Measurements for Cardiovascular Phe...InsideScientific
 
Chronix Time Series Database - The New Time Series Kid on the Block
Chronix Time Series Database - The New Time Series Kid on the BlockChronix Time Series Database - The New Time Series Kid on the Block
Chronix Time Series Database - The New Time Series Kid on the BlockQAware GmbH
 
Engineering Materials
Engineering MaterialsEngineering Materials
Engineering Materialssushma chinta
 
Hadoop Strata Talk - Uber, your hadoop has arrived
Hadoop Strata Talk - Uber, your hadoop has arrived Hadoop Strata Talk - Uber, your hadoop has arrived
Hadoop Strata Talk - Uber, your hadoop has arrived Vinoth Chandar
 
Spark Summit EU talk by Emlyn Whittick
Spark Summit EU talk by Emlyn WhittickSpark Summit EU talk by Emlyn Whittick
Spark Summit EU talk by Emlyn WhittickSpark Summit
 
Spark Summit EU talk by Yaroslav Nedashkovsky and Andy Starzhinsky
Spark Summit EU talk by Yaroslav Nedashkovsky and Andy StarzhinskySpark Summit EU talk by Yaroslav Nedashkovsky and Andy Starzhinsky
Spark Summit EU talk by Yaroslav Nedashkovsky and Andy StarzhinskySpark Summit
 
'Brand building: the different approaches' by Open Strategy & VCCP
'Brand building: the different approaches' by Open Strategy & VCCP'Brand building: the different approaches' by Open Strategy & VCCP
'Brand building: the different approaches' by Open Strategy & VCCPOpen Strategy
 
Les Français et le cannabis - Colloque sur la légalisation du cannabis
Les Français et le cannabis - Colloque sur la légalisation du cannabisLes Français et le cannabis - Colloque sur la légalisation du cannabis
Les Français et le cannabis - Colloque sur la légalisation du cannabisIpsos France
 
Bachelor Thesis Lara FINAL
Bachelor Thesis Lara FINALBachelor Thesis Lara FINAL
Bachelor Thesis Lara FINALLara Armas
 

Destacado (20)

Pollution banque mondiale
Pollution banque mondialePollution banque mondiale
Pollution banque mondiale
 
Portugues.ppt 0
Portugues.ppt 0Portugues.ppt 0
Portugues.ppt 0
 
Fabrizio Leone - Root Cause Analysis: Approach and Tools
Fabrizio Leone - Root Cause Analysis: Approach and ToolsFabrizio Leone - Root Cause Analysis: Approach and Tools
Fabrizio Leone - Root Cause Analysis: Approach and Tools
 
Jesper Mansson - Challenges in Blade Design and Manufacturing
Jesper Mansson - Challenges in Blade Design and ManufacturingJesper Mansson - Challenges in Blade Design and Manufacturing
Jesper Mansson - Challenges in Blade Design and Manufacturing
 
Don’t Drown in a Sea of Cyberthreats: Mitigate Attacks with IBM BigFix & QRadar
Don’t Drown in a Sea of Cyberthreats: Mitigate Attacks with IBM BigFix & QRadarDon’t Drown in a Sea of Cyberthreats: Mitigate Attacks with IBM BigFix & QRadar
Don’t Drown in a Sea of Cyberthreats: Mitigate Attacks with IBM BigFix & QRadar
 
Ryan Barnhart - Space Frame Blade Technology
Ryan Barnhart - Space Frame Blade TechnologyRyan Barnhart - Space Frame Blade Technology
Ryan Barnhart - Space Frame Blade Technology
 
Utilizing Noninvasive Blood Flow Velocity Measurements for Cardiovascular Phe...
Utilizing Noninvasive Blood Flow Velocity Measurements for Cardiovascular Phe...Utilizing Noninvasive Blood Flow Velocity Measurements for Cardiovascular Phe...
Utilizing Noninvasive Blood Flow Velocity Measurements for Cardiovascular Phe...
 
Malkin Panel: Blade Root Cause Analysis Processes and Inspection Methods
Malkin Panel: Blade Root Cause Analysis Processes and Inspection MethodsMalkin Panel: Blade Root Cause Analysis Processes and Inspection Methods
Malkin Panel: Blade Root Cause Analysis Processes and Inspection Methods
 
Chronix Time Series Database - The New Time Series Kid on the Block
Chronix Time Series Database - The New Time Series Kid on the BlockChronix Time Series Database - The New Time Series Kid on the Block
Chronix Time Series Database - The New Time Series Kid on the Block
 
Engineering Materials
Engineering MaterialsEngineering Materials
Engineering Materials
 
Hadoop Strata Talk - Uber, your hadoop has arrived
Hadoop Strata Talk - Uber, your hadoop has arrived Hadoop Strata Talk - Uber, your hadoop has arrived
Hadoop Strata Talk - Uber, your hadoop has arrived
 
Spark Summit EU talk by Emlyn Whittick
Spark Summit EU talk by Emlyn WhittickSpark Summit EU talk by Emlyn Whittick
Spark Summit EU talk by Emlyn Whittick
 
Spark Summit EU talk by Yaroslav Nedashkovsky and Andy Starzhinsky
Spark Summit EU talk by Yaroslav Nedashkovsky and Andy StarzhinskySpark Summit EU talk by Yaroslav Nedashkovsky and Andy Starzhinsky
Spark Summit EU talk by Yaroslav Nedashkovsky and Andy Starzhinsky
 
La escultura
La esculturaLa escultura
La escultura
 
'Brand building: the different approaches' by Open Strategy & VCCP
'Brand building: the different approaches' by Open Strategy & VCCP'Brand building: the different approaches' by Open Strategy & VCCP
'Brand building: the different approaches' by Open Strategy & VCCP
 
How to build a successful Data Lake
How to build a successful Data LakeHow to build a successful Data Lake
How to build a successful Data Lake
 
IBM QRadar Xforce
IBM QRadar XforceIBM QRadar Xforce
IBM QRadar Xforce
 
Les Français et le cannabis - Colloque sur la légalisation du cannabis
Les Français et le cannabis - Colloque sur la légalisation du cannabisLes Français et le cannabis - Colloque sur la légalisation du cannabis
Les Français et le cannabis - Colloque sur la légalisation du cannabis
 
Bab 1
Bab 1Bab 1
Bab 1
 
Bachelor Thesis Lara FINAL
Bachelor Thesis Lara FINALBachelor Thesis Lara FINAL
Bachelor Thesis Lara FINAL
 

Similar a Fisica labo-9

Dinámica rotacional
Dinámica rotacionalDinámica rotacional
Dinámica rotacionalLiz Castro
 
CLASE 15 MOMENTO INERCIA.pdf
CLASE 15 MOMENTO INERCIA.pdfCLASE 15 MOMENTO INERCIA.pdf
CLASE 15 MOMENTO INERCIA.pdfJoaqunChvezSurez
 
Capitulo 8 de Dinámica del movimiento
Capitulo 8 de Dinámica del movimientoCapitulo 8 de Dinámica del movimiento
Capitulo 8 de Dinámica del movimientoJorge Arias
 
Diapositivas de trabajo y nergia
Diapositivas de trabajo y nergiaDiapositivas de trabajo y nergia
Diapositivas de trabajo y nergiavictor calderon
 
Guia 10-Movimiento rotacional (1).docx
Guia 10-Movimiento rotacional (1).docxGuia 10-Movimiento rotacional (1).docx
Guia 10-Movimiento rotacional (1).docxrichardalexandercolm
 
Guia 10 movimiento rotacional
Guia 10 movimiento rotacionalGuia 10 movimiento rotacional
Guia 10 movimiento rotacionalMelvinRamos18
 
Informe de laboratorio- Movimiento armonico simple
Informe de laboratorio- Movimiento armonico simpleInforme de laboratorio- Movimiento armonico simple
Informe de laboratorio- Movimiento armonico simpleJesu Nuñez
 
Momento Angular y movimiento giroscopico
Momento Angular y movimiento giroscopicoMomento Angular y movimiento giroscopico
Momento Angular y movimiento giroscopicoLa_Amigocha
 
Momentos lineales o torques
Momentos lineales o torquesMomentos lineales o torques
Momentos lineales o torquesrotman77
 
Trabajo y energía victor
Trabajo y energía victorTrabajo y energía victor
Trabajo y energía victorvictor calderon
 
Trabajo y energia victor 160207211234
Trabajo y energia victor 160207211234Trabajo y energia victor 160207211234
Trabajo y energia victor 160207211234victor calderon
 
Gravitación universal
Gravitación universalGravitación universal
Gravitación universalLiz Castro
 

Similar a Fisica labo-9 (20)

Dinámica rotacional
Dinámica rotacionalDinámica rotacional
Dinámica rotacional
 
Momento inercia
Momento inerciaMomento inercia
Momento inercia
 
CLASE 15 MOMENTO INERCIA.pdf
CLASE 15 MOMENTO INERCIA.pdfCLASE 15 MOMENTO INERCIA.pdf
CLASE 15 MOMENTO INERCIA.pdf
 
Cuerpo rigido ii
Cuerpo rigido iiCuerpo rigido ii
Cuerpo rigido ii
 
Capitulo 8 de Dinámica del movimiento
Capitulo 8 de Dinámica del movimientoCapitulo 8 de Dinámica del movimiento
Capitulo 8 de Dinámica del movimiento
 
Dinamica rotacional
Dinamica rotacionalDinamica rotacional
Dinamica rotacional
 
Guia de laboratorio proyecto final
Guia de laboratorio proyecto finalGuia de laboratorio proyecto final
Guia de laboratorio proyecto final
 
cap8.pdf
cap8.pdfcap8.pdf
cap8.pdf
 
Diapositivas de trabajo y nergia
Diapositivas de trabajo y nergiaDiapositivas de trabajo y nergia
Diapositivas de trabajo y nergia
 
Guia 10-Movimiento rotacional (1).docx
Guia 10-Movimiento rotacional (1).docxGuia 10-Movimiento rotacional (1).docx
Guia 10-Movimiento rotacional (1).docx
 
Guia 10 movimiento rotacional
Guia 10 movimiento rotacionalGuia 10 movimiento rotacional
Guia 10 movimiento rotacional
 
Fisica Para La Vida 01.pptx
Fisica Para La Vida 01.pptxFisica Para La Vida 01.pptx
Fisica Para La Vida 01.pptx
 
Informe de laboratorio- Movimiento armonico simple
Informe de laboratorio- Movimiento armonico simpleInforme de laboratorio- Movimiento armonico simple
Informe de laboratorio- Movimiento armonico simple
 
Momento Angular y movimiento giroscopico
Momento Angular y movimiento giroscopicoMomento Angular y movimiento giroscopico
Momento Angular y movimiento giroscopico
 
Momentos lineales o torques
Momentos lineales o torquesMomentos lineales o torques
Momentos lineales o torques
 
Dinamica rotacional 2017
Dinamica rotacional 2017Dinamica rotacional 2017
Dinamica rotacional 2017
 
Trabajo y energía victor
Trabajo y energía victorTrabajo y energía victor
Trabajo y energía victor
 
Trabajo y energia victor 160207211234
Trabajo y energia victor 160207211234Trabajo y energia victor 160207211234
Trabajo y energia victor 160207211234
 
Gravitación universal
Gravitación universalGravitación universal
Gravitación universal
 
Gravitación universal
Gravitación universalGravitación universal
Gravitación universal
 

Fisica labo-9

  • 1. I. OBJETIVOS  Determinar experimentalmente el momento de inercia de la polea  Determinar experimentalmente el momento de inercia del cilindro  Comparar los resultados experimentales con los resultados teóricos y verificar su validez. PRACTICA N°9: MOMENTO DE INERCIA
  • 2. II.MARCO TEORICO MOMENTO DE INERCIA El Momento de Inercia también denominado Segundo Momento de Área; Segundo Momento de Inercia o Momento de Inercia de Área,es una propiedad geométrica de la sección transversalde los elementos estructurales. Tomando en cuenta, un cuerpo alrededor de un eje, el momento de inercia, es la suma de los productos que se obtiene de multiplicar cada elemento de la masa por el cuadrado de su distancia al eje. LA ROTACION EN LA INERCIA Cualquier cuerpo que efectúa un giro alrededor de un eje, desarrolla inercia a la rotación, es decir, una resistencia a cambiar su velocidad de rotación y la dirección de su eje de giro. La inercia de un objeto a la rotación está determinada por su Momento de Inercia, siendo ésta ‘’la resistencia que un cuerpo en rotación opone al cambio de su velocidad de giro’’. El momento de inercia es pues similar a la inercia, con la diferencia que es aplicable a la rotación más que al movimiento lineal. La inercia es la tendencia de un objeto a permanecer en reposo o a continuar moviéndose en línea recta a la misma velocidad. La inercia puede interpretarse como una nueva definición de masa. El momento de inercia es, masa rotacional y depende de la distribución de masa en un objeto. Cuanta mayor distancia hay entre la masa y el centro de rotación, mayor es el momento de inercia. El momento de inercia se relaciona con las tensiones y deformaciones máximas producidas por los esfuerzosde flexión en un elemento estructural, por lo cual este valor determina la resistencia máxima de un elemento estructural bajo flexión junto con las propiedades de dicho material.
  • 3. PROPIEDADES DELMOMENTO DE INERCIA El momento de inercia de un área respecto al eje polar, momento polar de inercia Jo, es igual a la suma de los momentos de inercia respectoa dos ejes perpendiculares entre sí, contenidos en el plano del área y que se intercepta en el eje polar. El momento polar de inercia es de gran importancia en los problemas relacionados con la torsión de barrascilíndricas y en los problemas relacionados con la rotación de placas. ENERGÍA CINÉTICA DE ROTACIÓN. Para un cuerpo rígido formado por una colección de partículas que gira alrededor del eje z fijo con velocidad angular ω, cada partícula del cuerpo rígido tiene energía cinética de traslación. Si la partícula de masa mi se mueve con velocidad vi, su energía cinética es: 𝐸 𝑐𝑖 = 1 2 𝑚 𝑖 𝑣𝑖 2 Cada partícula del cuerpo rígido tiene la misma velocidad angular ω, pero distintas velocidades lineales, porque estas dependen de la distancia r al eje de rotación, y se relacionan por vi = ω ri. Entonces la energía cinética de la partícula i es: 𝐸𝑖 = 1 2 𝑚 𝑖(𝑟𝑖⍵)2 La energía cinética total del cuerpo rígido en rotación es la suma de las energías cinéticas de cada partícula individual, esto es: ∑ 𝐸𝐼 = 1 2 ∑𝑚 𝑖(𝑟𝑖⍵)2 Donde: 𝐼 = ∑𝑚 𝑖 𝑟2 𝑖
  • 4. RELACIÓN ENTRE TORQUE YACELERACIÓNANGULAR. Para una partícula de masa m, que gira, en una circunferencia de radio r con la acción de una fuerza tangencial Ft, además de la fuerza centrípeta necesaria para mantener la rotación. La fuerza tangencial se relaciona con la aceleración tangencial at por Ft = mat. El torque alrededor del centro del círculo producido por Ft es: Como la at se relaciona con la aceleración angular por at = rα, el torque se puede escribir como: τ
  • 5. y como mr2 es el momento de inercia de la masa m que gira en torno al centro de la trayectoria circular, entonces: 𝜏 = 𝛪𝛼 El torque que actúa sobre una partícula es proporcional a su aceleración angular α, donde Ι es la constante de proporcionalidad . Observar que τ = Ια es el análogo rotacional de la segunda ley de Newton F = ma. Se puede extender este análisis a un cuerpo rígido arbitrario que rota en torno a un eje fijo que pase por Ο, como se ve en la figura. El cuerpo rígido se puede considerar formado por elementos de masa dm, que giran en torno a Ο en una circunferencia de radio r, por efecto de alguna fuerza tangencial externa dFt que actúa sobre dm. Por la segunda ley de Newton aplicada a dm, se tiene: dFt = (dm) at El torque dt producido por la fuerza dFt es: 𝑑𝑡 = 𝑟𝑑𝐹𝑡 = (𝑟𝑑𝑚)𝑎𝑡 = (𝑟𝑑𝑚)𝑟𝛼 = (𝑟𝑡 𝑑𝑚 ) 𝛼 El torque neto se obtiene integrando esta expresión, considerando que α tiene el mismo valor en todo el cuerpo rígido Pero la integral es el momento de inercia I del cuerpo rígido alrededor del eje de rotación que pasa por Ο, entonces, La siguiente solución es derivada de la convención de que hacia arriba es positivo y hacia abajo es negativo, la dirección de las agujas del reloj es positiva y viceversa. Aplicando la segunda Ley de Newton para la masa en suspensión, m, resulta:
  • 6. resolviendo par la tensión: La aceleración lineal a de la masa en suspensión es la aceleración tangencial, aT, del dispositivo que gira. La aceleración angular está relacionada con la aceleración tangencial como sigue Operando las ecuaciones anteriores tenemos: CALCULOS DE MOMENTO DE INECIA
  • 7. III. MATERIALES E INSTRUMENTOS DE LABORATORIO HILOXPLORERSOPORTE UNIVERSAL REGLA METALICA PIE DE REY CILINDRO POLEA CALCULADORAARANDELES
  • 8. IV. PARTE EXPERIMENTAL ACTIVIDAD N°1  Se pesaron las masas, la polea y los cilindros, así mismo se midieron con una regla el largo del cilindro y con elpie de rey el diámetro de la polea y del cilindro  Se colocó el sensor de movimiento circular en el soporte universal apoyándonos en el gancho para poder sujetarlo.  Se conectó el sensor al Xplorer, y se ingresó los datos al Xplorer como el número de datos que se recogería, que vendrían a ser los puntos a tomar de la polea. Se procedió a anudar una de las arandelas (nuestras masas) con un hilo y a anudar el otro extremo a la parte donde hay orificios de la polea misma.
  • 9.  Se procedió a programar el Xplorer listo para presentar la gráfica velocidad (tangencial) vs tiempo y obtener nuestra aceleración, así entonces se soltó la masa y el Xplorer tome lectura, este paso se ejecutó tres veces con nuestra primera masa que es 13.3 g  De las aceleraciones obtenidas se le tomo un promedio. m (g) 𝒂 𝟏( 𝒎 𝒔 𝟐⁄ ) 𝒂 𝟑( 𝒎 𝒔 𝟐⁄ ) 𝒂 𝟑( 𝒎 𝒔 𝟐⁄ ) 𝒂 𝒑( 𝒎 𝒔 𝟐⁄ ) 13.3 7.14 7.07 7.06 7.09  Al igual que en la ejecución anterior se repitió la experiencia pero se tomó lectura de las aceleraciones cuando se añade otra masa y en total se tendría una masa de 30.3 g  De las aceleraciones obtenidas se le tomo un promedio.  Al igual que en la ejecución anterior se repitió la experiencia pero se tomó lectura de las aceleraciones cuando se añade otra masa y en total se tendría una masa de 42.5 g  De las aceleraciones obtenidas se le tomo un promedio. m (g) 𝒂 𝟏( 𝒎 𝒔 𝟐⁄ ) 𝒂 𝟑( 𝒎 𝒔 𝟐⁄ ) 𝒂 𝟑( 𝒎 𝒔 𝟐⁄ ) 𝒂 𝒑( 𝒎 𝒔 𝟐⁄ ) 30.3 8.42 8.44 8.4 8.42 m (g) 𝒂 𝟏( 𝒎 𝒔 𝟐⁄ ) 𝒂 𝟑( 𝒎 𝒔 𝟐⁄ ) 𝒂 𝟑( 𝒎 𝒔 𝟐⁄ ) 𝒂 𝒑( 𝒎 𝒔 𝟐⁄ ) 42.5 8.7 8.76 8.69 8.717
  • 10.  Se recomienda que al realizar la experiencia se recepcione las masas para que las la polea no se jale de golpe al terminar de desenrollarse el hilo. Calculamos el momento de inercia con ayuda de las aceleraciones promedio: ISIST = 1 4 𝑚𝐷 2 ( 𝑔 𝑎 −1) I1 = 1 4 13.3𝑔𝑥(5.48𝑐𝑚)2 ( 9.8𝑚 /𝑠2 7.09𝑚 /𝑠2 − 1) I1 =38.166 g.cm2 I2 = 1 4 30.3𝑔𝑥(5.48𝑐𝑚)2 ( 9.8𝑚/𝑠2 8.42𝑚 /𝑠2 − 1) I2 = 37.2829 g.cm2 I 3 = 1 4 42.5𝑔𝑥(5.48𝑐𝑚)2 ( 9.8𝑚/𝑠2 8.7166𝑚/𝑠2 − 1) I3 = 39.658 g.cm2 Los momentos de inercia varian ligeramente por lo que sacamos un promedio para el cálculo del momento de inercia de la polea. 𝐼𝑆𝐼𝑆𝑇 = 38.166 g.cm+37.283 g.cm2+39.642 g.cm2 3 = 38.69 g.cm2
  • 11. ACTIVIDAD N° 2 Medimos la masa del cilindro metálico y lo anotamos en la tabla N°1 La masa fue de: 17g Medimos con la ayuda del pie de rey el diámetro D del cilindro y la longitud de este, lo anotamos en la tabla N°1 La Longitud fue de: 20cm El diámetro fue de: 1.44cm Armamos el equipo como se observa en la figura. Colocamos la primera arandela de masa 13.3g y con la ayuda del xplorer GLX obtenemos la primera aceleración, se repetirá 3 veces, hasta obtener un promedio de las tres aceleraciones. a1=0.56m/s2 a2=0.567m/s2 a3=0.576m/s2 𝑎 𝑝 = 0.56𝑚/𝑠2 + 0.567𝑚/𝑠2 + 0.576𝑚/𝑠2 3 = 0.567𝑚/𝑠2 Colocamos la primera más la segunda arandela de masa 13.3g, 17g y con la ayuda del xplorer GLX obtenemos la primera aceleración, se repetirá 3 veces, hasta obtener un promedio de las tres aceleraciones. a1=1.25m/s2 a2=1.2m/s2 a3=1.2m/s2 𝑎 𝑝 = 1.25𝑚/𝑠2 + 1.2𝑚/𝑠2 + 1.2𝑚/𝑠2 3 = 1.216𝑚/𝑠2
  • 12. Con los datos obtenidos podemos hallar ISIST ISIST= 1 4 𝑚𝐷2( 𝑔 𝑎 − 1) I1= 1 4 13.3𝑔𝑥(5.48𝑐𝑚)2( 9.8𝑚/𝑠2 0.567𝑚/𝑠2 − 1) I1=1625.9 gxcm2 I2= 1 4 30.3𝑔𝑥(5.48𝑐𝑚)2( 9.8𝑚/𝑠2 1.216𝑚/𝑠2 − 1) I2=1605.8 gxcm2 I3= 1 4 42.5𝑔𝑥(5.48𝑐𝑚)2( 9.8𝑚/𝑠2 1.603𝑚/𝑠2 − 1) I3=1631.5 gxcm2 𝐼 𝑆𝐼𝑆𝑇 = 1625.9𝑔𝑥𝑐𝑚2 + 1605.8𝑔𝑥𝑐𝑚2 + 1631.5𝑔𝑥𝑐𝑚2 3 = 1621.06𝑔𝑥𝑐𝑚2 𝐼 𝑆𝐼𝑆𝑇 − 𝐼 𝑆𝑅 = 𝐼2𝐶𝐼𝐿𝐼𝑁𝐷𝑅𝑂 1621.06𝑔𝑥𝑐𝑚2 − 38.69𝑔𝑥𝑐𝑚2 = 𝐼2𝐶𝐼𝐿𝐼𝑁𝐷𝑅𝑂 1582.54𝑔𝑥𝑐𝑚2 = 𝐼2𝐶𝐼𝐿𝐼𝑁𝐷𝑅𝑂 791.27𝑔𝑥𝑐𝑚2 = 𝐼 𝐶𝐼𝐿𝐼𝑁𝐷𝑅𝑂 Masas Aceleración ISIST M1 = 13.3g 0.567m/s2 1625.9 𝑔𝑥𝑐𝑚2 M2 = 30.3g 1.216m/s2 1605.8 𝑔𝑥𝑐𝑚2 M3 =42.5g 1.603m/s2 1631.5 𝑔𝑥𝑐𝑚2 Colocamos la primera, la segunda y la tercera arandela de masa 13.3g, 17g, 12.2g y con la ayuda del xplorer GLX obtenemos la primera aceleración, se repetirá 3 veces, hasta obtener un promedio de las tres aceleraciones. a1=1.59m/s2 a2=1.62m/s2 a3=1.6m/s2 𝑎 𝑝 = 1.59𝑚/𝑠2 + 1.62𝑚/𝑠2 + 1.6𝑚/𝑠2 3 = 1.603𝑚/𝑠2
  • 13. VI .CUESTIONARIO 1. Calcular el momento de inercia de la polea y del cilindro según el modelo teórico planteado, use las ecuaciones respectivas. Según el modelo teórico, el momento de inercia de la polea se expresa mediante la siguiente ecuación: 𝐼 𝑝𝑜𝑙𝑒𝑎 = 1 8 𝑚. 𝐷2 Masa de la polea: 𝑚 = 10,3 𝑔 Diámetro de la polea: 𝐷 = 5,48 𝑐𝑚 Reemplazando: 𝐼 𝑝𝑜𝑙𝑒𝑎 = 1 8 (10,3𝑔).(5,48𝑐𝑚)2 𝐼 𝑝𝑜𝑙𝑒𝑎 = 38,66 𝑔. 𝑐𝑚2 Según el modelo teórico, el momento de inercia del cilindro se expresa mediante la siguiente ecuación: 𝐼𝑐𝑖𝑙𝑖𝑛𝑑𝑟𝑜 = 1 12 𝑀. 𝐿2 Masa del cilindro: 𝑀 = 17 𝑔 Longitud del cilindro: 𝐷 = 20 𝑐𝑚 Reemplazando: 𝐼 𝑝𝑜𝑙𝑒𝑎 = 1 12 (17𝑔).(20𝑐𝑚)2 𝐼 𝑝𝑜𝑙𝑒𝑎 = 566,66 𝑔. 𝑐𝑚2 2. Calcular el momento de inercia experimental con sus datos medidos en la experiencia. Experimentalmente, se calcula el momento de inercia de la polea mediante la siguiente ecuación: 𝐼𝑝𝑜𝑙𝑒𝑎 = 1 4 𝑚. 𝐷2 ( 𝑔 𝑎 − 1) Masa sostenida (1): 𝑚 = 13,3 𝑔 Diámetro de la polea: 𝐷 = 5,48 𝑐𝑚 Aceleración promedio obtenida (1): 𝑎 = 7,09 𝑚/𝑠2 Reemplazando:
  • 14. 𝐼 𝑝𝑜𝑙𝑒𝑎 (1) = 1 4 (13,3𝑔).(5,48𝑐𝑚)2 ( 9,8𝑚. 𝑠−2 7,09𝑚. 𝑠−2 − 1) 𝐼𝑝𝑜𝑙𝑒𝑎 (1) = 38,16 𝑔. 𝑐𝑚2 Masa sostenida (2): 𝑚 = 30,3 𝑔 Diámetro de la polea: 𝐷 = 5,48 𝑐𝑚 Aceleración promedio obtenida (2): 𝑎 = 8,42 𝑚/𝑠2 Reemplazando: 𝐼 𝑝𝑜𝑙𝑒𝑎 (2) = 1 4 (30,3𝑔).(5,48𝑐𝑚)2 ( 9,8𝑚. 𝑠−2 8,42𝑚. 𝑠−2 − 1) 𝐼𝑝𝑜𝑙𝑒𝑎 (2) = 37,28 𝑔. 𝑐𝑚2 Masa sostenida (3): 𝑚 = 42,5 𝑔 Diámetro de la polea: 𝐷 = 5,48 𝑐𝑚 Aceleración promedio obtenida (3): 𝑎 = 8,70 𝑚/𝑠2 Reemplazando: 𝐼 𝑝𝑜𝑙𝑒𝑎 (3) = 1 4 (42,5𝑔).(5,48𝑐𝑚)2 ( 9,48𝑚. 𝑠−2 8,70𝑚. 𝑠−2 − 1) 𝐼𝑝𝑜𝑙𝑒𝑎 (3) = 40,34 𝑔. 𝑐𝑚2 Por lo tanto: 𝐼𝑝𝑜𝑙𝑒𝑎 = 𝐼𝑝𝑜𝑙𝑒𝑎(1) + 𝐼𝑝𝑜𝑙𝑒𝑎(2) + 𝐼𝑝𝑜𝑙𝑒𝑎(3) 3 = 38,16 + 37,28 + 40,34 3 = 38,59 𝑔. 𝑐𝑚2 Experimentalmente, se calcula el momento de inercia de la polea mediante la siguiente ecuación: 𝐼𝑐𝑖𝑙𝑖𝑛𝑑𝑟𝑜 = 𝐼𝑆𝑖𝑠𝑡𝑒𝑚𝑎 − 𝐼𝑝𝑜𝑙𝑒𝑎 2 Calculamos el momento de inercia del sistema para cada masa: 𝐼𝑠𝑖𝑠𝑡𝑒𝑚𝑎 = 1 4 𝑚. 𝐷2 ( 𝑔 𝑎 − 1) Masa sostenida (1): 𝑚 = 13,3 𝑔 Diámetro de la polea: 𝐷 = 5,48 𝑐𝑚 Aceleración promedio obtenida (1): 𝑎 = 0,567 𝑚/𝑠2 Reemplazando:
  • 15. 𝐼𝑠𝑖𝑠𝑡𝑒𝑚𝑎 (1) = 1 4 (13,3𝑔).(5,48𝑐𝑚)2 ( 9,8𝑚. 𝑠−2 0,567𝑚. 𝑠−2 − 1) 𝐼𝑠𝑖𝑠𝑡𝑒𝑚𝑎(1) = 1625,97 𝑔. 𝑐𝑚2 Masa sostenida (2): 𝑚 = 30,3 𝑔 Diámetro de la polea: 𝐷 = 5,48 𝑐𝑚 Aceleración promedio obtenida (2): 𝑎 = 1,216 𝑚/𝑠2 Reemplazando: 𝐼𝑠𝑖𝑠𝑡𝑒𝑚𝑎 (2) = 1 4 (30,3𝑔).(5,48𝑐𝑚)2 ( 9,8𝑚. 𝑠−2 1,216𝑚. 𝑠−2 − 1) 𝐼𝑝𝑜𝑙𝑒𝑎 (2) = 1605,83 𝑔. 𝑐𝑚2 Masa sostenida (3): 𝑚 = 42,5 𝑔 Diámetro de la polea: 𝐷 = 5,48 𝑐𝑚 Aceleración promedio obtenida (3): 𝑎 = 1,603 𝑚/𝑠2 Reemplazando: 𝐼𝑠𝑖𝑠𝑡𝑒𝑚𝑎 (3) = 1 4 (42,5𝑔).(5,48𝑐𝑚)2 ( 9,48𝑚. 𝑠−2 1,603𝑚. 𝑠−2 − 1) 𝐼𝑠𝑖𝑠𝑡𝑒𝑚𝑎(3) = 1631,59 𝑔. 𝑐𝑚2 Por lo tanto: 𝐼𝑠𝑖𝑠𝑡𝑒𝑚𝑎 = 𝐼𝑠𝑖𝑠𝑡𝑒𝑚𝑎(1) + 𝐼𝑠𝑖𝑠𝑡𝑒𝑚𝑎(2) + 𝐼𝑠𝑖𝑠𝑡𝑒𝑚𝑎 (3) 3 = 1625,97 + 1605,83 + 1631,59 3 𝐼𝑠𝑖𝑠𝑡𝑒𝑚𝑎 = 1621,13 𝑔. 𝑐𝑚2 Ahora podemos hallar el momento de inercia del cilindro: 𝐼𝑐𝑖𝑙𝑖𝑛𝑑𝑟𝑜 = 𝐼𝑆𝑖𝑠𝑡𝑒𝑚𝑎 − 𝐼𝑝𝑜𝑙𝑒𝑎 2 𝐼𝑐𝑖𝑙𝑖𝑛𝑑𝑟𝑜 = 1621,13 − 38,59 2 = 791,27 𝑔. 𝑐𝑚2
  • 16. 3. ¿Cuál es la diferencia entre el valor teórico y el valor experimental del momento de inercia? Calculamos el error de esta manera: %𝐸𝑟𝑟𝑜𝑟 = | 𝑉𝑎𝑙𝑜𝑟 𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙 − 𝑉𝑎𝑙𝑜𝑟 𝑡𝑒ó𝑟𝑖𝑐𝑜| 𝑉𝑎𝑙𝑜𝑟 𝑡𝑒ó𝑟𝑖𝑐𝑜 . 100 Para el momento de inercia de la polea: %𝐸𝑟𝑟𝑜𝑟 = |38,59 − 38,66| 38,66 . 100 = 0,18% Para el momento de inercia del cilindro: %𝐸𝑟𝑟𝑜𝑟 = |791,27 − 566,66| 566,66 . 100 = 39,63% 4. ¿cuál de todos los valores del momento de inercia calculados con los valores de sus mediciones se acerca más al valor teórico? Explique la razón. el valor que se acerca más al valor experimental es el de las poleas, por otro lado el momento de inercia del cilindro no salió como lo esperado, esto se debe a que la fórmula que usamos es para un cilindro compacto, y nosotros usamos cilindros no compactos. 5. ¿cuál de los cuerpos en consideración posee mayor momento de inercia ¿a qué cree usted a que se deba? 𝐼𝑐𝑖𝑙𝑖 𝑛𝑑𝑟𝑜 > 𝐼sin 𝑐𝑖𝑙𝑖𝑛𝑑𝑟𝑜 Sabemos que la inercia aumenta mientras que la masa este más alejada al centro de rotación por ello concluimos este resultado y también se demostró haciendo los cálculos respectivos.
  • 17. 6. Demostrar las ecuaciones para calcular el valor del memento de inercia de la polea y del cilindro que se plantean en el modelo teórico de esta experiencia. Momento de inercia de un disco Vamos a calcular el momento de inercia de un disco de masa M y radio R, respecto de uno de sus diámetros. Tomamos un elemento de masa que dista x del eje de rotación. El elemento es un rectángulo de longitud 2y de anchuradx. La masa de este rectángulo es El momento de inercia del disco es Haciendo el cambio de variable y=R·cosθ x=R·senθ Llegamos a la integral R = D/2 Ic = 1 8 MD2
  • 18. Momento de inercia de un cilindro Vamos a calcular el momento de inercia de un cilindro de masa M, radio R y longitud L, I = ∫ 𝑟2 . 𝜕𝑀 I = ∫ 𝑟2 . 𝑙/2 −𝑙/2 𝜕𝑀 I = ∫ 𝑟2𝑙/2 −𝑙/2 . 𝑀 𝐿 . 𝜕𝑟 I = 𝑀 𝐿 ( 𝑟3 3 ). ∫ . 𝑙/2 −𝑙/2 I= 𝑀 𝐿 . 𝐿3 3 I = 𝑀𝐿2 12 7. Deducir explícitamente la ecuación 5, a partir de las ecuaciones de movimiento (segunda ley de Newton) para el sistema. Para determinar experimentalmente El momento de inercia de lo cuerpos, aplique un toque o momento de fuerza a los cuerpos, y mida la aceleración angular resultante. Dado que    I   / ……. (Ω) Donde  es la aceleración angular y  es el torque El torque depende de la fuerza aplicada y de la distancia entre el punto donde el objeto pivota y el punto donde se aplica el impulso, es decir:   r  F  𝜌 = 𝜕𝑀 𝜕𝑉 ; 𝜌 = 𝑀 𝑉 ; 𝜕𝑉 = 𝐴. 𝜕𝑟 𝜕𝑀 = 𝜌 𝜕𝑉 𝜕𝑀 = 𝑀 𝑉 . 𝐴. 𝜕𝑟 𝜕𝑀 = 𝑀 𝜋𝑟2 𝐿 𝜋𝑟2 . 𝜕𝑟 𝜕𝑀 = 𝑀 𝐿 . 𝜕𝑟
  • 19. Donde r es la distancia desde el centro del aro o del disco hasta el punto donde se aplica la fuerza y F es la fuerza aplicada. El valor de r x F es r F sin ø donde ø es el ángulo entre r y la dirección de F, la fuerza aplicada. El impulso es máximo cuando r y F son perpendiculares. En este caso,la fuerza aplicada es la tensión (T) de un hilo atado al aparato giratorio. La gravedad tira de una masa suspendida m atada al hilo. El valor de r es el radio de la polea del aparato. El radio es perpendicular a la fuerza aplicada (Tensión). En consecuencia, el torque es:   r  T Aplicando la segunda Ley de Newton para la masa en suspensión, m, resulta: F  T(cos0°) + mg(180°)  ma(cos180°) F  T mg  m(a) Resolviendo para la tensión: T  m (g  a) El torque es:   rT  rm (g  a) ……..(α) La aceleración tangencial a de la masa en suspensión es la aceleración tangencial (𝑎 𝑡), del dispositivo que gira. La aceleración angular está relacionada con la aceleración tangencial como sigue:  = 𝑎 𝑡 𝑟 …….. (β) Reemplazando (α) y (β) en (Ω) resulta: I   /  𝑟𝑚(𝑔−𝑎) 𝑎 𝑡/ r = 𝑟𝑚 (𝑔  𝑎) 𝑟 𝑎 𝑡 En el punto en que se sobresale la caída del hilo atado a las masas, consideramos que la aceleración tangencial (at) y la aceleración de la aceleración del sistema vendrían a ser las mismas. mgr2 𝑎 𝑡 – ma𝑟2 𝑎 𝑡  mr2 (g /𝑎 𝑡 – 1) 1 4 mD2 (𝑔/ 𝑎 𝑡 – 1)
  • 20. 8.- ¿Qué relación existe entre el momento de inercia y los tensores?
  • 21. 9.- ¿Qué predice el teorema de Steiner? El Teorema de Steiner (o teorema de los ejes-paralelos) a menudo simplifica los cálculos. Premisa: Supongamos que conocemos el momento de inercia con respecto a un eje que pase por el centro de masas de un objeto Teorema: Entonces podemos conocer el momento de inercia con respecto a cualquier otro eje paralelo al primero y que se encuentra a una distancia D Procedemos ahora la demostración del Teorema: Tomemos un elemento de masa dm situado en las coordenadas (x,y). Si ahora escogemos un sistema de coordenadas con origen en el centro de masas del objeto, las nuevas coordenadas del elemento de masa serán (x',y') Calculamos el momento de inercia respecto del eje Z que es paralelo al eje que pasa por el centro de masas: Como el segundo sistema de referencia tiene como origen el centro de masas:
  • 22. La primera integral es el momento de inercia respecto del eje que pasa por el CM. La última integral es la masa del sólido, y magnitud que multiplica a esta integral es la distancia al cuadrado entre los dos ejes. Por tanto:
  • 23. V. CONCLUSIONES  Por el modelo teórico, se puede concluir que el momento de inercia depende principalmente del diámetro del cuerpo si es que se trata de solidos circulares o de la longitud, si se trata de varillas o cilindros.  Se puede observar según los cálculos que el momento de inercia de la polea presenta un porcentaje de error bajo, esto quiere decir que la diferencia es mínima comparado con su valor teórico.  Se puede observar, sin embargo, que el momento de inercia del cilindro presenta un porcentaje de error muy alto, la causa de ello podría ser el uso de un cilindro con hueco, ya que según la formula teórica, el cilindro debería ser compacto.
  • 24. VI. RECOMENDACIONES  Tanto la polea como el cilindro deben estar correctamente posicionados para obtener mejores resultados.  Debemos anticipar que el hilo se tense por completo cuando se suelta las masas amarradas a ella, ya que esto puede dañar la polea.  Evitar que el hilo se enrede durante el experimento.  La persona que maneja el XPLORER debe apretar el botón play un segundo antes que se suelte las masas, luego escogerás la gráfica que tiene forma de una línea con pendiente positiva con la opción “CONNOTACION DE PUNTOS” en el XPLORER.
  • 25. VIII. ANEXOS APLICACIONES DE LA INERCIA EN LA VIDA DIARIA En física se le conoce como inercia a la capacidad que tiene la materia de mantener su estado de reposo o de movimiento rectilíneo uniforme mientras no exista una fuerza que actúe sobre ella. Esta propiedad de la materia se encuentra expresada en La Primera Ley de Newton, se podría decir que se trata de la resistencia que opone a modificar su estado dinámico, un sistema de partículas. Existe también otro tipo de inercia llamado térmica, que se refiere a la dificultad que tiene un objeto de cambiar su temperatura. Entre más difícil sea cambiar el estado de un objeto, ya sea de temperatura,de reposo o movimiento rectilíneo uniforme, se dice que tiene mayor inercia. La inercia se puede separar en varios grupos o tipos de inercia. La inercia mecánica se divide en 5 tipos:  Inercia dinámica. - se relaciona con los cuerpos que se encuentran es estado de movimiento.  Inercia estática. - Esta es aquella que está vinculada con los cuerpos en estado de reposo.  Inercia traslacional.- Es la vinculada con la masa total de un cuerpo.  Inercia rotacional. - Se trata de aquella que representa la propiedad de los cuerpos para resistir los cambios de su estado de movimiento rotatorio, se le identifica con el símbolo I.  La Inercia térmica. - Se le llama así a la propiedad que nos indica la cantidad de calor que pueden conservar los cuerpos, así como la con que estos pueden absorber el calor o cederlo. Ejemplos:  Cuando se empuja un auto que está en reposo, al principio cuesta trabajo debido a la inercia que se opone al movimiento, una vez que se empieza a mover es más fácil empujarlo, gracias a la inercia ahora tiene movimiento.
  • 26.  El rápido descenso de la pendiente que se da en una montaña rusa que le permite acumular la energía potencial suficiente para elevarse de nuevo, esto es producida por la inercia.  Quitar un mantel y que quede lo que está arriba apoyado en la mesa, en el mismo lugar: un truco clásico de magia basado en la inercia; para que salga bien hay que tirar el mantel hacia abajo y el objeto debe ser más bien liviano.
  • 27. XI. BIBLIOGRAFIA -PASCO scientific (1999) Momento de inercia. Recuperado de: http://downloads.gphysics.net/pasco/P22-Momento-de-Inercia.pdf - Dinámica de rotación (2015) Recuperado de : http://www.sc.ehu.es/sbweb/fisica/solido/teoria/teoria.htm