SlideShare una empresa de Scribd logo
1 de 39
Introducción
Siempre que se trabaja con un fluido , existe la
necesidad de realizar un conteo de la cantidad
que se transporta, para lo cual utilizamos
medidores de flujo.
Algunos de ellos miden la velocidad de flujo de
manera directa y otros miden la velocidad
promedio, y aplicando la Ecuación de
continuidad y la de energía se calcula la
velocidad
FACTORES PARA LA ELECCIÓN DEL TIPO DE
MEDIDOR DE FLUIDO
 Intervalo de medición
 Exactitud requerida
 Pérdida de presión
 Tipo de fluido
 Tipo de medición
 Calibración
 Medio ambiente
 Lugar de ubicación
TIPOS DE MEDIDORES DE FLUJO
 MEDIDORES DE CABEZA VARIABLE
*Tubo de venturi
*Placa de Orificio
 MEDIDORES DE ÁREA VARIABLE
*Rotámetro
*Fluxometro de turbina
*Fluxometro de vortice
*Fluxometro electromagnético
*Fluxometro de Ultrasonido
*Fluxometro de velocidad
-Tubo de Pitot
-Anemómetro de Copas
-Anemómetro de Alambre Caliente
 MEDIDORES DE FLUJO MASICO:
1. El medidor de masa inferencial que mide por lo común el flujo volumétrico del fluido y su
densidad por separado.
2. Medidor de masa “verdadero”, que registra directamente el flujo en unidad de masa.
Algunos medidores de flujo masico son:
a) El medidor de efecto Magnus.
b) El medidor de momento transversal para flujo axial
c) El medidor de gasto de masa de momento transversal para flujo radial.
d) El medidor de gasto de masa de momento transversal.
e) El medidor térmico de gasto de masa giroscópico.
1. MEDIDORES DE CABEZA VARIABLE
1.1 TUBO DE VÉNTURI
Es una tubería corta recta, o garganta, entre dos tramos cónicos. La
presión varía en la proximidad de la sección estrecha; así, al colocar
un manómetro o instrumento registrador en la garganta se puede
medir la caída de presión y calcular el caudal instantáneo.
ECUACIONES DE UN TUBO DE VENTURI
El valor de C depende del número de Reynolds del flujo y de la
geometría real del medidor. La siguiente figura muestra una curva
típica de C Vs número de Reynolds en la tubería principal.
Placas de orificio:
Cuando una placa se coloca en forma concéntrica dentro de una
tubería, esta provoca que el flujo se contraiga de repente conforme
se aproxima al orificio y después se expande de repente al diámetro
total de la tubería. La corriente que fluye a través del orificio forma
una vena contracta y la rápida velocidad del flujo resulta en una
disminución de presión hacia abajo desde el orificio.
1. La concéntrica: sirve para líquidos
2. La excéntrica: para los gases
3. La segmentada cuando los fluidos contienen un alto
porcentaje de gases disueltos.
Algunos tipos de placas de orificio
ECUACIÓN DE UNA PLACA DE ORIFICIO
Orificio de orilla recta:
BOQUILLA O TOBERA DE FLUJO
Es una contracción gradual de la corriente de flujo
seguida de una sección cilíndrica recta y corta.
BOQUILLA
Para calcular el valor de C, tenemos la siguiente
expresión:
C = 0.9975 - 0.00653 (106 / NR)a a= 0.5
a=0.2
A grandes valores de Reynolds (106) C es superior a 0.99.
Medidores de área variable
 Los medidores de área variable pertenecen al grupo
de los llamados medidores diferenciales de presión.
 Esta clase de medidores presenta una reducción de
la sección de paso del fluido, dando lugar a que el
fluido aumente su velocidad, lo que origina un
aumento de su energía cinética y, por consiguiente,
su presión tiende a disminuir en una proporción
equivalente, de acuerdo con el principio de la
conservación de la energía, creando una diferencia
de presión estática entre las secciones aguas arriba
y aguas abajo del medidor.
ESPECIFICACIONES
El Rotámetro: tiene un flotador
(indicador) que se mueve libremente
dentro de un tubo vertical ligeramente
cónico, con el extremo angosto hacia
abajo. El fluido entra por la parte inferior
del tubo y hace que el flotador suba
hasta que el área anular entre él y la
pared del tubo sea tal, que la caída de
presión de este estrechamiento sea lo
suficientemente para equilibrar el peso
del flotador. El tubo es de vidrio y lleva
grabado una escala lineal, sobre la cual
la posición del flotador indica el gasto o
caudal.
Material Densidad (g/ml)
Aluminio 2.72
Bronce 8.78
Durimet 8.02
Monel 8.84
Níquel 8.91
Goma 1.20
Acero inoxidable 303 7.92
Acero inoxidable 316 8.04
Hastelloy B 9.24
Hastelloy C 8.94
Plomo 11.38
Tantalio 16.60
Teflón 2.20
Titanio 4.50
Tipos de flotadores:
 Cilíndrico con borde plano:
caudales mayores y mayor
gama de fluidos.
 Cilíndrico con borde saliente
de cara inclinada a favor del
flujo, disminuyendo su
afectación por la viscosidad del
medio.
 Cilíndrico con borde saliente
en contra del flujo: comparable
a una placa de orificio y con el
menor efecto de la viscosidad.
TIPOS Y MATERIALES DE LOS FLOTADORES
w
d c
C 1

ECUACIONES DEL ROTAMETRO
El valor de Cd en función al # de Reynolds del flotador.
c
f
f
c
c
d
A
g
V
A
C
v
A
Q








 )
(
2
 FLUXOMETRO DE TURBINA
El fluido provoca que el rotor de la turbina gire a una velocidad que
depende de la velocidad del flujo. Conforme cada una de las aspas
de rotor pasa a través de una bobina magnética, se genera un pulso
de voltaje que puede alimentarse de un medidor de frecuencia, un
contador electrónico u otro dispositivo similar cuyas lecturas puedan
convertirse en velocidad de flujo. Velocidades de flujo desde 0.02
L/min hasta algunos miles de L/min se pueden medir con
fluxómetros de turbina de varios tamaños.
OTROS MEDIDORES DE AREA VARIABLE
 FLUXOMETRO DE VORTICE
Una obstrucción chata colocada en la corriente del flujo provoca la
creación de vortices a una frecuencia que es proporcional a la
velocidad del flujo. Un sensor en el fluxometro detecta los vortices y
genera una indicación en la lectura del dispositivo medidor.
La frecuencia de los vortices creados es directamente proporcional a la
velocidad del flujo y, por lo tanto, a la frecuencia del flujo del volumen.
Pueden utilizarse en una amplia variedad de fluidos incluyendo líquidos sucios
y limpios, así como gases y vapor.
FLUXOMETRO
ELECTROMAGNÉTICO
 Basado en la Ley de Faraday. Formado por un
tubo, revestido interiormente con material
aislante. Sobre dos puntos diametralmente
opuestos de la superficie interna se colocan dos
electrodos metálicos, entre los cuales se genera
la señal eléctrica de medida. En la parte externa
se colocan los dispositivos para generar el
campo magnético, y todo se recubre de una
protección externa, con diversos grados de
seguridad.
FLUXOMETRO DE
ULTRASONIDO
Consta de unas Sondas, que trabajan por pares, como emisor y receptor.
Los hay dos tipos:
a) DOPPLER: Miden los cambios de frecuencia causados por el flujo del líquido.
Se colocan dos sensores cada uno a un lado del flujo a medir y se envía una
señal de frecuencia conocida a través del líquido.
b) TRÁNSITO: Tienen transductores colocados a ambos lados del flujo.
Las ondas de sonido viajan entre los dispositivos con una inclinación de 45º respecto
a la dirección de flujo del líquido.
SONDAS DE VELOCIDAD
 TUBO PITOT.
Tubo hueco colocado de tal
forma que los extremos
abiertos apuntan
directamente a la corriente
del fluido. La presión en la
punta provoca que se
soporte una columna del
fluido.
El fluido dentro de la punta
es estacionario o estancado
llamado punto de
estancamiento.
 
 


/
)
1
(
2
/
)
(
2
2
1
1
y
ys
g
v
p
p
g
v s




ANEMOMETROS DE COPA
‘Es el instrumento clásico usado para medir el viento. Los valores de
medida empiezan con 0,1 m/s y 1 m/s, dependiendo del diseño’.
Tiene un eje vertical y tres copas o cazoletas que capturan el viento.
El n° de revoluciones por segundo son registradas
electrónicamente.
Normalmente está provisto de una veleta para detectar la dirección
del viento.
ANEMOMETRO DE ALAMBRE CALIENTE
mide la velocidad del fluido detectando los cambios en la transferencia
de calor mediante un pequeño sensor calentando eléctricamente
(un hilo o una película delgada) expuesto al fluido bajo estudio. El
sensor calentado es mantenido a una temperatura constante
usando un circuito de control electrónico. La magnitud del aumento
de voltaje necesario para mantener la temperatura constante está
directamente relacionada con la transferencia de calor y, por tanto,
con la velocidad del fluido. Es ideal para la medida de velocidades
en fluidos puros (gases, y líquidos) de temperatura uniforme.
MEDIDORES DE FLUJO MASICO
Es una necesidad el tener un control del nivel de
masa o cantidad de masa del fluido con el que estamos
trabajando. Los medidores de masa son usados para
líquidos de densidad variable, líquidos multifase o
gases que requieren una directa medición del nivel de
masa.
En la actualidad sus aplicaciones han llegado a muchos
procesos como lo son, la producción del gas natural,
refinerías, químicas manufactureras, laboratorios
científicos
PRINCIPIOS GENERALES
Existen dos clases principales de medidores de masa:
1. El medidor de masa inferencial que mide por lo común el flujo
volumétrico del fluido y su densidad por separado.
2. Medidor de masa “verdadero”, que registra directamente el flujo
en unidad de masa.
Algunos medidores de flujo masico son:
a) El medidor de efecto Magnus.
b) El medidor de momento transversal para flujo axial
c) El medidor de gasto de masa de momento transversal para
flujo radial.
d) El medidor de gasto de masa de momento transversal.
e) El medidor térmico de gasto de masa giroscópico.
El tipo b constituye la base de varios medidores de gasto de masa
comerciales, una de cuyas versiones se describirá someramente a
continuación
MEDIDOR DE GASTO DE MASA DE MOMENTO
TRASNVERSAL PARA FLUJO AXIAL
También conocido como medidor de gasto de
masa de momento angular.
Una de las aplicaciones de este principio
comprende el uso del flujo axial que pasa por un
propulsor activado y una turbina puestos en serie.
El propulsor le imparte una cantidad de
movimiento o momento angular al fluido que, a
su vez, genera un par de fuerza que se comunica a
la turbina a la que le impide girar por medio de
un resorte. El par, que se puede medir es
proporcional a la velocidad de rotación del
MEDIDORES DE GASTO DE MASA INFERENCIAL
1. Medidores de carga con compensación de
densidad.
Los medidores de carga, como orificios, tubos
venturi o boquillas se utilizan con uno de los
diversos densitómetros disponibles (por ejemplo
basándose en una fuerza ascensional en un flotador,
acoplamiento hidráulico, salida de voltaje de un cristal
piezoeléctrico o absorción por radiación). La señal
proveniente del medidor de carga, es
proporcional a ρV² (donde: ρ = densidad del fluido
y V=velocidad del fluido), se multiplica por ρ según
la lectura del densitometro. La raíz cuadrada
del producto es proporcional al gasto de masa.
2. Medidores de carga con compensación de
velocidad. La señal proveniente del
medidor de carga, que es proporcional a ρV², se
divide entre la señal de un velocímetro para
obtener una señal proporcional al gasto de masa.
3. Medidores de velocidad con compensación de
densidad.
La señal generada por el velocímetro (por
ejemplo, medidor de turbina electromagnético o de
velocidad sonica) se multiplica por la señal obtenida
en el densitómetro para dar una señal proporcional
al gasto de masa.
APARATOS PARA MEDICIONES DE
CAUDAL MÁSICO
 Medidores térmicos
Un método de determinación del
flujo de masa es por el efecto de
transferencia de calor. Se pone
en contacto con el fluido una
resistencia de platino con una
corriente controlada. Esta
resistencia sube su temperatura en
condiciones sin flujo. Cuando el
flujo se inicia, existe una
disminución de temperatura en el
sensor por el intercambio de calor
con el fluido. La corriente
eléctrica varía por la propia
variación de la resistencia con la
 Caudalímetro de Coriolis
Con la configuración del equipo indicado,
poniendo a los tubos en oscilación a una frecuencia
fija uno contra otro; el movimiento entre los tubos
en U será estable. Con el ingreso del fluido al
sistema, este circulará en el primer brazo de la U
alejándose del eje de rotación, mientras que en el
segundo brazo de la U estará acercándose al eje de
rotación. Esto generará una fuerza de Coriolis que
distorsionará la oscilación fija en vacío. Esta
distorsión será entonces una función de la masa y de
la velocidad de flujo. La velocidad angular está
fijada por la frecuencia de excitación.
VENTAJAS DEL CAUDALÍMETRO
• Bajo nivel de incertidumbre en la medición de
masa
• La medición es altamente independiente de la
temperatura, densidad o presión del fluido, sólo
depende de la masa
• Principalmente aplicable para líquidos, en un
amplio rango, independientemente de la viscosidad
• Baja caída de presión en el flujo.
• Capaz de medir caudal másico en ambas
direcciones.
• Costo bastante alto
• Es importante la limpieza de los tubos oscilantes
en forma periódica.
Medidores de masa digitales
 Anemómetro de cucharas PCE-A420
 Anemómetro PCE-AM81
 Caudalímetro másico Coriolis Promass 83
 Anemometros de rueda alada serie LCA
(la rueda alada está integrada en el medidor)
 Anemómetros de tubo de Pitot-PVM-100
(tubo de Pitot, para altas velocidades de circulación)
COMPARATIVA DE LOS DISTINTOS SENSORES DE FLUJO
Sensor de flujo Líquidos recomendados
Pérdida de
presión
Exactitud típica
en %
Medidas y
diámetros
Efecto
viscoso
Coste Relativo
Orificio
Líquidos sucios y limpios;
algunos líquidos viscosos
Medio
±2 a ±4 of full
scale
10 a 30 Alto Bajo
Tubo Venturi
Líquidos viscosos, sucios
y limpios
Bajo ±1 5 a 20 Alto Medio
Tubo Pitot Líquidos limpios Muy bajo ±3 a ±5 20 a 30 Bajo Bajo
Turbina
Líquidos limpios y
viscosos
Alto ±0.25 5 a 10 Alto Alto
Electromagnet.
Líquidos sucios y limpios;
líquidos viscosos y
conductores
No ±0.5 5 No Alto
Ultrasonic. (Doppler)
Líquidos sucios y líquidos
viscosos
No ±5 5 a 30 No Alto
Ultrasonic. (Time-of-
travel)
Líquidos limpios y líquidos
viscosos
No ±1 a ±5 5 a 30 No Alto
APLICACIONES DE ALGUNOS MEDIDORES DE FLUJO
CONCLUSIONES
 Tener en cuenta que los Medidores de
Flujos son dispositivos, que pueden ser
utilizado en muchas aplicaciones
tecnológicas, requieren de un buen uso y
mantenimiento
 Los medidores de flujo nos ayudan a
controlar y mantener especificaciones de
operación en un proceso

Más contenido relacionado

Similar a Medidores de flujo: tipos y principios de funcionamiento

Borrador000 clase4 4-16-medidores-de-flujo
Borrador000  clase4 4-16-medidores-de-flujoBorrador000  clase4 4-16-medidores-de-flujo
Borrador000 clase4 4-16-medidores-de-flujoAli Kim
 
Medidores de flujos para fluidos
Medidores de flujos para fluidosMedidores de flujos para fluidos
Medidores de flujos para fluidosOsvaldo Mendoza
 
Medidores en la Industria Petroquímica
Medidores en la Industria PetroquímicaMedidores en la Industria Petroquímica
Medidores en la Industria PetroquímicaWilliamMachado41
 
Manometro
ManometroManometro
Manometro2marco3
 
S0305MedicionCaudal1.pdf
S0305MedicionCaudal1.pdfS0305MedicionCaudal1.pdf
S0305MedicionCaudal1.pdfOrlando Juárez
 
LABORATORIO N°4 (SISTEMAS DE MEDIDA DE FLUJO)-MECANICA DE FLUIDOS II- UNSAAC-...
LABORATORIO N°4 (SISTEMAS DE MEDIDA DE FLUJO)-MECANICA DE FLUIDOS II- UNSAAC-...LABORATORIO N°4 (SISTEMAS DE MEDIDA DE FLUJO)-MECANICA DE FLUIDOS II- UNSAAC-...
LABORATORIO N°4 (SISTEMAS DE MEDIDA DE FLUJO)-MECANICA DE FLUIDOS II- UNSAAC-...ALEXANDER HUALLA CHAMPI
 
CONTROL DE PROCESOS-INSTRUMENTACIÓN -MEDICION DE FLUJO.pdf
CONTROL DE PROCESOS-INSTRUMENTACIÓN -MEDICION DE FLUJO.pdfCONTROL DE PROCESOS-INSTRUMENTACIÓN -MEDICION DE FLUJO.pdf
CONTROL DE PROCESOS-INSTRUMENTACIÓN -MEDICION DE FLUJO.pdfCarolineFernndez1
 
Instrumentación De Control Clase 8 Caudal
Instrumentación De Control   Clase 8 CaudalInstrumentación De Control   Clase 8 Caudal
Instrumentación De Control Clase 8 CaudalUNEFA
 
Presentación flujo
Presentación flujoPresentación flujo
Presentación flujoOsman Sierra
 
instrumentos de medicion de flujo
instrumentos de medicion de flujo instrumentos de medicion de flujo
instrumentos de medicion de flujo luis_angel2015
 

Similar a Medidores de flujo: tipos y principios de funcionamiento (20)

Borrador000 clase4 4-16-medidores-de-flujo
Borrador000  clase4 4-16-medidores-de-flujoBorrador000  clase4 4-16-medidores-de-flujo
Borrador000 clase4 4-16-medidores-de-flujo
 
Medidores de flujo
Medidores de flujoMedidores de flujo
Medidores de flujo
 
Medidores de flujos para fluidos
Medidores de flujos para fluidosMedidores de flujos para fluidos
Medidores de flujos para fluidos
 
Sensores de caudal tipo Turbina
Sensores de caudal tipo TurbinaSensores de caudal tipo Turbina
Sensores de caudal tipo Turbina
 
Medidores en la Industria Petroquímica
Medidores en la Industria PetroquímicaMedidores en la Industria Petroquímica
Medidores en la Industria Petroquímica
 
Manometro
ManometroManometro
Manometro
 
00048142
0004814200048142
00048142
 
S0305MedicionCaudal1.pdf
S0305MedicionCaudal1.pdfS0305MedicionCaudal1.pdf
S0305MedicionCaudal1.pdf
 
Caudal y medicion
Caudal y medicionCaudal y medicion
Caudal y medicion
 
LABORATORIO N°4 (SISTEMAS DE MEDIDA DE FLUJO)-MECANICA DE FLUIDOS II- UNSAAC-...
LABORATORIO N°4 (SISTEMAS DE MEDIDA DE FLUJO)-MECANICA DE FLUIDOS II- UNSAAC-...LABORATORIO N°4 (SISTEMAS DE MEDIDA DE FLUJO)-MECANICA DE FLUIDOS II- UNSAAC-...
LABORATORIO N°4 (SISTEMAS DE MEDIDA DE FLUJO)-MECANICA DE FLUIDOS II- UNSAAC-...
 
CONTROL DE PROCESOS-INSTRUMENTACIÓN -MEDICION DE FLUJO.pdf
CONTROL DE PROCESOS-INSTRUMENTACIÓN -MEDICION DE FLUJO.pdfCONTROL DE PROCESOS-INSTRUMENTACIÓN -MEDICION DE FLUJO.pdf
CONTROL DE PROCESOS-INSTRUMENTACIÓN -MEDICION DE FLUJO.pdf
 
MEDIDAS DE CAUDAL
MEDIDAS DE CAUDALMEDIDAS DE CAUDAL
MEDIDAS DE CAUDAL
 
Instrumentación De Control Clase 8 Caudal
Instrumentación De Control   Clase 8 CaudalInstrumentación De Control   Clase 8 Caudal
Instrumentación De Control Clase 8 Caudal
 
Presentación1
Presentación1Presentación1
Presentación1
 
medicioncaudal1
medicioncaudal1medicioncaudal1
medicioncaudal1
 
medicioncaudal1
 medicioncaudal1 medicioncaudal1
medicioncaudal1
 
Medidores de Presión
Medidores de PresiónMedidores de Presión
Medidores de Presión
 
10. Flujo.pptx
10. Flujo.pptx10. Flujo.pptx
10. Flujo.pptx
 
Presentación flujo
Presentación flujoPresentación flujo
Presentación flujo
 
instrumentos de medicion de flujo
instrumentos de medicion de flujo instrumentos de medicion de flujo
instrumentos de medicion de flujo
 

Más de LuLopez7

bhguhffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff
bhguhffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffbhguhffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff
bhguhffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffLuLopez7
 
Compresor X.pdf
Compresor X.pdfCompresor X.pdf
Compresor X.pdfLuLopez7
 
facilidades-de-superficie_compress.pdf
facilidades-de-superficie_compress.pdffacilidades-de-superficie_compress.pdf
facilidades-de-superficie_compress.pdfLuLopez7
 
12495-Texto del artículo-49694-1-10-20150505.pdf
12495-Texto del artículo-49694-1-10-20150505.pdf12495-Texto del artículo-49694-1-10-20150505.pdf
12495-Texto del artículo-49694-1-10-20150505.pdfLuLopez7
 
unidades-lact_compress.pdf
unidades-lact_compress.pdfunidades-lact_compress.pdf
unidades-lact_compress.pdfLuLopez7
 
UNIDAD_LACT.pptx.pdf
UNIDAD_LACT.pptx.pdfUNIDAD_LACT.pptx.pdf
UNIDAD_LACT.pptx.pdfLuLopez7
 
CONSIDERACIONES_TEORICAS_PARA_EL_DISENO (1).ppt
CONSIDERACIONES_TEORICAS_PARA_EL_DISENO (1).pptCONSIDERACIONES_TEORICAS_PARA_EL_DISENO (1).ppt
CONSIDERACIONES_TEORICAS_PARA_EL_DISENO (1).pptLuLopez7
 
08 Obturadores.pdfk
08  Obturadores.pdfk08  Obturadores.pdfk
08 Obturadores.pdfkLuLopez7
 
2.0 CURSO COMPLETACIÓN, PARTE II, TUBERIA DE REVESTIMIENTO.pdf
2.0 CURSO COMPLETACIÓN, PARTE II, TUBERIA DE REVESTIMIENTO.pdf2.0 CURSO COMPLETACIÓN, PARTE II, TUBERIA DE REVESTIMIENTO.pdf
2.0 CURSO COMPLETACIÓN, PARTE II, TUBERIA DE REVESTIMIENTO.pdfLuLopez7
 
29888GHVHG36.pdf.pdf
29888GHVHG36.pdf.pdf29888GHVHG36.pdf.pdf
29888GHVHG36.pdf.pdfLuLopez7
 
CON_RELACION_AL_FUTURO_DEL_GASODUCTO_SUR.pdf
CON_RELACION_AL_FUTURO_DEL_GASODUCTO_SUR.pdfCON_RELACION_AL_FUTURO_DEL_GASODUCTO_SUR.pdf
CON_RELACION_AL_FUTURO_DEL_GASODUCTO_SUR.pdfLuLopez7
 
Tema2.1_ProcesoCCCCCCCCCCCs_de_Separaci__n_PRINCIPIOS.pdf.pdf
Tema2.1_ProcesoCCCCCCCCCCCs_de_Separaci__n_PRINCIPIOS.pdf.pdfTema2.1_ProcesoCCCCCCCCCCCs_de_Separaci__n_PRINCIPIOS.pdf.pdf
Tema2.1_ProcesoCCCCCCCCCCCs_de_Separaci__n_PRINCIPIOS.pdf.pdfLuLopez7
 
7IFTYTYTGY
7IFTYTYTGY7IFTYTYTGY
7IFTYTYTGYLuLopez7
 
vdocuments.net_366-inchKJGGYHGG-stroke-rotaflex-pumping-unit-suc366-inch-stro...
vdocuments.net_366-inchKJGGYHGG-stroke-rotaflex-pumping-unit-suc366-inch-stro...vdocuments.net_366-inchKJGGYHGG-stroke-rotaflex-pumping-unit-suc366-inch-stro...
vdocuments.net_366-inchKJGGYHGG-stroke-rotaflex-pumping-unit-suc366-inch-stro...LuLopez7
 
dokumen.tips_bombeo-.Ñ,ÑMtipo-jet-gr-1.pdf
dokumen.tips_bombeo-.Ñ,ÑMtipo-jet-gr-1.pdfdokumen.tips_bombeo-.Ñ,ÑMtipo-jet-gr-1.pdf
dokumen.tips_bombeo-.Ñ,ÑMtipo-jet-gr-1.pdfLuLopez7
 
estimac-resJKLBN,Mervas_compress.pdf
estimac-resJKLBN,Mervas_compress.pdfestimac-resJKLBN,Mervas_compress.pdf
estimac-resJKLBN,Mervas_compress.pdfLuLopez7
 
nuevas-tecnologias-de-perforacion-enes_compress.pdf
nuevas-tecnologias-de-perforacion-enes_compress.pdfnuevas-tecnologias-de-perforacion-enes_compress.pdf
nuevas-tecnologias-de-perforacion-enes_compress.pdfLuLopez7
 

Más de LuLopez7 (20)

bhguhffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff
bhguhffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffbhguhffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff
bhguhffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff
 
Compresor X.pdf
Compresor X.pdfCompresor X.pdf
Compresor X.pdf
 
facilidades-de-superficie_compress.pdf
facilidades-de-superficie_compress.pdffacilidades-de-superficie_compress.pdf
facilidades-de-superficie_compress.pdf
 
12495-Texto del artículo-49694-1-10-20150505.pdf
12495-Texto del artículo-49694-1-10-20150505.pdf12495-Texto del artículo-49694-1-10-20150505.pdf
12495-Texto del artículo-49694-1-10-20150505.pdf
 
unidades-lact_compress.pdf
unidades-lact_compress.pdfunidades-lact_compress.pdf
unidades-lact_compress.pdf
 
UNIDAD_LACT.pptx.pdf
UNIDAD_LACT.pptx.pdfUNIDAD_LACT.pptx.pdf
UNIDAD_LACT.pptx.pdf
 
CONSIDERACIONES_TEORICAS_PARA_EL_DISENO (1).ppt
CONSIDERACIONES_TEORICAS_PARA_EL_DISENO (1).pptCONSIDERACIONES_TEORICAS_PARA_EL_DISENO (1).ppt
CONSIDERACIONES_TEORICAS_PARA_EL_DISENO (1).ppt
 
08 Obturadores.pdfk
08  Obturadores.pdfk08  Obturadores.pdfk
08 Obturadores.pdfk
 
2.0 CURSO COMPLETACIÓN, PARTE II, TUBERIA DE REVESTIMIENTO.pdf
2.0 CURSO COMPLETACIÓN, PARTE II, TUBERIA DE REVESTIMIENTO.pdf2.0 CURSO COMPLETACIÓN, PARTE II, TUBERIA DE REVESTIMIENTO.pdf
2.0 CURSO COMPLETACIÓN, PARTE II, TUBERIA DE REVESTIMIENTO.pdf
 
29888GHVHG36.pdf.pdf
29888GHVHG36.pdf.pdf29888GHVHG36.pdf.pdf
29888GHVHG36.pdf.pdf
 
hujouas
hujouashujouas
hujouas
 
CON_RELACION_AL_FUTURO_DEL_GASODUCTO_SUR.pdf
CON_RELACION_AL_FUTURO_DEL_GASODUCTO_SUR.pdfCON_RELACION_AL_FUTURO_DEL_GASODUCTO_SUR.pdf
CON_RELACION_AL_FUTURO_DEL_GASODUCTO_SUR.pdf
 
vgugug
vgugugvgugug
vgugug
 
Tema2.1_ProcesoCCCCCCCCCCCs_de_Separaci__n_PRINCIPIOS.pdf.pdf
Tema2.1_ProcesoCCCCCCCCCCCs_de_Separaci__n_PRINCIPIOS.pdf.pdfTema2.1_ProcesoCCCCCCCCCCCs_de_Separaci__n_PRINCIPIOS.pdf.pdf
Tema2.1_ProcesoCCCCCCCCCCCs_de_Separaci__n_PRINCIPIOS.pdf.pdf
 
NUEVOPDKS
NUEVOPDKSNUEVOPDKS
NUEVOPDKS
 
7IFTYTYTGY
7IFTYTYTGY7IFTYTYTGY
7IFTYTYTGY
 
vdocuments.net_366-inchKJGGYHGG-stroke-rotaflex-pumping-unit-suc366-inch-stro...
vdocuments.net_366-inchKJGGYHGG-stroke-rotaflex-pumping-unit-suc366-inch-stro...vdocuments.net_366-inchKJGGYHGG-stroke-rotaflex-pumping-unit-suc366-inch-stro...
vdocuments.net_366-inchKJGGYHGG-stroke-rotaflex-pumping-unit-suc366-inch-stro...
 
dokumen.tips_bombeo-.Ñ,ÑMtipo-jet-gr-1.pdf
dokumen.tips_bombeo-.Ñ,ÑMtipo-jet-gr-1.pdfdokumen.tips_bombeo-.Ñ,ÑMtipo-jet-gr-1.pdf
dokumen.tips_bombeo-.Ñ,ÑMtipo-jet-gr-1.pdf
 
estimac-resJKLBN,Mervas_compress.pdf
estimac-resJKLBN,Mervas_compress.pdfestimac-resJKLBN,Mervas_compress.pdf
estimac-resJKLBN,Mervas_compress.pdf
 
nuevas-tecnologias-de-perforacion-enes_compress.pdf
nuevas-tecnologias-de-perforacion-enes_compress.pdfnuevas-tecnologias-de-perforacion-enes_compress.pdf
nuevas-tecnologias-de-perforacion-enes_compress.pdf
 

Último

HUERTO FAMILIAR JUSTIFICACION DE PROYECTO.pptx
HUERTO FAMILIAR JUSTIFICACION DE PROYECTO.pptxHUERTO FAMILIAR JUSTIFICACION DE PROYECTO.pptx
HUERTO FAMILIAR JUSTIFICACION DE PROYECTO.pptxGerardoOroc
 
El Arte De La Contabilidad Explorando La Contabilidad De Costos
El Arte De La Contabilidad Explorando La Contabilidad De CostosEl Arte De La Contabilidad Explorando La Contabilidad De Costos
El Arte De La Contabilidad Explorando La Contabilidad De Costosocantotete
 
puntos-clave-de-la-reforma-pensional-2023.pdf
puntos-clave-de-la-reforma-pensional-2023.pdfpuntos-clave-de-la-reforma-pensional-2023.pdf
puntos-clave-de-la-reforma-pensional-2023.pdfosoriojuanpablo114
 
Proyecto de catálogo de cuentas EMPRESA.
Proyecto de catálogo de cuentas EMPRESA.Proyecto de catálogo de cuentas EMPRESA.
Proyecto de catálogo de cuentas EMPRESA.ssuser10db01
 
Trabajo tres_23 de abrilkckckckkckkccckc
Trabajo tres_23 de abrilkckckckkckkccckcTrabajo tres_23 de abrilkckckckkckkccckc
Trabajo tres_23 de abrilkckckckkckkccckclauravacca3
 
Estructura y elaboración de un presupuesto financiero
Estructura y elaboración de un presupuesto financieroEstructura y elaboración de un presupuesto financiero
Estructura y elaboración de un presupuesto financieroMARTINMARTINEZ30236
 
Contratos bancarios en Colombia y sus carcteristicas
Contratos bancarios en Colombia y sus carcteristicasContratos bancarios en Colombia y sus carcteristicas
Contratos bancarios en Colombia y sus carcteristicasssuser17dd85
 
16-El-diezmo en la doctrina biblica .pptx
16-El-diezmo en la doctrina biblica .pptx16-El-diezmo en la doctrina biblica .pptx
16-El-diezmo en la doctrina biblica .pptxrsinstitutobiblico
 
QUE REQUISITOS DEBO CUMPLIR PARA PENSIONARME.pdf
QUE REQUISITOS DEBO CUMPLIR PARA PENSIONARME.pdfQUE REQUISITOS DEBO CUMPLIR PARA PENSIONARME.pdf
QUE REQUISITOS DEBO CUMPLIR PARA PENSIONARME.pdflupismdo
 
Situación y Perspectivas de la Economía Mundial (WESP) 2024-UN.pdf
Situación y Perspectivas de la Economía Mundial (WESP) 2024-UN.pdfSituación y Perspectivas de la Economía Mundial (WESP) 2024-UN.pdf
Situación y Perspectivas de la Economía Mundial (WESP) 2024-UN.pdfCondor Tuyuyo
 
ley del ISO Y acreditamientos y extensiones
ley del ISO Y acreditamientos y extensionesley del ISO Y acreditamientos y extensiones
ley del ISO Y acreditamientos y extensionesYimiLopesBarrios
 
Normas Contabilidad NIC 20 Y NIC 21 2024.pptx
Normas Contabilidad NIC 20 Y NIC 21 2024.pptxNormas Contabilidad NIC 20 Y NIC 21 2024.pptx
Normas Contabilidad NIC 20 Y NIC 21 2024.pptxMafeBaez
 
EL ESTADO Y LOS ORGANISMOS AUTONOMOS.pdf
EL ESTADO Y LOS ORGANISMOS AUTONOMOS.pdfEL ESTADO Y LOS ORGANISMOS AUTONOMOS.pdf
EL ESTADO Y LOS ORGANISMOS AUTONOMOS.pdfssuser2887fd1
 
Presentación TG.pptx colegio Manuel José Arce
Presentación TG.pptx colegio Manuel José ArcePresentación TG.pptx colegio Manuel José Arce
Presentación TG.pptx colegio Manuel José ArceCristianSantos156342
 
VALOR DEL DINERO EN EL TIEMPO - 2024 - SEMINARIO DE FINANZAS
VALOR DEL DINERO EN EL TIEMPO - 2024 - SEMINARIO DE FINANZASVALOR DEL DINERO EN EL TIEMPO - 2024 - SEMINARIO DE FINANZAS
VALOR DEL DINERO EN EL TIEMPO - 2024 - SEMINARIO DE FINANZASJhonPomasongo1
 
Trabajo no remunerado de las mujeres en México.pptx
Trabajo no remunerado de las mujeres en México.pptxTrabajo no remunerado de las mujeres en México.pptx
Trabajo no remunerado de las mujeres en México.pptxguadalupevjara
 
5.2 ENLACE QUÍMICO manual teoria pre universitaria
5.2 ENLACE QUÍMICO  manual teoria pre universitaria5.2 ENLACE QUÍMICO  manual teoria pre universitaria
5.2 ENLACE QUÍMICO manual teoria pre universitariamkt0005
 
Mercado de factores productivos - Unidad 9
Mercado de factores productivos - Unidad 9Mercado de factores productivos - Unidad 9
Mercado de factores productivos - Unidad 9NahuelEmilianoPeralt
 
Principios de economia Mankiw 6 edicion.pdf
Principios de economia Mankiw 6 edicion.pdfPrincipios de economia Mankiw 6 edicion.pdf
Principios de economia Mankiw 6 edicion.pdfauxcompras5
 
PRESUPUESTOS COMO HERRAMIENTA DE GESTION - UNIAGUSTINIANA.pptx
PRESUPUESTOS COMO HERRAMIENTA DE GESTION - UNIAGUSTINIANA.pptxPRESUPUESTOS COMO HERRAMIENTA DE GESTION - UNIAGUSTINIANA.pptx
PRESUPUESTOS COMO HERRAMIENTA DE GESTION - UNIAGUSTINIANA.pptxmanuelrojash
 

Último (20)

HUERTO FAMILIAR JUSTIFICACION DE PROYECTO.pptx
HUERTO FAMILIAR JUSTIFICACION DE PROYECTO.pptxHUERTO FAMILIAR JUSTIFICACION DE PROYECTO.pptx
HUERTO FAMILIAR JUSTIFICACION DE PROYECTO.pptx
 
El Arte De La Contabilidad Explorando La Contabilidad De Costos
El Arte De La Contabilidad Explorando La Contabilidad De CostosEl Arte De La Contabilidad Explorando La Contabilidad De Costos
El Arte De La Contabilidad Explorando La Contabilidad De Costos
 
puntos-clave-de-la-reforma-pensional-2023.pdf
puntos-clave-de-la-reforma-pensional-2023.pdfpuntos-clave-de-la-reforma-pensional-2023.pdf
puntos-clave-de-la-reforma-pensional-2023.pdf
 
Proyecto de catálogo de cuentas EMPRESA.
Proyecto de catálogo de cuentas EMPRESA.Proyecto de catálogo de cuentas EMPRESA.
Proyecto de catálogo de cuentas EMPRESA.
 
Trabajo tres_23 de abrilkckckckkckkccckc
Trabajo tres_23 de abrilkckckckkckkccckcTrabajo tres_23 de abrilkckckckkckkccckc
Trabajo tres_23 de abrilkckckckkckkccckc
 
Estructura y elaboración de un presupuesto financiero
Estructura y elaboración de un presupuesto financieroEstructura y elaboración de un presupuesto financiero
Estructura y elaboración de un presupuesto financiero
 
Contratos bancarios en Colombia y sus carcteristicas
Contratos bancarios en Colombia y sus carcteristicasContratos bancarios en Colombia y sus carcteristicas
Contratos bancarios en Colombia y sus carcteristicas
 
16-El-diezmo en la doctrina biblica .pptx
16-El-diezmo en la doctrina biblica .pptx16-El-diezmo en la doctrina biblica .pptx
16-El-diezmo en la doctrina biblica .pptx
 
QUE REQUISITOS DEBO CUMPLIR PARA PENSIONARME.pdf
QUE REQUISITOS DEBO CUMPLIR PARA PENSIONARME.pdfQUE REQUISITOS DEBO CUMPLIR PARA PENSIONARME.pdf
QUE REQUISITOS DEBO CUMPLIR PARA PENSIONARME.pdf
 
Situación y Perspectivas de la Economía Mundial (WESP) 2024-UN.pdf
Situación y Perspectivas de la Economía Mundial (WESP) 2024-UN.pdfSituación y Perspectivas de la Economía Mundial (WESP) 2024-UN.pdf
Situación y Perspectivas de la Economía Mundial (WESP) 2024-UN.pdf
 
ley del ISO Y acreditamientos y extensiones
ley del ISO Y acreditamientos y extensionesley del ISO Y acreditamientos y extensiones
ley del ISO Y acreditamientos y extensiones
 
Normas Contabilidad NIC 20 Y NIC 21 2024.pptx
Normas Contabilidad NIC 20 Y NIC 21 2024.pptxNormas Contabilidad NIC 20 Y NIC 21 2024.pptx
Normas Contabilidad NIC 20 Y NIC 21 2024.pptx
 
EL ESTADO Y LOS ORGANISMOS AUTONOMOS.pdf
EL ESTADO Y LOS ORGANISMOS AUTONOMOS.pdfEL ESTADO Y LOS ORGANISMOS AUTONOMOS.pdf
EL ESTADO Y LOS ORGANISMOS AUTONOMOS.pdf
 
Presentación TG.pptx colegio Manuel José Arce
Presentación TG.pptx colegio Manuel José ArcePresentación TG.pptx colegio Manuel José Arce
Presentación TG.pptx colegio Manuel José Arce
 
VALOR DEL DINERO EN EL TIEMPO - 2024 - SEMINARIO DE FINANZAS
VALOR DEL DINERO EN EL TIEMPO - 2024 - SEMINARIO DE FINANZASVALOR DEL DINERO EN EL TIEMPO - 2024 - SEMINARIO DE FINANZAS
VALOR DEL DINERO EN EL TIEMPO - 2024 - SEMINARIO DE FINANZAS
 
Trabajo no remunerado de las mujeres en México.pptx
Trabajo no remunerado de las mujeres en México.pptxTrabajo no remunerado de las mujeres en México.pptx
Trabajo no remunerado de las mujeres en México.pptx
 
5.2 ENLACE QUÍMICO manual teoria pre universitaria
5.2 ENLACE QUÍMICO  manual teoria pre universitaria5.2 ENLACE QUÍMICO  manual teoria pre universitaria
5.2 ENLACE QUÍMICO manual teoria pre universitaria
 
Mercado de factores productivos - Unidad 9
Mercado de factores productivos - Unidad 9Mercado de factores productivos - Unidad 9
Mercado de factores productivos - Unidad 9
 
Principios de economia Mankiw 6 edicion.pdf
Principios de economia Mankiw 6 edicion.pdfPrincipios de economia Mankiw 6 edicion.pdf
Principios de economia Mankiw 6 edicion.pdf
 
PRESUPUESTOS COMO HERRAMIENTA DE GESTION - UNIAGUSTINIANA.pptx
PRESUPUESTOS COMO HERRAMIENTA DE GESTION - UNIAGUSTINIANA.pptxPRESUPUESTOS COMO HERRAMIENTA DE GESTION - UNIAGUSTINIANA.pptx
PRESUPUESTOS COMO HERRAMIENTA DE GESTION - UNIAGUSTINIANA.pptx
 

Medidores de flujo: tipos y principios de funcionamiento

  • 1. Introducción Siempre que se trabaja con un fluido , existe la necesidad de realizar un conteo de la cantidad que se transporta, para lo cual utilizamos medidores de flujo. Algunos de ellos miden la velocidad de flujo de manera directa y otros miden la velocidad promedio, y aplicando la Ecuación de continuidad y la de energía se calcula la velocidad
  • 2. FACTORES PARA LA ELECCIÓN DEL TIPO DE MEDIDOR DE FLUIDO  Intervalo de medición  Exactitud requerida  Pérdida de presión  Tipo de fluido  Tipo de medición  Calibración  Medio ambiente  Lugar de ubicación
  • 3. TIPOS DE MEDIDORES DE FLUJO  MEDIDORES DE CABEZA VARIABLE *Tubo de venturi *Placa de Orificio  MEDIDORES DE ÁREA VARIABLE *Rotámetro *Fluxometro de turbina *Fluxometro de vortice *Fluxometro electromagnético *Fluxometro de Ultrasonido *Fluxometro de velocidad -Tubo de Pitot -Anemómetro de Copas -Anemómetro de Alambre Caliente  MEDIDORES DE FLUJO MASICO: 1. El medidor de masa inferencial que mide por lo común el flujo volumétrico del fluido y su densidad por separado. 2. Medidor de masa “verdadero”, que registra directamente el flujo en unidad de masa. Algunos medidores de flujo masico son: a) El medidor de efecto Magnus. b) El medidor de momento transversal para flujo axial c) El medidor de gasto de masa de momento transversal para flujo radial. d) El medidor de gasto de masa de momento transversal. e) El medidor térmico de gasto de masa giroscópico.
  • 4. 1. MEDIDORES DE CABEZA VARIABLE 1.1 TUBO DE VÉNTURI Es una tubería corta recta, o garganta, entre dos tramos cónicos. La presión varía en la proximidad de la sección estrecha; así, al colocar un manómetro o instrumento registrador en la garganta se puede medir la caída de presión y calcular el caudal instantáneo.
  • 5. ECUACIONES DE UN TUBO DE VENTURI
  • 6. El valor de C depende del número de Reynolds del flujo y de la geometría real del medidor. La siguiente figura muestra una curva típica de C Vs número de Reynolds en la tubería principal.
  • 7. Placas de orificio: Cuando una placa se coloca en forma concéntrica dentro de una tubería, esta provoca que el flujo se contraiga de repente conforme se aproxima al orificio y después se expande de repente al diámetro total de la tubería. La corriente que fluye a través del orificio forma una vena contracta y la rápida velocidad del flujo resulta en una disminución de presión hacia abajo desde el orificio.
  • 8. 1. La concéntrica: sirve para líquidos 2. La excéntrica: para los gases 3. La segmentada cuando los fluidos contienen un alto porcentaje de gases disueltos. Algunos tipos de placas de orificio
  • 9. ECUACIÓN DE UNA PLACA DE ORIFICIO Orificio de orilla recta:
  • 10. BOQUILLA O TOBERA DE FLUJO Es una contracción gradual de la corriente de flujo seguida de una sección cilíndrica recta y corta.
  • 11. BOQUILLA Para calcular el valor de C, tenemos la siguiente expresión: C = 0.9975 - 0.00653 (106 / NR)a a= 0.5 a=0.2 A grandes valores de Reynolds (106) C es superior a 0.99.
  • 12. Medidores de área variable  Los medidores de área variable pertenecen al grupo de los llamados medidores diferenciales de presión.  Esta clase de medidores presenta una reducción de la sección de paso del fluido, dando lugar a que el fluido aumente su velocidad, lo que origina un aumento de su energía cinética y, por consiguiente, su presión tiende a disminuir en una proporción equivalente, de acuerdo con el principio de la conservación de la energía, creando una diferencia de presión estática entre las secciones aguas arriba y aguas abajo del medidor.
  • 13. ESPECIFICACIONES El Rotámetro: tiene un flotador (indicador) que se mueve libremente dentro de un tubo vertical ligeramente cónico, con el extremo angosto hacia abajo. El fluido entra por la parte inferior del tubo y hace que el flotador suba hasta que el área anular entre él y la pared del tubo sea tal, que la caída de presión de este estrechamiento sea lo suficientemente para equilibrar el peso del flotador. El tubo es de vidrio y lleva grabado una escala lineal, sobre la cual la posición del flotador indica el gasto o caudal.
  • 14. Material Densidad (g/ml) Aluminio 2.72 Bronce 8.78 Durimet 8.02 Monel 8.84 Níquel 8.91 Goma 1.20 Acero inoxidable 303 7.92 Acero inoxidable 316 8.04 Hastelloy B 9.24 Hastelloy C 8.94 Plomo 11.38 Tantalio 16.60 Teflón 2.20 Titanio 4.50 Tipos de flotadores:  Cilíndrico con borde plano: caudales mayores y mayor gama de fluidos.  Cilíndrico con borde saliente de cara inclinada a favor del flujo, disminuyendo su afectación por la viscosidad del medio.  Cilíndrico con borde saliente en contra del flujo: comparable a una placa de orificio y con el menor efecto de la viscosidad. TIPOS Y MATERIALES DE LOS FLOTADORES
  • 15. w d c C 1  ECUACIONES DEL ROTAMETRO El valor de Cd en función al # de Reynolds del flotador. c f f c c d A g V A C v A Q          ) ( 2
  • 16.  FLUXOMETRO DE TURBINA El fluido provoca que el rotor de la turbina gire a una velocidad que depende de la velocidad del flujo. Conforme cada una de las aspas de rotor pasa a través de una bobina magnética, se genera un pulso de voltaje que puede alimentarse de un medidor de frecuencia, un contador electrónico u otro dispositivo similar cuyas lecturas puedan convertirse en velocidad de flujo. Velocidades de flujo desde 0.02 L/min hasta algunos miles de L/min se pueden medir con fluxómetros de turbina de varios tamaños. OTROS MEDIDORES DE AREA VARIABLE
  • 17.  FLUXOMETRO DE VORTICE Una obstrucción chata colocada en la corriente del flujo provoca la creación de vortices a una frecuencia que es proporcional a la velocidad del flujo. Un sensor en el fluxometro detecta los vortices y genera una indicación en la lectura del dispositivo medidor. La frecuencia de los vortices creados es directamente proporcional a la velocidad del flujo y, por lo tanto, a la frecuencia del flujo del volumen. Pueden utilizarse en una amplia variedad de fluidos incluyendo líquidos sucios y limpios, así como gases y vapor.
  • 18. FLUXOMETRO ELECTROMAGNÉTICO  Basado en la Ley de Faraday. Formado por un tubo, revestido interiormente con material aislante. Sobre dos puntos diametralmente opuestos de la superficie interna se colocan dos electrodos metálicos, entre los cuales se genera la señal eléctrica de medida. En la parte externa se colocan los dispositivos para generar el campo magnético, y todo se recubre de una protección externa, con diversos grados de seguridad.
  • 19. FLUXOMETRO DE ULTRASONIDO Consta de unas Sondas, que trabajan por pares, como emisor y receptor. Los hay dos tipos: a) DOPPLER: Miden los cambios de frecuencia causados por el flujo del líquido. Se colocan dos sensores cada uno a un lado del flujo a medir y se envía una señal de frecuencia conocida a través del líquido. b) TRÁNSITO: Tienen transductores colocados a ambos lados del flujo. Las ondas de sonido viajan entre los dispositivos con una inclinación de 45º respecto a la dirección de flujo del líquido.
  • 20. SONDAS DE VELOCIDAD  TUBO PITOT. Tubo hueco colocado de tal forma que los extremos abiertos apuntan directamente a la corriente del fluido. La presión en la punta provoca que se soporte una columna del fluido. El fluido dentro de la punta es estacionario o estancado llamado punto de estancamiento.       / ) 1 ( 2 / ) ( 2 2 1 1 y ys g v p p g v s    
  • 21. ANEMOMETROS DE COPA ‘Es el instrumento clásico usado para medir el viento. Los valores de medida empiezan con 0,1 m/s y 1 m/s, dependiendo del diseño’. Tiene un eje vertical y tres copas o cazoletas que capturan el viento. El n° de revoluciones por segundo son registradas electrónicamente. Normalmente está provisto de una veleta para detectar la dirección del viento.
  • 22. ANEMOMETRO DE ALAMBRE CALIENTE mide la velocidad del fluido detectando los cambios en la transferencia de calor mediante un pequeño sensor calentando eléctricamente (un hilo o una película delgada) expuesto al fluido bajo estudio. El sensor calentado es mantenido a una temperatura constante usando un circuito de control electrónico. La magnitud del aumento de voltaje necesario para mantener la temperatura constante está directamente relacionada con la transferencia de calor y, por tanto, con la velocidad del fluido. Es ideal para la medida de velocidades en fluidos puros (gases, y líquidos) de temperatura uniforme.
  • 23. MEDIDORES DE FLUJO MASICO Es una necesidad el tener un control del nivel de masa o cantidad de masa del fluido con el que estamos trabajando. Los medidores de masa son usados para líquidos de densidad variable, líquidos multifase o gases que requieren una directa medición del nivel de masa. En la actualidad sus aplicaciones han llegado a muchos procesos como lo son, la producción del gas natural, refinerías, químicas manufactureras, laboratorios científicos
  • 24. PRINCIPIOS GENERALES Existen dos clases principales de medidores de masa: 1. El medidor de masa inferencial que mide por lo común el flujo volumétrico del fluido y su densidad por separado. 2. Medidor de masa “verdadero”, que registra directamente el flujo en unidad de masa. Algunos medidores de flujo masico son: a) El medidor de efecto Magnus. b) El medidor de momento transversal para flujo axial c) El medidor de gasto de masa de momento transversal para flujo radial. d) El medidor de gasto de masa de momento transversal. e) El medidor térmico de gasto de masa giroscópico. El tipo b constituye la base de varios medidores de gasto de masa comerciales, una de cuyas versiones se describirá someramente a continuación
  • 25. MEDIDOR DE GASTO DE MASA DE MOMENTO TRASNVERSAL PARA FLUJO AXIAL También conocido como medidor de gasto de masa de momento angular. Una de las aplicaciones de este principio comprende el uso del flujo axial que pasa por un propulsor activado y una turbina puestos en serie. El propulsor le imparte una cantidad de movimiento o momento angular al fluido que, a su vez, genera un par de fuerza que se comunica a la turbina a la que le impide girar por medio de un resorte. El par, que se puede medir es proporcional a la velocidad de rotación del
  • 26. MEDIDORES DE GASTO DE MASA INFERENCIAL 1. Medidores de carga con compensación de densidad. Los medidores de carga, como orificios, tubos venturi o boquillas se utilizan con uno de los diversos densitómetros disponibles (por ejemplo basándose en una fuerza ascensional en un flotador, acoplamiento hidráulico, salida de voltaje de un cristal piezoeléctrico o absorción por radiación). La señal proveniente del medidor de carga, es proporcional a ρV² (donde: ρ = densidad del fluido y V=velocidad del fluido), se multiplica por ρ según la lectura del densitometro. La raíz cuadrada del producto es proporcional al gasto de masa.
  • 27. 2. Medidores de carga con compensación de velocidad. La señal proveniente del medidor de carga, que es proporcional a ρV², se divide entre la señal de un velocímetro para obtener una señal proporcional al gasto de masa. 3. Medidores de velocidad con compensación de densidad. La señal generada por el velocímetro (por ejemplo, medidor de turbina electromagnético o de velocidad sonica) se multiplica por la señal obtenida en el densitómetro para dar una señal proporcional al gasto de masa.
  • 28. APARATOS PARA MEDICIONES DE CAUDAL MÁSICO  Medidores térmicos Un método de determinación del flujo de masa es por el efecto de transferencia de calor. Se pone en contacto con el fluido una resistencia de platino con una corriente controlada. Esta resistencia sube su temperatura en condiciones sin flujo. Cuando el flujo se inicia, existe una disminución de temperatura en el sensor por el intercambio de calor con el fluido. La corriente eléctrica varía por la propia variación de la resistencia con la
  • 29.  Caudalímetro de Coriolis Con la configuración del equipo indicado, poniendo a los tubos en oscilación a una frecuencia fija uno contra otro; el movimiento entre los tubos en U será estable. Con el ingreso del fluido al sistema, este circulará en el primer brazo de la U alejándose del eje de rotación, mientras que en el segundo brazo de la U estará acercándose al eje de rotación. Esto generará una fuerza de Coriolis que distorsionará la oscilación fija en vacío. Esta distorsión será entonces una función de la masa y de la velocidad de flujo. La velocidad angular está fijada por la frecuencia de excitación.
  • 30.
  • 31. VENTAJAS DEL CAUDALÍMETRO • Bajo nivel de incertidumbre en la medición de masa • La medición es altamente independiente de la temperatura, densidad o presión del fluido, sólo depende de la masa • Principalmente aplicable para líquidos, en un amplio rango, independientemente de la viscosidad • Baja caída de presión en el flujo. • Capaz de medir caudal másico en ambas direcciones. • Costo bastante alto • Es importante la limpieza de los tubos oscilantes en forma periódica.
  • 32.
  • 33. Medidores de masa digitales  Anemómetro de cucharas PCE-A420
  • 35.  Caudalímetro másico Coriolis Promass 83
  • 36.  Anemometros de rueda alada serie LCA (la rueda alada está integrada en el medidor)
  • 37.  Anemómetros de tubo de Pitot-PVM-100 (tubo de Pitot, para altas velocidades de circulación)
  • 38. COMPARATIVA DE LOS DISTINTOS SENSORES DE FLUJO Sensor de flujo Líquidos recomendados Pérdida de presión Exactitud típica en % Medidas y diámetros Efecto viscoso Coste Relativo Orificio Líquidos sucios y limpios; algunos líquidos viscosos Medio ±2 a ±4 of full scale 10 a 30 Alto Bajo Tubo Venturi Líquidos viscosos, sucios y limpios Bajo ±1 5 a 20 Alto Medio Tubo Pitot Líquidos limpios Muy bajo ±3 a ±5 20 a 30 Bajo Bajo Turbina Líquidos limpios y viscosos Alto ±0.25 5 a 10 Alto Alto Electromagnet. Líquidos sucios y limpios; líquidos viscosos y conductores No ±0.5 5 No Alto Ultrasonic. (Doppler) Líquidos sucios y líquidos viscosos No ±5 5 a 30 No Alto Ultrasonic. (Time-of- travel) Líquidos limpios y líquidos viscosos No ±1 a ±5 5 a 30 No Alto APLICACIONES DE ALGUNOS MEDIDORES DE FLUJO
  • 39. CONCLUSIONES  Tener en cuenta que los Medidores de Flujos son dispositivos, que pueden ser utilizado en muchas aplicaciones tecnológicas, requieren de un buen uso y mantenimiento  Los medidores de flujo nos ayudan a controlar y mantener especificaciones de operación en un proceso