SlideShare una empresa de Scribd logo
1 de 36
UNIVERSIDAD TECNOLÓGICA DE TULA- TEPEJI
Metrología Industrial
Tema Flujo
RODRIGO BASURTO RIOS
Medidores de flujo
Son instrumentos que se utilizan para
determinar la cantidad de flujo que pasa a
través de una tubería. Otros nombres con
los cuales suelen llamarse. Flujómetros o
medidores de caudal
Algunos de ellos miden la velocidad de flujo de
manera directa y otros miden la velocidad
promedio, y aplicando la Ecuación de
continuidad y la de energía se calcula la
velocidad
FACTORES PARA LA ELECCIÓN DEL TIPO DE
MEDIDOR DE FLUIDO
 Intervalo de medición
 Exactitud requerida
 Pérdida de presión
 Tipo de fluido
 Tipo de medición
 Calibración
 Medio ambiente
 Lugar de ubicación
TIPOS DE MEDIDORES DE FLUJO
 MEDIDORES DE CABEZA VARIABLE
*Tubo de venturi
*Placa de Orificio
 MEDIDORES DE ÁREA VARIABLE
*Rotámetro
*Fluxometro de turbina
*Fluxometro de vortice
*Fluxometro electromagnético
*Fluxometro de Ultrasonido
*Fluxometro de velocidad
-Tubo de Pitot
-Anemómetro de Copas
-Anemómetro de Alambre Caliente
 MEDIDORES DE FLUJO MASICO:
1. El medidor de masa inferencial que mide por lo común el flujo volumétrico del fluido y su
densidad por separado.
2. Medidor de masa “verdadero”, que registra directamente el flujo en unidad de masa.
Algunos medidores de flujo masico son:
a) El medidor de efecto Magnus.
b) El medidor de momento transversal para flujo axial
c) El medidor de gasto de masa de momento transversal para flujo radial.
d) El medidor de gasto de masa de momento transversal.
e) El medidor térmico de gasto de masa giroscópico.
Unidades de flujo
El flujo de fluidos pueden ser expresado de tres
formas:
 flujo volumétrico
 Flujo másico
 velocidad de flujo.
Flujo volumétrico (Q) : indica el volumen de un fluido en movimiento
que pasa por un punto en una unidad de tiempo.
Flujo másico (Qm): está expresado en unidades de masa por unidad
de tiempo.
La velocidad de un material se denomina velocidad de flujo (Qv).
Consideraciones
La función de algunos medidores depende por
las propiedades y las condiciones del fluido.
Una de las consideraciones básicas es si el
fluido es un liquido, un gas, también influyen la
viscosidad, la temperatura, la corrosión, la
conductividad eléctrica, la claridad óptica, las
propiedades de lubricación y la homogeneidad.
Calibración
Algunos fabricantes proporcionan una calibración
en forma de grafica real vs indicación de la lectura
otros están equipados para hacer la lectura en
forma directa calibradas en lás unidades de flujo
que se desean.
Normatividad aplicable para su
fabricación
Normalmente, el material empleado
para su fabricación es acero
inoxidable AISI-304 o AISl-316.
1. MEDIDORES DE CABEZA VARIABLE
1.1 TUBO DE VÉNTURI
Es una tubería corta recta, o garganta, entre dos tramos cónicos. La
presión varía en la proximidad de la sección estrecha; así, al colocar
un manómetro o instrumento registrador en la garganta se puede
medir la caída de presión y calcular el caudal instantáneo.
Placas de orificio:
Cuando una placa se coloca en forma concéntrica dentro de una
tubería, esta provoca que el flujo se contraiga de repente conforme
se aproxima al orificio y después se expande de repente al diámetro
total de la tubería. La corriente que fluye a través del orificio forma
una vena contracta y la rápida velocidad del flujo resulta en una
disminución de presión hacia abajo desde el orificio.
1. La concéntrica: sirve para líquidos
2. La excéntrica: para los gases
3. La segmentada cuando los fluidos contienen un alto
porcentaje de gases disueltos.
Algunos tipos de placas de orificio
Medidores de área variable
 Los medidores de área variable pertenecen al grupo
de los llamados medidores diferenciales de presión.
 Esta clase de medidores presenta una reducción de
la sección de paso del fluido, dando lugar a que el
fluido aumente su velocidad, lo que origina un
aumento de su energía cinética y, por consiguiente,
su presión tiende a disminuir en una proporción
equivalente, de acuerdo con el principio de la
conservación de la energía, creando una diferencia
de presión estática entre las secciones aguas arriba
y aguas abajo del medidor.
ESPECIFICACIONES
El Rotámetro: tiene un flotador
(indicador) que se mueve
libremente dentro de un tubo
vertical ligeramente cónico, con el
extremo angosto hacia abajo. El
fluido entra por la parte inferior del
tubo y hace que el flotador suba
hasta que el área anular entre él y
la pared del tubo sea tal, que la
caída de presión de este
estrechamiento sea lo
suficientemente para equilibrar el
peso del flotador. El tubo es de
vidrio y lleva grabado una escala
lineal, sobre la cual la posición del
flotador indica el gasto o caudal.
Material Densidad (g/ml)
Aluminio 2.72
Bronce 8.78
Durimet 8.02
Monel 8.84
Níquel 8.91
Goma 1.20
Acero inoxidable 303 7.92
Acero inoxidable 316 8.04
Hastelloy B 9.24
Hastelloy C 8.94
Plomo 11.38
Tantalio 16.60
Teflón 2.20
Titanio 4.50
Tipos de flotadores:
 Cilíndrico con borde plano:
caudales mayores y mayor
gama de fluidos.
 Cilíndrico con borde saliente
de cara inclinada a favor del
flujo, disminuyendo su
afectación por la viscosidad del
medio.
 Cilíndrico con borde saliente
en contra del flujo: comparable
a una placa de orificio y con el
menor efecto de la viscosidad.
TIPOS Y MATERIALES DE LOS FLOTADORES
 FLUXOMETRO DE TURBINA
El fluido provoca que el rotor de la turbina gire a una velocidad que
depende de la velocidad del flujo. Conforme cada una de las aspas
de rotor pasa a través de una bobina magnética, se genera un pulso
de voltaje que puede alimentarse de un medidor de frecuencia, un
contador electrónico u otro dispositivo similar cuyas lecturas puedan
convertirse en velocidad de flujo. Velocidades de flujo desde 0.02
L/min hasta algunos miles de L/min se pueden medir con
fluxómetros de turbina de varios tamaños.
OTROS MEDIDORES DE AREA VARIABLE
 FLUXOMETRO DE VORTICE
Una obstrucción chata colocada en la corriente del flujo provoca la
creación de vortices a una frecuencia que es proporcional a la
velocidad del flujo. Un sensor en el fluxometro detecta los vortices y
genera una indicación en la lectura del dispositivo medidor.
La frecuencia de los vortices creados es directamente proporcional a la
velocidad del flujo y, por lo tanto, a la frecuencia del flujo del volumen.
Pueden utilizarse en una amplia variedad de fluidos incluyendo líquidos sucios
y limpios, así como gases y vapor.
FLUXOMETRO
ELECTROMAGNÉTICO
 Basado en la Ley de Faraday. Formado por un
tubo, revestido interiormente con material
aislante. Sobre dos puntos diametralmente
opuestos de la superficie interna se colocan dos
electrodos metálicos, entre los cuales se genera
la señal eléctrica de medida. En la parte externa
se colocan los dispositivos para generar el
campo magnético, y todo se recubre de una
protección externa, con diversos grados de
seguridad.
FLUXOMETRO DE
ULTRASONIDO
Consta de unas Sondas, que trabajan por pares, como emisor y receptor.
Los hay dos tipos:
a) DOPPLER: Miden los cambios de frecuencia causados por el flujo del líquido.
Se colocan dos sensores cada uno a un lado del flujo a medir y se envía una
señal de frecuencia conocida a través del líquido.
b) TRÁNSITO: Tienen transductores colocados a ambos lados del flujo.
Las ondas de sonido viajan entre los dispositivos con una inclinación de 45º respecto
a la dirección de flujo del líquido.
SONDAS DE VELOCIDAD
 TUBO PITOT.
Tubo hueco colocado de tal
forma que los extremos
abiertos apuntan
directamente a la corriente
del fluido. La presión en la
punta provoca que se
soporte una columna del
fluido.
El fluido dentro de la punta
es estacionario o estancado
llamado punto de
estancamiento.
 
 

/)1(2
/)(2
2
11
yysgv
ppgv s


ANEMOMETROS DE COPA
‘Es el instrumento clásico usado para medir el viento. Los valores de
medida empiezan con 0,1 m/s y 1 m/s, dependiendo del diseño’.
Tiene un eje vertical y tres copas o cazoletas que capturan el viento.
El n° de revoluciones por segundo son registradas
electrónicamente.
Normalmente está provisto de una veleta para detectar la dirección
del viento.
ANEMOMETRO DE ALAMBRE CALIENTE
mide la velocidad del fluido detectando los cambios en la transferencia
de calor mediante un pequeño sensor calentando eléctricamente
(un hilo o una película delgada) expuesto al fluido bajo estudio. El
sensor calentado es mantenido a una temperatura constante
usando un circuito de control electrónico. La magnitud del aumento
de voltaje necesario para mantener la temperatura constante está
directamente relacionada con la transferencia de calor y, por tanto,
con la velocidad del fluido. Es ideal para la medida de velocidades
en fluidos puros (gases, y líquidos) de temperatura uniforme.
MEDIDORES DE FLUJO MASICO
Es una necesidad el tener un control del nivel
de masa o cantidad de masa del fluido con el que
estamos trabajando. Los medidores de masa son
usados para líquidos de densidad variable,
líquidos multifase o gases que requieren una
directa medición del nivel de masa.
En la actualidad sus aplicaciones han llegado a
muchos procesos como lo son, la producción del
gas natural, refinerías, químicas manufactureras,
laboratorios científicos
PRINCIPIOS GENERALES
Existen dos clases principales de medidores de masa:
1. El medidor de masa inferencial que mide por lo común el flujo
volumétrico del fluido y su densidad por separado.
2. Medidor de masa “verdadero”, que registra directamente el flujo
en unidad de masa.
Algunos medidores de flujo masico son:
a) El medidor de efecto Magnus.
b) El medidor de momento transversal para flujo axial
c) El medidor de gasto de masa de momento transversal para
flujo radial.
d) El medidor de gasto de masa de momento transversal.
e) El medidor térmico de gasto de masa giroscópico.
El tipo b constituye la base de varios medidores de gasto de masa
comerciales, una de cuyas versiones se describirá someramente a
continuación
MEDIDOR DE GASTO DE MASA DE
MOMENTO TRASNVERSAL PARA FLUJO
AXIAL
También conocido como medidor de
gasto de masa de momento angular.
Una de las aplicaciones de este principio
comprende el uso del flujo axial que pasa
por un propulsor activado y una turbina
puestos en serie. El propulsor le imparte
una cantidad de movimiento o momento
angular al fluido que, a su vez, genera un
par de fuerza que se comunica a la
turbina a la que le impide girar por
medio de un resorte. El par, que se puede
MEDIDORES DE GASTO DE MASA INFERENCIAL
1. Medidores de carga con compensación de
densidad.
Los medidores de carga, como orificios,
orificios, tubos venturi o boquillas se utilizan
utilizan con uno de los diversos
densitómetros disponibles (por ejemplo
basándose en una fuerza ascensional en un flotador,
flotador, acoplamiento hidráulico, salida de voltaje
voltaje de un cristal piezoeléctrico o absorción por
por radiación). La señal proveniente del
medidor de carga, es proporcional a ρV²
2. Medidores de carga con compensación de
velocidad. La señal proveniente
del medidor de carga, que es proporcional a
ρV², se divide entre la señal de un
velocímetro para obtener una señal
proporcional al gasto de masa.
3. Medidores de velocidad con compensación
de densidad.
La señal generada por el velocímetro (por
ejemplo, medidor de turbina electromagnético o de
velocidad sonica) se multiplica por la señal
obtenida en el densitómetro para dar una
señal proporcional al gasto de masa.
APARATOS PARA MEDICIONES
DE CAUDAL MÁSICO
 Medidores térmicos
Un método de determinación del
flujo de masa es por el efecto de
transferencia de calor. Se pone en
contacto con el fluido una
de platino con una corriente
controlada. Esta resistencia sube su
temperatura en condiciones sin
Cuando el flujo se inicia, existe una
disminución de temperatura en el
sensor por el intercambio de calor
con el fluido. La corriente eléctrica
varía por la propia variación de la
resistencia con la temperatura y
variación es proporcional a la nueva
 Caudalímetro de Coriolis
Con la configuración del equipo indicado,
poniendo a los tubos en oscilación a una
frecuencia fija uno contra otro; el movimiento
entre los tubos en U será estable. Con el
del fluido al sistema, este circulará en el
brazo de la U alejándose del eje de rotación,
mientras que en el segundo brazo de la U
acercándose al eje de rotación. Esto generará
una fuerza de Coriolis que distorsionará la
oscilación fija en vacío. Esta distorsión será
entonces una función de la masa y de la
velocidad de flujo. La velocidad angular está
fijada por la frecuencia de excitación.
 para fluidos con una
conductividad mínima de 5μ
s/cm. Este medidor puede medir
casi cualquier líquido,
 Convertidor con indicador de flujo
instantáneo y totalizador de
volumen.
 ofrecer una exactitud de ±0.5%.
Medidor de flujo
electromagnéticos
VENTAJAS DEL CAUDALÍMETRO
• Bajo nivel de incertidumbre en la medición de
masa
• La medición es altamente independiente de la
temperatura, densidad o presión del fluido,
sólo depende de la masa
• Principalmente aplicable para líquidos, en un
amplio rango, independientemente de la
viscosidad
• Baja caída de presión en el flujo.
• Capaz de medir caudal másico en ambas
direcciones.
• Costo bastante alto
• Es importante la limpieza de los tubos
Medidores de masa digitales
 Anemómetro de cucharas PCE-A420
 Anemómetro PCE-AM81
 Caudalímetro másico Coriolis Promass 83
COMPARATIVA DE LOS DISTINTOS SENSORES DE FLUJO
Sensor de flujo Líquidos recomendados
Pérdida de
presión
Exactitud típica
en %
Medidas y
diámetros
Efecto
viscoso
Coste Relativo
Orificio
Líquidos sucios y limpios;
algunos líquidos viscosos
Medio
±2 a ±4 of full
scale
10 a 30 Alto Bajo
Tubo Venturi
Líquidos viscosos, sucios
y limpios
Bajo ±1 5 a 20 Alto Medio
Tubo Pitot Líquidos limpios Muy bajo ±3 a ±5 20 a 30 Bajo Bajo
Turbina
Líquidos limpios y
viscosos
Alto ±0.25 5 a 10 Alto Alto
Electromagnet.
Líquidos sucios y limpios;
líquidos viscosos y
conductores
No ±0.5 5 No Alto
Ultrasonic. (Doppler)
Líquidos sucios y líquidos
viscosos
No ±5 5 a 30 No Alto
Ultrasonic. (Time-of-
travel)
Líquidos limpios y líquidos
viscosos
No ±1 a ±5 5 a 30 No Alto
APLICACIONES DE ALGUNOS MEDIDORES DE FLUJO
CONCLUSIONES
 Tener en cuenta que los Medidores de
Flujos son dispositivos, que pueden ser
utilizado en muchas aplicaciones
tecnológicas, requieren de un buen uso y
mantenimiento
 Los medidores de flujo nos ayudan a
controlar y mantener especificaciones de
operación en un proceso

Más contenido relacionado

La actualidad más candente (20)

Medidores de caudal
Medidores de caudalMedidores de caudal
Medidores de caudal
 
Medidores de flujo
Medidores de flujoMedidores de flujo
Medidores de flujo
 
Sensores de Velocidad-caudal
Sensores de Velocidad-caudalSensores de Velocidad-caudal
Sensores de Velocidad-caudal
 
Medidores de velocidad en tuberias
Medidores de velocidad en tuberiasMedidores de velocidad en tuberias
Medidores de velocidad en tuberias
 
Medidores de flujo
Medidores de flujoMedidores de flujo
Medidores de flujo
 
Sensores de caudal tipo Turbina
Sensores de caudal tipo TurbinaSensores de caudal tipo Turbina
Sensores de caudal tipo Turbina
 
TRANSDUCTORES DE FLUJO
TRANSDUCTORES DE FLUJOTRANSDUCTORES DE FLUJO
TRANSDUCTORES DE FLUJO
 
Medidores en la Industria Petroquímica
Medidores en la Industria PetroquímicaMedidores en la Industria Petroquímica
Medidores en la Industria Petroquímica
 
Caudalímetros de Presión Diferencial
Caudalímetros de Presión DiferencialCaudalímetros de Presión Diferencial
Caudalímetros de Presión Diferencial
 
Instrumentos caudal
Instrumentos caudalInstrumentos caudal
Instrumentos caudal
 
Medicion de-caudal
Medicion de-caudalMedicion de-caudal
Medicion de-caudal
 
Sensores de Caudal
Sensores de CaudalSensores de Caudal
Sensores de Caudal
 
Medidores de caudal, Instrumentos de medición de flujo
Medidores de caudal, Instrumentos de medición de flujoMedidores de caudal, Instrumentos de medición de flujo
Medidores de caudal, Instrumentos de medición de flujo
 
Diapo de electiva
Diapo de electivaDiapo de electiva
Diapo de electiva
 
Fluidos
FluidosFluidos
Fluidos
 
Medición de flujo
Medición de flujoMedición de flujo
Medición de flujo
 
Medicion de nivel.
Medicion de nivel.Medicion de nivel.
Medicion de nivel.
 
Medidores
MedidoresMedidores
Medidores
 
Medicion de Flujo
Medicion de FlujoMedicion de Flujo
Medicion de Flujo
 
Presentación1
Presentación1Presentación1
Presentación1
 

Similar a Medidores flujo

Medidores de flujo.PPT
Medidores de flujo.PPTMedidores de flujo.PPT
Medidores de flujo.PPTLuLopez7
 
Presentación slideshare cproyecto d control
Presentación slideshare cproyecto d controlPresentación slideshare cproyecto d control
Presentación slideshare cproyecto d controlBlombar Herrera
 
Borrador000 clase4 4-16-medidores-de-flujo
Borrador000  clase4 4-16-medidores-de-flujoBorrador000  clase4 4-16-medidores-de-flujo
Borrador000 clase4 4-16-medidores-de-flujoAli Kim
 
CONTROL DE PROCESOS-INSTRUMENTACIÓN -MEDICION DE FLUJO.pdf
CONTROL DE PROCESOS-INSTRUMENTACIÓN -MEDICION DE FLUJO.pdfCONTROL DE PROCESOS-INSTRUMENTACIÓN -MEDICION DE FLUJO.pdf
CONTROL DE PROCESOS-INSTRUMENTACIÓN -MEDICION DE FLUJO.pdfCarolineFernndez1
 
Medidores de flujos para fluidos
Medidores de flujos para fluidosMedidores de flujos para fluidos
Medidores de flujos para fluidosOsvaldo Mendoza
 
Diapositiva instrumentacion 3 lista
Diapositiva instrumentacion 3 listaDiapositiva instrumentacion 3 lista
Diapositiva instrumentacion 3 listacesar bogarin
 
Tema9-Unidad II-CIM
Tema9-Unidad II-CIMTema9-Unidad II-CIM
Tema9-Unidad II-CIMUDO Monagas
 
Unidad V : Medición de Fluidos.
Unidad V : Medición de Fluidos. Unidad V : Medición de Fluidos.
Unidad V : Medición de Fluidos. EmilitoEG30
 
Unidad V. Medicion de Flujos.
Unidad V. Medicion de Flujos.Unidad V. Medicion de Flujos.
Unidad V. Medicion de Flujos.EmilitoEG30
 
S0305MedicionCaudal1.pdf
S0305MedicionCaudal1.pdfS0305MedicionCaudal1.pdf
S0305MedicionCaudal1.pdfOrlando Juárez
 

Similar a Medidores flujo (20)

Medidores de flujo.PPT
Medidores de flujo.PPTMedidores de flujo.PPT
Medidores de flujo.PPT
 
Presentación slideshare cproyecto d control
Presentación slideshare cproyecto d controlPresentación slideshare cproyecto d control
Presentación slideshare cproyecto d control
 
Borrador000 clase4 4-16-medidores-de-flujo
Borrador000  clase4 4-16-medidores-de-flujoBorrador000  clase4 4-16-medidores-de-flujo
Borrador000 clase4 4-16-medidores-de-flujo
 
CONTROL DE PROCESOS-INSTRUMENTACIÓN -MEDICION DE FLUJO.pdf
CONTROL DE PROCESOS-INSTRUMENTACIÓN -MEDICION DE FLUJO.pdfCONTROL DE PROCESOS-INSTRUMENTACIÓN -MEDICION DE FLUJO.pdf
CONTROL DE PROCESOS-INSTRUMENTACIÓN -MEDICION DE FLUJO.pdf
 
Medicionesde flujo
Medicionesde flujoMedicionesde flujo
Medicionesde flujo
 
Caudal
CaudalCaudal
Caudal
 
Medidores de flujos para fluidos
Medidores de flujos para fluidosMedidores de flujos para fluidos
Medidores de flujos para fluidos
 
Diapositiva instrumentacion 3 lista
Diapositiva instrumentacion 3 listaDiapositiva instrumentacion 3 lista
Diapositiva instrumentacion 3 lista
 
Tema9-Unidad II-CIM
Tema9-Unidad II-CIMTema9-Unidad II-CIM
Tema9-Unidad II-CIM
 
Caudal y medicion
Caudal y medicionCaudal y medicion
Caudal y medicion
 
Medidores flujo
Medidores flujoMedidores flujo
Medidores flujo
 
Unidad V : Medición de Fluidos.
Unidad V : Medición de Fluidos. Unidad V : Medición de Fluidos.
Unidad V : Medición de Fluidos.
 
Diapo de electiva
Diapo de electivaDiapo de electiva
Diapo de electiva
 
Unidad V. Medicion de Flujos.
Unidad V. Medicion de Flujos.Unidad V. Medicion de Flujos.
Unidad V. Medicion de Flujos.
 
Instrumento 4 caudal
Instrumento 4 caudalInstrumento 4 caudal
Instrumento 4 caudal
 
medicioncaudal1
medicioncaudal1medicioncaudal1
medicioncaudal1
 
medicioncaudal1
 medicioncaudal1 medicioncaudal1
medicioncaudal1
 
S0305MedicionCaudal1.pdf
S0305MedicionCaudal1.pdfS0305MedicionCaudal1.pdf
S0305MedicionCaudal1.pdf
 
MEDIDAS DE CAUDAL
MEDIDAS DE CAUDALMEDIDAS DE CAUDAL
MEDIDAS DE CAUDAL
 
Flujo de fluido
Flujo  de fluidoFlujo  de fluido
Flujo de fluido
 

Último

5.1 MATERIAL COMPLEMENTARIO Sesión 02.pptx
5.1 MATERIAL COMPLEMENTARIO Sesión 02.pptx5.1 MATERIAL COMPLEMENTARIO Sesión 02.pptx
5.1 MATERIAL COMPLEMENTARIO Sesión 02.pptxNayeliZarzosa1
 
LEYES DE EXPONENTES SEMANA 1 CESAR VALLEJO.pdf
LEYES DE EXPONENTES SEMANA 1 CESAR VALLEJO.pdfLEYES DE EXPONENTES SEMANA 1 CESAR VALLEJO.pdf
LEYES DE EXPONENTES SEMANA 1 CESAR VALLEJO.pdfAdelaHerrera9
 
MEC. FLUIDOS - Análisis Diferencial del Movimiento de un Fluido -GRUPO5 sergi...
MEC. FLUIDOS - Análisis Diferencial del Movimiento de un Fluido -GRUPO5 sergi...MEC. FLUIDOS - Análisis Diferencial del Movimiento de un Fluido -GRUPO5 sergi...
MEC. FLUIDOS - Análisis Diferencial del Movimiento de un Fluido -GRUPO5 sergi...Arquitecto Alejandro Gomez cornejo muñoz
 
Centro Integral del Transporte de Metro de Madrid (CIT). Premio COAM 2023
Centro Integral del Transporte de Metro de Madrid (CIT). Premio COAM 2023Centro Integral del Transporte de Metro de Madrid (CIT). Premio COAM 2023
Centro Integral del Transporte de Metro de Madrid (CIT). Premio COAM 2023ANDECE
 
produccion de cerdos. 2024 abril 20..pptx
produccion de cerdos. 2024 abril 20..pptxproduccion de cerdos. 2024 abril 20..pptx
produccion de cerdos. 2024 abril 20..pptxEtse9
 
Tarea de UTP matematices y soluciones ingenieria
Tarea de UTP matematices y soluciones ingenieriaTarea de UTP matematices y soluciones ingenieria
Tarea de UTP matematices y soluciones ingenieriaSebastianQP1
 
Sistema de gestión de turnos para negocios
Sistema de gestión de turnos para negociosSistema de gestión de turnos para negocios
Sistema de gestión de turnos para negociosfranchescamassielmor
 
Estacionamientos, Existen 3 tipos, y tienen diferentes ángulos de inclinación
Estacionamientos, Existen 3 tipos, y tienen diferentes ángulos de inclinaciónEstacionamientos, Existen 3 tipos, y tienen diferentes ángulos de inclinación
Estacionamientos, Existen 3 tipos, y tienen diferentes ángulos de inclinaciónAlexisHernandez885688
 
Edificio residencial Becrux en Madrid. Fachada de GRC
Edificio residencial Becrux en Madrid. Fachada de GRCEdificio residencial Becrux en Madrid. Fachada de GRC
Edificio residencial Becrux en Madrid. Fachada de GRCANDECE
 
SEGURIDAD EN CONSTRUCCION PPT PARA EL CIP
SEGURIDAD EN CONSTRUCCION PPT PARA EL CIPSEGURIDAD EN CONSTRUCCION PPT PARA EL CIP
SEGURIDAD EN CONSTRUCCION PPT PARA EL CIPJosLuisFrancoCaldern
 
Peligros de Excavaciones y Zanjas presentacion
Peligros de Excavaciones y Zanjas presentacionPeligros de Excavaciones y Zanjas presentacion
Peligros de Excavaciones y Zanjas presentacionOsdelTacusiPancorbo
 
Simbología de Soldadura, interpretacion y aplicacion en dibujo tecnico indus...
Simbología de Soldadura,  interpretacion y aplicacion en dibujo tecnico indus...Simbología de Soldadura,  interpretacion y aplicacion en dibujo tecnico indus...
Simbología de Soldadura, interpretacion y aplicacion en dibujo tecnico indus...esandoval7
 
Edificio residencial Tarsia de AEDAS Homes Granada
Edificio residencial Tarsia de AEDAS Homes GranadaEdificio residencial Tarsia de AEDAS Homes Granada
Edificio residencial Tarsia de AEDAS Homes GranadaANDECE
 
Diagrama de flujo metalurgia del cobre..pptx
Diagrama de flujo metalurgia del cobre..pptxDiagrama de flujo metalurgia del cobre..pptx
Diagrama de flujo metalurgia del cobre..pptxHarryArmandoLazaroBa
 
Sistema de Base de Datos (Rubén Alberto)
Sistema de Base de Datos (Rubén Alberto)Sistema de Base de Datos (Rubén Alberto)
Sistema de Base de Datos (Rubén Alberto)mendezruben1901
 
Hanns Recabarren Diaz (2024), Implementación de una herramienta de realidad v...
Hanns Recabarren Diaz (2024), Implementación de una herramienta de realidad v...Hanns Recabarren Diaz (2024), Implementación de una herramienta de realidad v...
Hanns Recabarren Diaz (2024), Implementación de una herramienta de realidad v...Francisco Javier Mora Serrano
 
CFRD simplified sequence for Mazar Hydroelectric Project
CFRD simplified sequence for Mazar Hydroelectric ProjectCFRD simplified sequence for Mazar Hydroelectric Project
CFRD simplified sequence for Mazar Hydroelectric ProjectCarlos Delgado
 
Físicas 1: Ecuaciones Dimensionales y Vectores
Físicas 1: Ecuaciones Dimensionales y VectoresFísicas 1: Ecuaciones Dimensionales y Vectores
Físicas 1: Ecuaciones Dimensionales y VectoresSegundo Silva Maguiña
 
Parámetros de Perforación y Voladura. para Plataformas
Parámetros de  Perforación y Voladura. para PlataformasParámetros de  Perforación y Voladura. para Plataformas
Parámetros de Perforación y Voladura. para PlataformasSegundo Silva Maguiña
 

Último (20)

5.1 MATERIAL COMPLEMENTARIO Sesión 02.pptx
5.1 MATERIAL COMPLEMENTARIO Sesión 02.pptx5.1 MATERIAL COMPLEMENTARIO Sesión 02.pptx
5.1 MATERIAL COMPLEMENTARIO Sesión 02.pptx
 
LEYES DE EXPONENTES SEMANA 1 CESAR VALLEJO.pdf
LEYES DE EXPONENTES SEMANA 1 CESAR VALLEJO.pdfLEYES DE EXPONENTES SEMANA 1 CESAR VALLEJO.pdf
LEYES DE EXPONENTES SEMANA 1 CESAR VALLEJO.pdf
 
MEC. FLUIDOS - Análisis Diferencial del Movimiento de un Fluido -GRUPO5 sergi...
MEC. FLUIDOS - Análisis Diferencial del Movimiento de un Fluido -GRUPO5 sergi...MEC. FLUIDOS - Análisis Diferencial del Movimiento de un Fluido -GRUPO5 sergi...
MEC. FLUIDOS - Análisis Diferencial del Movimiento de un Fluido -GRUPO5 sergi...
 
Centro Integral del Transporte de Metro de Madrid (CIT). Premio COAM 2023
Centro Integral del Transporte de Metro de Madrid (CIT). Premio COAM 2023Centro Integral del Transporte de Metro de Madrid (CIT). Premio COAM 2023
Centro Integral del Transporte de Metro de Madrid (CIT). Premio COAM 2023
 
produccion de cerdos. 2024 abril 20..pptx
produccion de cerdos. 2024 abril 20..pptxproduccion de cerdos. 2024 abril 20..pptx
produccion de cerdos. 2024 abril 20..pptx
 
Tarea de UTP matematices y soluciones ingenieria
Tarea de UTP matematices y soluciones ingenieriaTarea de UTP matematices y soluciones ingenieria
Tarea de UTP matematices y soluciones ingenieria
 
Sistema de gestión de turnos para negocios
Sistema de gestión de turnos para negociosSistema de gestión de turnos para negocios
Sistema de gestión de turnos para negocios
 
Estacionamientos, Existen 3 tipos, y tienen diferentes ángulos de inclinación
Estacionamientos, Existen 3 tipos, y tienen diferentes ángulos de inclinaciónEstacionamientos, Existen 3 tipos, y tienen diferentes ángulos de inclinación
Estacionamientos, Existen 3 tipos, y tienen diferentes ángulos de inclinación
 
Edificio residencial Becrux en Madrid. Fachada de GRC
Edificio residencial Becrux en Madrid. Fachada de GRCEdificio residencial Becrux en Madrid. Fachada de GRC
Edificio residencial Becrux en Madrid. Fachada de GRC
 
SEGURIDAD EN CONSTRUCCION PPT PARA EL CIP
SEGURIDAD EN CONSTRUCCION PPT PARA EL CIPSEGURIDAD EN CONSTRUCCION PPT PARA EL CIP
SEGURIDAD EN CONSTRUCCION PPT PARA EL CIP
 
MATPEL COMPLETO DESDE NIVEL I AL III.pdf
MATPEL COMPLETO DESDE NIVEL I AL III.pdfMATPEL COMPLETO DESDE NIVEL I AL III.pdf
MATPEL COMPLETO DESDE NIVEL I AL III.pdf
 
Peligros de Excavaciones y Zanjas presentacion
Peligros de Excavaciones y Zanjas presentacionPeligros de Excavaciones y Zanjas presentacion
Peligros de Excavaciones y Zanjas presentacion
 
Simbología de Soldadura, interpretacion y aplicacion en dibujo tecnico indus...
Simbología de Soldadura,  interpretacion y aplicacion en dibujo tecnico indus...Simbología de Soldadura,  interpretacion y aplicacion en dibujo tecnico indus...
Simbología de Soldadura, interpretacion y aplicacion en dibujo tecnico indus...
 
Edificio residencial Tarsia de AEDAS Homes Granada
Edificio residencial Tarsia de AEDAS Homes GranadaEdificio residencial Tarsia de AEDAS Homes Granada
Edificio residencial Tarsia de AEDAS Homes Granada
 
Diagrama de flujo metalurgia del cobre..pptx
Diagrama de flujo metalurgia del cobre..pptxDiagrama de flujo metalurgia del cobre..pptx
Diagrama de flujo metalurgia del cobre..pptx
 
Sistema de Base de Datos (Rubén Alberto)
Sistema de Base de Datos (Rubén Alberto)Sistema de Base de Datos (Rubén Alberto)
Sistema de Base de Datos (Rubén Alberto)
 
Hanns Recabarren Diaz (2024), Implementación de una herramienta de realidad v...
Hanns Recabarren Diaz (2024), Implementación de una herramienta de realidad v...Hanns Recabarren Diaz (2024), Implementación de una herramienta de realidad v...
Hanns Recabarren Diaz (2024), Implementación de una herramienta de realidad v...
 
CFRD simplified sequence for Mazar Hydroelectric Project
CFRD simplified sequence for Mazar Hydroelectric ProjectCFRD simplified sequence for Mazar Hydroelectric Project
CFRD simplified sequence for Mazar Hydroelectric Project
 
Físicas 1: Ecuaciones Dimensionales y Vectores
Físicas 1: Ecuaciones Dimensionales y VectoresFísicas 1: Ecuaciones Dimensionales y Vectores
Físicas 1: Ecuaciones Dimensionales y Vectores
 
Parámetros de Perforación y Voladura. para Plataformas
Parámetros de  Perforación y Voladura. para PlataformasParámetros de  Perforación y Voladura. para Plataformas
Parámetros de Perforación y Voladura. para Plataformas
 

Medidores flujo

  • 1. UNIVERSIDAD TECNOLÓGICA DE TULA- TEPEJI Metrología Industrial Tema Flujo RODRIGO BASURTO RIOS
  • 2. Medidores de flujo Son instrumentos que se utilizan para determinar la cantidad de flujo que pasa a través de una tubería. Otros nombres con los cuales suelen llamarse. Flujómetros o medidores de caudal Algunos de ellos miden la velocidad de flujo de manera directa y otros miden la velocidad promedio, y aplicando la Ecuación de continuidad y la de energía se calcula la velocidad
  • 3. FACTORES PARA LA ELECCIÓN DEL TIPO DE MEDIDOR DE FLUIDO  Intervalo de medición  Exactitud requerida  Pérdida de presión  Tipo de fluido  Tipo de medición  Calibración  Medio ambiente  Lugar de ubicación
  • 4. TIPOS DE MEDIDORES DE FLUJO  MEDIDORES DE CABEZA VARIABLE *Tubo de venturi *Placa de Orificio  MEDIDORES DE ÁREA VARIABLE *Rotámetro *Fluxometro de turbina *Fluxometro de vortice *Fluxometro electromagnético *Fluxometro de Ultrasonido *Fluxometro de velocidad -Tubo de Pitot -Anemómetro de Copas -Anemómetro de Alambre Caliente  MEDIDORES DE FLUJO MASICO: 1. El medidor de masa inferencial que mide por lo común el flujo volumétrico del fluido y su densidad por separado. 2. Medidor de masa “verdadero”, que registra directamente el flujo en unidad de masa. Algunos medidores de flujo masico son: a) El medidor de efecto Magnus. b) El medidor de momento transversal para flujo axial c) El medidor de gasto de masa de momento transversal para flujo radial. d) El medidor de gasto de masa de momento transversal. e) El medidor térmico de gasto de masa giroscópico.
  • 5. Unidades de flujo El flujo de fluidos pueden ser expresado de tres formas:  flujo volumétrico  Flujo másico  velocidad de flujo. Flujo volumétrico (Q) : indica el volumen de un fluido en movimiento que pasa por un punto en una unidad de tiempo. Flujo másico (Qm): está expresado en unidades de masa por unidad de tiempo. La velocidad de un material se denomina velocidad de flujo (Qv).
  • 6. Consideraciones La función de algunos medidores depende por las propiedades y las condiciones del fluido. Una de las consideraciones básicas es si el fluido es un liquido, un gas, también influyen la viscosidad, la temperatura, la corrosión, la conductividad eléctrica, la claridad óptica, las propiedades de lubricación y la homogeneidad.
  • 7. Calibración Algunos fabricantes proporcionan una calibración en forma de grafica real vs indicación de la lectura otros están equipados para hacer la lectura en forma directa calibradas en lás unidades de flujo que se desean.
  • 8. Normatividad aplicable para su fabricación Normalmente, el material empleado para su fabricación es acero inoxidable AISI-304 o AISl-316.
  • 9. 1. MEDIDORES DE CABEZA VARIABLE 1.1 TUBO DE VÉNTURI Es una tubería corta recta, o garganta, entre dos tramos cónicos. La presión varía en la proximidad de la sección estrecha; así, al colocar un manómetro o instrumento registrador en la garganta se puede medir la caída de presión y calcular el caudal instantáneo.
  • 10. Placas de orificio: Cuando una placa se coloca en forma concéntrica dentro de una tubería, esta provoca que el flujo se contraiga de repente conforme se aproxima al orificio y después se expande de repente al diámetro total de la tubería. La corriente que fluye a través del orificio forma una vena contracta y la rápida velocidad del flujo resulta en una disminución de presión hacia abajo desde el orificio.
  • 11. 1. La concéntrica: sirve para líquidos 2. La excéntrica: para los gases 3. La segmentada cuando los fluidos contienen un alto porcentaje de gases disueltos. Algunos tipos de placas de orificio
  • 12. Medidores de área variable  Los medidores de área variable pertenecen al grupo de los llamados medidores diferenciales de presión.  Esta clase de medidores presenta una reducción de la sección de paso del fluido, dando lugar a que el fluido aumente su velocidad, lo que origina un aumento de su energía cinética y, por consiguiente, su presión tiende a disminuir en una proporción equivalente, de acuerdo con el principio de la conservación de la energía, creando una diferencia de presión estática entre las secciones aguas arriba y aguas abajo del medidor.
  • 13. ESPECIFICACIONES El Rotámetro: tiene un flotador (indicador) que se mueve libremente dentro de un tubo vertical ligeramente cónico, con el extremo angosto hacia abajo. El fluido entra por la parte inferior del tubo y hace que el flotador suba hasta que el área anular entre él y la pared del tubo sea tal, que la caída de presión de este estrechamiento sea lo suficientemente para equilibrar el peso del flotador. El tubo es de vidrio y lleva grabado una escala lineal, sobre la cual la posición del flotador indica el gasto o caudal.
  • 14. Material Densidad (g/ml) Aluminio 2.72 Bronce 8.78 Durimet 8.02 Monel 8.84 Níquel 8.91 Goma 1.20 Acero inoxidable 303 7.92 Acero inoxidable 316 8.04 Hastelloy B 9.24 Hastelloy C 8.94 Plomo 11.38 Tantalio 16.60 Teflón 2.20 Titanio 4.50 Tipos de flotadores:  Cilíndrico con borde plano: caudales mayores y mayor gama de fluidos.  Cilíndrico con borde saliente de cara inclinada a favor del flujo, disminuyendo su afectación por la viscosidad del medio.  Cilíndrico con borde saliente en contra del flujo: comparable a una placa de orificio y con el menor efecto de la viscosidad. TIPOS Y MATERIALES DE LOS FLOTADORES
  • 15.  FLUXOMETRO DE TURBINA El fluido provoca que el rotor de la turbina gire a una velocidad que depende de la velocidad del flujo. Conforme cada una de las aspas de rotor pasa a través de una bobina magnética, se genera un pulso de voltaje que puede alimentarse de un medidor de frecuencia, un contador electrónico u otro dispositivo similar cuyas lecturas puedan convertirse en velocidad de flujo. Velocidades de flujo desde 0.02 L/min hasta algunos miles de L/min se pueden medir con fluxómetros de turbina de varios tamaños. OTROS MEDIDORES DE AREA VARIABLE
  • 16.  FLUXOMETRO DE VORTICE Una obstrucción chata colocada en la corriente del flujo provoca la creación de vortices a una frecuencia que es proporcional a la velocidad del flujo. Un sensor en el fluxometro detecta los vortices y genera una indicación en la lectura del dispositivo medidor. La frecuencia de los vortices creados es directamente proporcional a la velocidad del flujo y, por lo tanto, a la frecuencia del flujo del volumen. Pueden utilizarse en una amplia variedad de fluidos incluyendo líquidos sucios y limpios, así como gases y vapor.
  • 17. FLUXOMETRO ELECTROMAGNÉTICO  Basado en la Ley de Faraday. Formado por un tubo, revestido interiormente con material aislante. Sobre dos puntos diametralmente opuestos de la superficie interna se colocan dos electrodos metálicos, entre los cuales se genera la señal eléctrica de medida. En la parte externa se colocan los dispositivos para generar el campo magnético, y todo se recubre de una protección externa, con diversos grados de seguridad.
  • 18. FLUXOMETRO DE ULTRASONIDO Consta de unas Sondas, que trabajan por pares, como emisor y receptor. Los hay dos tipos: a) DOPPLER: Miden los cambios de frecuencia causados por el flujo del líquido. Se colocan dos sensores cada uno a un lado del flujo a medir y se envía una señal de frecuencia conocida a través del líquido. b) TRÁNSITO: Tienen transductores colocados a ambos lados del flujo. Las ondas de sonido viajan entre los dispositivos con una inclinación de 45º respecto a la dirección de flujo del líquido.
  • 19. SONDAS DE VELOCIDAD  TUBO PITOT. Tubo hueco colocado de tal forma que los extremos abiertos apuntan directamente a la corriente del fluido. La presión en la punta provoca que se soporte una columna del fluido. El fluido dentro de la punta es estacionario o estancado llamado punto de estancamiento.      /)1(2 /)(2 2 11 yysgv ppgv s  
  • 20. ANEMOMETROS DE COPA ‘Es el instrumento clásico usado para medir el viento. Los valores de medida empiezan con 0,1 m/s y 1 m/s, dependiendo del diseño’. Tiene un eje vertical y tres copas o cazoletas que capturan el viento. El n° de revoluciones por segundo son registradas electrónicamente. Normalmente está provisto de una veleta para detectar la dirección del viento.
  • 21. ANEMOMETRO DE ALAMBRE CALIENTE mide la velocidad del fluido detectando los cambios en la transferencia de calor mediante un pequeño sensor calentando eléctricamente (un hilo o una película delgada) expuesto al fluido bajo estudio. El sensor calentado es mantenido a una temperatura constante usando un circuito de control electrónico. La magnitud del aumento de voltaje necesario para mantener la temperatura constante está directamente relacionada con la transferencia de calor y, por tanto, con la velocidad del fluido. Es ideal para la medida de velocidades en fluidos puros (gases, y líquidos) de temperatura uniforme.
  • 22. MEDIDORES DE FLUJO MASICO Es una necesidad el tener un control del nivel de masa o cantidad de masa del fluido con el que estamos trabajando. Los medidores de masa son usados para líquidos de densidad variable, líquidos multifase o gases que requieren una directa medición del nivel de masa. En la actualidad sus aplicaciones han llegado a muchos procesos como lo son, la producción del gas natural, refinerías, químicas manufactureras, laboratorios científicos
  • 23. PRINCIPIOS GENERALES Existen dos clases principales de medidores de masa: 1. El medidor de masa inferencial que mide por lo común el flujo volumétrico del fluido y su densidad por separado. 2. Medidor de masa “verdadero”, que registra directamente el flujo en unidad de masa. Algunos medidores de flujo masico son: a) El medidor de efecto Magnus. b) El medidor de momento transversal para flujo axial c) El medidor de gasto de masa de momento transversal para flujo radial. d) El medidor de gasto de masa de momento transversal. e) El medidor térmico de gasto de masa giroscópico. El tipo b constituye la base de varios medidores de gasto de masa comerciales, una de cuyas versiones se describirá someramente a continuación
  • 24. MEDIDOR DE GASTO DE MASA DE MOMENTO TRASNVERSAL PARA FLUJO AXIAL También conocido como medidor de gasto de masa de momento angular. Una de las aplicaciones de este principio comprende el uso del flujo axial que pasa por un propulsor activado y una turbina puestos en serie. El propulsor le imparte una cantidad de movimiento o momento angular al fluido que, a su vez, genera un par de fuerza que se comunica a la turbina a la que le impide girar por medio de un resorte. El par, que se puede
  • 25. MEDIDORES DE GASTO DE MASA INFERENCIAL 1. Medidores de carga con compensación de densidad. Los medidores de carga, como orificios, orificios, tubos venturi o boquillas se utilizan utilizan con uno de los diversos densitómetros disponibles (por ejemplo basándose en una fuerza ascensional en un flotador, flotador, acoplamiento hidráulico, salida de voltaje voltaje de un cristal piezoeléctrico o absorción por por radiación). La señal proveniente del medidor de carga, es proporcional a ρV²
  • 26. 2. Medidores de carga con compensación de velocidad. La señal proveniente del medidor de carga, que es proporcional a ρV², se divide entre la señal de un velocímetro para obtener una señal proporcional al gasto de masa. 3. Medidores de velocidad con compensación de densidad. La señal generada por el velocímetro (por ejemplo, medidor de turbina electromagnético o de velocidad sonica) se multiplica por la señal obtenida en el densitómetro para dar una señal proporcional al gasto de masa.
  • 27. APARATOS PARA MEDICIONES DE CAUDAL MÁSICO  Medidores térmicos Un método de determinación del flujo de masa es por el efecto de transferencia de calor. Se pone en contacto con el fluido una de platino con una corriente controlada. Esta resistencia sube su temperatura en condiciones sin Cuando el flujo se inicia, existe una disminución de temperatura en el sensor por el intercambio de calor con el fluido. La corriente eléctrica varía por la propia variación de la resistencia con la temperatura y variación es proporcional a la nueva
  • 28.  Caudalímetro de Coriolis Con la configuración del equipo indicado, poniendo a los tubos en oscilación a una frecuencia fija uno contra otro; el movimiento entre los tubos en U será estable. Con el del fluido al sistema, este circulará en el brazo de la U alejándose del eje de rotación, mientras que en el segundo brazo de la U acercándose al eje de rotación. Esto generará una fuerza de Coriolis que distorsionará la oscilación fija en vacío. Esta distorsión será entonces una función de la masa y de la velocidad de flujo. La velocidad angular está fijada por la frecuencia de excitación.
  • 29.
  • 30.  para fluidos con una conductividad mínima de 5μ s/cm. Este medidor puede medir casi cualquier líquido,  Convertidor con indicador de flujo instantáneo y totalizador de volumen.  ofrecer una exactitud de ±0.5%. Medidor de flujo electromagnéticos
  • 31. VENTAJAS DEL CAUDALÍMETRO • Bajo nivel de incertidumbre en la medición de masa • La medición es altamente independiente de la temperatura, densidad o presión del fluido, sólo depende de la masa • Principalmente aplicable para líquidos, en un amplio rango, independientemente de la viscosidad • Baja caída de presión en el flujo. • Capaz de medir caudal másico en ambas direcciones. • Costo bastante alto • Es importante la limpieza de los tubos
  • 32. Medidores de masa digitales  Anemómetro de cucharas PCE-A420
  • 34.  Caudalímetro másico Coriolis Promass 83
  • 35. COMPARATIVA DE LOS DISTINTOS SENSORES DE FLUJO Sensor de flujo Líquidos recomendados Pérdida de presión Exactitud típica en % Medidas y diámetros Efecto viscoso Coste Relativo Orificio Líquidos sucios y limpios; algunos líquidos viscosos Medio ±2 a ±4 of full scale 10 a 30 Alto Bajo Tubo Venturi Líquidos viscosos, sucios y limpios Bajo ±1 5 a 20 Alto Medio Tubo Pitot Líquidos limpios Muy bajo ±3 a ±5 20 a 30 Bajo Bajo Turbina Líquidos limpios y viscosos Alto ±0.25 5 a 10 Alto Alto Electromagnet. Líquidos sucios y limpios; líquidos viscosos y conductores No ±0.5 5 No Alto Ultrasonic. (Doppler) Líquidos sucios y líquidos viscosos No ±5 5 a 30 No Alto Ultrasonic. (Time-of- travel) Líquidos limpios y líquidos viscosos No ±1 a ±5 5 a 30 No Alto APLICACIONES DE ALGUNOS MEDIDORES DE FLUJO
  • 36. CONCLUSIONES  Tener en cuenta que los Medidores de Flujos son dispositivos, que pueden ser utilizado en muchas aplicaciones tecnológicas, requieren de un buen uso y mantenimiento  Los medidores de flujo nos ayudan a controlar y mantener especificaciones de operación en un proceso