SlideShare una empresa de Scribd logo
1 de 55
Descargar para leer sin conexión
DISEÑO TECNICO DE
SISTEMAS DE CONTROL
y
AUTOMATISMOS
UNIDAD 2B: SENSORES RESISTIVOS
ING. ALBERTO EGEA
2.3.- GALGAS EXTENSOMÉTRICAS (STRAIN GAUGE)
Entre las principales propiedades
mecánicas de los materiales se cuentan
la tensión y las deformaciones elásticas
y plásticas, y también características
físicas tales como el módulo Young,
límites elásticos y plásticos y
resistencia a la tracción y compresión.
Δl
l0
l
F
A
σ : Tensión (Esfuerzo)
F: Fuerza de tensión.
A : Área original.
Tensión
σ =
A
F
ingalbertoegea@yahoo.com.ar Curso diseño de sistemas de control- Unidad 2 2B-2
PROPIEDADES MECÁNICAS DE LOS MATERIALES
En una pieza sometida a una Fuerza
de tensión se produce una
deformación del metal. Si el metal
vuelve a las dimensiones originales
cuando cesa la Fuerza se ha
producido una deformación elástica,
en cambio si el metal no puede
recuperar sus dimensiones
originales la deformación es plástica
cuyo límite es la fractura de la pieza.
ε =
L0
=
L — L0
L0
ΔL
ε : Deformación unitaria.
L: Longitud de la muestra
después de la deformación.
L0 : Longitud de la muestra antes
de ser deformada.
ΔL : Variación de longitud de la
muestra.
Deformación elástica y plástica Deformación unitaria
ingalbertoegea@yahoo.com.ar Curso diseño de sistemas de control- Unidad 2 2B-3
E =
ε
σ
Módulo de Young
ν =
ΔT/T
ΔL/L
ν : Coeficiente de Poisson
T: Dimensión trasversal
ΔT : Variación trasversal
L: longitud
ΔL : Variación de longitud
Coeficiente de elasticidad.
Corresponde a la
pendiente de la
deformación en el
comportamiento elástico
Coeficiente de deformación
trasversal. Caracteriza la
capacidad del material
para admitir
deformaciones trasversales
Coeficiente de Poisson
Material ν
LIMITE
SUPERIOR
0.5
Acero Inoxidable 0.305
Aluminio 0.334
Bronce 0.14
Cobre 0.355
Cobre Berilio 0.285
Hierro maleable 0.271
Molibdeno 0.307
Níquel Plata 0.322
Titanio 0.32
Zinc 0.331
Material E
Acero 2.106
Aluminio 0.675.106
Cobre 1.106
Hierro fundido 0.75.106
E: Módulo de Young
σ : Esfuerzo
ε : Deformación
Ley de Hooke
με : micro deformación = 10-6
m/m
Esfuerzo por tensión Esfuerzo por compresión
ingalbertoegea@yahoo.com.ar Curso diseño de sistemas de control- Unidad 2 2B-4
DEFINICION. ESFUERZOS
Galgas extensométricas: Sensores de esfuerzos y deformaciones basados en la variación de la
resistencia eléctrica por la deformación de un hilo conductor calibrado, o en resistencias
construidas a base a pistas de semiconductor.
Esfuerzo ó Deformación: ε = Fuerza (F)/Área (A)
Deformación por tensión : ε = + (F/A) = + (ΔL/L)
Deformación por compresión: ε = — (F/A) = — (ΔL/L)
Relación entre deformación trasversal (εT) y longitudinal (εL) : εT = ν εL
ingalbertoegea@yahoo.com.ar Curso diseño de sistemas de control- Unidad 2 2B-5
TIPOS CONSTRUCTIVOS
Galga de hilo metálico o filamento (Wire strain gauge)
EI elemento sensible es un hilo conductor metálico de una sección circular
de 0,025 mm aproximadamente de diámetro, y encolado sobre un
soporte aislante de resina epóxidica, poliéster o material análogo. Para
ofrecer la máxima longitud activa dentro de un área reducida, el hilo
presenta varios repliegues.
Galga de trama pelicular (Foil strain gauge)
EI elemento sensible es una película de metal de pocas micras de espesor,
recortada mediante ataque foto químico u otra técnica adecuada.
Galgas Semiconductoras (SCSG)
El elemento sensor de la SCSG se hace de un solo cristal del material
piezorresistivo tal como silicio, dopado con una impurezas de boro.
Ventajas de las SCSG frente a las Galgas Metálicas.
Mayor sensibilidad.
Resistencia mas elevada.
Menor consumo de energía.
Histéresis mecánica insignificante.
Más pequeñas y de menor sensibilidad trasversal.
Error insignificante debido al esfuerzo mecánicos.
Desventajasde las SCSG frente a las metálicas.
La relación de la tensión-resistencia es no lineal.
Son frágiles y difíciles de montar en superficies curvadas.
Son más costosos
Son más sensibles a la temperatura
GALGAS METÁLICAS: CONSTRUCCIÓN
ingalbertoegea@yahoo.com.ar Curso diseño de sistemas de control- Unidad 2 2B-6
ingalbertoegea@yahoo.com.ar Curso diseño de sistemas de control- Unidad 2 2B-7
MATERIALES PARA GALGAS METÁLICAS
MATERIAL COMPOSICIÓN
FACTOR DE
GALGA (K)
Constantan o Advance 45Ni, 55Cu 2.1
Karma 74Ni, 20Cr, 3Al, 3Fe 2.0
Isoelastic 36Ni, 8Cr, 0.5Mo, 55.5Fe 3.6
Nichrome V 80Ni, 20Cr 2.1
Platino-Tugsteno 92Pt, 8W 4.0
Armour D 70Fe, 20Cr, 10Al 2.0
Constantan o Advance ,es el más utilizado ya que es capaz de mantener constante el factor de galga hasta
deformaciones muy elevadas (8%).
Karma, también es muy utilizada, presenta tres ventajas sobre el Constantan: a) Pueden alcanzarse
compensaciones de temperatura sobre rangos más elevados. b) Ofrece una mejor resistencia a la fatiga
debido a su composición Ni-Cr. c) Mantiene una excelente estabilidad con el tiempo.
Aleación Isoelastic, presenta la ventaja de su sensibilidad, pero por ser muy sensible a la temperatura no
puede compensarse. Se utiliza en medidas de carácter dinámico.
Aleaciones Nichrome V, Platino-Tungsteno y Armour D, se emplean en aplicaciones muy especiales en las que
resultan de gran importancia la resistencia a temperaturas elevadas y a la oxidación.
El factor de galga K se relaciona con el material conductor de la Galga. Para la selección de un tipo de Galga en
una aplicación es importante considerar la variación y sensibilidad térmica del material y tener en cuenta si la
aplicación es estática o dinámica. En aplicaciones estáticas la sensibilidad a las variaciones térmicas es menos
importante que en las dinámicas.
ingalbertoegea@yahoo.com.ar Curso diseño de sistemas de control- Unidad 2 2B-8
GALGAS METALICAS
SOPORTE PARA GALGAS METÁLICAS
GALGAS METÁLICAS: APLICACIONES Y SOPORTES
ingalbertoegea@yahoo.com.ar Curso diseño de sistemas de control- Unidad 2 2B-9
MONTAJE
Limpiar y pulir con papel de lija la
superficie de montaje
considerablemente mas amplia que
el tamaño de la galga
Quitar aceites y grasas usando un
paño absorbente de algodón con
solvente. Limpiar la superficie y
marcar la posición de la galga.
Aplicar una gota del
pegamento
recomendado por el
fabricante a la parte
posterior de la galga e
instalarla en el lugar de
montaje respetando el
marcado del eje
longitudinal.
Cubrir la galga con un
foil de polietileno y
prensar con fuerza la
hoja durante un
minuto. Los pasos 3 y 4
deben realizarse con
premura a fin de evitar
el secado del
pegamento.
1
2
3
4
ingalbertoegea@yahoo.com.ar Curso diseño de sistemas de control- Unidad 2 2B-10
Cuando la galga queda fijada por
el pegamento, quitar el foil de
polietileno y comprobar las
conexiones eléctricas.
Remover el pegamento que queda
fuera de la base de la galga
estirándolo y usando un cúter o
papel de lija.
Asegurar el cable de
conexión a una base de
material adhesivo
evitando tensiones
mecánicas en los
conductores que
conectan la galga.
Cubrir la galga y los
terminales de cables
con el agente adhesivo
recomendado por el
fabricante aplanando
con suavidad el
conjunto protegido.
5
6
7
8
FUNCIONAMIENTO
ingalbertoegea@yahoo.com.ar Curso diseño de sistemas de control- Unidad 2
Características deseables en el funcionamiento de las
galgas extensométricas
Sensibilidad a la deformación lineal en el rango elástico.
Alta resistividad para reducir el tamaño de la galga.
Baja histéresis para repetición y exactitud en la prueba.
Alta sensibilidad a la deformación para producir la máxima señal
eléctrica ante una deformación experimentada.
Coeficiente de resistencia bajo y controlable para lograr una
buena autocompensación de temperatura.
Amplio rango de temperatura operacional.
Durabilidad con respecto a su fatiga para mediciones dinámicas.
2B-11
RESISTENCIA EN FUNCIÓN DE LA DEFORMACIÓN
Resistencia previa a la deformación: R0 = ρ L / A
Un incremento de la Resistencia (ΔR) puede ser el resultado del cambio de ρ, L o A.
Definiendo: K = (ΔR/R0)/(ΔL/L) = ΔR/(R0 ε), donde K es el factor de galga, resultan los siguientes valores de
R = f(ε):
Hilo Metálico  ΔR = R0 (1+ K ε)
Semiconductor P  ΔR = R0 (119,5 ε + 4 ε2)
Semiconductor N  ΔR = R0(— 110 ε + 4 ε2)
L: Longitud de galga; A: Sección de galga; R0 : Resistencia previa a la deformación a 25°C; ε : Deformación
Sensibilidad trasversal
Las bandas extensométricas están diseñadas para responder en una dirección determinada, pero si se
someten a deformaciones transversales pueden proporcionar una pequeña variación de resistencia. Esto se
conoce como sensibilidad transversal (ST). Idealmente la sensibilidad transversal es nula. En la práctica el
fabricante proporciona la ST en forma de porcentaje. Una de las características deseables de las galgas es que
su ST sea baja o despreciable. La ST suele ser menor del 1 %, siendo 0.8% un valor típico.
Ejemplo: Se utiliza una galga de K=2.08±1.0% y ST=0.8% en un ensayo de tracción en acero. La corrección
debido por ST será:
ΔR/R0 = K (εL + ST εT) = K ε(1 — νST )
= 2.08 ε [1 — 0,03 (0,08/100)] = 2.08 ε[1 — (0,24/100)]
La corrección total es del 0,24 %, cuatro veces menor de la imprecisión del factor de galga, por lo que el
efecto de la sensibilidad transversal puede ser despreciado.
ingalbertoegea@yahoo.com.ar Curso diseño de sistemas de control- Unidad 2 2B-12
RESISTENCIA DE LA GALGA
LONGITUD DE LAS GALGAS
La longitud de la galga no debe ser mayor a la
dimensión de la causa del esfuerzo para que la
medición sea aceptable.
Cuando la causa del esfuerzo es pequeña, la regla
general conduciría a longitudes de galgas muy chicas.
Puesto que el uso de galgas muy pequeñas introduce
otros tipos de problemas, se tiene que llegar a una
relación de compromiso.
Galgas cortas
Los galgas cuya longitud es de alrededor de 3mm
tienden a exhibir su rendimiento degradado con
respecto a su máxima elongación, no son estables bajo
esfuerzo estático y su durabilidad se ve afectada
cuando están sometidas a esfuerzo cíclico alternativo.
Galgas largas
Cuando se justifica su empleo, ofrecen ventajas. Son
más fáciles de manipular en todos los aspectos de la
instalación y cableado que las galgas miniatura.
Proveen una mejor disipación de calor porque debido a
su resistencia nominal tienen menor potencia por
unidad de área de grilla.
Distribución del esfuerzo sobre
una galga
ingalbertoegea@yahoo.com.ar Curso diseño de sistemas de control- Unidad 2 2B-13
ERRORES
1) De la galga: deformación trasversal. Auto calentamiento. Variación de resistencia
por cambios bruscos de temperatura.
2) Desalineación en el montaje de la galga.
3) Variación del factor de galga y valores de señal de salida por variaciones térmicas.
4) Fatiga del material de la galga.
5) Sensibilidad trasversal.
6) Conexionado del puente de medición.
7) No linealidad de la salida del puente de Wheatstone.
8) Interferencias en los cables de señal entre el módulo de medición y el lector de
señal.
9) Instrumentos de medición.
ingalbertoegea@yahoo.com.ar Curso diseño de sistemas de control- Unidad 2 2B-14
ingalbertoegea@yahoo.com.ar Curso diseño de sistemas de control- Unidad 2 2B-15
EFECTO TÉRMICO EN GALGAS METALICAS
Variación porcentual del Factor de Galga K en
función de la temperatura
Cuando la temperatura
varía, la deformación real de
la galga puede desviarse de
la deformación medida
debido a:
1.- Dilatación de la galga
2.- Dilatación del material
soporte
3.- Variación del factor de
galga con la temperatura
ingalbertoegea@yahoo.com.ar Curso diseño de sistemas de control- Unidad 2 2B-16
Microdeformación aparente de algunas aleaciones
(para K= 2) usadas para la construcción de galgas
metálicas en función de la temperatura .
Para corregir el comportamiento de las galgas extensométricas por el efecto de la temperatura, el fabricante
proporciona dos curvas, una es la variación del factor de galga con la temperatura y la otra es la Thermal Output,
que representa la deformación real de la galga por efecto de la dilatación. Estas curvas son específicas para cada
galga pegada sobre un determinado material.
Variación de resistencia en Galgas
metálicas en función de la temperatura.
ingalbertoegea@yahoo.com.ar Curso diseño de sistemas de control- Unidad 2 2B-17
Variación de resistencia en función de la temperatura para varias concentraciones
de impurezas en Galgas semiconductoras tipo P.
ΔR = R0 [k1. ε.(T0/T) + k2 .ε2 .(T0/T)]
Donde:
R0 es la resistencia de la galga sin tensión a la temperatura T0.
T es la temperatura a la que se lleva a cabo la medida.
k1, k2 son constantes.
Las bandas de semiconductores no son más sensibles que las metálicas a los cambios de temperatura, pero su
influencia se nota más por tener mayores factores de galga.
ingalbertoegea@yahoo.com.ar Curso diseño de sistemas de control- Unidad 2 2B-18
DISIPACIÓN TÉRMICA
La potencia generada en forma de calor
por la galga viene dada por el efecto Joule.
El calor a evacuar o la potencia a disipar es
función de dos factores:
1.- el área que ocupa el elemento
conductor
2.- el área del material sobre el que se
pega la galga.
La potencia máxima de disipación por
unidad de área puede expresarse:
PD . A ≥ i2.R
Valores típicos de PD (W/mm2)
Al, Cu: 0.008-0.016
Fe: 0.003-0.008
Fe (piezas pequeñas): 0.0015-0.003
Cerámicos, vidrios: 0.0003-0.0008
Plásticos: 0.00003-0.00008
La potencia a disipar por galga limita la
tensión de alimentación del circuito en el
que se monta.
Pdg = V2/Rg = I2 Rg
V= ѴPdg . Rg
ingalbertoegea@yahoo.com.ar Curso diseño de sistemas de control- Unidad 2 2B-19
EFECTO TÉRMICO SOBRE LAS MEDICIONES
GALGA MONTADA SOBRE UNA ESTRUCTURA
Variación relativa de la resistividad de la galga
Δ ρ/ρ0= βr (T – T0)
Variación relativa por dilatación de la galga
Longitud: ΔL/L0 = λb (T – T0)
Diámetro: Δd/d0 = λb (T – T0)
En la estructura, donde la galga esta montada, la
variación relativa de longitud por dilatación es:
ΔLe/Le0 = λe (T – T0)
Obtenidas las variaciones relativas de la galga y de la
estructura, la variación de resistencia de la galga vale:
ΔR/R0 = Kαt (T – T0)
Donde :
αt = [(βr –λb) / K]+ λe –λb
αt : deformación unitaria aparente producida por un
incremento de temperatura de 1ºC.
λb : coeficiente de dilatación del material de la galga.
λe :coeficiente de dilatación de la estructura
βr :coeficiente de variación de la resistividad con la
temperatura.
MATERIAL βr . 10-5
°C-1
λb . 10-5
°C-1
ESTRUCTURA λe . 10-5
°C-1
Constantán 3.7 1.7 Aluminio 2.5
Karma 3.0 1.0 Acero 1.1
Isoelastic 17.9 0.4 Cobre 1.7
Nichrome V 11.3 1.3 Titanio 0.9
Cuando αt ≈ 0, la galga es autocompensada pues no
hay variación de la resistencia con la temperatura.
El Constantan se utiliza en galgas autocompensadas
hasta 200°C. Las aleaciones de Karma pueden
mantener la autocompensación hasta unos 400°C.
ingalbertoegea@yahoo.com.ar Curso diseño de sistemas de control- Unidad 2 2B-20
GALGAS AUTOCOMPENSADAS TERMICAMENTE
Cuando una galga se monta sobre una
estructura metálica conductiva se
induce una deformación aparente:
Donde:
α: Coeficiente de temperatura de la galga.
K: Factor de galga
βs: coeficiente lineal de expansión térmica
del metal de la estructura.
βg: coeficiente lineal de expansión térmica
del metal de la galga.
Las galgas autocompensadas se
diseñan a fin de disminuir el valor de
εT al mínimo cercano a cero de
acuerdo a los valores del βs del
material objeto de medición.
 
g
s
T β
β
K
α
ε 

 Características típicas de εT en función de la temperatura de
una galga autocompensada conectada con tres hilos.
ERRORES POR DESALINEADO
Curvas de error por desalineado en με
con parámetro β en el caso de una
galga uniaxial para medir valores de
deformación entre 1000 με y – 285 με
La desalineación de las galgas respecto de los ejes
principales de tensiones producen errores en la medición
que deben ser tenidos en cuenta cuando ocurren. Este error
no se producirá cuando las galgas estén correctamente
alineadas en la etapa de montaje.
ingalbertoegea@yahoo.com.ar Curso diseño de sistemas de control- Unidad 2 2B-21
   
 
2β
cos
υ
1
υ
1
ε
2
1
ε L
β 



ERRORES POR SENSIBILIDAD TRASVERSAL
 
100
K
μ
1
μ
ε
ε
K
n
:
trasversal
ad
sensibilid
por
porcentual
Error
μK
1
K
K
trasversal
ad
sensibilid
la
incluye
te
fabrican
el
da
que
Galga
de
Factor
El
T
L
T
T
ε
T
L
F














ingalbertoegea@yahoo.com.ar Curso diseño de sistemas de control- Unidad 2 2B-22
DEFORMACIÓN POR MONTAJE EN SUPERFICIES CURVAS
El montaje de una galga sobre una superficie curva
adiciona una deformación εA:
Donde:
t: Espesor de la galga
r: radio de la superficie.
Ejemplo
Calcular εA y ΔR en una galga (R= 350Ω; K=2,3;
t=0,020mm) montada sobre una cañería de diámetro
200 mm para una medición de 5000 με.
ingalbertoegea@yahoo.com.ar Curso diseño de sistemas de control- Unidad 2 2B-23
t
r
2
t
εA


G
A
6
A
G
A
6
G
G
A
G
6
A
ΔR
de
%
0,20
ΔR
Ω
0,008
.10
350.2,3.10
ε
K
R
ΔR
Ω
4,025
00.10
350.2,3.50
ε
K
R
ΔR
ΔR
ΔR
ΔR
10.10
0,020
.100
2
0,020
t
r
2
t
ε

















LINEALIDAD E HISTERISIS
La linealidad y la histéresis en las
galgas dependen de diversos
factores:
a) Nivel de deformaciones
alcanzado.
b) El material soporte de la galga.
c) La calidad y los materiales del
pegado.
d) El montaje.
Cuando se trabaja dentro de los
límites de deformaciones
indicados por el fabricante, éste
debe asegurar valores menores
del 1% en galgas con soporte de
poliamida y menor del 0.05% en
las de soporte epoxi.
ingalbertoegea@yahoo.com.ar Curso diseño de sistemas de control- Unidad 2 2B-24
FATIGA
La fatiga afecta a los
materiales produciendo
pequeñas tensiones
que se propagan a lo
largo de la vida útil de
la galga originando
variaciones progresivas
en la resistencia. Los
fabricantes de galgas
suministran datos sobre
la fatiga garantizando el
número de ciclos que
soportan con un cierto
grado de deformación
en una escala de 100 με
partiendo desde cero.
ingalbertoegea@yahoo.com.ar Curso diseño de sistemas de control- Unidad 2 2B-25
RESISTENCIA A LA FATIGA DE ALGUNAS ALEACIONES UTILIZADAS EN GALGAS
CURVAS DE FATIGA SUMINISTRADAS POR FABRICANTES
PUENTE DE WHEATSTONE
ingalbertoegea@yahoo.com.ar Curso diseño de sistemas de control- Unidad 2 2B-26
PUENTE DE MEDIDA POR
COMPARACIÓN
El valor de una resistencia desconocida
(R4) se calcula mediante la variación de
una Resistencia conocida (R3) poniendo
el puente en equilibrio (V0 = 0), siendo
R1 y R2 conocidas.
El valor calculado de R4 no depende de
la tensión de alimentación (E), del tipo
de detector ni de su impedancia. Para
calcularlo solo es necesario que se
consiga la condición de equilibrio.
1
3
2
4
3
2
4
1
0
4
3
3
2
1
1
0
d
b
0
4
3
3
d
2
1
1
b
R
R
R
R
R
R
R
R
puente)
del
o
(Equilibri
0
V
Si
R
R
R
R
R
R
E
V
V
V
V
R
R
R
E
V
;
R
R
R
E
V






















ingalbertoegea@yahoo.com.ar Curso diseño de sistemas de control- Unidad 2 2B-27
PUENTE DE MEDIDA POR DEFLEXIÓN
Para obtener una señal eléctrica se puede medir la
salida V0 que será proporcional a las variaciones de
resistencias (Galgas) conocidas que se instalen en
cada rama del puente.
 
medida
n
Deformació
:
ε
corregida
n
Deformació
:
ε
M
C
6
M
M
C 10
ε
1
ε
ε
:
galga
una
de
caso
el
para
linealidad
de
ón
Compensaci
































3
4
2
1
0
3
3
4
4
2
2
1
1
0
4
3
3
2
1
1
0
ε
ε
ε
ε
4
E
K
ΔV
Kε
R
ΔR
:
Como
contrario.
signo
de
son
adyacentes
ramas
en
s
variacione
Las
R
ΔR
R
ΔR
R
ΔR
R
ΔR
4
E
ΔV
varían
puente
del
as
Resistenci
las
Cuando
R
R
R
R
R
R
E
V
Relación no lineal entre la variación de
resistencia y la salida de tensión.
ingalbertoegea@yahoo.com.ar Curso diseño de sistemas de control- Unidad 2 2B-28
Consideraciones
1.- Las galgas extensométricasson capaces de medir deformaciones del orden del centenar de
micro deformaciones que representan valores de incremento de resistencia muy pequeños, por
lo tanto el circuito de medición debe ser muy sensible.
Por ejemplo
Instalando una galga de Constantan cuya resistencia es de 350Ω y K= 2,1, cuando mida 120 με el
valor de ΔR será:
ΔR = R K ε = 350. 2,1. 120.10-6= 0,088 Ω
Si se miden deformaciones del orden del 5% el valor de ΔR será:
ΔR = R K ε = 350. 2,1. 5/100 = 36,75 Ω
ΔR = 10,5 % R
2.- La tensión de salida del puente (V0) es proporcional al factor de galga K y a la tensión de
alimentación.
3.- Igual deformación en galgas adyacentes (ε1-ε2 y ε4-ε3) produce V0=0
4.- A causa de las características de las galgas, los valores de V0 son de pequeñas magnitudes
(mV) por lo que la señal de salida del puente debe acondicionarse con circuitos amplificadores.
MEDICIÓN CON PUENTE DE WHEATSTONES
ingalbertoegea@yahoo.com.ar Curso diseño de sistemas de control- Unidad 2 2B-29
MONTAJE DE 1/4 DE PUENTE
Montaje adecuado cuando se tienen
deformaciones pequeñas y no se
requiere gran sensibilidad o cuando se
dispone de espacio para colocar una
única galga o si se quiere hacer una
medida puntual.
salida.
la
de
linearidad
no
la
cuenta
en
tener
debe
se
mayores
nes
deformacio
Para
nes.
deformacio
pequeñas
de
medición
la
para
solo
lineal
se
considerar
puede
que
salida
de
Tensión
ε
K
4
E
V
:
n
deformació
de
términos
en
Y
R
ΔR
4
E
V
:
obtiene
se
Operando
ΔR
R
R
:
si
y
R
a
iguales
son
,
equilibrio
en
puente
el
con
as,
resistenci
las
Si
R
R
R
R
R
R
E
V
:
puente
del
salida
de
Tensión
2
0
2
0
2
2
3
4
4
2
1
1
0
















ingalbertoegea@yahoo.com.ar Curso diseño de sistemas de control- Unidad 2 2B-30
MONTAJE DE 1/2 DE PUENTE
EJEMPLO: FLEXIÓN
puente.
del
adyacentes
ramas
dos
en
activas
galgas
las
e
encontrars
por
lineal
salida
de
Tensión
ε
K
2
E
V
:
n
deformació
de
términos
en
Y
R
ΔR
2
E
V
:
obtiene
se
operando
iguales,
son
equilibrio
en
puente
el
con
as
resistenci
las
Si
ΔR
ΔR
ΔR
B.
galga
la
de
la
a
contrario
sentido
de
y
igual
es
A
galga
la
en
n
deformació
Las
R
R
R
R
R
R
E
V
:
puente
del
salida
de
Tensión
0
0
1
2
3
4
4
2
1
1
0

















ingalbertoegea@yahoo.com.ar Curso diseño de sistemas de control- Unidad 2 2B-31
MONTAJE DE 1/2 DE PUENTE
EJEMPLO: TRACCIÓN / COMPRESIÓN
Las galgas se instalan en ramas opuestas del
puente. En esta configuración se consigue
que los resultados de la medición no se
anulen por las diferencias que resultan de
los signos de R en cada rama.
Resolviendo las ecuaciones del puente para
este caso, se obtiene una respuesta no lineal
en V0.
El montaje de medio puente para tracción y
compresión puede ser útil para medir
pequeñas deformaciones donde ΔR sea
despreciable frente al valor de R.
ingalbertoegea@yahoo.com.ar Curso diseño de sistemas de control- Unidad 2 2B-32
MONTAJE DE PUENTE COMPLETO
EJEMPLO: TRACCIÓN/COMPRESIÓN
   
 
 





 






























2
1
Kε
E
V
:
nes
deformacio
pequeñas
Para
lineal.
no
salida
de
Tensión
1
Kε
2
1
ε
K
1
2Kε
E
V
:
n
deformació
de
términos
en
obtiene
se
operando
iguales,
son
equilibrio
en
puente
el
con
as
resistenci
las
Si
K
R
ΔR
R
ΔR
ε
K
R
ΔR
R
ΔR
:
es
trasversal
y
ales
longitudin
nes
deformacio
las
do
Considerna
R
R
R
R
R
R
E
V
:
puente
del
salida
de
Tensión
L
0(Lineal)
2
L
2
2
L
2
L
0
4
4
1
1
L
3
3
2
2
3
4
4
2
1
1
0
υ
υ
υ
υ
υ
ingalbertoegea@yahoo.com.ar Curso diseño de sistemas de control- Unidad 2 2B-33
MONTAJE DE PUENTE COMPLETO
EJEMPLO: FLEXIÓN
lineal.
salida
de
Tensión
ε
K
E
V
:
iguales
son
equilibrio
en
puente
el
con
as
resistenci
las
Si
ε
K
ε
K
R
ΔR
R
ΔR
ε
K
R
ΔR
R
ΔR
:
)
(ε
inferiores
las
y
)
(ε
superiores
nes
deformacio
las
cuenta
en
Teniendo
R
R
R
R
R
R
E
V
:
puente
del
salida
de
Tensión
S
0
S
I
4
4
1
1
S
3
3
2
2
I
S
3
4
4
2
1
1
0



















COMPENSACIÓN DE TEMPERATURA
Los errores que ocurren en ramas adyacentes de
un puente de Wheatstone se compensan, en
consecuencia se compensan los efectos térmicos
en las mismas condiciones.
1/4 de puente:
1: Galga activa
2: Galga compensadora
3 y 4: Resistencias pasivas
Las variaciones de 1 y 2 son similares y se anulan. De la misma
manera se comportaran las galgas 1 y 4.
Puente completo:
Se produce una compensación del efecto térmico si las cuatro
ramas del puente de Wheatstone están formadas por galgas
idénticas.
ingalbertoegea@yahoo.com.ar Curso diseño de sistemas de control- Unidad 2 2B-34
CALIBRACIÓN
Ejemplo :
Calcular la resistencia de calibración para una galga
de 125 Ω, K=2,3 para medir 3000με
Ω
17.990,94
1
10
.
3000
.
2,3
1
125
R 6
C 









 
El valor de la Resistencia de calibración se calcula:









 1
ε
K
1
R
R G
C
Utilizando una RC = 20 kΩ, la corrección en με es:

2.700,5
R
R
R
K
1
ε
C
G
G











ingalbertoegea@yahoo.com.ar Curso diseño de sistemas de control- Unidad 2 2B-35
CORRECCIÓN DE LA RESISTENCIA DE CABLES DE CONEXIÓN
La Resistencia de los cables de conexión en serie con las galgas activas producen una atenuación de la señal
de salida del puente (Desensibilización) y modifican el Factor de Galga en la lectura a distancia.
L
G
G
M
2h
L
G
G
M
G
G
2R
R
R
K
K
D
ε
2R
R
ΔR
K
ε
R
ΔR
K







K: Factor de galga.
KM: Factor de galga modificado.
D2h: Desensibilización puente
Conexión de 3 hilos:
No se considera la RL del cable AD por no haber
variaciones de RG sobre el mismo. La RL del cable en
el punto 1 no se considera porque la caída de tensión
en esta rama es casi nula. En consecuencia la
desensibilización del puente vale:
L
G
G
M
3h
L
G
G
M
G
G
R
R
R
K
K
D
ε
R
R
ΔR
K
ε
R
ΔR
K






 K: Factor de galga.
KM: Factor de galga modificado.
D3h: Desensibilización puente
Conexión de 2 hilos:
La R total en el circuito de sensado es la suma de RG
más 2 RL
ingalbertoegea@yahoo.com.ar Curso diseño de sistemas de control- Unidad 2 2B-36
L
G
G
M
gc
L
G
G
M
G
G
2R
R
R
K
K
D
ε
2R
R
ΔR
K
ε
R
ΔR
K







K: Factor de galga activa.
KM: Factor de galga modificado.
Dgc: Desensibilización puente
Conexión de Galga Compensadora:
La resistencia de los cables que conectan a la
galga compensadora no se tienen en cuenta
porque no se producen deformaciones en la
galga.
ABACO PARA EL CÁLCULO DEL FACTOR D PARA UNA GALGA
DE 120 Ω MONTADA CON CONEXIÓN DE TRES HILOS
ingalbertoegea@yahoo.com.ar Curso diseño de sistemas de control- Unidad 2 2B-37
ingalbertoegea@yahoo.com.ar Curso diseño de sistemas de control- Unidad 2 2B-38
ROSETAS
Conjunto de dos o tres galgas montadas sobre una misma base. Cada una de las galgas están
orientadas en diferentes ángulos a fin de obtener mediciones de deformaciones en dos o tres
direcciones diferentes.
ingalbertoegea@yahoo.com.ar Curso diseño de sistemas de control- Unidad 2 2B-39
   
   
   
          
          
 
    




 









 













 

















 










 
















 
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
1
2
2
2
1
1
1
2
2
2
1
1
1
2
2
2
2
2
2
1
2
2
2
1
c
b
b
a
c
b
b
a
c
a
c
b
b
a
c
a
c
b
b
a
c
b
b
a
c
a
c
b
b
a
c
a
b
a
c
a
b
1
E
E
E
ε
ε
ε
ε
2ε
tan
2
1














































máx
máx
máx
máx
mín
máx
corte
de
esfuerzo
Máximo
)
(ángulo
principal
eje
según
mínima
Tensión
)
(ángulo
principal
eje
según
máxima
Tensión
corte
de
máxima
n
Deformació
)
(ángulo
principal
eje
según
mínima
n
Deformació
)
(ángulo
principal
eje
según
máxima
n
Deformació
nes
deformacio
de
principal
Ángulo
θ
θ
θ
θ
θ: Ángulo de máxima deformación
cuando |εa|>|εc| y ángulo de mínima
deformación cuando |εa|<|εc|.
E: Módulo de Young
ν: Coeficiente de Poisson
MAGNITUDES Y DIRECCIONES DE
TENSIONES Y DEFORMACIONES
EJEMPLO: ROSETA RECTANGULAR 45°
ACONDICIONAMIENTO
ESQUEMA
ADQUISIÓN DE SEÑALES MULTIPLES CON INTERFASE
(ACONDICIONADOR COMUNICABLE)
LECTORES DE SEÑAL COMERCIALES
ingalbertoegea@yahoo.com.ar Curso diseño de sistemas de control- Unidad 2 2B-40
ESQUEMA AMPLIFICADOR DE SEÑAL DEL PUENTE
ingalbertoegea@yahoo.com.ar Curso diseño de sistemas de control- Unidad 2 2B-41
CONFIGURACIONES DE MEDICIÓN
ingalbertoegea@yahoo.com.ar Curso diseño de sistemas de control- Unidad 2 2B-42
ingalbertoegea@yahoo.com.ar Curso diseño de sistemas de control- Unidad 2 2B-43
ingalbertoegea@yahoo.com.ar Curso diseño de sistemas de control- Unidad 2 2B-44
ingalbertoegea@yahoo.com.ar Curso diseño de sistemas de control- Unidad 2 2B-45
ingalbertoegea@yahoo.com.ar Curso diseño de sistemas de control- Unidad 2 2B-46
ingalbertoegea@yahoo.com.ar Curso diseño de sistemas de control- Unidad 2 2B-47
Debe utilizarse una
galga simulada en un
brazo (2 o 4) del
puente para
compensar la
temperatura.
Se compensan los
esfuerzos pero no la
temperatura, deben
agregarse dos galgas
simuladas en los
brazos 2 y 4.
Temperatura
compensada pero
sensible a los
esfuerzos trasversales
en galga 2.
Compensa
temperatura y
esfuerzo trasversales.
TRACCIÓN/COMPRESIÓN FLEXIÓN
No exento de
deformaciones
trasversales y debe
compensarse la
temperatura con una
galga simulada (2 o 4)
del puente.
Se compensan los
esfuerzos pero no la
temperatura, deben
agregarse dos galgas
simuladas en los
brazos 2 y 4.
Máxima sensibilidad y
temperatura
compensada
Sensibilidad
adecuada. Compensa
temperatura y
esfuerzo trasversales.
ingalbertoegea@yahoo.com.ar Curso diseño de sistemas de control- Unidad 2 2B-48
Medio Puente: Las galgas se ubican a
±45° respecto al eje central.
Están sometidas a deformaciones
longitudinales y trasversales que son
iguales y de sentido contrario para la
torsión pura. La temperatura está
compensada.
TORSIÓN
DEFORMACIÓN DE CAÑERÍAS
Los esfuerzos alcanzarán valores máximos en el eje de la
carga y en el eje trasversal. El montaje de galgas en el
interior de la cañería les ofrece protección mecánica pero
a menudo es difícil instalarlas en ésa locación.
Puente completo : Las galgas se ubican
a ±45° respecto al eje central.
Las deformaciones longitudinales y
trasversales son iguales y de sentido
contrario para la torsión asimétrica. La
temperatura está compensada.
TORSIÓN ASIMÉTRICA Y DESLIZAMIENTO
CELDAS DE CARGA CON GALGAS EXTENSOMÉTRICAS
Dispositivo transductor basado en puentes de galgas, diseñado para la medición de cargas mecánicas que
entrega una señal proporcional a la fuerza aplicada en él.
ingalbertoegea@yahoo.com.ar Curso diseño de sistemas de control- Unidad 2 2B-49
ingalbertoegea@yahoo.com.ar Curso diseño de sistemas de control- Unidad 2 2B-50
VISTAS INTERNAS DE CELDAS TIPO
ago-10 Ing. Alberto Egea 51
APLICACIONES
ingalbertoegea@yahoo.com.ar Curso diseño de sistemas de control- Unidad 2 2B-52
MODELOS COMERCIALES
ingalbertoegea@yahoo.com.ar Curso diseño de sistemas de control- Unidad 2 2B-53
CÁLCULOS
1.- Calcular el cambio de resistencia en una Galga de hilo metálico de cobre cuando es sometida a 5,500 με,
asumiendo R0 = 275 Ω y K= 2,7
Siendo K = ΔR/(R0 ε)  ΔR = K.R0. ε = 2,7. 275. 5,500 10-6 = 4,1 Ω
2.- Calcular el valor de K
El valor de R para un conductor cilíndrico de metal es : R0 = ρ0 L0 / A0
Donde: R0 resistencia eléctrica ; ρ0 resistividad; L0 Longitud; A0 sección de diámetro d0 = (π d0
2)/4  R0 = (ρ0 4L0)/(π d0
2)
a) Suponiendo que la resistividad es independiente de la deformación
ΔR = R0 [(ΔL/L0) — 2 (Δd/d0)]
Teniendo en cuenta el módulo de Poisson:
(Δd/d0) = — ν (ΔL/L0)
Luego:
ΔR = R0 [(1+2ν) (ΔL/L0) = K. ε
De donde: K= 1+2ν
b) Teniendo en consideración la variación de resistividad
ΔR = R0 [(ΔL/L0) — 2 (Δd/d0) + (Δρ/ρ0)]
La variación de resistividad se relaciona con la variación de volumen según la constante de Bridgman
(Δρ/ρ0) = Cb (ΔV/V0) = 2Cb (Δd/d0) + Cb(ΔL/L0)
Luego:
ΔR = R0 [(1+Cb) (ΔL/L0) + 2. (Cb—1) (Δd/d0)
Introduciendo el módulo de Poisson:
ΔR = R0 [(1+Cb)—(Cb—1) . 2 ν] . ε = K. ε
De donde: K= 1+Cb—(Cb—1).2 ν
Comentarios:
1.- En la mayoría de las aleaciones con las que se construyen las galgas Cb≈ 1 (1,11; 1,13) por lo que K ≈ 2
2.- Cuando se supera el límite elástico ΔV ≈ 0 y ν= 0,5, en este caso K ≈ 2
3.- En Galgas semiconductoras, C puede ser del orden de 100 y su signo depende de las impurezas (tipo P o N). Se alcanzan así
valores de K ≈ 100/200
Material ν K
LIMITE SUPERIOR 0.5 2
Aluminio 0.334 1,668
Cobre 0.355 1,71
Níquel Plata 0.322 1,644
Titanio 0.32 1,64
ingalbertoegea@yahoo.com.ar Curso diseño de sistemas de control- Unidad 2 2B-54
3.- Una galga metálica (240 Ω; K= 2,20) está fijada a un pin de acero el cual tiene una longitud de 10.00
cm y un área transversal de 4 cm2. El módulo de Young para el acero es 20.7 x 1010 M/m2. Cuando una
carga es aplicada la resistencia de la galga cambia 0.013 Ω. Calcular el cambio de longitud y la fuerza
aplicada al pin.
N
10
2,037
m
0,1
m
10
2,46
m
10
4
m
N
10
20,7
L
ΔL
A
E
F
m
10
4
cm
10
m
1
cm
4
A
L
ΔL
E
A
F
;
L
ΔL
ε
;
A
F
σ
;
ε
E
σ
m
10
2,46
2,20
m
0,1
Ω
240
Ω
0,013
K
L
R
ΔR
ΔL
L
ΔL
K
R
ΔR
3
6
2
4
2
10
2
4
2
4
2
2
6
































4.- Calcular la variación de resistencia causada por un cambio de 1°C en la temperatura para la galga
del problema 3.
   
72,5
Ω
0,013
Ω
0,942
ΔR
ΔR
Ω
0,942
Ω
240
C
1
C
1
0,003925
R
ΔT
α
ΔR
C
1
0,003925
α
:
genérico
valor
como
Tomando
ε
T
0
0
T0
0
0
0






















ingalbertoegea@yahoo.com.ar Curso diseño de sistemas de control- Unidad 2 2B-55
5.- Determinar V0 en un puente de Wheatstone conectado en configuración de medio puente compuesto por
dos galgas de 240 Ω y dos resistores de 240 Ω cada una cuando la tensión de alimentación es de 10 V, en las
siguientes condiciones:
a) Cuando una de las galgas se incrementa en 0.013 Ω.
b) Cuando la temperatura causa que las galgas (activa y pasiva) se incrementen en 9.4 Ω.
c) Cuando la deformación causa que la galga activa se incremente en 0.013 Ω y la temperatura origina que
ambas galgas incrementen su resistencia en 9.4 Ω.
 
mV
0,13
V
4,9987
V
5
Ω
0,013
Ω
249,4
Ω
249,4
V
10
Ω
249,4
Ω
240
Ω
240
V
10
Ω
240
V
c)
V
0
V
5
V
5
Ω
249,4
Ω
249,4
V
10
Ω
249,4
Ω
240
Ω
240
V
10
Ω
240
V
b)
mV
0,13
Ω
420
4
V
10
Ω
0,013
4R
E
ΔR
V
a)
0
0
0
























6.- Una galga (120,2 Ω; K=2,1) se ha montado en una estructura. La estructura es sometida a un esfuerzo que
provoca un cambio en la resistencia de la galga a 120,25 Ω. Tomar E= 205 Gpa y calcular la deformación y la
Tensión provocadas por el esfuerzo.
MPa
40,61
10
205
10
1,981
E
ε
σ
10
1,981
2,1
10
4,16
K
R
R
ε
10
4,16
120,2
0,05
R
ΔR
Ω
0,05
120,2
120,25
ΔR
9
4
4
4
4
























Más contenido relacionado

Similar a kupdf.net_automatismos-y-sistemas-de-control-unidad-2b.pdf

Similar a kupdf.net_automatismos-y-sistemas-de-control-unidad-2b.pdf (20)

Documento de darwin2
Documento de darwin2Documento de darwin2
Documento de darwin2
 
Tecnologia
Tecnologia  Tecnologia
Tecnologia
 
Tecnologia
Tecnologia  Tecnologia
Tecnologia
 
Tecnologia
Tecnologia  Tecnologia
Tecnologia
 
Tecnologia 3
Tecnologia  3Tecnologia  3
Tecnologia 3
 
Tecnologia
Tecnologia  Tecnologia
Tecnologia
 
Práctica 2 ensayo de flexión
Práctica 2  ensayo de flexiónPráctica 2  ensayo de flexión
Práctica 2 ensayo de flexión
 
Taller de electricidad
Taller de electricidadTaller de electricidad
Taller de electricidad
 
Resistencia parte 1
Resistencia parte 1Resistencia parte 1
Resistencia parte 1
 
Práctica 2 - Ensayos de tracción
Práctica 2 - Ensayos de tracciónPráctica 2 - Ensayos de tracción
Práctica 2 - Ensayos de tracción
 
Informe 9 - Laboratorio de Circuitos Analógicos
Informe 9 - Laboratorio de Circuitos AnalógicosInforme 9 - Laboratorio de Circuitos Analógicos
Informe 9 - Laboratorio de Circuitos Analógicos
 
RESISTENCIAS LINEALES.pptx
RESISTENCIAS LINEALES.pptxRESISTENCIAS LINEALES.pptx
RESISTENCIAS LINEALES.pptx
 
Markforged: características de materiales
Markforged: características de materialesMarkforged: características de materiales
Markforged: características de materiales
 
Calculo caidas de tension ejemplos
Calculo caidas de tension ejemplosCalculo caidas de tension ejemplos
Calculo caidas de tension ejemplos
 
Calculo de seccion de conductores
Calculo de seccion de conductoresCalculo de seccion de conductores
Calculo de seccion de conductores
 
Guia bt anexo_2_sep03_r1
Guia bt anexo_2_sep03_r1Guia bt anexo_2_sep03_r1
Guia bt anexo_2_sep03_r1
 
Esfuerzos
EsfuerzosEsfuerzos
Esfuerzos
 
7ma_Clase.ppt
7ma_Clase.ppt7ma_Clase.ppt
7ma_Clase.ppt
 
2) leyes fundamentales de la corriente continua
2) leyes fundamentales de la corriente continua2) leyes fundamentales de la corriente continua
2) leyes fundamentales de la corriente continua
 
194 385-1-sm
194 385-1-sm194 385-1-sm
194 385-1-sm
 

Más de adrian gómez

6 ESTADOS FINANCIEROS INTEGRALES.ppt
6 ESTADOS FINANCIEROS INTEGRALES.ppt6 ESTADOS FINANCIEROS INTEGRALES.ppt
6 ESTADOS FINANCIEROS INTEGRALES.pptadrian gómez
 
yr7_science_lesson13.pptx
yr7_science_lesson13.pptxyr7_science_lesson13.pptx
yr7_science_lesson13.pptxadrian gómez
 
Diapositiva30ysistema_por_unidad.pptx
Diapositiva30ysistema_por_unidad.pptxDiapositiva30ysistema_por_unidad.pptx
Diapositiva30ysistema_por_unidad.pptxadrian gómez
 
Tevis-EV-charging-tool-pres.pptx
Tevis-EV-charging-tool-pres.pptxTevis-EV-charging-tool-pres.pptx
Tevis-EV-charging-tool-pres.pptxadrian gómez
 
Roll-and-Read-CVCe.pptx
Roll-and-Read-CVCe.pptxRoll-and-Read-CVCe.pptx
Roll-and-Read-CVCe.pptxadrian gómez
 
Peligros Eléctricos en la Construcción.pptx
Peligros Eléctricos en la Construcción.pptxPeligros Eléctricos en la Construcción.pptx
Peligros Eléctricos en la Construcción.pptxadrian gómez
 
registrador-de-energia-fluke-1730.pptx
registrador-de-energia-fluke-1730.pptxregistrador-de-energia-fluke-1730.pptx
registrador-de-energia-fluke-1730.pptxadrian gómez
 
INSTALACIONES ELECTRICAS RESIDENCIALES E INDUSTRIALES.pdf
INSTALACIONES ELECTRICAS RESIDENCIALES E INDUSTRIALES.pdfINSTALACIONES ELECTRICAS RESIDENCIALES E INDUSTRIALES.pdf
INSTALACIONES ELECTRICAS RESIDENCIALES E INDUSTRIALES.pdfadrian gómez
 
FINANZAS-PERSONALES.pdf
FINANZAS-PERSONALES.pdfFINANZAS-PERSONALES.pdf
FINANZAS-PERSONALES.pdfadrian gómez
 
Finanzas Corporativas - SIB.pdf
Finanzas Corporativas - SIB.pdfFinanzas Corporativas - SIB.pdf
Finanzas Corporativas - SIB.pdfadrian gómez
 
Presentacion-Sesion-3.pdf
Presentacion-Sesion-3.pdfPresentacion-Sesion-3.pdf
Presentacion-Sesion-3.pdfadrian gómez
 
Esquemas Automatismos
Esquemas AutomatismosEsquemas Automatismos
Esquemas Automatismosadrian gómez
 
jjtt_peabb2015_interruptores-de-generador-(2).pdf
jjtt_peabb2015_interruptores-de-generador-(2).pdfjjtt_peabb2015_interruptores-de-generador-(2).pdf
jjtt_peabb2015_interruptores-de-generador-(2).pdfadrian gómez
 
Zenith ZTX ZTG Sales Introduction - EXTERNAL 19-07.pptx
Zenith ZTX  ZTG Sales Introduction - EXTERNAL 19-07.pptxZenith ZTX  ZTG Sales Introduction - EXTERNAL 19-07.pptx
Zenith ZTX ZTG Sales Introduction - EXTERNAL 19-07.pptxadrian gómez
 
IDC Infraestructura.pdf
IDC Infraestructura.pdfIDC Infraestructura.pdf
IDC Infraestructura.pdfadrian gómez
 

Más de adrian gómez (16)

6 ESTADOS FINANCIEROS INTEGRALES.ppt
6 ESTADOS FINANCIEROS INTEGRALES.ppt6 ESTADOS FINANCIEROS INTEGRALES.ppt
6 ESTADOS FINANCIEROS INTEGRALES.ppt
 
yr7_science_lesson13.pptx
yr7_science_lesson13.pptxyr7_science_lesson13.pptx
yr7_science_lesson13.pptx
 
Diapositiva30ysistema_por_unidad.pptx
Diapositiva30ysistema_por_unidad.pptxDiapositiva30ysistema_por_unidad.pptx
Diapositiva30ysistema_por_unidad.pptx
 
Tevis-EV-charging-tool-pres.pptx
Tevis-EV-charging-tool-pres.pptxTevis-EV-charging-tool-pres.pptx
Tevis-EV-charging-tool-pres.pptx
 
Roll-and-Read-CVCe.pptx
Roll-and-Read-CVCe.pptxRoll-and-Read-CVCe.pptx
Roll-and-Read-CVCe.pptx
 
Peligros Eléctricos en la Construcción.pptx
Peligros Eléctricos en la Construcción.pptxPeligros Eléctricos en la Construcción.pptx
Peligros Eléctricos en la Construcción.pptx
 
registrador-de-energia-fluke-1730.pptx
registrador-de-energia-fluke-1730.pptxregistrador-de-energia-fluke-1730.pptx
registrador-de-energia-fluke-1730.pptx
 
RSC- RSE.ppt
RSC- RSE.pptRSC- RSE.ppt
RSC- RSE.ppt
 
INSTALACIONES ELECTRICAS RESIDENCIALES E INDUSTRIALES.pdf
INSTALACIONES ELECTRICAS RESIDENCIALES E INDUSTRIALES.pdfINSTALACIONES ELECTRICAS RESIDENCIALES E INDUSTRIALES.pdf
INSTALACIONES ELECTRICAS RESIDENCIALES E INDUSTRIALES.pdf
 
FINANZAS-PERSONALES.pdf
FINANZAS-PERSONALES.pdfFINANZAS-PERSONALES.pdf
FINANZAS-PERSONALES.pdf
 
Finanzas Corporativas - SIB.pdf
Finanzas Corporativas - SIB.pdfFinanzas Corporativas - SIB.pdf
Finanzas Corporativas - SIB.pdf
 
Presentacion-Sesion-3.pdf
Presentacion-Sesion-3.pdfPresentacion-Sesion-3.pdf
Presentacion-Sesion-3.pdf
 
Esquemas Automatismos
Esquemas AutomatismosEsquemas Automatismos
Esquemas Automatismos
 
jjtt_peabb2015_interruptores-de-generador-(2).pdf
jjtt_peabb2015_interruptores-de-generador-(2).pdfjjtt_peabb2015_interruptores-de-generador-(2).pdf
jjtt_peabb2015_interruptores-de-generador-(2).pdf
 
Zenith ZTX ZTG Sales Introduction - EXTERNAL 19-07.pptx
Zenith ZTX  ZTG Sales Introduction - EXTERNAL 19-07.pptxZenith ZTX  ZTG Sales Introduction - EXTERNAL 19-07.pptx
Zenith ZTX ZTG Sales Introduction - EXTERNAL 19-07.pptx
 
IDC Infraestructura.pdf
IDC Infraestructura.pdfIDC Infraestructura.pdf
IDC Infraestructura.pdf
 

Último

Edificio residencial Becrux en Madrid. Fachada de GRC
Edificio residencial Becrux en Madrid. Fachada de GRCEdificio residencial Becrux en Madrid. Fachada de GRC
Edificio residencial Becrux en Madrid. Fachada de GRCANDECE
 
trabajos en altura 2024, sistemas de contencion anticaidas
trabajos en altura 2024, sistemas de contencion anticaidastrabajos en altura 2024, sistemas de contencion anticaidas
trabajos en altura 2024, sistemas de contencion anticaidasNelsonQuispeQuispitu
 
CONSTRUCCIONES II - SEMANA 01 - REGLAMENTO NACIONAL DE EDIFICACIONES.pdf
CONSTRUCCIONES II - SEMANA 01 - REGLAMENTO NACIONAL DE EDIFICACIONES.pdfCONSTRUCCIONES II - SEMANA 01 - REGLAMENTO NACIONAL DE EDIFICACIONES.pdf
CONSTRUCCIONES II - SEMANA 01 - REGLAMENTO NACIONAL DE EDIFICACIONES.pdfErikNivor
 
Tarea de UTP matematices y soluciones ingenieria
Tarea de UTP matematices y soluciones ingenieriaTarea de UTP matematices y soluciones ingenieria
Tarea de UTP matematices y soluciones ingenieriaSebastianQP1
 
Edificio residencial Tarsia de AEDAS Homes Granada
Edificio residencial Tarsia de AEDAS Homes GranadaEdificio residencial Tarsia de AEDAS Homes Granada
Edificio residencial Tarsia de AEDAS Homes GranadaANDECE
 
Estacionamientos, Existen 3 tipos, y tienen diferentes ángulos de inclinación
Estacionamientos, Existen 3 tipos, y tienen diferentes ángulos de inclinaciónEstacionamientos, Existen 3 tipos, y tienen diferentes ángulos de inclinación
Estacionamientos, Existen 3 tipos, y tienen diferentes ángulos de inclinaciónAlexisHernandez885688
 
SEGURIDAD EN CONSTRUCCION PPT PARA EL CIP
SEGURIDAD EN CONSTRUCCION PPT PARA EL CIPSEGURIDAD EN CONSTRUCCION PPT PARA EL CIP
SEGURIDAD EN CONSTRUCCION PPT PARA EL CIPJosLuisFrancoCaldern
 
Diagrama de flujo metalurgia del cobre..pptx
Diagrama de flujo metalurgia del cobre..pptxDiagrama de flujo metalurgia del cobre..pptx
Diagrama de flujo metalurgia del cobre..pptxHarryArmandoLazaroBa
 
MEC. FLUIDOS - Análisis Diferencial del Movimiento de un Fluido -GRUPO5 sergi...
MEC. FLUIDOS - Análisis Diferencial del Movimiento de un Fluido -GRUPO5 sergi...MEC. FLUIDOS - Análisis Diferencial del Movimiento de un Fluido -GRUPO5 sergi...
MEC. FLUIDOS - Análisis Diferencial del Movimiento de un Fluido -GRUPO5 sergi...Arquitecto Alejandro Gomez cornejo muñoz
 
Revista estudiantil, trabajo final Materia ingeniería de Proyectos
Revista estudiantil, trabajo final Materia ingeniería de ProyectosRevista estudiantil, trabajo final Materia ingeniería de Proyectos
Revista estudiantil, trabajo final Materia ingeniería de ProyectosJeanCarlosLorenzo1
 
Fe_C_Tratamientos termicos_uap _3_.ppt
Fe_C_Tratamientos termicos_uap   _3_.pptFe_C_Tratamientos termicos_uap   _3_.ppt
Fe_C_Tratamientos termicos_uap _3_.pptVitobailon
 
Trabajo en altura de acuerdo a la normativa peruana
Trabajo en altura de acuerdo a la normativa peruanaTrabajo en altura de acuerdo a la normativa peruana
Trabajo en altura de acuerdo a la normativa peruana5extraviado
 
Descubrimiento de la penicilina en la segunda guerra mundial
Descubrimiento de la penicilina en la segunda guerra mundialDescubrimiento de la penicilina en la segunda guerra mundial
Descubrimiento de la penicilina en la segunda guerra mundialyajhairatapia
 
Sistema de gestión de turnos para negocios
Sistema de gestión de turnos para negociosSistema de gestión de turnos para negocios
Sistema de gestión de turnos para negociosfranchescamassielmor
 
Electromagnetismo Fisica FisicaFisica.pdf
Electromagnetismo Fisica FisicaFisica.pdfElectromagnetismo Fisica FisicaFisica.pdf
Electromagnetismo Fisica FisicaFisica.pdfAnonymous0pBRsQXfnx
 
NOM-002-STPS-2010, combate contra incendio.pptx
NOM-002-STPS-2010, combate contra incendio.pptxNOM-002-STPS-2010, combate contra incendio.pptx
NOM-002-STPS-2010, combate contra incendio.pptxJairReyna1
 
SOLIDOS DE REVOLUCION, aplicaciones de integrales definidas
SOLIDOS DE REVOLUCION, aplicaciones de integrales definidasSOLIDOS DE REVOLUCION, aplicaciones de integrales definidas
SOLIDOS DE REVOLUCION, aplicaciones de integrales definidasLeonardoMendozaDvila
 
CFRD simplified sequence for Mazar Hydroelectric Project
CFRD simplified sequence for Mazar Hydroelectric ProjectCFRD simplified sequence for Mazar Hydroelectric Project
CFRD simplified sequence for Mazar Hydroelectric ProjectCarlos Delgado
 
AMBIENTES SEDIMENTARIOS GEOLOGIA TIPOS .pptx
AMBIENTES SEDIMENTARIOS GEOLOGIA TIPOS .pptxAMBIENTES SEDIMENTARIOS GEOLOGIA TIPOS .pptx
AMBIENTES SEDIMENTARIOS GEOLOGIA TIPOS .pptxLuisvila35
 
Sistema de Gestión de Freelancers (Base de Datos)
Sistema de Gestión de Freelancers (Base de Datos)Sistema de Gestión de Freelancers (Base de Datos)
Sistema de Gestión de Freelancers (Base de Datos)dianamateo1513
 

Último (20)

Edificio residencial Becrux en Madrid. Fachada de GRC
Edificio residencial Becrux en Madrid. Fachada de GRCEdificio residencial Becrux en Madrid. Fachada de GRC
Edificio residencial Becrux en Madrid. Fachada de GRC
 
trabajos en altura 2024, sistemas de contencion anticaidas
trabajos en altura 2024, sistemas de contencion anticaidastrabajos en altura 2024, sistemas de contencion anticaidas
trabajos en altura 2024, sistemas de contencion anticaidas
 
CONSTRUCCIONES II - SEMANA 01 - REGLAMENTO NACIONAL DE EDIFICACIONES.pdf
CONSTRUCCIONES II - SEMANA 01 - REGLAMENTO NACIONAL DE EDIFICACIONES.pdfCONSTRUCCIONES II - SEMANA 01 - REGLAMENTO NACIONAL DE EDIFICACIONES.pdf
CONSTRUCCIONES II - SEMANA 01 - REGLAMENTO NACIONAL DE EDIFICACIONES.pdf
 
Tarea de UTP matematices y soluciones ingenieria
Tarea de UTP matematices y soluciones ingenieriaTarea de UTP matematices y soluciones ingenieria
Tarea de UTP matematices y soluciones ingenieria
 
Edificio residencial Tarsia de AEDAS Homes Granada
Edificio residencial Tarsia de AEDAS Homes GranadaEdificio residencial Tarsia de AEDAS Homes Granada
Edificio residencial Tarsia de AEDAS Homes Granada
 
Estacionamientos, Existen 3 tipos, y tienen diferentes ángulos de inclinación
Estacionamientos, Existen 3 tipos, y tienen diferentes ángulos de inclinaciónEstacionamientos, Existen 3 tipos, y tienen diferentes ángulos de inclinación
Estacionamientos, Existen 3 tipos, y tienen diferentes ángulos de inclinación
 
SEGURIDAD EN CONSTRUCCION PPT PARA EL CIP
SEGURIDAD EN CONSTRUCCION PPT PARA EL CIPSEGURIDAD EN CONSTRUCCION PPT PARA EL CIP
SEGURIDAD EN CONSTRUCCION PPT PARA EL CIP
 
Diagrama de flujo metalurgia del cobre..pptx
Diagrama de flujo metalurgia del cobre..pptxDiagrama de flujo metalurgia del cobre..pptx
Diagrama de flujo metalurgia del cobre..pptx
 
MEC. FLUIDOS - Análisis Diferencial del Movimiento de un Fluido -GRUPO5 sergi...
MEC. FLUIDOS - Análisis Diferencial del Movimiento de un Fluido -GRUPO5 sergi...MEC. FLUIDOS - Análisis Diferencial del Movimiento de un Fluido -GRUPO5 sergi...
MEC. FLUIDOS - Análisis Diferencial del Movimiento de un Fluido -GRUPO5 sergi...
 
Revista estudiantil, trabajo final Materia ingeniería de Proyectos
Revista estudiantil, trabajo final Materia ingeniería de ProyectosRevista estudiantil, trabajo final Materia ingeniería de Proyectos
Revista estudiantil, trabajo final Materia ingeniería de Proyectos
 
Fe_C_Tratamientos termicos_uap _3_.ppt
Fe_C_Tratamientos termicos_uap   _3_.pptFe_C_Tratamientos termicos_uap   _3_.ppt
Fe_C_Tratamientos termicos_uap _3_.ppt
 
Trabajo en altura de acuerdo a la normativa peruana
Trabajo en altura de acuerdo a la normativa peruanaTrabajo en altura de acuerdo a la normativa peruana
Trabajo en altura de acuerdo a la normativa peruana
 
Descubrimiento de la penicilina en la segunda guerra mundial
Descubrimiento de la penicilina en la segunda guerra mundialDescubrimiento de la penicilina en la segunda guerra mundial
Descubrimiento de la penicilina en la segunda guerra mundial
 
Sistema de gestión de turnos para negocios
Sistema de gestión de turnos para negociosSistema de gestión de turnos para negocios
Sistema de gestión de turnos para negocios
 
Electromagnetismo Fisica FisicaFisica.pdf
Electromagnetismo Fisica FisicaFisica.pdfElectromagnetismo Fisica FisicaFisica.pdf
Electromagnetismo Fisica FisicaFisica.pdf
 
NOM-002-STPS-2010, combate contra incendio.pptx
NOM-002-STPS-2010, combate contra incendio.pptxNOM-002-STPS-2010, combate contra incendio.pptx
NOM-002-STPS-2010, combate contra incendio.pptx
 
SOLIDOS DE REVOLUCION, aplicaciones de integrales definidas
SOLIDOS DE REVOLUCION, aplicaciones de integrales definidasSOLIDOS DE REVOLUCION, aplicaciones de integrales definidas
SOLIDOS DE REVOLUCION, aplicaciones de integrales definidas
 
CFRD simplified sequence for Mazar Hydroelectric Project
CFRD simplified sequence for Mazar Hydroelectric ProjectCFRD simplified sequence for Mazar Hydroelectric Project
CFRD simplified sequence for Mazar Hydroelectric Project
 
AMBIENTES SEDIMENTARIOS GEOLOGIA TIPOS .pptx
AMBIENTES SEDIMENTARIOS GEOLOGIA TIPOS .pptxAMBIENTES SEDIMENTARIOS GEOLOGIA TIPOS .pptx
AMBIENTES SEDIMENTARIOS GEOLOGIA TIPOS .pptx
 
Sistema de Gestión de Freelancers (Base de Datos)
Sistema de Gestión de Freelancers (Base de Datos)Sistema de Gestión de Freelancers (Base de Datos)
Sistema de Gestión de Freelancers (Base de Datos)
 

kupdf.net_automatismos-y-sistemas-de-control-unidad-2b.pdf

  • 1. DISEÑO TECNICO DE SISTEMAS DE CONTROL y AUTOMATISMOS UNIDAD 2B: SENSORES RESISTIVOS ING. ALBERTO EGEA 2.3.- GALGAS EXTENSOMÉTRICAS (STRAIN GAUGE)
  • 2. Entre las principales propiedades mecánicas de los materiales se cuentan la tensión y las deformaciones elásticas y plásticas, y también características físicas tales como el módulo Young, límites elásticos y plásticos y resistencia a la tracción y compresión. Δl l0 l F A σ : Tensión (Esfuerzo) F: Fuerza de tensión. A : Área original. Tensión σ = A F ingalbertoegea@yahoo.com.ar Curso diseño de sistemas de control- Unidad 2 2B-2 PROPIEDADES MECÁNICAS DE LOS MATERIALES En una pieza sometida a una Fuerza de tensión se produce una deformación del metal. Si el metal vuelve a las dimensiones originales cuando cesa la Fuerza se ha producido una deformación elástica, en cambio si el metal no puede recuperar sus dimensiones originales la deformación es plástica cuyo límite es la fractura de la pieza. ε = L0 = L — L0 L0 ΔL ε : Deformación unitaria. L: Longitud de la muestra después de la deformación. L0 : Longitud de la muestra antes de ser deformada. ΔL : Variación de longitud de la muestra. Deformación elástica y plástica Deformación unitaria
  • 3. ingalbertoegea@yahoo.com.ar Curso diseño de sistemas de control- Unidad 2 2B-3 E = ε σ Módulo de Young ν = ΔT/T ΔL/L ν : Coeficiente de Poisson T: Dimensión trasversal ΔT : Variación trasversal L: longitud ΔL : Variación de longitud Coeficiente de elasticidad. Corresponde a la pendiente de la deformación en el comportamiento elástico Coeficiente de deformación trasversal. Caracteriza la capacidad del material para admitir deformaciones trasversales Coeficiente de Poisson Material ν LIMITE SUPERIOR 0.5 Acero Inoxidable 0.305 Aluminio 0.334 Bronce 0.14 Cobre 0.355 Cobre Berilio 0.285 Hierro maleable 0.271 Molibdeno 0.307 Níquel Plata 0.322 Titanio 0.32 Zinc 0.331 Material E Acero 2.106 Aluminio 0.675.106 Cobre 1.106 Hierro fundido 0.75.106 E: Módulo de Young σ : Esfuerzo ε : Deformación Ley de Hooke με : micro deformación = 10-6 m/m
  • 4. Esfuerzo por tensión Esfuerzo por compresión ingalbertoegea@yahoo.com.ar Curso diseño de sistemas de control- Unidad 2 2B-4 DEFINICION. ESFUERZOS Galgas extensométricas: Sensores de esfuerzos y deformaciones basados en la variación de la resistencia eléctrica por la deformación de un hilo conductor calibrado, o en resistencias construidas a base a pistas de semiconductor. Esfuerzo ó Deformación: ε = Fuerza (F)/Área (A) Deformación por tensión : ε = + (F/A) = + (ΔL/L) Deformación por compresión: ε = — (F/A) = — (ΔL/L) Relación entre deformación trasversal (εT) y longitudinal (εL) : εT = ν εL
  • 5. ingalbertoegea@yahoo.com.ar Curso diseño de sistemas de control- Unidad 2 2B-5 TIPOS CONSTRUCTIVOS Galga de hilo metálico o filamento (Wire strain gauge) EI elemento sensible es un hilo conductor metálico de una sección circular de 0,025 mm aproximadamente de diámetro, y encolado sobre un soporte aislante de resina epóxidica, poliéster o material análogo. Para ofrecer la máxima longitud activa dentro de un área reducida, el hilo presenta varios repliegues. Galga de trama pelicular (Foil strain gauge) EI elemento sensible es una película de metal de pocas micras de espesor, recortada mediante ataque foto químico u otra técnica adecuada. Galgas Semiconductoras (SCSG) El elemento sensor de la SCSG se hace de un solo cristal del material piezorresistivo tal como silicio, dopado con una impurezas de boro. Ventajas de las SCSG frente a las Galgas Metálicas. Mayor sensibilidad. Resistencia mas elevada. Menor consumo de energía. Histéresis mecánica insignificante. Más pequeñas y de menor sensibilidad trasversal. Error insignificante debido al esfuerzo mecánicos. Desventajasde las SCSG frente a las metálicas. La relación de la tensión-resistencia es no lineal. Son frágiles y difíciles de montar en superficies curvadas. Son más costosos Son más sensibles a la temperatura
  • 6. GALGAS METÁLICAS: CONSTRUCCIÓN ingalbertoegea@yahoo.com.ar Curso diseño de sistemas de control- Unidad 2 2B-6
  • 7. ingalbertoegea@yahoo.com.ar Curso diseño de sistemas de control- Unidad 2 2B-7 MATERIALES PARA GALGAS METÁLICAS MATERIAL COMPOSICIÓN FACTOR DE GALGA (K) Constantan o Advance 45Ni, 55Cu 2.1 Karma 74Ni, 20Cr, 3Al, 3Fe 2.0 Isoelastic 36Ni, 8Cr, 0.5Mo, 55.5Fe 3.6 Nichrome V 80Ni, 20Cr 2.1 Platino-Tugsteno 92Pt, 8W 4.0 Armour D 70Fe, 20Cr, 10Al 2.0 Constantan o Advance ,es el más utilizado ya que es capaz de mantener constante el factor de galga hasta deformaciones muy elevadas (8%). Karma, también es muy utilizada, presenta tres ventajas sobre el Constantan: a) Pueden alcanzarse compensaciones de temperatura sobre rangos más elevados. b) Ofrece una mejor resistencia a la fatiga debido a su composición Ni-Cr. c) Mantiene una excelente estabilidad con el tiempo. Aleación Isoelastic, presenta la ventaja de su sensibilidad, pero por ser muy sensible a la temperatura no puede compensarse. Se utiliza en medidas de carácter dinámico. Aleaciones Nichrome V, Platino-Tungsteno y Armour D, se emplean en aplicaciones muy especiales en las que resultan de gran importancia la resistencia a temperaturas elevadas y a la oxidación. El factor de galga K se relaciona con el material conductor de la Galga. Para la selección de un tipo de Galga en una aplicación es importante considerar la variación y sensibilidad térmica del material y tener en cuenta si la aplicación es estática o dinámica. En aplicaciones estáticas la sensibilidad a las variaciones térmicas es menos importante que en las dinámicas.
  • 8. ingalbertoegea@yahoo.com.ar Curso diseño de sistemas de control- Unidad 2 2B-8 GALGAS METALICAS SOPORTE PARA GALGAS METÁLICAS GALGAS METÁLICAS: APLICACIONES Y SOPORTES
  • 9. ingalbertoegea@yahoo.com.ar Curso diseño de sistemas de control- Unidad 2 2B-9 MONTAJE Limpiar y pulir con papel de lija la superficie de montaje considerablemente mas amplia que el tamaño de la galga Quitar aceites y grasas usando un paño absorbente de algodón con solvente. Limpiar la superficie y marcar la posición de la galga. Aplicar una gota del pegamento recomendado por el fabricante a la parte posterior de la galga e instalarla en el lugar de montaje respetando el marcado del eje longitudinal. Cubrir la galga con un foil de polietileno y prensar con fuerza la hoja durante un minuto. Los pasos 3 y 4 deben realizarse con premura a fin de evitar el secado del pegamento. 1 2 3 4
  • 10. ingalbertoegea@yahoo.com.ar Curso diseño de sistemas de control- Unidad 2 2B-10 Cuando la galga queda fijada por el pegamento, quitar el foil de polietileno y comprobar las conexiones eléctricas. Remover el pegamento que queda fuera de la base de la galga estirándolo y usando un cúter o papel de lija. Asegurar el cable de conexión a una base de material adhesivo evitando tensiones mecánicas en los conductores que conectan la galga. Cubrir la galga y los terminales de cables con el agente adhesivo recomendado por el fabricante aplanando con suavidad el conjunto protegido. 5 6 7 8
  • 11. FUNCIONAMIENTO ingalbertoegea@yahoo.com.ar Curso diseño de sistemas de control- Unidad 2 Características deseables en el funcionamiento de las galgas extensométricas Sensibilidad a la deformación lineal en el rango elástico. Alta resistividad para reducir el tamaño de la galga. Baja histéresis para repetición y exactitud en la prueba. Alta sensibilidad a la deformación para producir la máxima señal eléctrica ante una deformación experimentada. Coeficiente de resistencia bajo y controlable para lograr una buena autocompensación de temperatura. Amplio rango de temperatura operacional. Durabilidad con respecto a su fatiga para mediciones dinámicas. 2B-11
  • 12. RESISTENCIA EN FUNCIÓN DE LA DEFORMACIÓN Resistencia previa a la deformación: R0 = ρ L / A Un incremento de la Resistencia (ΔR) puede ser el resultado del cambio de ρ, L o A. Definiendo: K = (ΔR/R0)/(ΔL/L) = ΔR/(R0 ε), donde K es el factor de galga, resultan los siguientes valores de R = f(ε): Hilo Metálico  ΔR = R0 (1+ K ε) Semiconductor P  ΔR = R0 (119,5 ε + 4 ε2) Semiconductor N  ΔR = R0(— 110 ε + 4 ε2) L: Longitud de galga; A: Sección de galga; R0 : Resistencia previa a la deformación a 25°C; ε : Deformación Sensibilidad trasversal Las bandas extensométricas están diseñadas para responder en una dirección determinada, pero si se someten a deformaciones transversales pueden proporcionar una pequeña variación de resistencia. Esto se conoce como sensibilidad transversal (ST). Idealmente la sensibilidad transversal es nula. En la práctica el fabricante proporciona la ST en forma de porcentaje. Una de las características deseables de las galgas es que su ST sea baja o despreciable. La ST suele ser menor del 1 %, siendo 0.8% un valor típico. Ejemplo: Se utiliza una galga de K=2.08±1.0% y ST=0.8% en un ensayo de tracción en acero. La corrección debido por ST será: ΔR/R0 = K (εL + ST εT) = K ε(1 — νST ) = 2.08 ε [1 — 0,03 (0,08/100)] = 2.08 ε[1 — (0,24/100)] La corrección total es del 0,24 %, cuatro veces menor de la imprecisión del factor de galga, por lo que el efecto de la sensibilidad transversal puede ser despreciado. ingalbertoegea@yahoo.com.ar Curso diseño de sistemas de control- Unidad 2 2B-12 RESISTENCIA DE LA GALGA
  • 13. LONGITUD DE LAS GALGAS La longitud de la galga no debe ser mayor a la dimensión de la causa del esfuerzo para que la medición sea aceptable. Cuando la causa del esfuerzo es pequeña, la regla general conduciría a longitudes de galgas muy chicas. Puesto que el uso de galgas muy pequeñas introduce otros tipos de problemas, se tiene que llegar a una relación de compromiso. Galgas cortas Los galgas cuya longitud es de alrededor de 3mm tienden a exhibir su rendimiento degradado con respecto a su máxima elongación, no son estables bajo esfuerzo estático y su durabilidad se ve afectada cuando están sometidas a esfuerzo cíclico alternativo. Galgas largas Cuando se justifica su empleo, ofrecen ventajas. Son más fáciles de manipular en todos los aspectos de la instalación y cableado que las galgas miniatura. Proveen una mejor disipación de calor porque debido a su resistencia nominal tienen menor potencia por unidad de área de grilla. Distribución del esfuerzo sobre una galga ingalbertoegea@yahoo.com.ar Curso diseño de sistemas de control- Unidad 2 2B-13
  • 14. ERRORES 1) De la galga: deformación trasversal. Auto calentamiento. Variación de resistencia por cambios bruscos de temperatura. 2) Desalineación en el montaje de la galga. 3) Variación del factor de galga y valores de señal de salida por variaciones térmicas. 4) Fatiga del material de la galga. 5) Sensibilidad trasversal. 6) Conexionado del puente de medición. 7) No linealidad de la salida del puente de Wheatstone. 8) Interferencias en los cables de señal entre el módulo de medición y el lector de señal. 9) Instrumentos de medición. ingalbertoegea@yahoo.com.ar Curso diseño de sistemas de control- Unidad 2 2B-14
  • 15. ingalbertoegea@yahoo.com.ar Curso diseño de sistemas de control- Unidad 2 2B-15 EFECTO TÉRMICO EN GALGAS METALICAS Variación porcentual del Factor de Galga K en función de la temperatura Cuando la temperatura varía, la deformación real de la galga puede desviarse de la deformación medida debido a: 1.- Dilatación de la galga 2.- Dilatación del material soporte 3.- Variación del factor de galga con la temperatura
  • 16. ingalbertoegea@yahoo.com.ar Curso diseño de sistemas de control- Unidad 2 2B-16 Microdeformación aparente de algunas aleaciones (para K= 2) usadas para la construcción de galgas metálicas en función de la temperatura . Para corregir el comportamiento de las galgas extensométricas por el efecto de la temperatura, el fabricante proporciona dos curvas, una es la variación del factor de galga con la temperatura y la otra es la Thermal Output, que representa la deformación real de la galga por efecto de la dilatación. Estas curvas son específicas para cada galga pegada sobre un determinado material. Variación de resistencia en Galgas metálicas en función de la temperatura.
  • 17. ingalbertoegea@yahoo.com.ar Curso diseño de sistemas de control- Unidad 2 2B-17 Variación de resistencia en función de la temperatura para varias concentraciones de impurezas en Galgas semiconductoras tipo P. ΔR = R0 [k1. ε.(T0/T) + k2 .ε2 .(T0/T)] Donde: R0 es la resistencia de la galga sin tensión a la temperatura T0. T es la temperatura a la que se lleva a cabo la medida. k1, k2 son constantes. Las bandas de semiconductores no son más sensibles que las metálicas a los cambios de temperatura, pero su influencia se nota más por tener mayores factores de galga.
  • 18. ingalbertoegea@yahoo.com.ar Curso diseño de sistemas de control- Unidad 2 2B-18 DISIPACIÓN TÉRMICA La potencia generada en forma de calor por la galga viene dada por el efecto Joule. El calor a evacuar o la potencia a disipar es función de dos factores: 1.- el área que ocupa el elemento conductor 2.- el área del material sobre el que se pega la galga. La potencia máxima de disipación por unidad de área puede expresarse: PD . A ≥ i2.R Valores típicos de PD (W/mm2) Al, Cu: 0.008-0.016 Fe: 0.003-0.008 Fe (piezas pequeñas): 0.0015-0.003 Cerámicos, vidrios: 0.0003-0.0008 Plásticos: 0.00003-0.00008 La potencia a disipar por galga limita la tensión de alimentación del circuito en el que se monta. Pdg = V2/Rg = I2 Rg V= ѴPdg . Rg
  • 19. ingalbertoegea@yahoo.com.ar Curso diseño de sistemas de control- Unidad 2 2B-19 EFECTO TÉRMICO SOBRE LAS MEDICIONES GALGA MONTADA SOBRE UNA ESTRUCTURA Variación relativa de la resistividad de la galga Δ ρ/ρ0= βr (T – T0) Variación relativa por dilatación de la galga Longitud: ΔL/L0 = λb (T – T0) Diámetro: Δd/d0 = λb (T – T0) En la estructura, donde la galga esta montada, la variación relativa de longitud por dilatación es: ΔLe/Le0 = λe (T – T0) Obtenidas las variaciones relativas de la galga y de la estructura, la variación de resistencia de la galga vale: ΔR/R0 = Kαt (T – T0) Donde : αt = [(βr –λb) / K]+ λe –λb αt : deformación unitaria aparente producida por un incremento de temperatura de 1ºC. λb : coeficiente de dilatación del material de la galga. λe :coeficiente de dilatación de la estructura βr :coeficiente de variación de la resistividad con la temperatura. MATERIAL βr . 10-5 °C-1 λb . 10-5 °C-1 ESTRUCTURA λe . 10-5 °C-1 Constantán 3.7 1.7 Aluminio 2.5 Karma 3.0 1.0 Acero 1.1 Isoelastic 17.9 0.4 Cobre 1.7 Nichrome V 11.3 1.3 Titanio 0.9 Cuando αt ≈ 0, la galga es autocompensada pues no hay variación de la resistencia con la temperatura. El Constantan se utiliza en galgas autocompensadas hasta 200°C. Las aleaciones de Karma pueden mantener la autocompensación hasta unos 400°C.
  • 20. ingalbertoegea@yahoo.com.ar Curso diseño de sistemas de control- Unidad 2 2B-20 GALGAS AUTOCOMPENSADAS TERMICAMENTE Cuando una galga se monta sobre una estructura metálica conductiva se induce una deformación aparente: Donde: α: Coeficiente de temperatura de la galga. K: Factor de galga βs: coeficiente lineal de expansión térmica del metal de la estructura. βg: coeficiente lineal de expansión térmica del metal de la galga. Las galgas autocompensadas se diseñan a fin de disminuir el valor de εT al mínimo cercano a cero de acuerdo a los valores del βs del material objeto de medición.   g s T β β K α ε    Características típicas de εT en función de la temperatura de una galga autocompensada conectada con tres hilos.
  • 21. ERRORES POR DESALINEADO Curvas de error por desalineado en με con parámetro β en el caso de una galga uniaxial para medir valores de deformación entre 1000 με y – 285 με La desalineación de las galgas respecto de los ejes principales de tensiones producen errores en la medición que deben ser tenidos en cuenta cuando ocurren. Este error no se producirá cuando las galgas estén correctamente alineadas en la etapa de montaje. ingalbertoegea@yahoo.com.ar Curso diseño de sistemas de control- Unidad 2 2B-21       2β cos υ 1 υ 1 ε 2 1 ε L β    
  • 22. ERRORES POR SENSIBILIDAD TRASVERSAL   100 K μ 1 μ ε ε K n : trasversal ad sensibilid por porcentual Error μK 1 K K trasversal ad sensibilid la incluye te fabrican el da que Galga de Factor El T L T T ε T L F               ingalbertoegea@yahoo.com.ar Curso diseño de sistemas de control- Unidad 2 2B-22
  • 23. DEFORMACIÓN POR MONTAJE EN SUPERFICIES CURVAS El montaje de una galga sobre una superficie curva adiciona una deformación εA: Donde: t: Espesor de la galga r: radio de la superficie. Ejemplo Calcular εA y ΔR en una galga (R= 350Ω; K=2,3; t=0,020mm) montada sobre una cañería de diámetro 200 mm para una medición de 5000 με. ingalbertoegea@yahoo.com.ar Curso diseño de sistemas de control- Unidad 2 2B-23 t r 2 t εA   G A 6 A G A 6 G G A G 6 A ΔR de % 0,20 ΔR Ω 0,008 .10 350.2,3.10 ε K R ΔR Ω 4,025 00.10 350.2,3.50 ε K R ΔR ΔR ΔR ΔR 10.10 0,020 .100 2 0,020 t r 2 t ε                 
  • 24. LINEALIDAD E HISTERISIS La linealidad y la histéresis en las galgas dependen de diversos factores: a) Nivel de deformaciones alcanzado. b) El material soporte de la galga. c) La calidad y los materiales del pegado. d) El montaje. Cuando se trabaja dentro de los límites de deformaciones indicados por el fabricante, éste debe asegurar valores menores del 1% en galgas con soporte de poliamida y menor del 0.05% en las de soporte epoxi. ingalbertoegea@yahoo.com.ar Curso diseño de sistemas de control- Unidad 2 2B-24
  • 25. FATIGA La fatiga afecta a los materiales produciendo pequeñas tensiones que se propagan a lo largo de la vida útil de la galga originando variaciones progresivas en la resistencia. Los fabricantes de galgas suministran datos sobre la fatiga garantizando el número de ciclos que soportan con un cierto grado de deformación en una escala de 100 με partiendo desde cero. ingalbertoegea@yahoo.com.ar Curso diseño de sistemas de control- Unidad 2 2B-25 RESISTENCIA A LA FATIGA DE ALGUNAS ALEACIONES UTILIZADAS EN GALGAS CURVAS DE FATIGA SUMINISTRADAS POR FABRICANTES
  • 26. PUENTE DE WHEATSTONE ingalbertoegea@yahoo.com.ar Curso diseño de sistemas de control- Unidad 2 2B-26 PUENTE DE MEDIDA POR COMPARACIÓN El valor de una resistencia desconocida (R4) se calcula mediante la variación de una Resistencia conocida (R3) poniendo el puente en equilibrio (V0 = 0), siendo R1 y R2 conocidas. El valor calculado de R4 no depende de la tensión de alimentación (E), del tipo de detector ni de su impedancia. Para calcularlo solo es necesario que se consiga la condición de equilibrio. 1 3 2 4 3 2 4 1 0 4 3 3 2 1 1 0 d b 0 4 3 3 d 2 1 1 b R R R R R R R R puente) del o (Equilibri 0 V Si R R R R R R E V V V V R R R E V ; R R R E V                      
  • 27. ingalbertoegea@yahoo.com.ar Curso diseño de sistemas de control- Unidad 2 2B-27 PUENTE DE MEDIDA POR DEFLEXIÓN Para obtener una señal eléctrica se puede medir la salida V0 que será proporcional a las variaciones de resistencias (Galgas) conocidas que se instalen en cada rama del puente.   medida n Deformació : ε corregida n Deformació : ε M C 6 M M C 10 ε 1 ε ε : galga una de caso el para linealidad de ón Compensaci                                 3 4 2 1 0 3 3 4 4 2 2 1 1 0 4 3 3 2 1 1 0 ε ε ε ε 4 E K ΔV Kε R ΔR : Como contrario. signo de son adyacentes ramas en s variacione Las R ΔR R ΔR R ΔR R ΔR 4 E ΔV varían puente del as Resistenci las Cuando R R R R R R E V Relación no lineal entre la variación de resistencia y la salida de tensión.
  • 28. ingalbertoegea@yahoo.com.ar Curso diseño de sistemas de control- Unidad 2 2B-28 Consideraciones 1.- Las galgas extensométricasson capaces de medir deformaciones del orden del centenar de micro deformaciones que representan valores de incremento de resistencia muy pequeños, por lo tanto el circuito de medición debe ser muy sensible. Por ejemplo Instalando una galga de Constantan cuya resistencia es de 350Ω y K= 2,1, cuando mida 120 με el valor de ΔR será: ΔR = R K ε = 350. 2,1. 120.10-6= 0,088 Ω Si se miden deformaciones del orden del 5% el valor de ΔR será: ΔR = R K ε = 350. 2,1. 5/100 = 36,75 Ω ΔR = 10,5 % R 2.- La tensión de salida del puente (V0) es proporcional al factor de galga K y a la tensión de alimentación. 3.- Igual deformación en galgas adyacentes (ε1-ε2 y ε4-ε3) produce V0=0 4.- A causa de las características de las galgas, los valores de V0 son de pequeñas magnitudes (mV) por lo que la señal de salida del puente debe acondicionarse con circuitos amplificadores.
  • 29. MEDICIÓN CON PUENTE DE WHEATSTONES ingalbertoegea@yahoo.com.ar Curso diseño de sistemas de control- Unidad 2 2B-29 MONTAJE DE 1/4 DE PUENTE Montaje adecuado cuando se tienen deformaciones pequeñas y no se requiere gran sensibilidad o cuando se dispone de espacio para colocar una única galga o si se quiere hacer una medida puntual. salida. la de linearidad no la cuenta en tener debe se mayores nes deformacio Para nes. deformacio pequeñas de medición la para solo lineal se considerar puede que salida de Tensión ε K 4 E V : n deformació de términos en Y R ΔR 4 E V : obtiene se Operando ΔR R R : si y R a iguales son , equilibrio en puente el con as, resistenci las Si R R R R R R E V : puente del salida de Tensión 2 0 2 0 2 2 3 4 4 2 1 1 0                
  • 30. ingalbertoegea@yahoo.com.ar Curso diseño de sistemas de control- Unidad 2 2B-30 MONTAJE DE 1/2 DE PUENTE EJEMPLO: FLEXIÓN puente. del adyacentes ramas dos en activas galgas las e encontrars por lineal salida de Tensión ε K 2 E V : n deformació de términos en Y R ΔR 2 E V : obtiene se operando iguales, son equilibrio en puente el con as resistenci las Si ΔR ΔR ΔR B. galga la de la a contrario sentido de y igual es A galga la en n deformació Las R R R R R R E V : puente del salida de Tensión 0 0 1 2 3 4 4 2 1 1 0                 
  • 31. ingalbertoegea@yahoo.com.ar Curso diseño de sistemas de control- Unidad 2 2B-31 MONTAJE DE 1/2 DE PUENTE EJEMPLO: TRACCIÓN / COMPRESIÓN Las galgas se instalan en ramas opuestas del puente. En esta configuración se consigue que los resultados de la medición no se anulen por las diferencias que resultan de los signos de R en cada rama. Resolviendo las ecuaciones del puente para este caso, se obtiene una respuesta no lineal en V0. El montaje de medio puente para tracción y compresión puede ser útil para medir pequeñas deformaciones donde ΔR sea despreciable frente al valor de R.
  • 32. ingalbertoegea@yahoo.com.ar Curso diseño de sistemas de control- Unidad 2 2B-32 MONTAJE DE PUENTE COMPLETO EJEMPLO: TRACCIÓN/COMPRESIÓN                                              2 1 Kε E V : nes deformacio pequeñas Para lineal. no salida de Tensión 1 Kε 2 1 ε K 1 2Kε E V : n deformació de términos en obtiene se operando iguales, son equilibrio en puente el con as resistenci las Si K R ΔR R ΔR ε K R ΔR R ΔR : es trasversal y ales longitudin nes deformacio las do Considerna R R R R R R E V : puente del salida de Tensión L 0(Lineal) 2 L 2 2 L 2 L 0 4 4 1 1 L 3 3 2 2 3 4 4 2 1 1 0 υ υ υ υ υ
  • 33. ingalbertoegea@yahoo.com.ar Curso diseño de sistemas de control- Unidad 2 2B-33 MONTAJE DE PUENTE COMPLETO EJEMPLO: FLEXIÓN lineal. salida de Tensión ε K E V : iguales son equilibrio en puente el con as resistenci las Si ε K ε K R ΔR R ΔR ε K R ΔR R ΔR : ) (ε inferiores las y ) (ε superiores nes deformacio las cuenta en Teniendo R R R R R R E V : puente del salida de Tensión S 0 S I 4 4 1 1 S 3 3 2 2 I S 3 4 4 2 1 1 0                   
  • 34. COMPENSACIÓN DE TEMPERATURA Los errores que ocurren en ramas adyacentes de un puente de Wheatstone se compensan, en consecuencia se compensan los efectos térmicos en las mismas condiciones. 1/4 de puente: 1: Galga activa 2: Galga compensadora 3 y 4: Resistencias pasivas Las variaciones de 1 y 2 son similares y se anulan. De la misma manera se comportaran las galgas 1 y 4. Puente completo: Se produce una compensación del efecto térmico si las cuatro ramas del puente de Wheatstone están formadas por galgas idénticas. ingalbertoegea@yahoo.com.ar Curso diseño de sistemas de control- Unidad 2 2B-34
  • 35. CALIBRACIÓN Ejemplo : Calcular la resistencia de calibración para una galga de 125 Ω, K=2,3 para medir 3000με Ω 17.990,94 1 10 . 3000 . 2,3 1 125 R 6 C             El valor de la Resistencia de calibración se calcula:           1 ε K 1 R R G C Utilizando una RC = 20 kΩ, la corrección en με es:  2.700,5 R R R K 1 ε C G G            ingalbertoegea@yahoo.com.ar Curso diseño de sistemas de control- Unidad 2 2B-35
  • 36. CORRECCIÓN DE LA RESISTENCIA DE CABLES DE CONEXIÓN La Resistencia de los cables de conexión en serie con las galgas activas producen una atenuación de la señal de salida del puente (Desensibilización) y modifican el Factor de Galga en la lectura a distancia. L G G M 2h L G G M G G 2R R R K K D ε 2R R ΔR K ε R ΔR K        K: Factor de galga. KM: Factor de galga modificado. D2h: Desensibilización puente Conexión de 3 hilos: No se considera la RL del cable AD por no haber variaciones de RG sobre el mismo. La RL del cable en el punto 1 no se considera porque la caída de tensión en esta rama es casi nula. En consecuencia la desensibilización del puente vale: L G G M 3h L G G M G G R R R K K D ε R R ΔR K ε R ΔR K        K: Factor de galga. KM: Factor de galga modificado. D3h: Desensibilización puente Conexión de 2 hilos: La R total en el circuito de sensado es la suma de RG más 2 RL ingalbertoegea@yahoo.com.ar Curso diseño de sistemas de control- Unidad 2 2B-36
  • 37. L G G M gc L G G M G G 2R R R K K D ε 2R R ΔR K ε R ΔR K        K: Factor de galga activa. KM: Factor de galga modificado. Dgc: Desensibilización puente Conexión de Galga Compensadora: La resistencia de los cables que conectan a la galga compensadora no se tienen en cuenta porque no se producen deformaciones en la galga. ABACO PARA EL CÁLCULO DEL FACTOR D PARA UNA GALGA DE 120 Ω MONTADA CON CONEXIÓN DE TRES HILOS ingalbertoegea@yahoo.com.ar Curso diseño de sistemas de control- Unidad 2 2B-37
  • 38. ingalbertoegea@yahoo.com.ar Curso diseño de sistemas de control- Unidad 2 2B-38 ROSETAS Conjunto de dos o tres galgas montadas sobre una misma base. Cada una de las galgas están orientadas en diferentes ángulos a fin de obtener mediciones de deformaciones en dos o tres direcciones diferentes.
  • 39. ingalbertoegea@yahoo.com.ar Curso diseño de sistemas de control- Unidad 2 2B-39                                                                                                                           2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 1 1 1 2 2 2 1 1 1 2 2 2 2 2 2 1 2 2 2 1 c b b a c b b a c a c b b a c a c b b a c b b a c a c b b a c a b a c a b 1 E E E ε ε ε ε 2ε tan 2 1                                               máx máx máx máx mín máx corte de esfuerzo Máximo ) (ángulo principal eje según mínima Tensión ) (ángulo principal eje según máxima Tensión corte de máxima n Deformació ) (ángulo principal eje según mínima n Deformació ) (ángulo principal eje según máxima n Deformació nes deformacio de principal Ángulo θ θ θ θ θ: Ángulo de máxima deformación cuando |εa|>|εc| y ángulo de mínima deformación cuando |εa|<|εc|. E: Módulo de Young ν: Coeficiente de Poisson MAGNITUDES Y DIRECCIONES DE TENSIONES Y DEFORMACIONES EJEMPLO: ROSETA RECTANGULAR 45°
  • 40. ACONDICIONAMIENTO ESQUEMA ADQUISIÓN DE SEÑALES MULTIPLES CON INTERFASE (ACONDICIONADOR COMUNICABLE) LECTORES DE SEÑAL COMERCIALES ingalbertoegea@yahoo.com.ar Curso diseño de sistemas de control- Unidad 2 2B-40
  • 41. ESQUEMA AMPLIFICADOR DE SEÑAL DEL PUENTE ingalbertoegea@yahoo.com.ar Curso diseño de sistemas de control- Unidad 2 2B-41
  • 42. CONFIGURACIONES DE MEDICIÓN ingalbertoegea@yahoo.com.ar Curso diseño de sistemas de control- Unidad 2 2B-42
  • 43. ingalbertoegea@yahoo.com.ar Curso diseño de sistemas de control- Unidad 2 2B-43
  • 44. ingalbertoegea@yahoo.com.ar Curso diseño de sistemas de control- Unidad 2 2B-44
  • 45. ingalbertoegea@yahoo.com.ar Curso diseño de sistemas de control- Unidad 2 2B-45
  • 46. ingalbertoegea@yahoo.com.ar Curso diseño de sistemas de control- Unidad 2 2B-46
  • 47. ingalbertoegea@yahoo.com.ar Curso diseño de sistemas de control- Unidad 2 2B-47 Debe utilizarse una galga simulada en un brazo (2 o 4) del puente para compensar la temperatura. Se compensan los esfuerzos pero no la temperatura, deben agregarse dos galgas simuladas en los brazos 2 y 4. Temperatura compensada pero sensible a los esfuerzos trasversales en galga 2. Compensa temperatura y esfuerzo trasversales. TRACCIÓN/COMPRESIÓN FLEXIÓN No exento de deformaciones trasversales y debe compensarse la temperatura con una galga simulada (2 o 4) del puente. Se compensan los esfuerzos pero no la temperatura, deben agregarse dos galgas simuladas en los brazos 2 y 4. Máxima sensibilidad y temperatura compensada Sensibilidad adecuada. Compensa temperatura y esfuerzo trasversales.
  • 48. ingalbertoegea@yahoo.com.ar Curso diseño de sistemas de control- Unidad 2 2B-48 Medio Puente: Las galgas se ubican a ±45° respecto al eje central. Están sometidas a deformaciones longitudinales y trasversales que son iguales y de sentido contrario para la torsión pura. La temperatura está compensada. TORSIÓN DEFORMACIÓN DE CAÑERÍAS Los esfuerzos alcanzarán valores máximos en el eje de la carga y en el eje trasversal. El montaje de galgas en el interior de la cañería les ofrece protección mecánica pero a menudo es difícil instalarlas en ésa locación. Puente completo : Las galgas se ubican a ±45° respecto al eje central. Las deformaciones longitudinales y trasversales son iguales y de sentido contrario para la torsión asimétrica. La temperatura está compensada. TORSIÓN ASIMÉTRICA Y DESLIZAMIENTO
  • 49. CELDAS DE CARGA CON GALGAS EXTENSOMÉTRICAS Dispositivo transductor basado en puentes de galgas, diseñado para la medición de cargas mecánicas que entrega una señal proporcional a la fuerza aplicada en él. ingalbertoegea@yahoo.com.ar Curso diseño de sistemas de control- Unidad 2 2B-49
  • 50. ingalbertoegea@yahoo.com.ar Curso diseño de sistemas de control- Unidad 2 2B-50 VISTAS INTERNAS DE CELDAS TIPO
  • 51. ago-10 Ing. Alberto Egea 51 APLICACIONES
  • 52. ingalbertoegea@yahoo.com.ar Curso diseño de sistemas de control- Unidad 2 2B-52 MODELOS COMERCIALES
  • 53. ingalbertoegea@yahoo.com.ar Curso diseño de sistemas de control- Unidad 2 2B-53 CÁLCULOS 1.- Calcular el cambio de resistencia en una Galga de hilo metálico de cobre cuando es sometida a 5,500 με, asumiendo R0 = 275 Ω y K= 2,7 Siendo K = ΔR/(R0 ε)  ΔR = K.R0. ε = 2,7. 275. 5,500 10-6 = 4,1 Ω 2.- Calcular el valor de K El valor de R para un conductor cilíndrico de metal es : R0 = ρ0 L0 / A0 Donde: R0 resistencia eléctrica ; ρ0 resistividad; L0 Longitud; A0 sección de diámetro d0 = (π d0 2)/4  R0 = (ρ0 4L0)/(π d0 2) a) Suponiendo que la resistividad es independiente de la deformación ΔR = R0 [(ΔL/L0) — 2 (Δd/d0)] Teniendo en cuenta el módulo de Poisson: (Δd/d0) = — ν (ΔL/L0) Luego: ΔR = R0 [(1+2ν) (ΔL/L0) = K. ε De donde: K= 1+2ν b) Teniendo en consideración la variación de resistividad ΔR = R0 [(ΔL/L0) — 2 (Δd/d0) + (Δρ/ρ0)] La variación de resistividad se relaciona con la variación de volumen según la constante de Bridgman (Δρ/ρ0) = Cb (ΔV/V0) = 2Cb (Δd/d0) + Cb(ΔL/L0) Luego: ΔR = R0 [(1+Cb) (ΔL/L0) + 2. (Cb—1) (Δd/d0) Introduciendo el módulo de Poisson: ΔR = R0 [(1+Cb)—(Cb—1) . 2 ν] . ε = K. ε De donde: K= 1+Cb—(Cb—1).2 ν Comentarios: 1.- En la mayoría de las aleaciones con las que se construyen las galgas Cb≈ 1 (1,11; 1,13) por lo que K ≈ 2 2.- Cuando se supera el límite elástico ΔV ≈ 0 y ν= 0,5, en este caso K ≈ 2 3.- En Galgas semiconductoras, C puede ser del orden de 100 y su signo depende de las impurezas (tipo P o N). Se alcanzan así valores de K ≈ 100/200 Material ν K LIMITE SUPERIOR 0.5 2 Aluminio 0.334 1,668 Cobre 0.355 1,71 Níquel Plata 0.322 1,644 Titanio 0.32 1,64
  • 54. ingalbertoegea@yahoo.com.ar Curso diseño de sistemas de control- Unidad 2 2B-54 3.- Una galga metálica (240 Ω; K= 2,20) está fijada a un pin de acero el cual tiene una longitud de 10.00 cm y un área transversal de 4 cm2. El módulo de Young para el acero es 20.7 x 1010 M/m2. Cuando una carga es aplicada la resistencia de la galga cambia 0.013 Ω. Calcular el cambio de longitud y la fuerza aplicada al pin. N 10 2,037 m 0,1 m 10 2,46 m 10 4 m N 10 20,7 L ΔL A E F m 10 4 cm 10 m 1 cm 4 A L ΔL E A F ; L ΔL ε ; A F σ ; ε E σ m 10 2,46 2,20 m 0,1 Ω 240 Ω 0,013 K L R ΔR ΔL L ΔL K R ΔR 3 6 2 4 2 10 2 4 2 4 2 2 6                                 4.- Calcular la variación de resistencia causada por un cambio de 1°C en la temperatura para la galga del problema 3.     72,5 Ω 0,013 Ω 0,942 ΔR ΔR Ω 0,942 Ω 240 C 1 C 1 0,003925 R ΔT α ΔR C 1 0,003925 α : genérico valor como Tomando ε T 0 0 T0 0 0 0                      
  • 55. ingalbertoegea@yahoo.com.ar Curso diseño de sistemas de control- Unidad 2 2B-55 5.- Determinar V0 en un puente de Wheatstone conectado en configuración de medio puente compuesto por dos galgas de 240 Ω y dos resistores de 240 Ω cada una cuando la tensión de alimentación es de 10 V, en las siguientes condiciones: a) Cuando una de las galgas se incrementa en 0.013 Ω. b) Cuando la temperatura causa que las galgas (activa y pasiva) se incrementen en 9.4 Ω. c) Cuando la deformación causa que la galga activa se incremente en 0.013 Ω y la temperatura origina que ambas galgas incrementen su resistencia en 9.4 Ω.   mV 0,13 V 4,9987 V 5 Ω 0,013 Ω 249,4 Ω 249,4 V 10 Ω 249,4 Ω 240 Ω 240 V 10 Ω 240 V c) V 0 V 5 V 5 Ω 249,4 Ω 249,4 V 10 Ω 249,4 Ω 240 Ω 240 V 10 Ω 240 V b) mV 0,13 Ω 420 4 V 10 Ω 0,013 4R E ΔR V a) 0 0 0                         6.- Una galga (120,2 Ω; K=2,1) se ha montado en una estructura. La estructura es sometida a un esfuerzo que provoca un cambio en la resistencia de la galga a 120,25 Ω. Tomar E= 205 Gpa y calcular la deformación y la Tensión provocadas por el esfuerzo. MPa 40,61 10 205 10 1,981 E ε σ 10 1,981 2,1 10 4,16 K R R ε 10 4,16 120,2 0,05 R ΔR Ω 0,05 120,2 120,25 ΔR 9 4 4 4 4                       