SlideShare una empresa de Scribd logo
1 de 18
CARACTERÍSTICAS
DE DIODOS
PRINCIPALES
JONATHAN FUENTES CHANI
IV SEMESTRE
2014
Un diodo es un componente electrónico de dos
terminales que permite la circulación de la corriente
eléctrica a través de él en un sentido. Este término
generalmente se usa para referirse al diodo
semiconductor, el más común en la actualidad; consta de
una pieza de cristal semiconductor conectada a dos
terminales eléctricos. El diodo de vacío (que actualmente
ya no se usa, excepto para tecnologías de alta potencia)
es un tubo de vacío con dos electrodos: una lámina como
ánodo, y un cátodo.
De forma simplificada, la curva característica de un diodo (I-
V) consta de dos regiones: por debajo de cierta diferencia de
potencial, se comporta como un circuito abierto (no
conduce), y por encima de ella como un circuito cerrado con
una resistencia eléctrica muy pequeña. Debido a este
comportamiento, se les suele denominar rectificadores, ya
que son dispositivos capaces de suprimir la parte negativa de
cualquier señal, como paso inicial para convertir una
corriente alterna en corriente continua. Su principio de
funcionamiento está basado en los experimentos de Lee De
Forest
Introducción
Hemos visto que un diodo semiconductor normal puede estar
polarizado tanto en directa como inversamente.
 En directa se comporta como una pequeña resistencia.
 En inversa se comporta como una gran resistencia.
Veremos ahora un diodo de especiales características que recibe el
nombre de diodo zener
El diodo zener trabaja exclusivamente en la zona de característica
inversa y, en particular, en la zona del punto de ruptura de su
característica inversa. Esta tensión de ruptura depende de las
características de construcción del diodo, se fabrican desde 2 a 200
voltios. Polarizado en directa actúa como un diodo normal y por tanto
no se utiliza en dicho estado.
Tres son las características que diferencian a los diversos diodos Zener
entre si:
 Tensiones de polarización inversa. conocida como tensión zener, Es la
tensión que el zener va a mantener constante.
 Corriente mínima de funcionamiento. Si la corriente a través del
zener es menor, no hay seguridad en que el Zener mantenga constante la
tensión en sus bornas.
 Potencia máxima de disipación. Puesto que la tensión es constante,
nos indica el máximo valor de la corriente que puede soportar el Zener.
Por tanto el Zener es un diodo que al polarizarlo inversamente mantiene
constante la tensión en sus bornas a un valor llamado tensión de Zener,
pudiendo variar la corriente que lo atraviesa entre el margen de valores
comprendidos entre el valor mínimo de funcionamiento y el
correspondiente a la potencia de zener máxima que puede disipar. Si
superamos el valor de esta corriente el zener se destruye.
El diodo zener viene caracterizado por:
1. Tensión Zener Vz.
2. Rango de tolerancia de Vz. (Tolerancia: C: ±5%)
3. Máxima corriente Zener en polarización inversa Iz.
4. Máxima potencia disipada.
5. Máxima temperatura de operación del zener.
Ficha técnica de un tipo de diodo zener
desarrollada por la corporación privada Bourns,
Inc.
Un diodo rectificador es uno de los dispositivos
de la familia de los diodos más sencillos. El
nombre diodo rectificador” procede de su
aplicación, la cual consiste en separar los ciclos
positivos de una señal de corriente alterna.
Si se aplica al diodo una tensión de corriente
alterna durante los medios ciclos positivos, se
polariza en forma directa; de esta manera,
permite el paso de la corriente eléctrica.
Pero durante los medios ciclos negativos, el diodo
se polariza de manera inversa; con ello, evita el
paso de la corriente en tal sentido.
Introducción
Durante la fabricación de los diodos rectificadores, se
consideran tres factores: la frecuencia máxima en que realizan
correctamente su función, la corriente máxima en que pueden
conducir en sentido directo y las tensiones directa e inversa
máximas que soportarán.
Una de las aplicaciones clásicas de los diodos rectificadores, es
en las fuentes de alimentación; aquí, convierten una señal de
corriente alterna en otra de corriente directa.
Símbolo del diodo
rectificador
 Tensión inversa de ruptura: la tensión inversa de ruptura es la máxima tensión en sentido inverso que puede soportar
un diodo sin entrar en conducción; esta tensión para un diodo rectificador es destructiva, por ello cuando se diseña un
circuito siempre se utiliza un factor de seguridad que no está determinado, sino que depende del diseñador, así por
ejemplo, si la hoja de características de un diodo expresa un valor para la tensión inversa de ruptura de 80 V, un diseñador
muy conservador puede utilizar un factor de seguridad de 2. El diodo no soportará, en ningún caso, tensiones inversas
superiores a 40 V.
 Corriente máxima de polarización directa: es el valor medio de corriente para el cual el diodo se quema debido a una
excesiva disipación de potencia. Este valor nunca se debe alcanzar, por ello, al igual que en el caso de la tensión inversa de
ruptura se utiliza en diseño un factor de seguridad que suele ser 2. Este valor está expresado en la hoja de características
del diodo referido a alimentación monofásica, carga resistiva, 50 o 60 Hz y a 75 ºC de temperatura.
 Caída de tensión con polarización directa: esta medida se realiza con una señal alterna y se obtiene la caída de tensión
con polarización directa, para un valor determinado de corriente y una temperatura de 25 ºC.
 Corriente inversa máxima: es la corriente con polarización inversa para una tensión continua determinada que viene
indicada en la hoja de características del diodo. El valor de la corriente inversa se da para diferentes temperatura.
Ficha técnica de un tipo de diodo rectificador de alta tension
desarrollada por la corporación privada Bourns, Inc.
Este tipo de diodos es muy popular, sino, veamos cualquier equipo
electrónico y veremos por lo menos 1 ó más diodos led. Podemos
encontrarlos en diferentes formas, tamaños y colores
diferentes. La forma de operar de un led se basa en la recombinación
de portadores mayoritarios en la capa de barrera cuando se polariza
una unión Pn en sentido directo. En cada recombinación de un
electrón con un hueco se libera cierta energía. Esta energía, en el caso
de determinados semiconductores, se irradia en forma de luz, en otros
se hace de forma térmica.
Dichas radiaciones son básicamente monocromáticas (sin color). Por
un método de "dopado" del material semiconductor se puede afectar
la energía de radiación del diodo.
El nombre de LED se debe a su abreviatura en ingles ( Light Emmiting
Diode )
Además de los diodos led existen otros diodos con diferente emisión,
como la infrarroja, y que responden a la denominación IRED (Diodo
emisor de infra-rojos).
Símbolo del diodo LED
Introducción
Dimensiones y color del diodo
Actualmente los LED tienen diferentes tamaños, formas y colores. Tenemos LED redondos, cuadrados, rectangulares,
triangulares y con diversas formas.
Los colores básicos son rojo, verde y azul, aunque podemos encontrarlos naranjas, amarillos incluso hay un Led de luz
blanca. Las dimensiones en los LED redondos son 3mm, 5mm, 10mm y uno gigante de 20mm
Ángulo de vista
Esta característica es importante, pues de ella depende el modo de observación del Led, es decir, el empleo práctico de
aparato realizado.
Luminosidad
La intensidad luminosa en el eje y el brillo están intensamente relacionados. Tanto si el Led es puntual o difusor, el brillo es
proporcional a la superficie de emisión. Si el Led es puntual, el punto será más brillante, al ser una superficie demasiado
pequeña. En uno difusor la intensidad en el eje es superior al modelo puntual.
Consumo
El consumo depende mucho del tipo de LED que elijamos.
El diodo Schottky o diodo de barrera Schottky, llamado así en honor
del físico alemán Walter H. Schottky, es un dispositivo semiconductor
que proporciona conmutaciones muy rápidas entre los estados de
conducción directa e inversa (menos de 1ns en dispositivos pequeños
de 5 mm de diámetro) y muy bajas tensiones umbral (también
conocidas como tensiones de codo, aunque en inglés se refieren a ella
como "knee", o sea, de rodilla). La tensión de codo es la diferencia de
potencial mínima necesaria para que el diodo actúe como conductor en
lugar de circuito abierto; esto, claro, dejando de lado la región Zener,
que es cuando más bien existe una diferencia de potencial lo
suficientemente negativa para que a pesar de estar polarizado en contra
del flujo de corriente- éste opere de igual forma como lo haría
regularmente.
La alta velocidad de conmutación permite rectificar señales de muy
altas frecuencias y eliminar excesos de corriente en circuitos de alta
intensidad. A diferencia de los diodos convencionales de silicio, que
tienen una tensión umbral —valor de la tensión en directa a partir de
la cual el diodo conduce— de0,7 V, los diodos Schottky tienen una
tensión umbral de aproximadamente 0,2V a 0,4 V empleándose, por
ejemplo, como protección de descarga de células solares con baterías
de plomo ácido.
La limitación más evidente del diodo de Schottky es la dificultad de
conseguir resistencias inversas relativamente elevadas cuando se
trabaja con altos voltajes inversos pero el diodo Schottky encuentra
una gran variedad de aplicaciones en circuitos de alta velocidad para
computadoras donde se necesiten grandes velocidades de
conmutación y mediante su poca caída de voltaje en directo permite
poco gasto de energía.
El Diodo túnel es un diodo semiconductor que tiene una unión pn, en la
cual se produce el efecto túnel que da origen a una conductancia
diferencial negativa en un cierto intervalo de la característica corriente-
tensión.
La presencia del tramo de resistencia negativa permite su utilización
como componente activo (amplificador/oscilador).
También se conocen como diodos Esaki, en honor del hombre que
descubrió que una fuerte contaminación con impurezas podía causar un
efecto de tunelización de los portadores de carga a lo largo de la zona de
agotamiento en la unión. Una característica importante del diodo túnel
es su resistencia negativa en un determinado intervalo de voltajes de
polarización directa. Cuando la resistencia es negativa, la corriente
disminuye al aumentar el voltaje. En consecuencia, el diodo túnel puede
funcionar como amplificador, como oscilador o como biestable.
Esencialmente, este diodo es un dispositivo de baja potencia para
aplicaciones que involucran microondas y que están relativamente libres
de los efectos de la radiación.
Introducción
 Cuando se aplica una pequeña tensión, el diodo tunnel empieza a conducir (la
corriente empieza a fluir).
 Si se sigue aumentando esta tensión la corriente aumentará hasta llegar un
punto después del cual la corriente disminuye.
 La corriente continuará disminuyendo hasta llegar al punto mínimo de un
"valle" y después volverá a incrementarse. En esta ocasión la corriente continuará
aumentando conforme aumenta la tensión.
Este comportamiento de la corriente en función de la tensión en el diodo tunnel se puede ver en el siguiente gráfico.
• Vv: Tensión de valle
• Vp: Tensión pico
• Ip: Corriente pico
• Iv: Corriente de valle
La región en el gráfico en que la corriente disminuye cuando la tensión aumenta (entre Vp yVv) se llama "zona de resistencia
negativa "Los diodos tunnel tienen la cualidad de pasar entre los niveles de corriente Ip e Iv muy rápidamente, cambiando
de estado de conducción al de no conducción incluso más rápido que los diodos Schottky.
Diodo de capacidad variable, esto es el diodo varicap, también llamado Varactor. Este diodo forma
una capacidad en los extremos de la union PN, que resulta de utilidad, cuando se busca utilizar esa
capacidad en provecho del circuito en el cual debe de funcionar el diodo.
Cuando polarizamos un varicap de forma directa, observamos que además de las zonas
constitutivas de la capacidad que buscamos, en paralelo con ellas aparece una resistencia de muy
bajo valor óhmico, conformando con esto un capacitor de pérdidas muy elevadas. En cambio si lo
polarizamos en sentido inverso, la resistencia en paralelo mencionada, es de un valor relativamente
alto, dando como resultado que el diodo se comporte como un capacitor de pérdidas bajas.
Introducción
Los diodos varactores o varicap han sido diseñados de manera que su funcionamiento
sea similar al de un capacitador y tengan una característica capacitancia-tension
dentro de límites razonables.
En el gráfico a la derecha se muestran las similitudes entre un diodo y un capacitor.
Debido a la recombinación de los portadores en el diodo, una zona de agotamiento se
forma en la juntura.
Esta zona de agotamiento actúa como un dieléctrico (aislante), ya que no hay ninguna
carga y flujo de corriente
Las áreas exteriores a la zona de agotamiento si tienen portadores de carga (área semiconductor). Se puede visualizar sin
dificultad la formación de un capacitor en el diodo (dos materiales semiconductores deparados por un aislante).
La amplitud de la zona de agotamiento se puede ampliar incrementando la tensión inversa aplicada al diodo con una fuente
externa. Esto causa que se aumente la separación (aislante) y separa más las áreas semiconductoras. Este último disminuye
la capacitancia.
Entonces la capacitancia es función de la tensión aplicada al diodo.
 Si la tensión aplicada al diodo aumenta la capacitancia disminuye
 Si la tensión disminuye la capacitancia aumenta
http://www.circuitosimpresos.org/2008/06/02/
diodos/
http://www.microelectronicash.com/
http://www.ifent.org/lecciones/zener/default.as
p
http://www.neoteo.com/midiendo-diodos-y-
transistores-15335

Más contenido relacionado

La actualidad más candente (20)

Diodos
DiodosDiodos
Diodos
 
Diodos
DiodosDiodos
Diodos
 
Diodos
DiodosDiodos
Diodos
 
Diodos
DiodosDiodos
Diodos
 
Diodos
DiodosDiodos
Diodos
 
Diodo
DiodoDiodo
Diodo
 
Diodos pedro velasquez
Diodos  pedro velasquezDiodos  pedro velasquez
Diodos pedro velasquez
 
Diodos
DiodosDiodos
Diodos
 
Diodos
DiodosDiodos
Diodos
 
Diodos
DiodosDiodos
Diodos
 
Diodos
DiodosDiodos
Diodos
 
Diodos tarea hecho
Diodos   tarea hechoDiodos   tarea hecho
Diodos tarea hecho
 
Diodo
DiodoDiodo
Diodo
 
El diodo
El diodoEl diodo
El diodo
 
Diodos
DiodosDiodos
Diodos
 
Diodos
DiodosDiodos
Diodos
 
Diodos 5 diferentes
Diodos 5 diferentesDiodos 5 diferentes
Diodos 5 diferentes
 
Diodos
DiodosDiodos
Diodos
 
Diodos
DiodosDiodos
Diodos
 
Trabajo Diodo
Trabajo DiodoTrabajo Diodo
Trabajo Diodo
 

Similar a Diodos (13)

Diodos
DiodosDiodos
Diodos
 
Diodos
DiodosDiodos
Diodos
 
Diodo
DiodoDiodo
Diodo
 
Diodos
DiodosDiodos
Diodos
 
Diodos
DiodosDiodos
Diodos
 
Diodos
DiodosDiodos
Diodos
 
Diodos
DiodosDiodos
Diodos
 
Diodos jorge condor aguilar
Diodos jorge condor aguilarDiodos jorge condor aguilar
Diodos jorge condor aguilar
 
Diodo
DiodoDiodo
Diodo
 
Diodo
DiodoDiodo
Diodo
 
Diodos
DiodosDiodos
Diodos
 
Diodos
DiodosDiodos
Diodos
 
Diodos
DiodosDiodos
Diodos
 

Último

Diagrama de flujo metalurgia del cobre..pptx
Diagrama de flujo metalurgia del cobre..pptxDiagrama de flujo metalurgia del cobre..pptx
Diagrama de flujo metalurgia del cobre..pptxHarryArmandoLazaroBa
 
Electromagnetismo Fisica FisicaFisica.pdf
Electromagnetismo Fisica FisicaFisica.pdfElectromagnetismo Fisica FisicaFisica.pdf
Electromagnetismo Fisica FisicaFisica.pdfAnonymous0pBRsQXfnx
 
Manual de Usuario Estacion total Sokkia SERIE SET10K.pdf
Manual de Usuario Estacion total Sokkia SERIE SET10K.pdfManual de Usuario Estacion total Sokkia SERIE SET10K.pdf
Manual de Usuario Estacion total Sokkia SERIE SET10K.pdfSandXmovex
 
Conservatorio de danza Kina Jiménez de Almería
Conservatorio de danza Kina Jiménez de AlmeríaConservatorio de danza Kina Jiménez de Almería
Conservatorio de danza Kina Jiménez de AlmeríaANDECE
 
3.3 Tipos de conexiones en los transformadores trifasicos.pdf
3.3 Tipos de conexiones en los transformadores trifasicos.pdf3.3 Tipos de conexiones en los transformadores trifasicos.pdf
3.3 Tipos de conexiones en los transformadores trifasicos.pdfRicardoRomeroUrbano
 
SOUDAL: Soluciones de sellado, pegado y hermeticidad
SOUDAL: Soluciones de sellado, pegado y hermeticidadSOUDAL: Soluciones de sellado, pegado y hermeticidad
SOUDAL: Soluciones de sellado, pegado y hermeticidadANDECE
 
Flujo potencial, conceptos básicos y ejemplos resueltos.
Flujo potencial, conceptos básicos y ejemplos resueltos.Flujo potencial, conceptos básicos y ejemplos resueltos.
Flujo potencial, conceptos básicos y ejemplos resueltos.ALEJANDROLEONGALICIA
 
Biología molecular ADN recombinante.pptx
Biología molecular ADN recombinante.pptxBiología molecular ADN recombinante.pptx
Biología molecular ADN recombinante.pptxluisvalero46
 
CONSTRUCCIONES II - SEMANA 01 - REGLAMENTO NACIONAL DE EDIFICACIONES.pdf
CONSTRUCCIONES II - SEMANA 01 - REGLAMENTO NACIONAL DE EDIFICACIONES.pdfCONSTRUCCIONES II - SEMANA 01 - REGLAMENTO NACIONAL DE EDIFICACIONES.pdf
CONSTRUCCIONES II - SEMANA 01 - REGLAMENTO NACIONAL DE EDIFICACIONES.pdfErikNivor
 
Peligros de Excavaciones y Zanjas presentacion
Peligros de Excavaciones y Zanjas presentacionPeligros de Excavaciones y Zanjas presentacion
Peligros de Excavaciones y Zanjas presentacionOsdelTacusiPancorbo
 
Topografía 1 Nivelación y Carretera en la Ingenierías
Topografía 1 Nivelación y Carretera en la IngenieríasTopografía 1 Nivelación y Carretera en la Ingenierías
Topografía 1 Nivelación y Carretera en la IngenieríasSegundo Silva Maguiña
 
Uso y Manejo de Extintores Lucha contra incendios
Uso y Manejo de Extintores Lucha contra incendiosUso y Manejo de Extintores Lucha contra incendios
Uso y Manejo de Extintores Lucha contra incendioseduardochavezg1
 
CAP4-TEORIA EVALUACION DE CAUDALES - HIDROGRAMAS.pdf
CAP4-TEORIA EVALUACION DE CAUDALES - HIDROGRAMAS.pdfCAP4-TEORIA EVALUACION DE CAUDALES - HIDROGRAMAS.pdf
CAP4-TEORIA EVALUACION DE CAUDALES - HIDROGRAMAS.pdfReneBellido1
 
TAREA 8 CORREDOR INTEROCEÁNICO DEL PAÍS.pdf
TAREA 8 CORREDOR INTEROCEÁNICO DEL PAÍS.pdfTAREA 8 CORREDOR INTEROCEÁNICO DEL PAÍS.pdf
TAREA 8 CORREDOR INTEROCEÁNICO DEL PAÍS.pdfAntonioGonzalezIzqui
 
Final Ashto método mecánica de suelos info
Final Ashto método mecánica de suelos infoFinal Ashto método mecánica de suelos info
Final Ashto método mecánica de suelos infoMEYERQuitoSalas
 
Simbología de Soldadura, interpretacion y aplicacion en dibujo tecnico indus...
Simbología de Soldadura,  interpretacion y aplicacion en dibujo tecnico indus...Simbología de Soldadura,  interpretacion y aplicacion en dibujo tecnico indus...
Simbología de Soldadura, interpretacion y aplicacion en dibujo tecnico indus...esandoval7
 
Descubrimiento de la penicilina en la segunda guerra mundial
Descubrimiento de la penicilina en la segunda guerra mundialDescubrimiento de la penicilina en la segunda guerra mundial
Descubrimiento de la penicilina en la segunda guerra mundialyajhairatapia
 
produccion de cerdos. 2024 abril 20..pptx
produccion de cerdos. 2024 abril 20..pptxproduccion de cerdos. 2024 abril 20..pptx
produccion de cerdos. 2024 abril 20..pptxEtse9
 
SEGURIDAD EN CONSTRUCCION PPT PARA EL CIP
SEGURIDAD EN CONSTRUCCION PPT PARA EL CIPSEGURIDAD EN CONSTRUCCION PPT PARA EL CIP
SEGURIDAD EN CONSTRUCCION PPT PARA EL CIPJosLuisFrancoCaldern
 
LEYES DE EXPONENTES SEMANA 1 CESAR VALLEJO.pdf
LEYES DE EXPONENTES SEMANA 1 CESAR VALLEJO.pdfLEYES DE EXPONENTES SEMANA 1 CESAR VALLEJO.pdf
LEYES DE EXPONENTES SEMANA 1 CESAR VALLEJO.pdfAdelaHerrera9
 

Último (20)

Diagrama de flujo metalurgia del cobre..pptx
Diagrama de flujo metalurgia del cobre..pptxDiagrama de flujo metalurgia del cobre..pptx
Diagrama de flujo metalurgia del cobre..pptx
 
Electromagnetismo Fisica FisicaFisica.pdf
Electromagnetismo Fisica FisicaFisica.pdfElectromagnetismo Fisica FisicaFisica.pdf
Electromagnetismo Fisica FisicaFisica.pdf
 
Manual de Usuario Estacion total Sokkia SERIE SET10K.pdf
Manual de Usuario Estacion total Sokkia SERIE SET10K.pdfManual de Usuario Estacion total Sokkia SERIE SET10K.pdf
Manual de Usuario Estacion total Sokkia SERIE SET10K.pdf
 
Conservatorio de danza Kina Jiménez de Almería
Conservatorio de danza Kina Jiménez de AlmeríaConservatorio de danza Kina Jiménez de Almería
Conservatorio de danza Kina Jiménez de Almería
 
3.3 Tipos de conexiones en los transformadores trifasicos.pdf
3.3 Tipos de conexiones en los transformadores trifasicos.pdf3.3 Tipos de conexiones en los transformadores trifasicos.pdf
3.3 Tipos de conexiones en los transformadores trifasicos.pdf
 
SOUDAL: Soluciones de sellado, pegado y hermeticidad
SOUDAL: Soluciones de sellado, pegado y hermeticidadSOUDAL: Soluciones de sellado, pegado y hermeticidad
SOUDAL: Soluciones de sellado, pegado y hermeticidad
 
Flujo potencial, conceptos básicos y ejemplos resueltos.
Flujo potencial, conceptos básicos y ejemplos resueltos.Flujo potencial, conceptos básicos y ejemplos resueltos.
Flujo potencial, conceptos básicos y ejemplos resueltos.
 
Biología molecular ADN recombinante.pptx
Biología molecular ADN recombinante.pptxBiología molecular ADN recombinante.pptx
Biología molecular ADN recombinante.pptx
 
CONSTRUCCIONES II - SEMANA 01 - REGLAMENTO NACIONAL DE EDIFICACIONES.pdf
CONSTRUCCIONES II - SEMANA 01 - REGLAMENTO NACIONAL DE EDIFICACIONES.pdfCONSTRUCCIONES II - SEMANA 01 - REGLAMENTO NACIONAL DE EDIFICACIONES.pdf
CONSTRUCCIONES II - SEMANA 01 - REGLAMENTO NACIONAL DE EDIFICACIONES.pdf
 
Peligros de Excavaciones y Zanjas presentacion
Peligros de Excavaciones y Zanjas presentacionPeligros de Excavaciones y Zanjas presentacion
Peligros de Excavaciones y Zanjas presentacion
 
Topografía 1 Nivelación y Carretera en la Ingenierías
Topografía 1 Nivelación y Carretera en la IngenieríasTopografía 1 Nivelación y Carretera en la Ingenierías
Topografía 1 Nivelación y Carretera en la Ingenierías
 
Uso y Manejo de Extintores Lucha contra incendios
Uso y Manejo de Extintores Lucha contra incendiosUso y Manejo de Extintores Lucha contra incendios
Uso y Manejo de Extintores Lucha contra incendios
 
CAP4-TEORIA EVALUACION DE CAUDALES - HIDROGRAMAS.pdf
CAP4-TEORIA EVALUACION DE CAUDALES - HIDROGRAMAS.pdfCAP4-TEORIA EVALUACION DE CAUDALES - HIDROGRAMAS.pdf
CAP4-TEORIA EVALUACION DE CAUDALES - HIDROGRAMAS.pdf
 
TAREA 8 CORREDOR INTEROCEÁNICO DEL PAÍS.pdf
TAREA 8 CORREDOR INTEROCEÁNICO DEL PAÍS.pdfTAREA 8 CORREDOR INTEROCEÁNICO DEL PAÍS.pdf
TAREA 8 CORREDOR INTEROCEÁNICO DEL PAÍS.pdf
 
Final Ashto método mecánica de suelos info
Final Ashto método mecánica de suelos infoFinal Ashto método mecánica de suelos info
Final Ashto método mecánica de suelos info
 
Simbología de Soldadura, interpretacion y aplicacion en dibujo tecnico indus...
Simbología de Soldadura,  interpretacion y aplicacion en dibujo tecnico indus...Simbología de Soldadura,  interpretacion y aplicacion en dibujo tecnico indus...
Simbología de Soldadura, interpretacion y aplicacion en dibujo tecnico indus...
 
Descubrimiento de la penicilina en la segunda guerra mundial
Descubrimiento de la penicilina en la segunda guerra mundialDescubrimiento de la penicilina en la segunda guerra mundial
Descubrimiento de la penicilina en la segunda guerra mundial
 
produccion de cerdos. 2024 abril 20..pptx
produccion de cerdos. 2024 abril 20..pptxproduccion de cerdos. 2024 abril 20..pptx
produccion de cerdos. 2024 abril 20..pptx
 
SEGURIDAD EN CONSTRUCCION PPT PARA EL CIP
SEGURIDAD EN CONSTRUCCION PPT PARA EL CIPSEGURIDAD EN CONSTRUCCION PPT PARA EL CIP
SEGURIDAD EN CONSTRUCCION PPT PARA EL CIP
 
LEYES DE EXPONENTES SEMANA 1 CESAR VALLEJO.pdf
LEYES DE EXPONENTES SEMANA 1 CESAR VALLEJO.pdfLEYES DE EXPONENTES SEMANA 1 CESAR VALLEJO.pdf
LEYES DE EXPONENTES SEMANA 1 CESAR VALLEJO.pdf
 

Diodos

  • 2. Un diodo es un componente electrónico de dos terminales que permite la circulación de la corriente eléctrica a través de él en un sentido. Este término generalmente se usa para referirse al diodo semiconductor, el más común en la actualidad; consta de una pieza de cristal semiconductor conectada a dos terminales eléctricos. El diodo de vacío (que actualmente ya no se usa, excepto para tecnologías de alta potencia) es un tubo de vacío con dos electrodos: una lámina como ánodo, y un cátodo. De forma simplificada, la curva característica de un diodo (I- V) consta de dos regiones: por debajo de cierta diferencia de potencial, se comporta como un circuito abierto (no conduce), y por encima de ella como un circuito cerrado con una resistencia eléctrica muy pequeña. Debido a este comportamiento, se les suele denominar rectificadores, ya que son dispositivos capaces de suprimir la parte negativa de cualquier señal, como paso inicial para convertir una corriente alterna en corriente continua. Su principio de funcionamiento está basado en los experimentos de Lee De Forest
  • 3. Introducción Hemos visto que un diodo semiconductor normal puede estar polarizado tanto en directa como inversamente.  En directa se comporta como una pequeña resistencia.  En inversa se comporta como una gran resistencia. Veremos ahora un diodo de especiales características que recibe el nombre de diodo zener El diodo zener trabaja exclusivamente en la zona de característica inversa y, en particular, en la zona del punto de ruptura de su característica inversa. Esta tensión de ruptura depende de las características de construcción del diodo, se fabrican desde 2 a 200 voltios. Polarizado en directa actúa como un diodo normal y por tanto no se utiliza en dicho estado.
  • 4. Tres son las características que diferencian a los diversos diodos Zener entre si:  Tensiones de polarización inversa. conocida como tensión zener, Es la tensión que el zener va a mantener constante.  Corriente mínima de funcionamiento. Si la corriente a través del zener es menor, no hay seguridad en que el Zener mantenga constante la tensión en sus bornas.  Potencia máxima de disipación. Puesto que la tensión es constante, nos indica el máximo valor de la corriente que puede soportar el Zener. Por tanto el Zener es un diodo que al polarizarlo inversamente mantiene constante la tensión en sus bornas a un valor llamado tensión de Zener, pudiendo variar la corriente que lo atraviesa entre el margen de valores comprendidos entre el valor mínimo de funcionamiento y el correspondiente a la potencia de zener máxima que puede disipar. Si superamos el valor de esta corriente el zener se destruye.
  • 5. El diodo zener viene caracterizado por: 1. Tensión Zener Vz. 2. Rango de tolerancia de Vz. (Tolerancia: C: ±5%) 3. Máxima corriente Zener en polarización inversa Iz. 4. Máxima potencia disipada. 5. Máxima temperatura de operación del zener. Ficha técnica de un tipo de diodo zener desarrollada por la corporación privada Bourns, Inc.
  • 6. Un diodo rectificador es uno de los dispositivos de la familia de los diodos más sencillos. El nombre diodo rectificador” procede de su aplicación, la cual consiste en separar los ciclos positivos de una señal de corriente alterna. Si se aplica al diodo una tensión de corriente alterna durante los medios ciclos positivos, se polariza en forma directa; de esta manera, permite el paso de la corriente eléctrica. Pero durante los medios ciclos negativos, el diodo se polariza de manera inversa; con ello, evita el paso de la corriente en tal sentido. Introducción Durante la fabricación de los diodos rectificadores, se consideran tres factores: la frecuencia máxima en que realizan correctamente su función, la corriente máxima en que pueden conducir en sentido directo y las tensiones directa e inversa máximas que soportarán. Una de las aplicaciones clásicas de los diodos rectificadores, es en las fuentes de alimentación; aquí, convierten una señal de corriente alterna en otra de corriente directa. Símbolo del diodo rectificador
  • 7.  Tensión inversa de ruptura: la tensión inversa de ruptura es la máxima tensión en sentido inverso que puede soportar un diodo sin entrar en conducción; esta tensión para un diodo rectificador es destructiva, por ello cuando se diseña un circuito siempre se utiliza un factor de seguridad que no está determinado, sino que depende del diseñador, así por ejemplo, si la hoja de características de un diodo expresa un valor para la tensión inversa de ruptura de 80 V, un diseñador muy conservador puede utilizar un factor de seguridad de 2. El diodo no soportará, en ningún caso, tensiones inversas superiores a 40 V.  Corriente máxima de polarización directa: es el valor medio de corriente para el cual el diodo se quema debido a una excesiva disipación de potencia. Este valor nunca se debe alcanzar, por ello, al igual que en el caso de la tensión inversa de ruptura se utiliza en diseño un factor de seguridad que suele ser 2. Este valor está expresado en la hoja de características del diodo referido a alimentación monofásica, carga resistiva, 50 o 60 Hz y a 75 ºC de temperatura.  Caída de tensión con polarización directa: esta medida se realiza con una señal alterna y se obtiene la caída de tensión con polarización directa, para un valor determinado de corriente y una temperatura de 25 ºC.  Corriente inversa máxima: es la corriente con polarización inversa para una tensión continua determinada que viene indicada en la hoja de características del diodo. El valor de la corriente inversa se da para diferentes temperatura.
  • 8. Ficha técnica de un tipo de diodo rectificador de alta tension desarrollada por la corporación privada Bourns, Inc.
  • 9. Este tipo de diodos es muy popular, sino, veamos cualquier equipo electrónico y veremos por lo menos 1 ó más diodos led. Podemos encontrarlos en diferentes formas, tamaños y colores diferentes. La forma de operar de un led se basa en la recombinación de portadores mayoritarios en la capa de barrera cuando se polariza una unión Pn en sentido directo. En cada recombinación de un electrón con un hueco se libera cierta energía. Esta energía, en el caso de determinados semiconductores, se irradia en forma de luz, en otros se hace de forma térmica. Dichas radiaciones son básicamente monocromáticas (sin color). Por un método de "dopado" del material semiconductor se puede afectar la energía de radiación del diodo. El nombre de LED se debe a su abreviatura en ingles ( Light Emmiting Diode ) Además de los diodos led existen otros diodos con diferente emisión, como la infrarroja, y que responden a la denominación IRED (Diodo emisor de infra-rojos). Símbolo del diodo LED Introducción
  • 10. Dimensiones y color del diodo Actualmente los LED tienen diferentes tamaños, formas y colores. Tenemos LED redondos, cuadrados, rectangulares, triangulares y con diversas formas. Los colores básicos son rojo, verde y azul, aunque podemos encontrarlos naranjas, amarillos incluso hay un Led de luz blanca. Las dimensiones en los LED redondos son 3mm, 5mm, 10mm y uno gigante de 20mm Ángulo de vista Esta característica es importante, pues de ella depende el modo de observación del Led, es decir, el empleo práctico de aparato realizado. Luminosidad La intensidad luminosa en el eje y el brillo están intensamente relacionados. Tanto si el Led es puntual o difusor, el brillo es proporcional a la superficie de emisión. Si el Led es puntual, el punto será más brillante, al ser una superficie demasiado pequeña. En uno difusor la intensidad en el eje es superior al modelo puntual. Consumo El consumo depende mucho del tipo de LED que elijamos.
  • 11.
  • 12. El diodo Schottky o diodo de barrera Schottky, llamado así en honor del físico alemán Walter H. Schottky, es un dispositivo semiconductor que proporciona conmutaciones muy rápidas entre los estados de conducción directa e inversa (menos de 1ns en dispositivos pequeños de 5 mm de diámetro) y muy bajas tensiones umbral (también conocidas como tensiones de codo, aunque en inglés se refieren a ella como "knee", o sea, de rodilla). La tensión de codo es la diferencia de potencial mínima necesaria para que el diodo actúe como conductor en lugar de circuito abierto; esto, claro, dejando de lado la región Zener, que es cuando más bien existe una diferencia de potencial lo suficientemente negativa para que a pesar de estar polarizado en contra del flujo de corriente- éste opere de igual forma como lo haría regularmente.
  • 13. La alta velocidad de conmutación permite rectificar señales de muy altas frecuencias y eliminar excesos de corriente en circuitos de alta intensidad. A diferencia de los diodos convencionales de silicio, que tienen una tensión umbral —valor de la tensión en directa a partir de la cual el diodo conduce— de0,7 V, los diodos Schottky tienen una tensión umbral de aproximadamente 0,2V a 0,4 V empleándose, por ejemplo, como protección de descarga de células solares con baterías de plomo ácido. La limitación más evidente del diodo de Schottky es la dificultad de conseguir resistencias inversas relativamente elevadas cuando se trabaja con altos voltajes inversos pero el diodo Schottky encuentra una gran variedad de aplicaciones en circuitos de alta velocidad para computadoras donde se necesiten grandes velocidades de conmutación y mediante su poca caída de voltaje en directo permite poco gasto de energía.
  • 14. El Diodo túnel es un diodo semiconductor que tiene una unión pn, en la cual se produce el efecto túnel que da origen a una conductancia diferencial negativa en un cierto intervalo de la característica corriente- tensión. La presencia del tramo de resistencia negativa permite su utilización como componente activo (amplificador/oscilador). También se conocen como diodos Esaki, en honor del hombre que descubrió que una fuerte contaminación con impurezas podía causar un efecto de tunelización de los portadores de carga a lo largo de la zona de agotamiento en la unión. Una característica importante del diodo túnel es su resistencia negativa en un determinado intervalo de voltajes de polarización directa. Cuando la resistencia es negativa, la corriente disminuye al aumentar el voltaje. En consecuencia, el diodo túnel puede funcionar como amplificador, como oscilador o como biestable. Esencialmente, este diodo es un dispositivo de baja potencia para aplicaciones que involucran microondas y que están relativamente libres de los efectos de la radiación. Introducción
  • 15.  Cuando se aplica una pequeña tensión, el diodo tunnel empieza a conducir (la corriente empieza a fluir).  Si se sigue aumentando esta tensión la corriente aumentará hasta llegar un punto después del cual la corriente disminuye.  La corriente continuará disminuyendo hasta llegar al punto mínimo de un "valle" y después volverá a incrementarse. En esta ocasión la corriente continuará aumentando conforme aumenta la tensión. Este comportamiento de la corriente en función de la tensión en el diodo tunnel se puede ver en el siguiente gráfico. • Vv: Tensión de valle • Vp: Tensión pico • Ip: Corriente pico • Iv: Corriente de valle La región en el gráfico en que la corriente disminuye cuando la tensión aumenta (entre Vp yVv) se llama "zona de resistencia negativa "Los diodos tunnel tienen la cualidad de pasar entre los niveles de corriente Ip e Iv muy rápidamente, cambiando de estado de conducción al de no conducción incluso más rápido que los diodos Schottky.
  • 16. Diodo de capacidad variable, esto es el diodo varicap, también llamado Varactor. Este diodo forma una capacidad en los extremos de la union PN, que resulta de utilidad, cuando se busca utilizar esa capacidad en provecho del circuito en el cual debe de funcionar el diodo. Cuando polarizamos un varicap de forma directa, observamos que además de las zonas constitutivas de la capacidad que buscamos, en paralelo con ellas aparece una resistencia de muy bajo valor óhmico, conformando con esto un capacitor de pérdidas muy elevadas. En cambio si lo polarizamos en sentido inverso, la resistencia en paralelo mencionada, es de un valor relativamente alto, dando como resultado que el diodo se comporte como un capacitor de pérdidas bajas. Introducción
  • 17. Los diodos varactores o varicap han sido diseñados de manera que su funcionamiento sea similar al de un capacitador y tengan una característica capacitancia-tension dentro de límites razonables. En el gráfico a la derecha se muestran las similitudes entre un diodo y un capacitor. Debido a la recombinación de los portadores en el diodo, una zona de agotamiento se forma en la juntura. Esta zona de agotamiento actúa como un dieléctrico (aislante), ya que no hay ninguna carga y flujo de corriente Las áreas exteriores a la zona de agotamiento si tienen portadores de carga (área semiconductor). Se puede visualizar sin dificultad la formación de un capacitor en el diodo (dos materiales semiconductores deparados por un aislante). La amplitud de la zona de agotamiento se puede ampliar incrementando la tensión inversa aplicada al diodo con una fuente externa. Esto causa que se aumente la separación (aislante) y separa más las áreas semiconductoras. Este último disminuye la capacitancia. Entonces la capacitancia es función de la tensión aplicada al diodo.  Si la tensión aplicada al diodo aumenta la capacitancia disminuye  Si la tensión disminuye la capacitancia aumenta