SlideShare una empresa de Scribd logo
DIODOS
C A R A C T E R Í S T I C A S D E D I O D O S
P R I N C I P A L E S
N O M B R E : J E S U S F L O R E S B R I C E Ñ O
EL DIODO
Un diodo es un componente electrónico de dos
terminales que permite la circulación de la corriente
eléctrica a través de él en un sentido. Este término
generalmente se usa para referirse al diodo
semiconductor, el más común en la actualidad;
consta de una pieza de cristal semiconductor
conectada a dos terminales eléctricos. El diodo de
vacío (que actualmente ya no se usa, excepto para
tecnologías de alta potencia) es un tubo de vacío con
dos electrodos: una lámina como ánodo, y un
cátodo.
De forma simplificada, la curva característica de un
diodo (I-V) consta de dos regiones: por debajo de cierta
diferencia de potencial, se comporta como un circuito
abierto (no conduce), y por encima de ella como un
circuito cerrado con una resistencia eléctrica muy
pequeña. Debido a este comportamiento, se les suele
denominar rectificadores, ya que son dispositivos
capaces de suprimir la parte negativa de cualquier
señal, como paso inicial para convertir una corriente
alterna en corriente continua. Su principio de
funcionamiento está basado en los experimentos de Lee
De Forest
DIODO ZENER
Introducción
Hemos visto que un diodo semiconductor normal puede estar
polarizado tanto en directa como inversamente.
 En directa se comporta como una pequeña resistencia.
 En inversa se comporta como una gran resistencia.
Veremos ahora un diodo de especiales características que recibe
el nombre de diodo zener
El diodo zener trabaja exclusivamente en la zona de
característica inversa y, en particular, en la zona del punto de
ruptura de su característica inversa. Esta tensión de ruptura
depende de las características de construcción del diodo, se
fabrican desde 2 a 200 voltios. Polarizado en directa actúa como
un diodo normal y por tanto no se utiliza en dicho estado.
CURVA CARACTERÍSTICA DE DIODO ZENER
Tres son las características que diferencian a los diversos diodos
Zener entre si:
 Tensiones de polarización inversa. conocida como tensión
zener, Es la tensión que el zener va a mantener constante.
 Corriente mínima de funcionamiento. Si la corriente a través
del zener es menor, no hay seguridad en que el Zener mantenga
constante la tensión en sus bornas.
 Potencia máxima de disipación. Puesto que la tensión es
constante, nos indica el máximo valor de la corriente que puede
soportar el Zener.
Por tanto el Zener es un diodo que al polarizarlo inversamente
mantiene constante la tensión en sus bornas a un valor llamado
tensión de Zener, pudiendo variar la corriente que lo atraviesa
entre el margen de valores comprendidos entre el valor mínimo de
funcionamiento y el correspondiente a la potencia de zener
máxima que puede disipar. Si superamos el valor de esta corriente
el zener se destruye.
CARACTERÍSTICAS TÉCNICAS
El diodo zener viene caracterizado por:
1. Tensión Zener Vz.
2. Rango de tolerancia de Vz. (Tolerancia: C: ±5%)
3. Máxima corriente Zener en polarización inversa Iz.
4. Máxima potencia disipada.
5. Máxima temperatura de operación del zener.
Ficha técnica de un tipo de diodo zener
desarrollada por la corporación privada
Bourns, Inc.
DIODO RECTIFICADOR
Un diodo rectificador es uno de los
dispositivos de la familia de los diodos más
sencillos. El nombre diodo rectificador”
procede de su aplicación, la cual consiste en
separar los ciclos positivos de una señal de
corriente alterna.
Si se aplica al diodo una tensión de corriente
alterna durante los medios ciclos positivos, se
polariza en forma directa; de esta manera,
permite el paso de la corriente eléctrica.
Pero durante los medios ciclos negativos, el
diodo se polariza de manera inversa; con ello,
evita el paso de la corriente en tal sentido.
Introducción
Durante la fabricación de los diodos rectificadores, se
consideran tres factores: la frecuencia máxima en que
realizan correctamente su función, la corriente máxima
en que pueden conducir en sentido directo y las
tensiones directa e inversa máximas que soportarán.
Una de las aplicaciones clásicas de los diodos
rectificadores, es en las fuentes de alimentación; aquí,
convierten una señal de corriente alterna en otra de
corriente directa.
Símbolo del diodo
rectificador
CARACTERÍSTICAS DEL DIODO RECTIFICADOR
 Tensión inversa de ruptura: la tensión inversa de ruptura es la máxima tensión en sentido inverso que
puede soportar un diodo sin entrar en conducción; esta tensión para un diodo rectificador es destructiva, por
ello cuando se diseña un circuito siempre se utiliza un factor de seguridad que no está determinado, sino que
depende del diseñador, así por ejemplo, si la hoja de características de un diodo expresa un valor para la
tensión inversa de ruptura de 80 V, un diseñador muy conservador puede utilizar un factor de seguridad de 2.
El diodo no soportará, en ningún caso, tensiones inversas superiores a 40 V.
 Corriente máxima de polarización directa: es el valor medio de corriente para el cual el diodo se quema
debido a una excesiva disipación de potencia. Este valor nunca se debe alcanzar, por ello, al igual que en el
caso de la tensión inversa de ruptura se utiliza en diseño un factor de seguridad que suele ser 2. Este valor
está expresado en la hoja de características del diodo referido a alimentación monofásica, carga resistiva, 50 o
60 Hz y a 75 ºC de temperatura.
 Caída de tensión con polarización directa: esta medida se realiza con una señal alterna y se obtiene la
caída de tensión con polarización directa, para un valor determinado de corriente y una temperatura de 25 ºC.
 Corriente inversa máxima: es la corriente con polarización inversa para una tensión continua determinada
que viene indicada en la hoja de características del diodo. El valor de la corriente inversa se da para diferentes
temperatura.
CARACTERÍSTICAS TÉCNICAS
Ficha técnica de un tipo de diodo rectificador de alta tension desarrollada por
la corporación privada Bourns, Inc.
DIODO LED
Este tipo de diodos es muy popular, sino, veamos cualquier
equipo electrónico y veremos por lo menos 1 ó más diodos led.
Podemos encontrarlos en diferentes formas, tamaños y colores
diferentes. La forma de operar de un led se basa en la
recombinación de portadores mayoritarios en la capa de barrera
cuando se polariza una unión Pn en sentido directo. En cada
recombinación de un electrón con un hueco se libera cierta
energía. Esta energía, en el caso de determinados
semiconductores, se irradia en forma de luz, en otros se hace de
forma térmica.
Dichas radiaciones son básicamente monocromáticas (sin color).
Por un método de "dopado" del material semiconductor se puede
afectar la energía de radiación del diodo.
El nombre de LED se debe a su abreviatura en ingles ( Light
Emmiting Diode )
Además de los diodos led existen otros diodos con diferente
emisión, como la infrarroja, y que responden a la denominación
IRED (Diodo emisor de infra-rojos).
Símbolo del diodo LED
Introducción
CARACTERÍSTICAS DEL DIODO LED
Dimensiones y color del diodo
Actualmente los LED tienen diferentes tamaños, formas y colores. Tenemos LED redondos, cuadrados,
rectangulares, triangulares y con diversas formas.
Los colores básicos son rojo, verde y azul, aunque podemos encontrarlos naranjas, amarillos incluso hay un Led
de luz blanca. Las dimensiones en los LED redondos son 3mm, 5mm, 10mm y uno gigante de 20mm
Ángulo de vista
Esta característica es importante, pues de ella depende el modo de observación del Led, es decir, el empleo
práctico de aparato realizado.
Luminosidad
La intensidad luminosa en el eje y el brillo están intensamente relacionados. Tanto si el Led es puntual o difusor,
el brillo es proporcional a la superficie de emisión. Si el Led es puntual, el punto será más brillante, al ser una
superficie demasiado pequeña. En uno difusor la intensidad en el eje es superior al modelo puntual.
Consumo
El consumo depende mucho del tipo de LED que elijamos.
CARACTERÍSTICAS DEL DIODO LED
DIODO SCHOTTKY
El diodo Schottky o diodo de barrera Schottky, llamado así en
honor del físico alemán Walter H. Schottky, es un dispositivo
semiconductor que proporciona conmutaciones muy rápidas entre
los estados de conducción directa e inversa (menos de 1ns en
dispositivos pequeños de 5 mm de diámetro) y muy bajas
tensiones umbral (también conocidas como tensiones de codo,
aunque en inglés se refieren a ella como "knee", o sea, de
rodilla). La tensión de codo es la diferencia de potencial mínima
necesaria para que el diodo actúe como conductor en lugar de
circuito abierto; esto, claro, dejando de lado la región Zener, que
es cuando más bien existe una diferencia de potencial lo
suficientemente negativa para que a pesar de estar polarizado en
contra del flujo de corriente- éste opere de igual forma como lo
haría regularmente.
CARACTERÍSTICAS DEL DIODO SCHOTTKY
La alta velocidad de conmutación permite rectificar señales de muy altas
frecuencias y eliminar excesos de corriente en circuitos de alta intensidad. A
diferencia de los diodos convencionales de silicio, que tienen una tensión
umbral —valor de la tensión en directa a partir de la cual el diodo conduce—
de0,7 V, los diodos Schottky tienen una tensión umbral de aproximadamente
0,2V a 0,4 V empleándose, por ejemplo, como protección de descarga de
células solares con baterías de plomo ácido.
La limitación más evidente del diodo de Schottky es la dificultad de conseguir
resistencias inversas relativamente elevadas cuando se trabaja con altos
voltajes inversos pero el diodo Schottky encuentra una gran variedad de
aplicaciones en circuitos de alta velocidad para computadoras donde se
necesiten grandes velocidades de conmutación y mediante su poca caída de
voltaje en directo permite poco gasto de energía.
DIODO TÚNEL
El Diodo túnel es un diodo semiconductor que tiene una unión pn,
en la cual se produce el efecto túnel que da origen a una
conductancia diferencial negativa en un cierto intervalo de la
característica corriente-tensión.
La presencia del tramo de resistencia negativa permite su
utilización como componente activo (amplificador/oscilador).
También se conocen como diodos Esaki, en honor del hombre que
descubrió que una fuerte contaminación con impurezas podía
causar un efecto de tunelización de los portadores de carga a lo
largo de la zona de agotamiento en la unión. Una característica
importante del diodo túnel es su resistencia negativa en un
determinado intervalo de voltajes de polarización directa. Cuando
la resistencia es negativa, la corriente disminuye al aumentar el
voltaje. En consecuencia, el diodo túnel puede funcionar como
amplificador, como oscilador o como biestable. Esencialmente,
este diodo es un dispositivo de baja potencia para aplicaciones
que involucran microondas y que están relativamente libres de los
efectos de la radiación.
Introducción
CURVA CARACTERÍSTICAS DEL DIODO TÚNEL
 Cuando se aplica una pequeña tensión, el diodo tunnel empieza a
conducir (la corriente empieza a fluir).
 Si se sigue aumentando esta tensión la corriente aumentará hasta llegar
un punto después del cual la corriente disminuye.
 La corriente continuará disminuyendo hasta llegar al punto mínimo de un
"valle" y después volverá a incrementarse. En esta ocasión la corriente
continuará aumentando conforme aumenta la tensión.
Este comportamiento de la corriente en función de la tensión en el diodo tunnel se puede ver en el siguiente
gráfico.
• Vv: Tensión de valle
• Vp: Tensión pico
• Ip: Corriente pico
• Iv: Corriente de valle
La región en el gráfico en que la corriente disminuye cuando la tensión aumenta (entre Vp yVv) se llama "zona de
resistencia negativa "Los diodos tunnel tienen la cualidad de pasar entre los niveles de corriente Ip e Iv muy
rápidamente, cambiando de estado de conducción al de no conducción incluso más rápido que los diodos
Schottky.
DIODO VARICAP
Diodo de capacidad variable, esto es el diodo varicap, también llamado Varactor. Este
diodo forma una capacidad en los extremos de la union PN, que resulta de utilidad, cuando
se busca utilizar esa capacidad en provecho del circuito en el cual debe de funcionar el
diodo.
Cuando polarizamos un varicap de forma directa, observamos que además de las zonas
constitutivas de la capacidad que buscamos, en paralelo con ellas aparece una resistencia
de muy bajo valor óhmico, conformando con esto un capacitor de pérdidas muy elevadas.
En cambio si lo polarizamos en sentido inverso, la resistencia en paralelo mencionada, es
de un valor relativamente alto, dando como resultado que el diodo se comporte como un
capacitor de pérdidas bajas.
Introducción
CARACTERÍSTICAS, RELACIÓN TENSIÓN-CAPACITANCIA
Los diodos varactores o varicap han sido diseñados de manera que su
funcionamiento sea similar al de un capacitador y tengan una característica
capacitancia - tensión dentro de límites razonables.
En el gráfico a la derecha se muestran las similitudes entre un diodo y un
capacitor.
Debido a la recombinación de los portadores en el diodo, una zona de
agotamiento se forma en la juntura.
Esta zona de agotamiento actúa como un dieléctrico (aislante), ya que no hay
ninguna carga y flujo de corriente
Las áreas exteriores a la zona de agotamiento si tienen portadores de carga (área semiconductor). Se puede
visualizar sin dificultad la formación de un capacitor en el diodo (dos materiales semiconductores deparados por
un aislante).
La amplitud de la zona de agotamiento se puede ampliar incrementando la tensión inversa aplicada al diodo con
una fuente externa. Esto causa que se aumente la separación (aislante) y separa más las áreas
semiconductoras. Este último disminuye la capacitancia.
Entonces la capacitancia es función de la tensión aplicada al diodo.
 Si la tensión aplicada al diodo aumenta la capacitancia disminuye
 Si la tensión disminuye la capacitancia aumenta
REFERENCIAS
http://es.wikipedia.org/wiki/Diodo
http://www.electronica2000.com/temas/diodostipos.htm
http://www.unicrom.com/tut_como_probar_diodo_transistor.asp
http://www.uma.es/investigadores/grupos/electronica_potencia/index.php

Más contenido relacionado

La actualidad más candente

Programación 3: árboles de búsqueda equilibrados
Programación 3: árboles de búsqueda equilibradosProgramación 3: árboles de búsqueda equilibrados
Programación 3: árboles de búsqueda equilibrados
Angel Vázquez Patiño
 
Ordenamientos burbuja e inserción
Ordenamientos burbuja e inserciónOrdenamientos burbuja e inserción
Ordenamientos burbuja e inserción
Alvaro Enrique Ruano
 
Emilio superconductores
Emilio superconductoresEmilio superconductores
Emilio superconductores
Emilio Rodríguez Rangel
 
Circuitos rectificadores
Circuitos rectificadoresCircuitos rectificadores
Circuitos rectificadores
ketoc
 
RELOJ DIGITAL TTL 24 horas
RELOJ DIGITAL TTL 24 horas RELOJ DIGITAL TTL 24 horas
RELOJ DIGITAL TTL 24 horas
Miguel Leonardo Sánchez Fajardo
 
Arboles binarios
Arboles binariosArboles binarios
Arboles binarios
Julises Garín Catalán
 
Unidad 4 matematicas aplic a las comunic
Unidad 4 matematicas aplic a las comunicUnidad 4 matematicas aplic a las comunic
Unidad 4 matematicas aplic a las comunic
Domingo de la Cerda
 
Gráficas en Matlab
Gráficas en MatlabGráficas en Matlab
Gráficas en Matlab
Franck Campos
 
Quicksort
QuicksortQuicksort
Quicksort
José Pino
 
Listas enlazadas
Listas enlazadasListas enlazadas
Listas enlazadas
Eliezer Cordova
 
Ejercicios Resueltos Series de Forurier
Ejercicios Resueltos Series de ForurierEjercicios Resueltos Series de Forurier
Ejercicios Resueltos Series de Forurier
Santiago Salinas Lopez
 
Shell exposición
Shell exposiciónShell exposición
Shell exposición
Fercho Junca
 
Listas Enlazadas
Listas EnlazadasListas Enlazadas
Listas Enlazadas
Vane Borjas
 
Integración de funciones cuadráticas
Integración de funciones cuadráticasIntegración de funciones cuadráticas
Integración de funciones cuadráticasmarlencorralxingu
 
Lab 03 - Análisis de Señales - UNTECS
Lab 03 - Análisis de Señales - UNTECSLab 03 - Análisis de Señales - UNTECS
Lab 03 - Análisis de Señales - UNTECS
Ing. Electrónica xD
 
GRAFCET [Autoguardado].pptx
GRAFCET [Autoguardado].pptxGRAFCET [Autoguardado].pptx
GRAFCET [Autoguardado].pptx
Alfredo Hernandez Fernandez
 
Poo y visual
Poo y visualPoo y visual
Teoría del semiconductor
Teoría del semiconductorTeoría del semiconductor
Teoría del semiconductor
arnol2000
 
El Chipset - Ensayo
El Chipset - Ensayo El Chipset - Ensayo
El Chipset - Ensayo
Marcos Omar Cruz Ortrega
 
Estructuras dinámicas
Estructuras dinámicasEstructuras dinámicas
Estructuras dinámicas
PatriciaU
 

La actualidad más candente (20)

Programación 3: árboles de búsqueda equilibrados
Programación 3: árboles de búsqueda equilibradosProgramación 3: árboles de búsqueda equilibrados
Programación 3: árboles de búsqueda equilibrados
 
Ordenamientos burbuja e inserción
Ordenamientos burbuja e inserciónOrdenamientos burbuja e inserción
Ordenamientos burbuja e inserción
 
Emilio superconductores
Emilio superconductoresEmilio superconductores
Emilio superconductores
 
Circuitos rectificadores
Circuitos rectificadoresCircuitos rectificadores
Circuitos rectificadores
 
RELOJ DIGITAL TTL 24 horas
RELOJ DIGITAL TTL 24 horas RELOJ DIGITAL TTL 24 horas
RELOJ DIGITAL TTL 24 horas
 
Arboles binarios
Arboles binariosArboles binarios
Arboles binarios
 
Unidad 4 matematicas aplic a las comunic
Unidad 4 matematicas aplic a las comunicUnidad 4 matematicas aplic a las comunic
Unidad 4 matematicas aplic a las comunic
 
Gráficas en Matlab
Gráficas en MatlabGráficas en Matlab
Gráficas en Matlab
 
Quicksort
QuicksortQuicksort
Quicksort
 
Listas enlazadas
Listas enlazadasListas enlazadas
Listas enlazadas
 
Ejercicios Resueltos Series de Forurier
Ejercicios Resueltos Series de ForurierEjercicios Resueltos Series de Forurier
Ejercicios Resueltos Series de Forurier
 
Shell exposición
Shell exposiciónShell exposición
Shell exposición
 
Listas Enlazadas
Listas EnlazadasListas Enlazadas
Listas Enlazadas
 
Integración de funciones cuadráticas
Integración de funciones cuadráticasIntegración de funciones cuadráticas
Integración de funciones cuadráticas
 
Lab 03 - Análisis de Señales - UNTECS
Lab 03 - Análisis de Señales - UNTECSLab 03 - Análisis de Señales - UNTECS
Lab 03 - Análisis de Señales - UNTECS
 
GRAFCET [Autoguardado].pptx
GRAFCET [Autoguardado].pptxGRAFCET [Autoguardado].pptx
GRAFCET [Autoguardado].pptx
 
Poo y visual
Poo y visualPoo y visual
Poo y visual
 
Teoría del semiconductor
Teoría del semiconductorTeoría del semiconductor
Teoría del semiconductor
 
El Chipset - Ensayo
El Chipset - Ensayo El Chipset - Ensayo
El Chipset - Ensayo
 
Estructuras dinámicas
Estructuras dinámicasEstructuras dinámicas
Estructuras dinámicas
 

Destacado

Sistema analógico y sistema digital
Sistema analógico y sistema digitalSistema analógico y sistema digital
Sistema analógico y sistema digital
Adrian Espinosa
 
Fisica de semiconductores
Fisica de semiconductoresFisica de semiconductores
Fisica de semiconductores
Adrian Espinosa
 
Diodos
DiodosDiodos
Historia del modelo osi
Historia del modelo osiHistoria del modelo osi
Historia del modelo osi
katherinrestrepo
 
Tipos de diodos
Tipos de diodosTipos de diodos
Tipos de diodos
Alexis Egoavil
 
COMO MEDIR UN DIODO RECTIFICADOR
COMO MEDIR UN DIODO RECTIFICADORCOMO MEDIR UN DIODO RECTIFICADOR
COMO MEDIR UN DIODO RECTIFICADOR
Alexander Hernandez
 

Destacado (6)

Sistema analógico y sistema digital
Sistema analógico y sistema digitalSistema analógico y sistema digital
Sistema analógico y sistema digital
 
Fisica de semiconductores
Fisica de semiconductoresFisica de semiconductores
Fisica de semiconductores
 
Diodos
DiodosDiodos
Diodos
 
Historia del modelo osi
Historia del modelo osiHistoria del modelo osi
Historia del modelo osi
 
Tipos de diodos
Tipos de diodosTipos de diodos
Tipos de diodos
 
COMO MEDIR UN DIODO RECTIFICADOR
COMO MEDIR UN DIODO RECTIFICADORCOMO MEDIR UN DIODO RECTIFICADOR
COMO MEDIR UN DIODO RECTIFICADOR
 

Similar a Diodos 5 diferentes

Diodos tarea hecho
Diodos   tarea hechoDiodos   tarea hecho
Diodos tarea hecho
noe quispe
 
Diodos
DiodosDiodos
Diodos
DiodosDiodos
Diodos
Roberto Ca
 
Diodos
DiodosDiodos
Diodos
Roberto Ca
 
Diodos
DiodosDiodos
Diodos
DiodosDiodos
Diodos
senvec
 
Diodos
DiodosDiodos
Diodo
DiodoDiodo
Diodo
DiodoDiodo
Diodos publicarrrrrrrrrrrr
Diodos  publicarrrrrrrrrrrrDiodos  publicarrrrrrrrrrrr
Diodos publicarrrrrrrrrrrr
Noe Quispe Gordillo
 
Diodos
DiodosDiodos
Diodos
Jorge Calero
 
Diodos
DiodosDiodos
Diodos
DiodosDiodos
Diodos
DiodosDiodos
Diodos
IDAT
 
Diodo
DiodoDiodo
Diodos pedro velasquez
Diodos  pedro velasquezDiodos  pedro velasquez
Diodos pedro velasquez
Pedro Victor Velasquez Hurtado
 
Diodos
DiodosDiodos
Diodos
Richie LD
 
Diodos
DiodosDiodos
Diodos
DiodosDiodos
Diodos
rrun07
 
Diodos
DiodosDiodos

Similar a Diodos 5 diferentes (20)

Diodos tarea hecho
Diodos   tarea hechoDiodos   tarea hecho
Diodos tarea hecho
 
Diodos
DiodosDiodos
Diodos
 
Diodos
DiodosDiodos
Diodos
 
Diodos
DiodosDiodos
Diodos
 
Diodos
DiodosDiodos
Diodos
 
Diodos
DiodosDiodos
Diodos
 
Diodos
DiodosDiodos
Diodos
 
Diodo
DiodoDiodo
Diodo
 
Diodo
DiodoDiodo
Diodo
 
Diodos publicarrrrrrrrrrrr
Diodos  publicarrrrrrrrrrrrDiodos  publicarrrrrrrrrrrr
Diodos publicarrrrrrrrrrrr
 
Diodos
DiodosDiodos
Diodos
 
Diodos
DiodosDiodos
Diodos
 
Diodos
DiodosDiodos
Diodos
 
Diodos
DiodosDiodos
Diodos
 
Diodo
DiodoDiodo
Diodo
 
Diodos pedro velasquez
Diodos  pedro velasquezDiodos  pedro velasquez
Diodos pedro velasquez
 
Diodos
DiodosDiodos
Diodos
 
Diodos
DiodosDiodos
Diodos
 
Diodos
DiodosDiodos
Diodos
 
Diodos
DiodosDiodos
Diodos
 

Último

Dosificación de los aprendizajes U4_Me gustan los animales_Parvulos 1_2_3.pdf
Dosificación de los aprendizajes U4_Me gustan los animales_Parvulos 1_2_3.pdfDosificación de los aprendizajes U4_Me gustan los animales_Parvulos 1_2_3.pdf
Dosificación de los aprendizajes U4_Me gustan los animales_Parvulos 1_2_3.pdf
KarenRuano6
 
Evaluacion del tercer trimestre del 2023-2024
Evaluacion del tercer trimestre del 2023-2024Evaluacion del tercer trimestre del 2023-2024
Evaluacion del tercer trimestre del 2023-2024
israelsouza67
 
Elites municipales y propiedades rurales: algunos ejemplos en territorio vascón
Elites municipales y propiedades rurales: algunos ejemplos en territorio vascónElites municipales y propiedades rurales: algunos ejemplos en territorio vascón
Elites municipales y propiedades rurales: algunos ejemplos en territorio vascón
Javier Andreu
 
Mauricio-Presentación-Vacacional- 2024-1
Mauricio-Presentación-Vacacional- 2024-1Mauricio-Presentación-Vacacional- 2024-1
Mauricio-Presentación-Vacacional- 2024-1
MauricioSnchez83
 
Examen de Lengua Castellana y Literatura de la EBAU en Castilla-La Mancha 2024.
Examen de Lengua Castellana y Literatura de la EBAU en Castilla-La Mancha 2024.Examen de Lengua Castellana y Literatura de la EBAU en Castilla-La Mancha 2024.
Examen de Lengua Castellana y Literatura de la EBAU en Castilla-La Mancha 2024.
20minutos
 
6° GRADO UNIDAD DE APRENDIZAJE 3 JUNIO.docx
6° GRADO UNIDAD DE APRENDIZAJE 3 JUNIO.docx6° GRADO UNIDAD DE APRENDIZAJE 3 JUNIO.docx
6° GRADO UNIDAD DE APRENDIZAJE 3 JUNIO.docx
DanielaBurgosnazario
 
Horarios y fechas de la PAU 2024 en la Comunidad Valenciana.
Horarios y fechas de la PAU 2024 en la Comunidad Valenciana.Horarios y fechas de la PAU 2024 en la Comunidad Valenciana.
Horarios y fechas de la PAU 2024 en la Comunidad Valenciana.
20minutos
 
El ensayo mexicano en el siglo XX LITERATURA
El ensayo mexicano en el siglo XX LITERATURAEl ensayo mexicano en el siglo XX LITERATURA
El ensayo mexicano en el siglo XX LITERATURA
Armando920824
 
Presidencias radicales (1916 – 1930) (1) (1).pdf
Presidencias radicales (1916 – 1930) (1) (1).pdfPresidencias radicales (1916 – 1930) (1) (1).pdf
Presidencias radicales (1916 – 1930) (1) (1).pdf
MARIANA110300
 
665033394-TODAS-LAS-SANGRES-resumen-Por-Capitulos.pdf
665033394-TODAS-LAS-SANGRES-resumen-Por-Capitulos.pdf665033394-TODAS-LAS-SANGRES-resumen-Por-Capitulos.pdf
665033394-TODAS-LAS-SANGRES-resumen-Por-Capitulos.pdf
valerytorresmendizab
 
pueblos originarios de chile presentacion twinkl.pptx
pueblos originarios de chile presentacion twinkl.pptxpueblos originarios de chile presentacion twinkl.pptx
pueblos originarios de chile presentacion twinkl.pptx
RAMIREZNICOLE
 
el pensamiento critico de paulo freire en basica .pdf
el pensamiento critico de paulo freire en basica .pdfel pensamiento critico de paulo freire en basica .pdf
el pensamiento critico de paulo freire en basica .pdf
almitamtz00
 
LA PEDAGOGIA AUTOGESTONARIA EN EL PROCESO DE ENSEÑANZA APRENDIZAJE
LA PEDAGOGIA AUTOGESTONARIA EN EL PROCESO DE ENSEÑANZA APRENDIZAJELA PEDAGOGIA AUTOGESTONARIA EN EL PROCESO DE ENSEÑANZA APRENDIZAJE
LA PEDAGOGIA AUTOGESTONARIA EN EL PROCESO DE ENSEÑANZA APRENDIZAJE
jecgjv
 
FEEDBACK DE LA ESTRUCTURA CURRICULAR- 2024.pdf
FEEDBACK DE LA ESTRUCTURA CURRICULAR- 2024.pdfFEEDBACK DE LA ESTRUCTURA CURRICULAR- 2024.pdf
FEEDBACK DE LA ESTRUCTURA CURRICULAR- 2024.pdf
Jose Luis Jimenez Rodriguez
 
CONTENIDOS Y PDA DE LA FASE 3,4 Y 5 EN NIVEL PRIMARIA
CONTENIDOS Y PDA DE LA FASE 3,4 Y 5 EN NIVEL PRIMARIACONTENIDOS Y PDA DE LA FASE 3,4 Y 5 EN NIVEL PRIMARIA
CONTENIDOS Y PDA DE LA FASE 3,4 Y 5 EN NIVEL PRIMARIA
ginnazamudio
 
El Cerebro se Cambia a si Mismo-Norman Doidge.pdf
El Cerebro se Cambia a si Mismo-Norman Doidge.pdfEl Cerebro se Cambia a si Mismo-Norman Doidge.pdf
El Cerebro se Cambia a si Mismo-Norman Doidge.pdf
Robert Zuñiga Vargas
 
recursos naturales en chile quinto básico .pptx
recursos naturales en chile quinto básico .pptxrecursos naturales en chile quinto básico .pptx
recursos naturales en chile quinto básico .pptx
Waleska Chaparro
 
Planificación Ejemplo con la metodología TPACK
Planificación Ejemplo con la metodología  TPACKPlanificación Ejemplo con la metodología  TPACK
Planificación Ejemplo con la metodología TPACK
ssusera6697f
 
UNA VISITA A SAN PEDRO EN EL VATICANO.pdf
UNA VISITA A SAN PEDRO EN EL VATICANO.pdfUNA VISITA A SAN PEDRO EN EL VATICANO.pdf
UNA VISITA A SAN PEDRO EN EL VATICANO.pdf
Joan Ribes Gallén
 
teorema de pitagorasparalaeducacion.pptx
teorema de pitagorasparalaeducacion.pptxteorema de pitagorasparalaeducacion.pptx
teorema de pitagorasparalaeducacion.pptx
ElzebirQuiroga
 

Último (20)

Dosificación de los aprendizajes U4_Me gustan los animales_Parvulos 1_2_3.pdf
Dosificación de los aprendizajes U4_Me gustan los animales_Parvulos 1_2_3.pdfDosificación de los aprendizajes U4_Me gustan los animales_Parvulos 1_2_3.pdf
Dosificación de los aprendizajes U4_Me gustan los animales_Parvulos 1_2_3.pdf
 
Evaluacion del tercer trimestre del 2023-2024
Evaluacion del tercer trimestre del 2023-2024Evaluacion del tercer trimestre del 2023-2024
Evaluacion del tercer trimestre del 2023-2024
 
Elites municipales y propiedades rurales: algunos ejemplos en territorio vascón
Elites municipales y propiedades rurales: algunos ejemplos en territorio vascónElites municipales y propiedades rurales: algunos ejemplos en territorio vascón
Elites municipales y propiedades rurales: algunos ejemplos en territorio vascón
 
Mauricio-Presentación-Vacacional- 2024-1
Mauricio-Presentación-Vacacional- 2024-1Mauricio-Presentación-Vacacional- 2024-1
Mauricio-Presentación-Vacacional- 2024-1
 
Examen de Lengua Castellana y Literatura de la EBAU en Castilla-La Mancha 2024.
Examen de Lengua Castellana y Literatura de la EBAU en Castilla-La Mancha 2024.Examen de Lengua Castellana y Literatura de la EBAU en Castilla-La Mancha 2024.
Examen de Lengua Castellana y Literatura de la EBAU en Castilla-La Mancha 2024.
 
6° GRADO UNIDAD DE APRENDIZAJE 3 JUNIO.docx
6° GRADO UNIDAD DE APRENDIZAJE 3 JUNIO.docx6° GRADO UNIDAD DE APRENDIZAJE 3 JUNIO.docx
6° GRADO UNIDAD DE APRENDIZAJE 3 JUNIO.docx
 
Horarios y fechas de la PAU 2024 en la Comunidad Valenciana.
Horarios y fechas de la PAU 2024 en la Comunidad Valenciana.Horarios y fechas de la PAU 2024 en la Comunidad Valenciana.
Horarios y fechas de la PAU 2024 en la Comunidad Valenciana.
 
El ensayo mexicano en el siglo XX LITERATURA
El ensayo mexicano en el siglo XX LITERATURAEl ensayo mexicano en el siglo XX LITERATURA
El ensayo mexicano en el siglo XX LITERATURA
 
Presidencias radicales (1916 – 1930) (1) (1).pdf
Presidencias radicales (1916 – 1930) (1) (1).pdfPresidencias radicales (1916 – 1930) (1) (1).pdf
Presidencias radicales (1916 – 1930) (1) (1).pdf
 
665033394-TODAS-LAS-SANGRES-resumen-Por-Capitulos.pdf
665033394-TODAS-LAS-SANGRES-resumen-Por-Capitulos.pdf665033394-TODAS-LAS-SANGRES-resumen-Por-Capitulos.pdf
665033394-TODAS-LAS-SANGRES-resumen-Por-Capitulos.pdf
 
pueblos originarios de chile presentacion twinkl.pptx
pueblos originarios de chile presentacion twinkl.pptxpueblos originarios de chile presentacion twinkl.pptx
pueblos originarios de chile presentacion twinkl.pptx
 
el pensamiento critico de paulo freire en basica .pdf
el pensamiento critico de paulo freire en basica .pdfel pensamiento critico de paulo freire en basica .pdf
el pensamiento critico de paulo freire en basica .pdf
 
LA PEDAGOGIA AUTOGESTONARIA EN EL PROCESO DE ENSEÑANZA APRENDIZAJE
LA PEDAGOGIA AUTOGESTONARIA EN EL PROCESO DE ENSEÑANZA APRENDIZAJELA PEDAGOGIA AUTOGESTONARIA EN EL PROCESO DE ENSEÑANZA APRENDIZAJE
LA PEDAGOGIA AUTOGESTONARIA EN EL PROCESO DE ENSEÑANZA APRENDIZAJE
 
FEEDBACK DE LA ESTRUCTURA CURRICULAR- 2024.pdf
FEEDBACK DE LA ESTRUCTURA CURRICULAR- 2024.pdfFEEDBACK DE LA ESTRUCTURA CURRICULAR- 2024.pdf
FEEDBACK DE LA ESTRUCTURA CURRICULAR- 2024.pdf
 
CONTENIDOS Y PDA DE LA FASE 3,4 Y 5 EN NIVEL PRIMARIA
CONTENIDOS Y PDA DE LA FASE 3,4 Y 5 EN NIVEL PRIMARIACONTENIDOS Y PDA DE LA FASE 3,4 Y 5 EN NIVEL PRIMARIA
CONTENIDOS Y PDA DE LA FASE 3,4 Y 5 EN NIVEL PRIMARIA
 
El Cerebro se Cambia a si Mismo-Norman Doidge.pdf
El Cerebro se Cambia a si Mismo-Norman Doidge.pdfEl Cerebro se Cambia a si Mismo-Norman Doidge.pdf
El Cerebro se Cambia a si Mismo-Norman Doidge.pdf
 
recursos naturales en chile quinto básico .pptx
recursos naturales en chile quinto básico .pptxrecursos naturales en chile quinto básico .pptx
recursos naturales en chile quinto básico .pptx
 
Planificación Ejemplo con la metodología TPACK
Planificación Ejemplo con la metodología  TPACKPlanificación Ejemplo con la metodología  TPACK
Planificación Ejemplo con la metodología TPACK
 
UNA VISITA A SAN PEDRO EN EL VATICANO.pdf
UNA VISITA A SAN PEDRO EN EL VATICANO.pdfUNA VISITA A SAN PEDRO EN EL VATICANO.pdf
UNA VISITA A SAN PEDRO EN EL VATICANO.pdf
 
teorema de pitagorasparalaeducacion.pptx
teorema de pitagorasparalaeducacion.pptxteorema de pitagorasparalaeducacion.pptx
teorema de pitagorasparalaeducacion.pptx
 

Diodos 5 diferentes

  • 1. DIODOS C A R A C T E R Í S T I C A S D E D I O D O S P R I N C I P A L E S N O M B R E : J E S U S F L O R E S B R I C E Ñ O
  • 2. EL DIODO Un diodo es un componente electrónico de dos terminales que permite la circulación de la corriente eléctrica a través de él en un sentido. Este término generalmente se usa para referirse al diodo semiconductor, el más común en la actualidad; consta de una pieza de cristal semiconductor conectada a dos terminales eléctricos. El diodo de vacío (que actualmente ya no se usa, excepto para tecnologías de alta potencia) es un tubo de vacío con dos electrodos: una lámina como ánodo, y un cátodo. De forma simplificada, la curva característica de un diodo (I-V) consta de dos regiones: por debajo de cierta diferencia de potencial, se comporta como un circuito abierto (no conduce), y por encima de ella como un circuito cerrado con una resistencia eléctrica muy pequeña. Debido a este comportamiento, se les suele denominar rectificadores, ya que son dispositivos capaces de suprimir la parte negativa de cualquier señal, como paso inicial para convertir una corriente alterna en corriente continua. Su principio de funcionamiento está basado en los experimentos de Lee De Forest
  • 3. DIODO ZENER Introducción Hemos visto que un diodo semiconductor normal puede estar polarizado tanto en directa como inversamente.  En directa se comporta como una pequeña resistencia.  En inversa se comporta como una gran resistencia. Veremos ahora un diodo de especiales características que recibe el nombre de diodo zener El diodo zener trabaja exclusivamente en la zona de característica inversa y, en particular, en la zona del punto de ruptura de su característica inversa. Esta tensión de ruptura depende de las características de construcción del diodo, se fabrican desde 2 a 200 voltios. Polarizado en directa actúa como un diodo normal y por tanto no se utiliza en dicho estado.
  • 4. CURVA CARACTERÍSTICA DE DIODO ZENER Tres son las características que diferencian a los diversos diodos Zener entre si:  Tensiones de polarización inversa. conocida como tensión zener, Es la tensión que el zener va a mantener constante.  Corriente mínima de funcionamiento. Si la corriente a través del zener es menor, no hay seguridad en que el Zener mantenga constante la tensión en sus bornas.  Potencia máxima de disipación. Puesto que la tensión es constante, nos indica el máximo valor de la corriente que puede soportar el Zener. Por tanto el Zener es un diodo que al polarizarlo inversamente mantiene constante la tensión en sus bornas a un valor llamado tensión de Zener, pudiendo variar la corriente que lo atraviesa entre el margen de valores comprendidos entre el valor mínimo de funcionamiento y el correspondiente a la potencia de zener máxima que puede disipar. Si superamos el valor de esta corriente el zener se destruye.
  • 5. CARACTERÍSTICAS TÉCNICAS El diodo zener viene caracterizado por: 1. Tensión Zener Vz. 2. Rango de tolerancia de Vz. (Tolerancia: C: ±5%) 3. Máxima corriente Zener en polarización inversa Iz. 4. Máxima potencia disipada. 5. Máxima temperatura de operación del zener. Ficha técnica de un tipo de diodo zener desarrollada por la corporación privada Bourns, Inc.
  • 6. DIODO RECTIFICADOR Un diodo rectificador es uno de los dispositivos de la familia de los diodos más sencillos. El nombre diodo rectificador” procede de su aplicación, la cual consiste en separar los ciclos positivos de una señal de corriente alterna. Si se aplica al diodo una tensión de corriente alterna durante los medios ciclos positivos, se polariza en forma directa; de esta manera, permite el paso de la corriente eléctrica. Pero durante los medios ciclos negativos, el diodo se polariza de manera inversa; con ello, evita el paso de la corriente en tal sentido. Introducción Durante la fabricación de los diodos rectificadores, se consideran tres factores: la frecuencia máxima en que realizan correctamente su función, la corriente máxima en que pueden conducir en sentido directo y las tensiones directa e inversa máximas que soportarán. Una de las aplicaciones clásicas de los diodos rectificadores, es en las fuentes de alimentación; aquí, convierten una señal de corriente alterna en otra de corriente directa. Símbolo del diodo rectificador
  • 7. CARACTERÍSTICAS DEL DIODO RECTIFICADOR  Tensión inversa de ruptura: la tensión inversa de ruptura es la máxima tensión en sentido inverso que puede soportar un diodo sin entrar en conducción; esta tensión para un diodo rectificador es destructiva, por ello cuando se diseña un circuito siempre se utiliza un factor de seguridad que no está determinado, sino que depende del diseñador, así por ejemplo, si la hoja de características de un diodo expresa un valor para la tensión inversa de ruptura de 80 V, un diseñador muy conservador puede utilizar un factor de seguridad de 2. El diodo no soportará, en ningún caso, tensiones inversas superiores a 40 V.  Corriente máxima de polarización directa: es el valor medio de corriente para el cual el diodo se quema debido a una excesiva disipación de potencia. Este valor nunca se debe alcanzar, por ello, al igual que en el caso de la tensión inversa de ruptura se utiliza en diseño un factor de seguridad que suele ser 2. Este valor está expresado en la hoja de características del diodo referido a alimentación monofásica, carga resistiva, 50 o 60 Hz y a 75 ºC de temperatura.  Caída de tensión con polarización directa: esta medida se realiza con una señal alterna y se obtiene la caída de tensión con polarización directa, para un valor determinado de corriente y una temperatura de 25 ºC.  Corriente inversa máxima: es la corriente con polarización inversa para una tensión continua determinada que viene indicada en la hoja de características del diodo. El valor de la corriente inversa se da para diferentes temperatura.
  • 8. CARACTERÍSTICAS TÉCNICAS Ficha técnica de un tipo de diodo rectificador de alta tension desarrollada por la corporación privada Bourns, Inc.
  • 9. DIODO LED Este tipo de diodos es muy popular, sino, veamos cualquier equipo electrónico y veremos por lo menos 1 ó más diodos led. Podemos encontrarlos en diferentes formas, tamaños y colores diferentes. La forma de operar de un led se basa en la recombinación de portadores mayoritarios en la capa de barrera cuando se polariza una unión Pn en sentido directo. En cada recombinación de un electrón con un hueco se libera cierta energía. Esta energía, en el caso de determinados semiconductores, se irradia en forma de luz, en otros se hace de forma térmica. Dichas radiaciones son básicamente monocromáticas (sin color). Por un método de "dopado" del material semiconductor se puede afectar la energía de radiación del diodo. El nombre de LED se debe a su abreviatura en ingles ( Light Emmiting Diode ) Además de los diodos led existen otros diodos con diferente emisión, como la infrarroja, y que responden a la denominación IRED (Diodo emisor de infra-rojos). Símbolo del diodo LED Introducción
  • 10. CARACTERÍSTICAS DEL DIODO LED Dimensiones y color del diodo Actualmente los LED tienen diferentes tamaños, formas y colores. Tenemos LED redondos, cuadrados, rectangulares, triangulares y con diversas formas. Los colores básicos son rojo, verde y azul, aunque podemos encontrarlos naranjas, amarillos incluso hay un Led de luz blanca. Las dimensiones en los LED redondos son 3mm, 5mm, 10mm y uno gigante de 20mm Ángulo de vista Esta característica es importante, pues de ella depende el modo de observación del Led, es decir, el empleo práctico de aparato realizado. Luminosidad La intensidad luminosa en el eje y el brillo están intensamente relacionados. Tanto si el Led es puntual o difusor, el brillo es proporcional a la superficie de emisión. Si el Led es puntual, el punto será más brillante, al ser una superficie demasiado pequeña. En uno difusor la intensidad en el eje es superior al modelo puntual. Consumo El consumo depende mucho del tipo de LED que elijamos.
  • 12. DIODO SCHOTTKY El diodo Schottky o diodo de barrera Schottky, llamado así en honor del físico alemán Walter H. Schottky, es un dispositivo semiconductor que proporciona conmutaciones muy rápidas entre los estados de conducción directa e inversa (menos de 1ns en dispositivos pequeños de 5 mm de diámetro) y muy bajas tensiones umbral (también conocidas como tensiones de codo, aunque en inglés se refieren a ella como "knee", o sea, de rodilla). La tensión de codo es la diferencia de potencial mínima necesaria para que el diodo actúe como conductor en lugar de circuito abierto; esto, claro, dejando de lado la región Zener, que es cuando más bien existe una diferencia de potencial lo suficientemente negativa para que a pesar de estar polarizado en contra del flujo de corriente- éste opere de igual forma como lo haría regularmente.
  • 13. CARACTERÍSTICAS DEL DIODO SCHOTTKY La alta velocidad de conmutación permite rectificar señales de muy altas frecuencias y eliminar excesos de corriente en circuitos de alta intensidad. A diferencia de los diodos convencionales de silicio, que tienen una tensión umbral —valor de la tensión en directa a partir de la cual el diodo conduce— de0,7 V, los diodos Schottky tienen una tensión umbral de aproximadamente 0,2V a 0,4 V empleándose, por ejemplo, como protección de descarga de células solares con baterías de plomo ácido. La limitación más evidente del diodo de Schottky es la dificultad de conseguir resistencias inversas relativamente elevadas cuando se trabaja con altos voltajes inversos pero el diodo Schottky encuentra una gran variedad de aplicaciones en circuitos de alta velocidad para computadoras donde se necesiten grandes velocidades de conmutación y mediante su poca caída de voltaje en directo permite poco gasto de energía.
  • 14. DIODO TÚNEL El Diodo túnel es un diodo semiconductor que tiene una unión pn, en la cual se produce el efecto túnel que da origen a una conductancia diferencial negativa en un cierto intervalo de la característica corriente-tensión. La presencia del tramo de resistencia negativa permite su utilización como componente activo (amplificador/oscilador). También se conocen como diodos Esaki, en honor del hombre que descubrió que una fuerte contaminación con impurezas podía causar un efecto de tunelización de los portadores de carga a lo largo de la zona de agotamiento en la unión. Una característica importante del diodo túnel es su resistencia negativa en un determinado intervalo de voltajes de polarización directa. Cuando la resistencia es negativa, la corriente disminuye al aumentar el voltaje. En consecuencia, el diodo túnel puede funcionar como amplificador, como oscilador o como biestable. Esencialmente, este diodo es un dispositivo de baja potencia para aplicaciones que involucran microondas y que están relativamente libres de los efectos de la radiación. Introducción
  • 15. CURVA CARACTERÍSTICAS DEL DIODO TÚNEL  Cuando se aplica una pequeña tensión, el diodo tunnel empieza a conducir (la corriente empieza a fluir).  Si se sigue aumentando esta tensión la corriente aumentará hasta llegar un punto después del cual la corriente disminuye.  La corriente continuará disminuyendo hasta llegar al punto mínimo de un "valle" y después volverá a incrementarse. En esta ocasión la corriente continuará aumentando conforme aumenta la tensión. Este comportamiento de la corriente en función de la tensión en el diodo tunnel se puede ver en el siguiente gráfico. • Vv: Tensión de valle • Vp: Tensión pico • Ip: Corriente pico • Iv: Corriente de valle La región en el gráfico en que la corriente disminuye cuando la tensión aumenta (entre Vp yVv) se llama "zona de resistencia negativa "Los diodos tunnel tienen la cualidad de pasar entre los niveles de corriente Ip e Iv muy rápidamente, cambiando de estado de conducción al de no conducción incluso más rápido que los diodos Schottky.
  • 16. DIODO VARICAP Diodo de capacidad variable, esto es el diodo varicap, también llamado Varactor. Este diodo forma una capacidad en los extremos de la union PN, que resulta de utilidad, cuando se busca utilizar esa capacidad en provecho del circuito en el cual debe de funcionar el diodo. Cuando polarizamos un varicap de forma directa, observamos que además de las zonas constitutivas de la capacidad que buscamos, en paralelo con ellas aparece una resistencia de muy bajo valor óhmico, conformando con esto un capacitor de pérdidas muy elevadas. En cambio si lo polarizamos en sentido inverso, la resistencia en paralelo mencionada, es de un valor relativamente alto, dando como resultado que el diodo se comporte como un capacitor de pérdidas bajas. Introducción
  • 17. CARACTERÍSTICAS, RELACIÓN TENSIÓN-CAPACITANCIA Los diodos varactores o varicap han sido diseñados de manera que su funcionamiento sea similar al de un capacitador y tengan una característica capacitancia - tensión dentro de límites razonables. En el gráfico a la derecha se muestran las similitudes entre un diodo y un capacitor. Debido a la recombinación de los portadores en el diodo, una zona de agotamiento se forma en la juntura. Esta zona de agotamiento actúa como un dieléctrico (aislante), ya que no hay ninguna carga y flujo de corriente Las áreas exteriores a la zona de agotamiento si tienen portadores de carga (área semiconductor). Se puede visualizar sin dificultad la formación de un capacitor en el diodo (dos materiales semiconductores deparados por un aislante). La amplitud de la zona de agotamiento se puede ampliar incrementando la tensión inversa aplicada al diodo con una fuente externa. Esto causa que se aumente la separación (aislante) y separa más las áreas semiconductoras. Este último disminuye la capacitancia. Entonces la capacitancia es función de la tensión aplicada al diodo.  Si la tensión aplicada al diodo aumenta la capacitancia disminuye  Si la tensión disminuye la capacitancia aumenta