SlideShare una empresa de Scribd logo
1 de 16
COMPONENTES
ELECTRÓNICOS BÁSICOS
INTRODUCCION
Def: La electrónica es la ciencia que estudia las variaciones de las magnitudes
de la corriente eléctrica y sus aplicaciones, utilizando para ello la recepción,
tratamiento y transmisión de la información mediante una señal eléctrica.
Def: Una señal eléctrica es una corriente, de mayor o menor duración, con unas
características determinadas. Para conseguir estas modificaciones, se utilizan
componentes específicos, cada uno de los cuales realiza una función concreta.
Las modificaciones que pueden hacerse a una señal eléctrica (corriente) son las
siguientes:
• Amplificación o atenuación: Consiste en aumentar o reducir la intensidad de
• la corriente.
• Rectificación: Consiste en obligar a los electrones a circular en un único sentido,
• es decir, conducir la corriente.
• Filtrado: Consiste en dejar pasar a aquellos electrones que circulen a una
• determinada velocidad.
COMPONENTES ELECTRÓNICOS
COMPONENTES PASIVOS: Están constituidos por materiales o bien
conductores o bien aislantes.
•Resistencias eléctricas.
•Fijas y variables.
•Resistencias dependientes de un parámetro físico.
•Condensadores.
•No polares.
•Electróliticos.
•Bobinas. (El relé)
COMPONENTES ACTIVOS: Están constituidos por materiales
semiconductores, como el Si, Se y Ge (tienen un comportamiento
intermedio entre los conductores y los aislantes, es decir, en condiciones
normales no conducen la electricidad, pero si se les aplica una pequeña
cantidad de corriente eléctrica, entonces se vuelven conductores).
•Diodo.
•Rectificador.
•Led.
•Transistor Bipolar.
•Circuitos Integrados.
RESISTENCIAS ELÉCTRICAS
La función de las resistencias electrónicas es la
de impedir en mayor o menor grado el paso de la
corriente eléctrica, dependiendo esto del tipo de
material con el que hayan sido fabricadas. Su
magnitud se mide en OHMIOS (Ω).
COLOR 1ª CIFRA 2ª CIFRA Multiplicador Tolerancia
Oro --- --- 0.1 5%
Plata --- --- 0.01 10%
Negro 0 0 x1
Marrón 1 1 0 1%
Rojo 2 2 00 2%
Naranja 3 3 000
Sin color 20%
Amarillo 4 4 0000
Verde 5 5 00000
Azul 6 6 000000
Morado 7 7 0000000
Gris 8 8 00000000
Blanco 9 9 000000000
RESISTENCIAS FIJAS:
•Su valor es fijo. Viene definido de fábrica. Poseen un
valor nominal y una tolerancia, que es el error
máximo con el que se fabrica la resistencia.
•Están formadas por una mezcla de materiales, por lo
general carbón y un aglutinante adecuado. Todo ello
se envuelve con una cubierta de material plástico o
cerámico.
•Tienen forma de cilindro, y dos alambres en sus
extremos que hacen de polos (aunque no tienen
polaridad), y tres, cuatro o cinco franjas de colores,
que se corresponden, según un código, al valor de su
resistencia.
•Utilizando la siguiente tabla podemos calcular el
valor de cualquiera. Para ello hay que tener en
cuenta la colocación de las bandas de la resistencia,
situando la más separada de todas a la derecha.
RESISTENCIAS VARIABLES.
A) POTENCIÓMETRO:
La característica principal de un potenciómetro es que el valor de su
resistencia puede ajustarse entre los valores 0 Ω y el máximo especificado
por el fabricante. La modificación del valor se consigue moviendo un
elemento mecánico giratorio o deslizante sobre otro elemento resistivo. Son
potenciómetros muchos de los elementos de mando que incorporan
algunoselectrodomésticos para regular temperatura, volumen, nivel
luminoso,etc.
B) RESISTENCIAS QUE VARÍAN CON UN PARÁMETRO FÍSICO.
B.1. Termistores. Estas resistencias varían su valor según la temperatura
a la que estén sometidas. Pueden ser de dos tipos:
NTC (coeficiente de temperatura negativo): la resistencia disminuye al aumentar la temperatura.
PTC (coeficiente de temperatura positivo): la resistencia aumenta al subir la temperatura.
B.2. Fotoresistencias o LDR. Estas resistencias varían su valor según la cantidad de luz que
incida sobre ellas, disminuyendo la resistencia cuando aumenta la luz.
CONDENSADORES:
Son componentes capaces de almacenar temporalmente cargas
eléctricas y después cederlas. Actúan como “despensas” de energía.
Se usan fundamentalmente en circuitos temporizadores, es decir,
circuitos en los que se hace funcionar algún elemento durante algún
tiempo y luego lo paran, por ejemplo: las luces de una escalera, el
secador de manos de algunos lavabos públicos,…..etc.
Está formado por dos placas metálicas conductoras y paralelas,
llamadas armaduras, separadas entre sí por un material aislante
denominado dieléctrico.
Símbolo
Funcionamiento
PROCESO DE CARGA: si unimos una de las placas al polo positivo de una pila
y la otra al polo negativo, como no existe paso de corriente a través del dieléctrico, en la placa
conectada al polo positivo se producirá una acumulación de cargas positivas (protones), ya que
los electrones se ven atraídos por el polo positivo de la pila. En la placa conectada al polo
negativo, se producirá una acumulación de cargas negativas (electrones) ya que los protones
se ven atraídos por los electrones del polo negativo de la pila .
A medida que las placas van adquiriendo carga aparece entre ellas una diferencia de
potencial. Cuando esta diferencia de potencial entre placas es igual a la de la batería cesa el
transporte de electrones y cada placa queda con la carga Q que haya adquirido hasta ese
momento y deja de circular intensidad, comportándose entonces como un interruptor (ver figura
y esquema eléctrico).
PROCESO DE DESCARGA: en el circuito anterior, cuando el condensador ha sido cargado,
cambiamos el conmutador de la posición (1) a la posición (2). El condensador comienza en ese
momento a descargarse, creando una corriente que hace que se encienda la bombilla B2,
tardando para ello un tiempo determinado (según la carga que haya almacenado).
Constante de tiempo
Los condensadores se caracterizan por una magnitud denominada constante de tiempo,
que se calcula mediante la siguiente expresión:
‫ڂ‬ = R • C
donde :
• ‫=ڂ‬ constante de tiempo (segundos)
• R= resistencia (ohmios)
• C= capacidad (faradios)
NOTA: El tiempo en que el condensador alcanza el mismo potencial que la fuente de
alimentación, es decir, el tiempo total que el condensador tarda en cargarse es cinco
veces la constante de tiempo
NOTA: Cuando pasa la primera constante de tiempo, el condensador se carga con un 63% del
voltaje total de la pila. El resto del voltaje, hasta llegar al 100% lo obtiene en las otras
cuatro constantes de tiempo restantes.
NOTA: El tiempo de carga y descarga no tiene porqué coincidir, todo depende de la resistencia
a través de la cual se cargue o se descargue el condensador
CONDENSADORES:
Capacidad de un condensador
La capacidad de un condensador para almacenar
carga eléctrica depende de la superficie de las
armaduras, la distancia que las separa y la
naturaleza del dieléctrico. Matemáticamente se
calcula mediante la siguiente expresión:
Como el Faradio es una unidad muy grande,
normalmente se usan submúltiplos como el
microfaradio (μF), el nanofaradio (nF) y el
picofaradio (pF), que equivalen a 10-6, 10-9 y 10-12
F respectivamente.
VCQ 
Donde:
Q = Carga (Culombios)
V = ddp (Voltios)
C = Capacidad (Faradios)
Existen muchos tipos de condensadores, en función del
material con el que están fabricados: de papel,
cerámicos, de poliéster, de aluminio, etc. Pero puede
decirse que hay dos tipos de condensadores
básicamente:
a.Condensadores sin polaridad: Sus
polos pueden ser conectados a
cualquier polo de la pila.
b.Condensadores con polaridad o
electrolíticos: Debe tenerse en cuenta
la polaridad para conectarlos. Suelen
tener mayor capacidad.
Tipos de condensadores
BOBINAS: El relé
La bobina es el componente electrónico que menos ha evolucionado. Se emplea en sintonización, filtros etc.
Nosotros vamos a ver sus efectos electromagnéticos, como componente de los relés.
Un operador eléctrico muy útil que se utiliza mucho en
circuitos eléctricos, y que funciona como un
electroimán es un RELÉ.
Un relé está formado por una bobina enrollada sobre un
núcleo de hiero. Cuando la bobina es recorrida por la
corriente, genera un campo magnético a su alrededor
(se comporta como un imán), por lo que atrae una
palanca metálica. Ésta, a su vez, mueve una
pequeña lámina, con la que se puede cerrar un
segundo circuito.
Por tanto en un relé existen dos circuitos:
a) Circuito de excitación, que coincide con los terminales
de la bobina
b) Circuito de conmutación, que coincide con los
terminales del interruptor.
Símbolo
DIODO: FUNCIONAMIENTO
Es uno de los componentes más empleados en los circuitos electrónicos.
Está fabricado con dos materiales semiconductores unidos, uno de tipo N (electronegativo) llamado
ánodo, y otro de tipo P (electropositivo) llamado cátodo.
La función principal de un diodo es la de permitir el paso de la corriente en un solo sentido, es decir,
tiene la función de dirigirla
Los materiales semiconductores más utilizados son el Selenio (Se), el Germanio (Ge) y sobre todo el Silicio
(Si)
Una precaución importante a la hora de montar un diodo LED en un circuito es que la tensión en bornes no
debe sobrepasar los 2 V, por lo que cuando la tensión es superior, se debe poner una resistencia en serie
con el diodo para ajustar dicha tensión.
Además el diodo debe recibir como mínimo una corriente de 0,001 A (1 mA).
Ejm: Queremos conectar un diodo a una pila de 9 V, ¿qué haremos para no fundirlo?
Para calcular el valor de R aplicamos la
ley de Ohm:
V = I · R → R = V / I
R = 7 / 0,001 A
DIODOS: POLARIZACIÓN
Polarización directa: se
produce cuando el polo
positivo de la pila se una al
ánodo y el negativo al
cátodo. En este caso el
diodo se comporta como un
conductor y deja pasar la
corriente eléctrica.
Polarización inversa: se
consigue conectando el polo
negativo de la pila al ánodo
y el positivo al cátodo. En
este caso el diodo se
comporta como un aislante y
no permite el paso de la
corriente.
POLARIZACIÓN
DIRECTA
POLARIZACIÓN
INVERSA
DIODOS: TIPOS
Diodo rectificador
 Permite la rectificación de la corriente
alterna, transformándola en continua.
 Polarizado directamente, conduce a partir de
una tensión entre 0.2 y 0.8 V.
 Su encapsulado puede ser de plástico, de
metal o cerámico, dependiendo de su
potencia.
 El cátodo siempre va marcado de forma que
permite su reconocimiento.
 Se identifica mediante un código
alfanumérico.
Diodo LED (Light Emisor Diode)
 Emite luz al ser polarizado directamente.
 Se emplea para señalización luminosa.
 Se fabrican en varios colores: rojos, verdes,
amarillos, azules, y también infrarrojos.
 Precisa de una tensión mínima para emitir
luz (de 1.5 a 2 voltios). Para conseguirla,
puede intercalarse una resistencia en serie.
 El cátodo se identifica fácilmente
observando el interior de la cápsula (lado
plano) o la longitud de los terminales
(terminal corto).
TRANSISTORES: CONSTITUCIÓN Y TIPOS
•El transistor es un componente de control y regulación de la corriente eléctrica, es decir, permite, impide o regula
el paso de la corriente eléctrica y su intensidad.
•Es el componente más importante de la electrónica. Fue desarrollado por los investigadores Bardeen, Brattain y
Shockley a finales de los años 40, siendo premiados con el Nobel de Física en el año 1956.
•Un transistor se puede considerar como la unión de dos diodos y está formado por la unión de tres cristales
semiconductores combinados, dando lugar a los dos tipos existentes: Transistor PNP y transistor NPN.
El transistor posee tres patillas, que son:
a) Colector: Es el polo, cristal o conexión del transistor que recibe la corriente eléctrica.
b) Base: Es el polo, cristal o conexión del transistor que recibe una pequeña corriente eléctrica con la que regula el
paso de la corriente principal, en mayor o menor intensidad, proporcional a la de control recibida por la base. Para
regular la intensidad de la corriente que recibe la base debe conectarse en serie una resistencia grande.
c) Emisor: Es el polo, cristal o conexión del transistor por el que sale la intensidad de la corriente una vez que lo ha
atravesado (la cantidad de corriente emitida depende de la base)
TRANSISTORES: FUNCIONAMIENTO
El principio de funcionamiento de un transistor depende de la acción coordinada de sus
tres componentes (emisor, base y colector), pudiendo funcionar en tres regímenes
distintos:
VÉASE EL SÍMIL HIDRAULICO (VÁLVULA) DE LA
SIGUIENTE FIGURA Y SU EXPLICACIÓN.
a.En activa: como amplificador, de forma que deje pasar más o menos corriente.
b.En corte: No pasa corriente por él, actuando como un interruptor abierto.
c.En saturación: por él pasa prácticamente toda la corriente que recibe.
•Si no hay presión e B (base) no puede abrir la válvula y el fluido no pasa de E a C (funcionamiento en corte). Es
decir, el transistor se comporta como si fuese un interruptor abierto al impedir que la corriente eléctrica circule
entre E y C.
•Si llega algo de presión a B (base), ésta abrirá más o menos la válvula y dejará pasar más o menos fluido de E a
C (funcionamiento en activa). En este caso, el transistor permitirá un paso de corriente proporcional a la abertura
de la válvula y siempre superior a la corriente que llega a la base. La relación entre ambas corrientes se llama
amplificación o ganancia (G).
•Si llega a B (base) suficiente presión para abrir totalmente la válvula, E se comunica con C y el fluido pasa sin
dificultad (funcionamiento en saturación). En este caso, el transistor se comporta como un interruptor cerrado, ya
que permite el paso o circulación de la corriente eléctrica entre E y C con toda libertad.
CARACTERÍSTICAS DE LOS TRANSISTORES
El transistor permite a partir de una pequeña corriente que circule por su base, provocar una corriente mayor del
colector al emisor, es decir, una de sus misiones es la de actuar como amplificador. Por tanto una de sus
características más importantes es su ganancia, que se calcula mediante la siguiente expresión:
β = IC / IB
Otra característica importante, es que la intensidad que se obtiene en el emisor, es igual a la suma de la
intensidad que entra al colector más la que entra a la base, es decir,
IE = IC + IB
El aspecto real de un transistor es el siguiente:
CIRCUITO INTEGRADO
Actualmente, la tecnología electrónica permite fabricar circuitos de dimensiones microscópicas,
formados por transistores y otros componentes sobre una placa de material semiconductor, obteniendo
así los circuitos integrados.
El tamaño de un transistor depende del calor que deba disipar. Si se consigue que éstos trabajen con
corrientes y tensiones extremadamente pequeñas, podrá ser reducido el tamaño, y podrán conectarse
para formar estos diminutos circuitos.
Los circuitos integrados utilizan pequeños chips de silicio, cada uno de los cuales está
instalado dentro de una funda de plástico conectado a un juego de patillas situado en los laterales de la
funda. En las siguientes figuras se muestra el interior de un circuito integrado, así como sus conexiones y
una nota con la curiosa procedencia del nombre “chip”.
APLICACIONES: Se utilizan circuitos integrados en muchos aparatos
de uso doméstico común: electrodomésticos como lavadoras, frigoríficos,
hornos, microondas, etc., en dispositivos de grabación y reproducción de
imágenes y sonido como video-cámaras, televisores, telefonos móviles
equipos de música, móviles, etc., y como no, en ordenadores.

Más contenido relacionado

La actualidad más candente

El Diodo Semiconductor
El Diodo SemiconductorEl Diodo Semiconductor
El Diodo Semiconductorwebantonio
 
Componentes pasivos
Componentes pasivosComponentes pasivos
Componentes pasivosLUIS MANUEL
 
Electrónica de 3º E. S. O.
Electrónica de 3º E. S. O.Electrónica de 3º E. S. O.
Electrónica de 3º E. S. O.José González
 
Electrónica Analógica
Electrónica AnalógicaElectrónica Analógica
Electrónica Analógicadanniq02
 
Practica 5 electricidad y magnetismo
Practica 5 electricidad y magnetismoPractica 5 electricidad y magnetismo
Practica 5 electricidad y magnetismo20_masambriento
 
Electrónica analógica - Investigación de Conducción en lo Semiconductores; Ti...
Electrónica analógica - Investigación de Conducción en lo Semiconductores; Ti...Electrónica analógica - Investigación de Conducción en lo Semiconductores; Ti...
Electrónica analógica - Investigación de Conducción en lo Semiconductores; Ti...David A. Baxin López
 
Electrónica de 4º E. S. O.
Electrónica de 4º E. S. O.Electrónica de 4º E. S. O.
Electrónica de 4º E. S. O.José González
 
Catálogo de semiconductores
Catálogo de semiconductoresCatálogo de semiconductores
Catálogo de semiconductoresPablo Hernandez
 

La actualidad más candente (13)

Electrónica: Semiconductores
Electrónica: SemiconductoresElectrónica: Semiconductores
Electrónica: Semiconductores
 
El Diodo Semiconductor
El Diodo SemiconductorEl Diodo Semiconductor
El Diodo Semiconductor
 
Electrónica analógica
Electrónica analógicaElectrónica analógica
Electrónica analógica
 
Componentes pasivos
Componentes pasivosComponentes pasivos
Componentes pasivos
 
Electronica
ElectronicaElectronica
Electronica
 
Electrónica de 3º E. S. O.
Electrónica de 3º E. S. O.Electrónica de 3º E. S. O.
Electrónica de 3º E. S. O.
 
Electronica 4ºEso
Electronica 4ºEsoElectronica 4ºEso
Electronica 4ºEso
 
La electrónica
La electrónicaLa electrónica
La electrónica
 
Electrónica Analógica
Electrónica AnalógicaElectrónica Analógica
Electrónica Analógica
 
Practica 5 electricidad y magnetismo
Practica 5 electricidad y magnetismoPractica 5 electricidad y magnetismo
Practica 5 electricidad y magnetismo
 
Electrónica analógica - Investigación de Conducción en lo Semiconductores; Ti...
Electrónica analógica - Investigación de Conducción en lo Semiconductores; Ti...Electrónica analógica - Investigación de Conducción en lo Semiconductores; Ti...
Electrónica analógica - Investigación de Conducción en lo Semiconductores; Ti...
 
Electrónica de 4º E. S. O.
Electrónica de 4º E. S. O.Electrónica de 4º E. S. O.
Electrónica de 4º E. S. O.
 
Catálogo de semiconductores
Catálogo de semiconductoresCatálogo de semiconductores
Catálogo de semiconductores
 

Destacado

Manejo de insuficiencia cardíaca crónica en atención primaria
Manejo de insuficiencia cardíaca crónica en atención primariaManejo de insuficiencia cardíaca crónica en atención primaria
Manejo de insuficiencia cardíaca crónica en atención primariaMercedes Calleja
 
jornada de atencion integrada social y sanitaria centrada en la persona
jornada de atencion integrada social y sanitaria centrada en la personajornada de atencion integrada social y sanitaria centrada en la persona
jornada de atencion integrada social y sanitaria centrada en la personaMercedes Calleja
 
Manejo de la hbp en atención primaria
Manejo de la hbp en atención primariaManejo de la hbp en atención primaria
Manejo de la hbp en atención primariaMercedes Calleja
 
Principales patrones radiológicos en la placa simple de tórax
Principales patrones radiológicos en la placa simple de tóraxPrincipales patrones radiológicos en la placa simple de tórax
Principales patrones radiológicos en la placa simple de tóraxMercedes Calleja
 
Protocolo de actuación en el paciente con ictus
Protocolo de actuación en el paciente con ictusProtocolo de actuación en el paciente con ictus
Protocolo de actuación en el paciente con ictusMercedes Calleja
 
Prueba De ApercepcióN TemáTica Para NiñOs
Prueba De ApercepcióN TemáTica Para NiñOsPrueba De ApercepcióN TemáTica Para NiñOs
Prueba De ApercepcióN TemáTica Para NiñOsElizabeth Torres
 

Destacado (9)

Manejo de insuficiencia cardíaca crónica en atención primaria
Manejo de insuficiencia cardíaca crónica en atención primariaManejo de insuficiencia cardíaca crónica en atención primaria
Manejo de insuficiencia cardíaca crónica en atención primaria
 
jornada de atencion integrada social y sanitaria centrada en la persona
jornada de atencion integrada social y sanitaria centrada en la personajornada de atencion integrada social y sanitaria centrada en la persona
jornada de atencion integrada social y sanitaria centrada en la persona
 
Manejo de la hbp en atención primaria
Manejo de la hbp en atención primariaManejo de la hbp en atención primaria
Manejo de la hbp en atención primaria
 
Sesión CAT
Sesión CATSesión CAT
Sesión CAT
 
Principales patrones radiológicos en la placa simple de tórax
Principales patrones radiológicos en la placa simple de tóraxPrincipales patrones radiológicos en la placa simple de tórax
Principales patrones radiológicos en la placa simple de tórax
 
Protocolo de actuación en el paciente con ictus
Protocolo de actuación en el paciente con ictusProtocolo de actuación en el paciente con ictus
Protocolo de actuación en el paciente con ictus
 
Elaboración CAT
Elaboración CATElaboración CAT
Elaboración CAT
 
Prueba De ApercepcióN TemáTica Para NiñOs
Prueba De ApercepcióN TemáTica Para NiñOsPrueba De ApercepcióN TemáTica Para NiñOs
Prueba De ApercepcióN TemáTica Para NiñOs
 
CAT Y TAT CON LAMINAS
CAT Y TAT CON LAMINASCAT Y TAT CON LAMINAS
CAT Y TAT CON LAMINAS
 

Similar a Electronica analogica

Similar a Electronica analogica (20)

electronicaanalogica-151126094331-lva1-app6892.pdf
electronicaanalogica-151126094331-lva1-app6892.pdfelectronicaanalogica-151126094331-lva1-app6892.pdf
electronicaanalogica-151126094331-lva1-app6892.pdf
 
ElectróNica AnalogíCa 1
ElectróNica AnalogíCa 1ElectróNica AnalogíCa 1
ElectróNica AnalogíCa 1
 
Electronica analogica 2013
Electronica analogica 2013Electronica analogica 2013
Electronica analogica 2013
 
Manual electronica
Manual electronicaManual electronica
Manual electronica
 
Taller a
Taller aTaller a
Taller a
 
3032
30323032
3032
 
PRESENTACIÓN - COMPONENTES ELECTRÓNICOS.pptx
PRESENTACIÓN - COMPONENTES ELECTRÓNICOS.pptxPRESENTACIÓN - COMPONENTES ELECTRÓNICOS.pptx
PRESENTACIÓN - COMPONENTES ELECTRÓNICOS.pptx
 
ElectróNica
ElectróNicaElectróNica
ElectróNica
 
DiodoSemiconductor.pdf
DiodoSemiconductor.pdfDiodoSemiconductor.pdf
DiodoSemiconductor.pdf
 
Manual_de_electronica_Basica_compressed.pdf
Manual_de_electronica_Basica_compressed.pdfManual_de_electronica_Basica_compressed.pdf
Manual_de_electronica_Basica_compressed.pdf
 
Tema 1 electrónica analógica
Tema 1 electrónica analógicaTema 1 electrónica analógica
Tema 1 electrónica analógica
 
ELECTRÓNICA
ELECTRÓNICAELECTRÓNICA
ELECTRÓNICA
 
Capacitancia
CapacitanciaCapacitancia
Capacitancia
 
fundamentos de electricidad y electrónica
fundamentos de electricidad y electrónica fundamentos de electricidad y electrónica
fundamentos de electricidad y electrónica
 
Electronica
ElectronicaElectronica
Electronica
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 
Chevrotronica Ii
Chevrotronica IiChevrotronica Ii
Chevrotronica Ii
 
Electronica Basica
Electronica BasicaElectronica Basica
Electronica Basica
 
Deber de ensamblaje
Deber de ensamblajeDeber de ensamblaje
Deber de ensamblaje
 
Presentación dispositivos electrónicos
Presentación dispositivos electrónicosPresentación dispositivos electrónicos
Presentación dispositivos electrónicos
 

Más de joeltecno9

problema aviones
 problema aviones problema aviones
problema avionesjoeltecno9
 
sistema combinacional-ascensor_monedas
sistema combinacional-ascensor_monedassistema combinacional-ascensor_monedas
sistema combinacional-ascensor_monedasjoeltecno9
 
sistema combinacional-ovejas
sistema combinacional-ovejassistema combinacional-ovejas
sistema combinacional-ovejasjoeltecno9
 
representacion de funciones semaforo
 representacion de funciones semaforo representacion de funciones semaforo
representacion de funciones semaforojoeltecno9
 
mapas karnaught
 mapas karnaught mapas karnaught
mapas karnaughtjoeltecno9
 
simplificacion metodos-algebraicos
 simplificacion metodos-algebraicos simplificacion metodos-algebraicos
simplificacion metodos-algebraicosjoeltecno9
 
algebra boole
 algebra boole algebra boole
algebra boolejoeltecno9
 
simplificar funciones
 simplificar funciones simplificar funciones
simplificar funcionesjoeltecno9
 
puertas logicas
 puertas logicas puertas logicas
puertas logicasjoeltecno9
 
electrónica digital
 electrónica digital electrónica digital
electrónica digitaljoeltecno9
 
conversion sistemas numericos
 conversion sistemas numericos conversion sistemas numericos
conversion sistemas numericosjoeltecno9
 
cambios de base 2
cambios de base 2cambios de base 2
cambios de base 2joeltecno9
 
sistemas-numericos
 sistemas-numericos sistemas-numericos
sistemas-numericosjoeltecno9
 
sistemas de numeracion
 sistemas de numeracion sistemas de numeracion
sistemas de numeracionjoeltecno9
 
Sistemas analogicos-digitales
Sistemas analogicos-digitalesSistemas analogicos-digitales
Sistemas analogicos-digitalesjoeltecno9
 
Electronica analogica
Electronica analogicaElectronica analogica
Electronica analogicajoeltecno9
 
Componentes electronicos
Componentes electronicosComponentes electronicos
Componentes electronicosjoeltecno9
 
Semiconductores
SemiconductoresSemiconductores
Semiconductoresjoeltecno9
 

Más de joeltecno9 (20)

problema aviones
 problema aviones problema aviones
problema aviones
 
sistema combinacional-ascensor_monedas
sistema combinacional-ascensor_monedassistema combinacional-ascensor_monedas
sistema combinacional-ascensor_monedas
 
sistema combinacional-ovejas
sistema combinacional-ovejassistema combinacional-ovejas
sistema combinacional-ovejas
 
representacion de funciones semaforo
 representacion de funciones semaforo representacion de funciones semaforo
representacion de funciones semaforo
 
leyes morgan
 leyes morgan leyes morgan
leyes morgan
 
mapas karnaught
 mapas karnaught mapas karnaught
mapas karnaught
 
simplificacion metodos-algebraicos
 simplificacion metodos-algebraicos simplificacion metodos-algebraicos
simplificacion metodos-algebraicos
 
algebra boole
 algebra boole algebra boole
algebra boole
 
simplificar funciones
 simplificar funciones simplificar funciones
simplificar funciones
 
puertas logicas
 puertas logicas puertas logicas
puertas logicas
 
electrónica digital
 electrónica digital electrónica digital
electrónica digital
 
conversion sistemas numericos
 conversion sistemas numericos conversion sistemas numericos
conversion sistemas numericos
 
cambios de base 2
cambios de base 2cambios de base 2
cambios de base 2
 
cambios base
 cambios base cambios base
cambios base
 
sistemas-numericos
 sistemas-numericos sistemas-numericos
sistemas-numericos
 
sistemas de numeracion
 sistemas de numeracion sistemas de numeracion
sistemas de numeracion
 
Sistemas analogicos-digitales
Sistemas analogicos-digitalesSistemas analogicos-digitales
Sistemas analogicos-digitales
 
Electronica analogica
Electronica analogicaElectronica analogica
Electronica analogica
 
Componentes electronicos
Componentes electronicosComponentes electronicos
Componentes electronicos
 
Semiconductores
SemiconductoresSemiconductores
Semiconductores
 

Último

PINTURA ITALIANA DEL CINQUECENTO (SIGLO XVI).ppt
PINTURA ITALIANA DEL CINQUECENTO (SIGLO XVI).pptPINTURA ITALIANA DEL CINQUECENTO (SIGLO XVI).ppt
PINTURA ITALIANA DEL CINQUECENTO (SIGLO XVI).pptAlberto Rubio
 
Tema 8.- Gestion de la imagen a traves de la comunicacion de crisis.pdf
Tema 8.- Gestion de la imagen a traves de la comunicacion de crisis.pdfTema 8.- Gestion de la imagen a traves de la comunicacion de crisis.pdf
Tema 8.- Gestion de la imagen a traves de la comunicacion de crisis.pdfDaniel Ángel Corral de la Mata, Ph.D.
 
c3.hu3.p1.p3.El ser humano como ser histórico.pptx
c3.hu3.p1.p3.El ser humano como ser histórico.pptxc3.hu3.p1.p3.El ser humano como ser histórico.pptx
c3.hu3.p1.p3.El ser humano como ser histórico.pptxMartín Ramírez
 
La evolucion de la especie humana-primero de secundaria
La evolucion de la especie humana-primero de secundariaLa evolucion de la especie humana-primero de secundaria
La evolucion de la especie humana-primero de secundariamarco carlos cuyo
 
periodico mural y sus partes y caracteristicas
periodico mural y sus partes y caracteristicasperiodico mural y sus partes y caracteristicas
periodico mural y sus partes y caracteristicas123yudy
 
ÉTICA, NATURALEZA Y SOCIEDADES_3RO_3ER TRIMESTRE.pdf
ÉTICA, NATURALEZA Y SOCIEDADES_3RO_3ER TRIMESTRE.pdfÉTICA, NATURALEZA Y SOCIEDADES_3RO_3ER TRIMESTRE.pdf
ÉTICA, NATURALEZA Y SOCIEDADES_3RO_3ER TRIMESTRE.pdfluisantoniocruzcorte1
 
PPT_Formación integral y educación CRESE (1).pdf
PPT_Formación integral y educación CRESE (1).pdfPPT_Formación integral y educación CRESE (1).pdf
PPT_Formación integral y educación CRESE (1).pdfEDILIAGAMBOA
 
TUTORIA II - CIRCULO DORADO UNIVERSIDAD CESAR VALLEJO
TUTORIA II - CIRCULO DORADO UNIVERSIDAD CESAR VALLEJOTUTORIA II - CIRCULO DORADO UNIVERSIDAD CESAR VALLEJO
TUTORIA II - CIRCULO DORADO UNIVERSIDAD CESAR VALLEJOweislaco
 
Fisiologia.Articular. 3 Kapandji.6a.Ed.pdf
Fisiologia.Articular. 3 Kapandji.6a.Ed.pdfFisiologia.Articular. 3 Kapandji.6a.Ed.pdf
Fisiologia.Articular. 3 Kapandji.6a.Ed.pdfcoloncopias5
 
c3.hu3.p1.p2.El ser humano y el sentido de su existencia.pptx
c3.hu3.p1.p2.El ser humano y el sentido de su existencia.pptxc3.hu3.p1.p2.El ser humano y el sentido de su existencia.pptx
c3.hu3.p1.p2.El ser humano y el sentido de su existencia.pptxMartín Ramírez
 
Introducción:Los objetivos de Desarrollo Sostenible
Introducción:Los objetivos de Desarrollo SostenibleIntroducción:Los objetivos de Desarrollo Sostenible
Introducción:Los objetivos de Desarrollo SostenibleJonathanCovena1
 
Estrategia de Enseñanza y Aprendizaje.pdf
Estrategia de Enseñanza y Aprendizaje.pdfEstrategia de Enseñanza y Aprendizaje.pdf
Estrategia de Enseñanza y Aprendizaje.pdfromanmillans
 
VOLUMEN 1 COLECCION PRODUCCION BOVINA . SERIE SANIDAD ANIMAL
VOLUMEN 1 COLECCION PRODUCCION BOVINA . SERIE SANIDAD ANIMALVOLUMEN 1 COLECCION PRODUCCION BOVINA . SERIE SANIDAD ANIMAL
VOLUMEN 1 COLECCION PRODUCCION BOVINA . SERIE SANIDAD ANIMALEDUCCUniversidadCatl
 
Uses of simple past and time expressions
Uses of simple past and time expressionsUses of simple past and time expressions
Uses of simple past and time expressionsConsueloSantana3
 
Tarea 5_ Foro _Selección de herramientas digitales_Manuel.pdf
Tarea 5_ Foro _Selección de herramientas digitales_Manuel.pdfTarea 5_ Foro _Selección de herramientas digitales_Manuel.pdf
Tarea 5_ Foro _Selección de herramientas digitales_Manuel.pdfManuel Molina
 
LA ECUACIÓN DEL NÚMERO PI EN LOS JUEGOS OLÍMPICOS DE PARÍS. Por JAVIER SOLIS ...
LA ECUACIÓN DEL NÚMERO PI EN LOS JUEGOS OLÍMPICOS DE PARÍS. Por JAVIER SOLIS ...LA ECUACIÓN DEL NÚMERO PI EN LOS JUEGOS OLÍMPICOS DE PARÍS. Por JAVIER SOLIS ...
LA ECUACIÓN DEL NÚMERO PI EN LOS JUEGOS OLÍMPICOS DE PARÍS. Por JAVIER SOLIS ...JAVIER SOLIS NOYOLA
 
Plan Año Escolar Año Escolar 2023-2024. MPPE
Plan Año Escolar Año Escolar 2023-2024. MPPEPlan Año Escolar Año Escolar 2023-2024. MPPE
Plan Año Escolar Año Escolar 2023-2024. MPPELaura Chacón
 

Último (20)

PINTURA ITALIANA DEL CINQUECENTO (SIGLO XVI).ppt
PINTURA ITALIANA DEL CINQUECENTO (SIGLO XVI).pptPINTURA ITALIANA DEL CINQUECENTO (SIGLO XVI).ppt
PINTURA ITALIANA DEL CINQUECENTO (SIGLO XVI).ppt
 
Tema 8.- Gestion de la imagen a traves de la comunicacion de crisis.pdf
Tema 8.- Gestion de la imagen a traves de la comunicacion de crisis.pdfTema 8.- Gestion de la imagen a traves de la comunicacion de crisis.pdf
Tema 8.- Gestion de la imagen a traves de la comunicacion de crisis.pdf
 
c3.hu3.p1.p3.El ser humano como ser histórico.pptx
c3.hu3.p1.p3.El ser humano como ser histórico.pptxc3.hu3.p1.p3.El ser humano como ser histórico.pptx
c3.hu3.p1.p3.El ser humano como ser histórico.pptx
 
La evolucion de la especie humana-primero de secundaria
La evolucion de la especie humana-primero de secundariaLa evolucion de la especie humana-primero de secundaria
La evolucion de la especie humana-primero de secundaria
 
periodico mural y sus partes y caracteristicas
periodico mural y sus partes y caracteristicasperiodico mural y sus partes y caracteristicas
periodico mural y sus partes y caracteristicas
 
TL/CNL – 2.ª FASE .
TL/CNL – 2.ª FASE                       .TL/CNL – 2.ª FASE                       .
TL/CNL – 2.ª FASE .
 
ÉTICA, NATURALEZA Y SOCIEDADES_3RO_3ER TRIMESTRE.pdf
ÉTICA, NATURALEZA Y SOCIEDADES_3RO_3ER TRIMESTRE.pdfÉTICA, NATURALEZA Y SOCIEDADES_3RO_3ER TRIMESTRE.pdf
ÉTICA, NATURALEZA Y SOCIEDADES_3RO_3ER TRIMESTRE.pdf
 
PPT_Formación integral y educación CRESE (1).pdf
PPT_Formación integral y educación CRESE (1).pdfPPT_Formación integral y educación CRESE (1).pdf
PPT_Formación integral y educación CRESE (1).pdf
 
VISITA À PROTEÇÃO CIVIL _
VISITA À PROTEÇÃO CIVIL                  _VISITA À PROTEÇÃO CIVIL                  _
VISITA À PROTEÇÃO CIVIL _
 
Sesión La luz brilla en la oscuridad.pdf
Sesión  La luz brilla en la oscuridad.pdfSesión  La luz brilla en la oscuridad.pdf
Sesión La luz brilla en la oscuridad.pdf
 
TUTORIA II - CIRCULO DORADO UNIVERSIDAD CESAR VALLEJO
TUTORIA II - CIRCULO DORADO UNIVERSIDAD CESAR VALLEJOTUTORIA II - CIRCULO DORADO UNIVERSIDAD CESAR VALLEJO
TUTORIA II - CIRCULO DORADO UNIVERSIDAD CESAR VALLEJO
 
Fisiologia.Articular. 3 Kapandji.6a.Ed.pdf
Fisiologia.Articular. 3 Kapandji.6a.Ed.pdfFisiologia.Articular. 3 Kapandji.6a.Ed.pdf
Fisiologia.Articular. 3 Kapandji.6a.Ed.pdf
 
c3.hu3.p1.p2.El ser humano y el sentido de su existencia.pptx
c3.hu3.p1.p2.El ser humano y el sentido de su existencia.pptxc3.hu3.p1.p2.El ser humano y el sentido de su existencia.pptx
c3.hu3.p1.p2.El ser humano y el sentido de su existencia.pptx
 
Introducción:Los objetivos de Desarrollo Sostenible
Introducción:Los objetivos de Desarrollo SostenibleIntroducción:Los objetivos de Desarrollo Sostenible
Introducción:Los objetivos de Desarrollo Sostenible
 
Estrategia de Enseñanza y Aprendizaje.pdf
Estrategia de Enseñanza y Aprendizaje.pdfEstrategia de Enseñanza y Aprendizaje.pdf
Estrategia de Enseñanza y Aprendizaje.pdf
 
VOLUMEN 1 COLECCION PRODUCCION BOVINA . SERIE SANIDAD ANIMAL
VOLUMEN 1 COLECCION PRODUCCION BOVINA . SERIE SANIDAD ANIMALVOLUMEN 1 COLECCION PRODUCCION BOVINA . SERIE SANIDAD ANIMAL
VOLUMEN 1 COLECCION PRODUCCION BOVINA . SERIE SANIDAD ANIMAL
 
Uses of simple past and time expressions
Uses of simple past and time expressionsUses of simple past and time expressions
Uses of simple past and time expressions
 
Tarea 5_ Foro _Selección de herramientas digitales_Manuel.pdf
Tarea 5_ Foro _Selección de herramientas digitales_Manuel.pdfTarea 5_ Foro _Selección de herramientas digitales_Manuel.pdf
Tarea 5_ Foro _Selección de herramientas digitales_Manuel.pdf
 
LA ECUACIÓN DEL NÚMERO PI EN LOS JUEGOS OLÍMPICOS DE PARÍS. Por JAVIER SOLIS ...
LA ECUACIÓN DEL NÚMERO PI EN LOS JUEGOS OLÍMPICOS DE PARÍS. Por JAVIER SOLIS ...LA ECUACIÓN DEL NÚMERO PI EN LOS JUEGOS OLÍMPICOS DE PARÍS. Por JAVIER SOLIS ...
LA ECUACIÓN DEL NÚMERO PI EN LOS JUEGOS OLÍMPICOS DE PARÍS. Por JAVIER SOLIS ...
 
Plan Año Escolar Año Escolar 2023-2024. MPPE
Plan Año Escolar Año Escolar 2023-2024. MPPEPlan Año Escolar Año Escolar 2023-2024. MPPE
Plan Año Escolar Año Escolar 2023-2024. MPPE
 

Electronica analogica

  • 2. INTRODUCCION Def: La electrónica es la ciencia que estudia las variaciones de las magnitudes de la corriente eléctrica y sus aplicaciones, utilizando para ello la recepción, tratamiento y transmisión de la información mediante una señal eléctrica. Def: Una señal eléctrica es una corriente, de mayor o menor duración, con unas características determinadas. Para conseguir estas modificaciones, se utilizan componentes específicos, cada uno de los cuales realiza una función concreta. Las modificaciones que pueden hacerse a una señal eléctrica (corriente) son las siguientes: • Amplificación o atenuación: Consiste en aumentar o reducir la intensidad de • la corriente. • Rectificación: Consiste en obligar a los electrones a circular en un único sentido, • es decir, conducir la corriente. • Filtrado: Consiste en dejar pasar a aquellos electrones que circulen a una • determinada velocidad.
  • 3. COMPONENTES ELECTRÓNICOS COMPONENTES PASIVOS: Están constituidos por materiales o bien conductores o bien aislantes. •Resistencias eléctricas. •Fijas y variables. •Resistencias dependientes de un parámetro físico. •Condensadores. •No polares. •Electróliticos. •Bobinas. (El relé) COMPONENTES ACTIVOS: Están constituidos por materiales semiconductores, como el Si, Se y Ge (tienen un comportamiento intermedio entre los conductores y los aislantes, es decir, en condiciones normales no conducen la electricidad, pero si se les aplica una pequeña cantidad de corriente eléctrica, entonces se vuelven conductores). •Diodo. •Rectificador. •Led. •Transistor Bipolar. •Circuitos Integrados.
  • 4. RESISTENCIAS ELÉCTRICAS La función de las resistencias electrónicas es la de impedir en mayor o menor grado el paso de la corriente eléctrica, dependiendo esto del tipo de material con el que hayan sido fabricadas. Su magnitud se mide en OHMIOS (Ω). COLOR 1ª CIFRA 2ª CIFRA Multiplicador Tolerancia Oro --- --- 0.1 5% Plata --- --- 0.01 10% Negro 0 0 x1 Marrón 1 1 0 1% Rojo 2 2 00 2% Naranja 3 3 000 Sin color 20% Amarillo 4 4 0000 Verde 5 5 00000 Azul 6 6 000000 Morado 7 7 0000000 Gris 8 8 00000000 Blanco 9 9 000000000 RESISTENCIAS FIJAS: •Su valor es fijo. Viene definido de fábrica. Poseen un valor nominal y una tolerancia, que es el error máximo con el que se fabrica la resistencia. •Están formadas por una mezcla de materiales, por lo general carbón y un aglutinante adecuado. Todo ello se envuelve con una cubierta de material plástico o cerámico. •Tienen forma de cilindro, y dos alambres en sus extremos que hacen de polos (aunque no tienen polaridad), y tres, cuatro o cinco franjas de colores, que se corresponden, según un código, al valor de su resistencia. •Utilizando la siguiente tabla podemos calcular el valor de cualquiera. Para ello hay que tener en cuenta la colocación de las bandas de la resistencia, situando la más separada de todas a la derecha.
  • 5. RESISTENCIAS VARIABLES. A) POTENCIÓMETRO: La característica principal de un potenciómetro es que el valor de su resistencia puede ajustarse entre los valores 0 Ω y el máximo especificado por el fabricante. La modificación del valor se consigue moviendo un elemento mecánico giratorio o deslizante sobre otro elemento resistivo. Son potenciómetros muchos de los elementos de mando que incorporan algunoselectrodomésticos para regular temperatura, volumen, nivel luminoso,etc. B) RESISTENCIAS QUE VARÍAN CON UN PARÁMETRO FÍSICO. B.1. Termistores. Estas resistencias varían su valor según la temperatura a la que estén sometidas. Pueden ser de dos tipos: NTC (coeficiente de temperatura negativo): la resistencia disminuye al aumentar la temperatura. PTC (coeficiente de temperatura positivo): la resistencia aumenta al subir la temperatura. B.2. Fotoresistencias o LDR. Estas resistencias varían su valor según la cantidad de luz que incida sobre ellas, disminuyendo la resistencia cuando aumenta la luz.
  • 6. CONDENSADORES: Son componentes capaces de almacenar temporalmente cargas eléctricas y después cederlas. Actúan como “despensas” de energía. Se usan fundamentalmente en circuitos temporizadores, es decir, circuitos en los que se hace funcionar algún elemento durante algún tiempo y luego lo paran, por ejemplo: las luces de una escalera, el secador de manos de algunos lavabos públicos,…..etc. Está formado por dos placas metálicas conductoras y paralelas, llamadas armaduras, separadas entre sí por un material aislante denominado dieléctrico. Símbolo Funcionamiento PROCESO DE CARGA: si unimos una de las placas al polo positivo de una pila y la otra al polo negativo, como no existe paso de corriente a través del dieléctrico, en la placa conectada al polo positivo se producirá una acumulación de cargas positivas (protones), ya que los electrones se ven atraídos por el polo positivo de la pila. En la placa conectada al polo negativo, se producirá una acumulación de cargas negativas (electrones) ya que los protones se ven atraídos por los electrones del polo negativo de la pila . A medida que las placas van adquiriendo carga aparece entre ellas una diferencia de potencial. Cuando esta diferencia de potencial entre placas es igual a la de la batería cesa el transporte de electrones y cada placa queda con la carga Q que haya adquirido hasta ese momento y deja de circular intensidad, comportándose entonces como un interruptor (ver figura y esquema eléctrico). PROCESO DE DESCARGA: en el circuito anterior, cuando el condensador ha sido cargado, cambiamos el conmutador de la posición (1) a la posición (2). El condensador comienza en ese momento a descargarse, creando una corriente que hace que se encienda la bombilla B2, tardando para ello un tiempo determinado (según la carga que haya almacenado).
  • 7. Constante de tiempo Los condensadores se caracterizan por una magnitud denominada constante de tiempo, que se calcula mediante la siguiente expresión: ‫ڂ‬ = R • C donde : • ‫=ڂ‬ constante de tiempo (segundos) • R= resistencia (ohmios) • C= capacidad (faradios) NOTA: El tiempo en que el condensador alcanza el mismo potencial que la fuente de alimentación, es decir, el tiempo total que el condensador tarda en cargarse es cinco veces la constante de tiempo NOTA: Cuando pasa la primera constante de tiempo, el condensador se carga con un 63% del voltaje total de la pila. El resto del voltaje, hasta llegar al 100% lo obtiene en las otras cuatro constantes de tiempo restantes. NOTA: El tiempo de carga y descarga no tiene porqué coincidir, todo depende de la resistencia a través de la cual se cargue o se descargue el condensador
  • 8. CONDENSADORES: Capacidad de un condensador La capacidad de un condensador para almacenar carga eléctrica depende de la superficie de las armaduras, la distancia que las separa y la naturaleza del dieléctrico. Matemáticamente se calcula mediante la siguiente expresión: Como el Faradio es una unidad muy grande, normalmente se usan submúltiplos como el microfaradio (μF), el nanofaradio (nF) y el picofaradio (pF), que equivalen a 10-6, 10-9 y 10-12 F respectivamente. VCQ  Donde: Q = Carga (Culombios) V = ddp (Voltios) C = Capacidad (Faradios) Existen muchos tipos de condensadores, en función del material con el que están fabricados: de papel, cerámicos, de poliéster, de aluminio, etc. Pero puede decirse que hay dos tipos de condensadores básicamente: a.Condensadores sin polaridad: Sus polos pueden ser conectados a cualquier polo de la pila. b.Condensadores con polaridad o electrolíticos: Debe tenerse en cuenta la polaridad para conectarlos. Suelen tener mayor capacidad. Tipos de condensadores
  • 9. BOBINAS: El relé La bobina es el componente electrónico que menos ha evolucionado. Se emplea en sintonización, filtros etc. Nosotros vamos a ver sus efectos electromagnéticos, como componente de los relés. Un operador eléctrico muy útil que se utiliza mucho en circuitos eléctricos, y que funciona como un electroimán es un RELÉ. Un relé está formado por una bobina enrollada sobre un núcleo de hiero. Cuando la bobina es recorrida por la corriente, genera un campo magnético a su alrededor (se comporta como un imán), por lo que atrae una palanca metálica. Ésta, a su vez, mueve una pequeña lámina, con la que se puede cerrar un segundo circuito. Por tanto en un relé existen dos circuitos: a) Circuito de excitación, que coincide con los terminales de la bobina b) Circuito de conmutación, que coincide con los terminales del interruptor. Símbolo
  • 10. DIODO: FUNCIONAMIENTO Es uno de los componentes más empleados en los circuitos electrónicos. Está fabricado con dos materiales semiconductores unidos, uno de tipo N (electronegativo) llamado ánodo, y otro de tipo P (electropositivo) llamado cátodo. La función principal de un diodo es la de permitir el paso de la corriente en un solo sentido, es decir, tiene la función de dirigirla Los materiales semiconductores más utilizados son el Selenio (Se), el Germanio (Ge) y sobre todo el Silicio (Si) Una precaución importante a la hora de montar un diodo LED en un circuito es que la tensión en bornes no debe sobrepasar los 2 V, por lo que cuando la tensión es superior, se debe poner una resistencia en serie con el diodo para ajustar dicha tensión. Además el diodo debe recibir como mínimo una corriente de 0,001 A (1 mA). Ejm: Queremos conectar un diodo a una pila de 9 V, ¿qué haremos para no fundirlo? Para calcular el valor de R aplicamos la ley de Ohm: V = I · R → R = V / I R = 7 / 0,001 A
  • 11. DIODOS: POLARIZACIÓN Polarización directa: se produce cuando el polo positivo de la pila se una al ánodo y el negativo al cátodo. En este caso el diodo se comporta como un conductor y deja pasar la corriente eléctrica. Polarización inversa: se consigue conectando el polo negativo de la pila al ánodo y el positivo al cátodo. En este caso el diodo se comporta como un aislante y no permite el paso de la corriente. POLARIZACIÓN DIRECTA POLARIZACIÓN INVERSA
  • 12. DIODOS: TIPOS Diodo rectificador  Permite la rectificación de la corriente alterna, transformándola en continua.  Polarizado directamente, conduce a partir de una tensión entre 0.2 y 0.8 V.  Su encapsulado puede ser de plástico, de metal o cerámico, dependiendo de su potencia.  El cátodo siempre va marcado de forma que permite su reconocimiento.  Se identifica mediante un código alfanumérico. Diodo LED (Light Emisor Diode)  Emite luz al ser polarizado directamente.  Se emplea para señalización luminosa.  Se fabrican en varios colores: rojos, verdes, amarillos, azules, y también infrarrojos.  Precisa de una tensión mínima para emitir luz (de 1.5 a 2 voltios). Para conseguirla, puede intercalarse una resistencia en serie.  El cátodo se identifica fácilmente observando el interior de la cápsula (lado plano) o la longitud de los terminales (terminal corto).
  • 13. TRANSISTORES: CONSTITUCIÓN Y TIPOS •El transistor es un componente de control y regulación de la corriente eléctrica, es decir, permite, impide o regula el paso de la corriente eléctrica y su intensidad. •Es el componente más importante de la electrónica. Fue desarrollado por los investigadores Bardeen, Brattain y Shockley a finales de los años 40, siendo premiados con el Nobel de Física en el año 1956. •Un transistor se puede considerar como la unión de dos diodos y está formado por la unión de tres cristales semiconductores combinados, dando lugar a los dos tipos existentes: Transistor PNP y transistor NPN. El transistor posee tres patillas, que son: a) Colector: Es el polo, cristal o conexión del transistor que recibe la corriente eléctrica. b) Base: Es el polo, cristal o conexión del transistor que recibe una pequeña corriente eléctrica con la que regula el paso de la corriente principal, en mayor o menor intensidad, proporcional a la de control recibida por la base. Para regular la intensidad de la corriente que recibe la base debe conectarse en serie una resistencia grande. c) Emisor: Es el polo, cristal o conexión del transistor por el que sale la intensidad de la corriente una vez que lo ha atravesado (la cantidad de corriente emitida depende de la base)
  • 14. TRANSISTORES: FUNCIONAMIENTO El principio de funcionamiento de un transistor depende de la acción coordinada de sus tres componentes (emisor, base y colector), pudiendo funcionar en tres regímenes distintos: VÉASE EL SÍMIL HIDRAULICO (VÁLVULA) DE LA SIGUIENTE FIGURA Y SU EXPLICACIÓN. a.En activa: como amplificador, de forma que deje pasar más o menos corriente. b.En corte: No pasa corriente por él, actuando como un interruptor abierto. c.En saturación: por él pasa prácticamente toda la corriente que recibe. •Si no hay presión e B (base) no puede abrir la válvula y el fluido no pasa de E a C (funcionamiento en corte). Es decir, el transistor se comporta como si fuese un interruptor abierto al impedir que la corriente eléctrica circule entre E y C. •Si llega algo de presión a B (base), ésta abrirá más o menos la válvula y dejará pasar más o menos fluido de E a C (funcionamiento en activa). En este caso, el transistor permitirá un paso de corriente proporcional a la abertura de la válvula y siempre superior a la corriente que llega a la base. La relación entre ambas corrientes se llama amplificación o ganancia (G). •Si llega a B (base) suficiente presión para abrir totalmente la válvula, E se comunica con C y el fluido pasa sin dificultad (funcionamiento en saturación). En este caso, el transistor se comporta como un interruptor cerrado, ya que permite el paso o circulación de la corriente eléctrica entre E y C con toda libertad.
  • 15. CARACTERÍSTICAS DE LOS TRANSISTORES El transistor permite a partir de una pequeña corriente que circule por su base, provocar una corriente mayor del colector al emisor, es decir, una de sus misiones es la de actuar como amplificador. Por tanto una de sus características más importantes es su ganancia, que se calcula mediante la siguiente expresión: β = IC / IB Otra característica importante, es que la intensidad que se obtiene en el emisor, es igual a la suma de la intensidad que entra al colector más la que entra a la base, es decir, IE = IC + IB El aspecto real de un transistor es el siguiente:
  • 16. CIRCUITO INTEGRADO Actualmente, la tecnología electrónica permite fabricar circuitos de dimensiones microscópicas, formados por transistores y otros componentes sobre una placa de material semiconductor, obteniendo así los circuitos integrados. El tamaño de un transistor depende del calor que deba disipar. Si se consigue que éstos trabajen con corrientes y tensiones extremadamente pequeñas, podrá ser reducido el tamaño, y podrán conectarse para formar estos diminutos circuitos. Los circuitos integrados utilizan pequeños chips de silicio, cada uno de los cuales está instalado dentro de una funda de plástico conectado a un juego de patillas situado en los laterales de la funda. En las siguientes figuras se muestra el interior de un circuito integrado, así como sus conexiones y una nota con la curiosa procedencia del nombre “chip”. APLICACIONES: Se utilizan circuitos integrados en muchos aparatos de uso doméstico común: electrodomésticos como lavadoras, frigoríficos, hornos, microondas, etc., en dispositivos de grabación y reproducción de imágenes y sonido como video-cámaras, televisores, telefonos móviles equipos de música, móviles, etc., y como no, en ordenadores.