SlideShare una empresa de Scribd logo
1 de 17
Descargar para leer sin conexión
UNIVERSIDAD TÉCNICA FEDERICO SANTA MARÍA
DEPARTAMENTO DE ELECTRÓNICA

Laboratorio de Electrónica Industrial
PREINFORME
“Control de motores AC”

Experiencia
Grupo
Fecha

4

Lautaro Narvaez Paredes

8

Juan Vargas Hernández

29/11/2010

Revisado por

Nota
Laboratorio de Electrónica Industrial, Segundo Semestre 2010

1.

PREINFORME

1.1

Escriba la ecuación de torque de un motor de inducción. A partir de esta expresión
explique por qué el control de este motor es más complejo que el motor DC.

A partir del modelo eléctrico del motor de inducción se puede escribir la siguiente ecuación que
representa el torque
3‫݌‬
ܶ=
‫߱ݏ‬௘

ܴ௥ ∙ ܸ ଶ
௦

ቀܴ௦ +

ܴ௥ ଶ
ቁ + ሺܺ௦ + ܺ௥ ሻଶ
‫ݏ‬

Donde,
p:
߱௘ :
ܸ:
௦
ܴ௥ :
ܺ௥ :
ܴ௦ :
ܺ௦ :

Número de polos
Frecuencia de red (߱௘ = 2ߨ݂௘ )
Voltaje de alimentación
Resistencia de rotor
Reactancia de rotor
Resistencia de estator
Reactancia de estator

Luego, de la fórmula anterior se tiene que el torque depende directamente de la frecuencia por lo
cual es necesario utilizar un sistema que permita obtener múltiples frecuencias a partir de la de
red. Esto claramente presenta una mayor complejidad que la máquina de corriente continua,
donde el torque sólo depende de la corriente de armadura.
1.2

Si un motor de inducción gira a 1440[rpm], y la frecuencia de alimentación es de
50[Hz]. ¿Cuántos polos tiene el motor?

La siguiente ecuación rige la velocidad de giro de un motor de inducción
ߟ=

60݂
‫݌‬

Donde η es la velocidad en [rpm], f la frecuencia de alimentación y p el número de pares de polos
del motor, despejando se obtiene
‫=݌‬

60݂ 60 ∙ 50
=
≈2
ߟ
1440

Luego, el motor posee 4 polos.

1
Laboratorio de Electrónica Industrial, Segundo Semestre 2010

1.3

Los métodos de control más utilizados para máquinas de inducción son el control
vectorial y el control de V/f constante. Explique brevemente cada uno de ellos.
Modulación Vectorial:

A través de la modulación vectorial se desea controlar de manera independiente el flujo y el
torque del motor. De esta forma, se puede controlar el motor AC como si se tratase de un motor
DC.
Al considerar un inversor trifásico de dos niveles es posible contar con 8 posibles estados de
conmutación. Por lo tanto, el control de los 3 semiconductores de la rama superior del inversor se
puede definir mediante palabra digital de 3 bit. Estos 3 bit dan origen a 8 estados del inversor los
cuales se pueden representar como 8 vectores de tensión (vectores generadores). En la siguiente
imagen se representan los vectores generadores

Figura 1. Vectores Generadores
En la siguiente figura se muestra cómo es posible modular un vector en el sector 1 (entre V1 y
V2)

2
Laboratorio de Electrónica Industrial, Segundo Semestre 2010

Figura 2. Vector en el sector 1
Luego, para realizar la modulación es necesario calcular los tiempos Ta y Tb. Para ello se debe
considerar la representación de los 8 vectores generadores
2
‫ ܧ ܧ‬௝ଶగ ‫ ܧ‬௝ସగ
൬െ െ ݁ ଷ െ ݁ ଷ ൰ ൌ 0
3
2 2
2
2
‫ ܧ ܧ‬௝ଶగ ‫ ܧ‬௝ସగ
2
ሬሬሬԦ
ܸଵ ൌ ൬൅ െ ݁ ଷ െ ݁ ଷ ൰ ൌ ‫ܧ‬
3
2 2
2
3
ሬሬሬԦ
ܸ଴ =

ሬሬሬԦ
ܸଶ ൌ

௝గ
2
‫ ܧ ܧ‬௝ଶగ ‫ ܧ‬௝ସగ
2
൬൅ ൅ ݁ ଷ െ ݁ ଷ ൰ ൌ ‫ ݁ ∙ ܧ‬ଷ
3
2 2
2
3

ሬሬሬԦ ൌ
ܸଷ

௝ଶగ
2
‫ ܧ ܧ‬௝ଶగ ‫ ܧ‬௝ସగ
2
൬െ ൅ ݁ ଷ െ ݁ ଷ ൰ ൌ ‫ ݁ ∙ ܧ‬ଷ
3
2 2
2
3

ሬሬሬԦ ൌ
ܸସ

2
‫ ܧ ܧ‬௝ଶగ ‫ ܧ‬௝ସగ
2
൬െ ൅ ݁ ଷ ൅ ݁ ଷ ൰ ൌ ‫ ݁ ∙ ܧ‬௝గ
3
2 2
2
3

ሬሬሬԦ
ܸହ ൌ

௝ସగ
2
‫ ܧ ܧ‬௝ଶగ ‫ ܧ‬௝ସగ
2
൬െ െ ݁ ଷ ൅ ݁ ଷ ൰ ൌ ‫ ݁ ∙ ܧ‬ଷ
3
2 2
2
3

ሬሬሬԦ ൌ
ܸ଺

௝ହగ
2
‫ ܧ ܧ‬௝ଶగ ‫ ܧ‬௝ସగ
2
൬൅ െ ݁ ଷ ൅ ݁ ଷ ൰ ൌ ‫ ݁ ∙ ܧ‬ଷ
3
2 2
2
3

ሬሬሬԦ ൌ
ܸ଻

2
‫ ܧ ܧ‬௝ଶగ ‫ ܧ‬௝ସగ
൬൅ ൅ ݁ ଷ ൅ ݁ ଷ ൰ ൌ 0
3
2 2
2

Al estar en el primer cuadrante, la tensión de carga queda determinada por
ሬԦ
ܸൌ

ܶ௔
ܶ௕
ܶ௢
ሬሬሬԦ
ሬሬሬԦ
ሬሬሬԦ
ܸଵ ൅ ܸଶ ൅ ܸ
ܶ௦
ܶ௦
ܶ௦ ௢

Luego, los tiempos en que cada vector generador está activo se definen según
3
Laboratorio de Electrónica Industrial, Segundo Semestre 2010

ܸ௥௘௙
ߨ
ܶ௦ ∙ ‫ ݏ݋ܥ‬ቀ െ ߶ቁ
‫ܧ‬
3
ܸ௥௘௙
ܶ௕ ൌ √3
ܶ ∙ ܵ݅݊ሺ߶ሻ
‫ ܧ‬௦
ܶ௦ ൌ ܶ௢ ൅ ܶ௔ ൅ ܶ௕
ܶ௔ ൌ √3

Control V/f constante:
Es una técnica más simple que el control vectorial y consiste en mantener constante la relación
entre el voltaje de alimentación y la frecuencia, de modo tal de tener un flujo constante.
La manera más común de implementar este tipo de control es a través de la utilización de PWM.
El control se realiza midiendo la velocidad de giro, y a partir del resultado se puede determinar la
referencia de voltaje y frecuencia. El siguiente esquema muestra la situación

Figura 3. Esquema de control de A/f constante
1.4

Muestre el circuito de potencia del variador de frecuencia trifásico Eurotherm 605C.
Explique cada uno de sus componentes.

4
Laboratorio de Electrónica Industrial, Segundo Semestre 2010

Figura 4. Diagrama de bloques del circuito de potencia y sus conexiones reales
Como se puede observar en la figura anterior la potencia que viene de la red trifásica se conecta
de la siguiente manera: la primera fase en el primero de los conectores (L1) la siguiente en L2 y
la tercera fase en L3, la tierra física se conecta en la primera de las 4 conexiones para tierra que
tiene el sistema.
En las dos siguientes conexiones (alado de L3) están los puntos para medir el voltaje continuo
que le entrega el rectificador al inversor. Este voltaje esta medido desde la entrada al inversor no
de la salida del rectificador, pues acá ya viene filtrado.
Las 3 siguientes conexiones corresponden a las salidas del inversor que entregan la potencia al
motor, la se usan 2 nomenclaturas dependiendo de cómo estén llamadas las conexiones en el
motor: M1 U, M2 V, M3 W. También hay disponible una tierra para conectar el chasis del
motor.
Los terminales DBR permiten monitorear el voltaje CC en el inversor para evitar que en modo
regenerativo este supere valores que podrían dañar el inversor, controlando esto al interruptor de
freno. Finalmente están 2 terminales para monitorear la temperatura del motor y entregarle esta
información al control.
En el diagrama de bloques se puede observan cómo se interconectan todas las unidades: las tres
fases se conectan al rectificador, luego la salida CC del rectificador es filtrada para eliminar el
ripple, luego hay un circuito de carga para el condensador que evita peaks muy grandes de
corriente mientras el condensador se carga al valor de el voltaje CC.

5
Laboratorio de Electrónica Industrial, Segundo Semestre 2010

1.5

Explique para qué sirve cada uno de los botones del panel de control que se muestra
en la figura 5.1.

Figura 5. Panel de control de la 605c

TECLAS PARA OPERAR EL INVERSOR LOCALMENTE
Control - Cambia la dirección rotación del motor. Solo opera cundo el inversor está en
modo "Local Speed Control"
Control - Activa el motor a una velocidad determinada por el parámetro JOG SETPOINT.
Cuando la tecla esta desactivada el inversor vuelve a estar detenido. Solo opera cuando el
inversor es detenido y se encuentra en el modo "Local Start/Stop"
Control - Activa el motor a una velocidad determinada por el parámetro LOCAL
SETPOINT o REMOTE SETPOINT
Puesta a cero - Reinicia cualquier falla y entonces activa el motor. Solo opera cuando el
inversor esta en modo "Local Start/stop"
Control - Detiene el motor. Solo opera cuando el inversor está en modo "Local Sequence"
Puesta a cero - Reinicia cualquier falla y limpia el mensaje desplegado si la operación no
está activa
Control - Intercambia entre control local y remoto para las secuencias de Encendido y
Apagado (Seq) y Control de Velocidad (Ref). Cuando se intercambia el modo de operación,
el panel muestra automáticamente la referencia y los botones de desplazamiento estarán
habilitados para modificar la referencia

6
Laboratorio de Electrónica Industrial, Segundo Semestre 2010

TECLAS PARA PROGRAMAR EL INVERSOR
Navegación - Permite desplazarse hacia arriba a través de la lista de parámetros
Parámetro - Incrementa el valor del parámetro mostrado
Comando de reconocimiento - Confirma acción cuando se encuentra en menú de comandos
Navegación - Permite desplazarse hacia abajo a través de la lista de parámetros
Parámetro - Decrementa el valor del parámetro mostrado
Navegación - Muestra el nivel anterior del menú
Parámetro - Regresa a la lista de parámetros
Acuse de errores - Los acuses desplegarán fallas o mensajes de error
Navegación - Muestra el siguiente nivel del menú, o el primer parámetro del actual menú
Parámetro - Permite modificar un parámetro editable (esto es indicado por la aparición de
→	 a la izquierda de la línea inferior)
Navegación - Intercambia entre ubicaciones actuales dentro del menú de operación y
cualquier otro menú.

1.6

Mencione el procedimiento para realizar la autosintonía del inversor.

La auto-sintonía se utiliza para identificar y guardar los siguientes parámetros:
• Resistencia del estator
• Inductancia residual
• Inductancias mutuas
• Realimentación de corriente (si esta activada en el diagrama
de bloques del auto-tune)
Luego se sigue la siguiente secuencia en el menú MMI:

•
•

•

Con el nivel de visualización ‫	ܦܧܥܰܣܸܦܣ‬seleccionado, se
debe activar el menú de autosintonía. Presionar el botón M
para revelar la página de ‫.ܧܮܤܣܰܧ	ܧܷܱܷܰܶܶܣ‬
Presionar el botón M. Los botones de ascenso y descenso
intercambiarán los parámetros entre ‫.ܧܷܴܶ	ݕ	ܧܵܮܣܨ‬
Seleccione	ܴܷܶ‫ .ܧ‬Presionar el botón E para salir del
parámetro.
En la partida del inversor, la secuencia de auto-sintonía es iniciada. Cuando se completa
(después de un máximo de 10 segundos), el inversor es regresado al estado de detención y
el parámetro ‫ ܧܮܤܣܰܧ	ܧܷܱܷܰܶܶܣ‬es reseteado a ‫.ܧܵܮܣܨ‬

7
Laboratorio de Electrónica Industrial, Segundo Semestre 2010

1.7

¿Cómo se ajusta la referencia de velocidad del motor?

Hay dos formas de controlar la operación en cualquier instante: Start/Stop y Speed Control. Cada
una de ellas puede ser individualmente seleccionada para estar bajo control remoto o local.
Inicio/Detención local o remoto: Decide como el inversor comenzará y se detendrá
Control de velocidad local o remoto: Determina como controlará la velocidad del motor.
En cada caso, el control local y remoto es ofrecido utilizando lo siguiente:
Local: La estación de operación.
Remoto: Entradas y salidas análogas y digitales, Puerto RS232 o el Technology Option. Así, el
inversor puede operar en una de las cuatro combinaciones de modos remoto o local siguientes:

Figura 6. Combinaciones de modo remoto o local para el inicio, detención y control de
velocidad
Si la combinación por defecto de Inicio/Detención y Control de velocidad remota no es la
adecuada para la aplicación entonces se deben seguir las siguientes instrucciones para seleccionar
la combinación adecuada:
Vaya al menú LOCAL CONTROL en el nivel 4 y seleccione:
LOCAL ONLY: sólo establece de control local
REMOTE ONLY: establece sólo mando a distancia
LOCAL/REMOTE: permite utilizar la tecla L / R para
seleccionar el control

8
Laboratorio de Electrónica Industrial, Segundo Semestre 2010

1.8

¿Cómo se realiza la inversión de marcha?

Mientras gira el motor se encuentra en funcionamiento, es necesario detenerlo para poder
efectuar el cambio de sentido en el giro que posee; para ello se presiona el botón STOP como
mínimo 0,1ሾ‫݃݁ݏ‬ሿ, por lo que es recomendable presionarlo unos 0,5ሾ‫݃݁ݏ‬ሿ, para asegurarse que
este se detenga.
Una vez que el motor se detiene, se debe habilitar la marcha del nuevo giro. Si no se detiene el
motor antes de efectuar esta operación, dicha operación no será considerada por el convertidor.

1.9

¿Cuál es la frecuencia de conmutación del inversor?

El bloque PATTERN GEN permite modificar los parámetros de la PWM, uno de estos
parámetros es la frecuencia de conmutación: PATTERN GEN FREQ. Se selecciona una de las
tres opciones disponibles para la frecuencia.
0: 3[kHz]
1: 6[kHz]
2: 9[kHz]
Acá se presenta un compromiso al elegir la frecuencia pues a mayor frecuencia, menor ruido se le
entrega al motor pero las perdidas por conmutación aumentan.
Internamente está fijada en 3[kHz] con 0.75 [kW]

9
Laboratorio de Electrónica Industrial, Segundo Semestre 2010

1.10 ¿El variador de frecuencia en su conjunto es capaz de entregar energía a la red en el
régimen de regeneración? Explique cómo se pueden manejar cargas regenerativas en
este variador de frecuencia.
Durante el frenado o el sobre-transporte de carga, el motor actúa como generador entregando
energía al inversor, esta energía hace subir los niveles de voltaje en el enlace CC por lo que el
control está continuamente monitoreando estos niveles. La energía que puede absorber el
condensador del enlace es pequeña. Para proteger los circuitos del inversor y el condensador el
sistema disipa energía a través de la resistencia de frenado (810V para 400V nominal o 890V para
500V voltaje nominal. se consideran sobre voltaje) que está conectada de forma externa, esta energía no
puede ser devuelta a la red porque los diodos del rectificador solo conducen corriente en una dirección.

Figura 7. Diagrama del control de la resistencia de frenado
También exististe la posibilidad de, en el menú de limitación de corriente, poner un límite para la
corriente en modo regenerativo, si la corriente supera este limite el inversor aumenta su
frecuencia para compensar esta sobre-corriente. Así en modo regenerativo el inversor posee
métodos para disipar energía monitoreando la corriente y el voltaje del enlace DC.
1.11 Comente y señale la importancia de los diferentes parámetros de la tabla 4-3 de
manual del inversor.
El inversor debe ser sintonizado al motor en uso para coincidir con los parámetros en el inversor
a los del motor que está siendo controlado. Los parámetros más importantes son:
-

Resistencia de estator por fase
Inductancia residual por fase
Inductancia mutua (magnetizante) por fase

La sintonización puede ser realizada en forma manual o ingresando los parámetros conocidos, o
calculando los valores de los parámetros usando el circuito equivalente por fase del motor
10
Laboratorio de Electrónica Industrial, Segundo Semestre 2010

Los valores de los parámetros se ingresan en VECTOR SETUP el cual se encuentra en el nivel 2
Tabla 1. Tabla 4-3 del manual del inversor
Parámetros del VECTOR
SETUP

Por defecto
FALSE

VECTOR ENABLE
NAMEPLATE RPM
MOTOR POLES
MOTOR VOLTS
SUPPLY VOLTAGE
MOTOR CONNECTION
AUTOTUNE ENABLE
STATOR RES
FIELD
LEAKAGE INDUC
MUTUAL INDUC

*1420 rpm
4
*400[v]
*xxxx.x [V]
*DELTA
FALSE
*1 [OHM]
0.0%
*10 [mH]
*1000 [mH]

Breve explicación
La compensación de deslizamiento está habilitada.
Su cambio a TRUE habilita la operación en modo
vectorial de medición de flujo.
Velocidad nominal del motor
Número de polos del motor
Máxima salida de tensión al motor.
Tensión de alimentación entre líneas rms entregado
al inversor (sólo lectura).
Tipo de conexión del motor
Habilita la característica de auto-sintonía
Resistencia por fase del estator
Utilizado sólo para diagnóstico
Inductancia residual por fase en el estator
Inductancia mutua (magnetizante) por fase en el
estator

*estos valores dependen del “power build” de la unidad indicada en el código del producto

1.12 Simule con PSIM un motor de inducción alimentado por una fuente trifásica
sinusoidal, utilizando los parámetros de la tabla 1. Muestre los voltajes y corrientes en
estado estacionario. Muestre la velocidad en rpm. Calcule potencia activa y factor de
potencia.
Tabla 2. Parámetros para la simulación del variador de frecuencia
Parámetro
Voltaje de alimentación
Capacitancia enlace DC
Frecuencia nominal del motor
Resistencia de estator
Inductancia de estator
Resistencia de rotor
Inductancia de rotor
Inductancia magnetizante
Momento de inercia
Corriente de roce de carga

11

Valor
Vs = 380[VRMS ll]
CDC = 1000[µF]
fo = 50[Hz]
Rs = 0,5[Ω]
Ls = 1,5[mH]
Rr = 0,156[Ω]
Lr = 0,74[mH]
Lm = 50[mH]
J = 0.4[kg·m2]
β = 0,4
Laboratorio de Electrónica Industrial, Segundo Semestre 2010

Con los parámetros de la tabla anterior se realiza la implementación del circuito en PSIM. En la
siguiente imagen se muestra el circuito utilizado

Figura 8. Circuito en PSIM
Con el circuito anterior y considerando un torque de carga en estado estacionario debido al uso
del motor DC (sólo se considera el efecto del roce)
ܶൌ‫ܬ‬

݀߱
‫݀ܽݎ‬
൅ ߚ߱ ൅ ܶ௘௟ ൌ 0.4 ∙ 150.8 ൤
൨ ൌ 60.32ሾܰ݉ሿ
݀‫ݐ‬
‫ݏ‬

En la siguiente figura se tiene el resultado de la simulación. Al tener un sistema trifásico basta
con identificar sólo una de las fases ya que las otras únicamente están desfasadas en el tiempo.
Por lo tanto, sólo se muestran los resultados para la fase a.

Figura 9. Señales en estado estacionario: a) Voltaje Vab b) Corriente Ia c) Velocidad ω
12
Laboratorio de Electrónica Industrial, Segundo Semestre 2010

Debido a que la alimentación del motor se utilizan elementos ideales, las formas de onda
obtenidas son perfectamente sinusoidales (voltaje y corriente). Además como no existen
elementos de conmutación, los resultados se rigen por el tipo de carga. Se tiene que el voltaje y la
corriente se encuentran desfasados en un tiempo ϕ.
En la próxima figura se muestran los transientes para la corriente y la velocidad

Figura 10. Transiente: a) Corriente Ia b) Velocidad ω
Se observa que para que se alcance el estado estacionario deben transcurrir cerca de 400[ms]. La
velocidad alcanza un valor estacionario aproximado de 1482.5[rpm], en tanto la corriente pasa de
un valor peak cercano a 300[A] mientras el motor acelera a 28.79[A] (20.36[Arms]) una vez que
se alcanza la velocidad de operación.
Utilizando los instrumentos apropiados (como se muestra en la figura del circuito) es posible
obtener directamente los valores de la potencia activa (P) y el factor de potencia (PF). Luego se
tiene
ܲ ൌ 10.096544ሾ‫ܹܭ‬ሿ
ܲ‫ ܨ‬ൌ 0.75565
Los valores anteriores también pueden obtenerse a partir del desfase existente entre el voltaje y la
corriente. El coseno de dicho desfase (convertido a las unidades correspondientes) representa el
DPF. Como la distorsión es mínima debido a la procedencia de las señales se tiene que DF=1.
Luego el factor de potencia es ‫ݏ݋ܥ‬ሺ߶ሻ. A su vez, la potencia activa se calcula a través potencia
aparente y el factor de potencia (valores ya conocidos).

13
Laboratorio de Electrónica Industrial, Segundo Semestre 2010

1.13 Implemente en PSIM un variador de frecuencia utilizando modulación PWM para el
inversor. Simule el accionamiento alimentando el motor AC de la pregunta anterior,
utilizando un ´índice de modulación unitario para el inversor. Muestre los voltajes y
corrientes del motor en estado estacionario. Muestre el voltaje DC y la velocidad en
rpm. Calcule potencia activa y factor de potencia. Calcule el THD del voltaje y la
corriente de salida y compare con los anteriores.
Se implementa el variador de frecuencia en PSIM lo que se muestra en la siguiente imagen

Figura 11. Circuito en PSIM
Para obtener el voltaje DC para el inversor se utiliza un puente de diodos y un condensador de
CDC=1000[µF]. La modulación se realiza con una triangular de frecuencia 3[kHz] (una de las
posibilidades de frecuencia de conmutación para el inversor real) que se compara con una onda
sinusoidal de 50[Hz] para cada fase. Se utiliza un índice de modulación unitario.
En la siguiente figura se tienen los estados estacionarios para el voltaje y corriente del motor
(sólo una fase)

14
Laboratorio de Electrónica Industrial, Segundo Semestre 2010

Figura 12. a) Voltaje Vab b) Corriente Ia
Las formas de onda obtenidas son claro efecto de la conmutación de los semiconductores. Se
observa que la corriente es bastante filtrada debido a la característica RL del motor. Inicialmente
la corriente adquiere altos valores, cercanos a los 250[A] para luego alcanzar 22.06[A] en estado
estacionario. Cabe destacar que el tiempo en alcanzar este estado (una vez que la velocidad es
constante) es mayor que en el caso del ítem 1.12 debido a que durante el transiente la corriente
tiene una menor amplitud.
Para el voltaje del condensador y la velocidad se tiene lo siguiente

Figura 13. a) Voltaje VDC b) Velocidad ω

15
Laboratorio de Electrónica Industrial, Segundo Semestre 2010

En el voltaje DC se tiene el riple característico de la salida de un rectificador (más un
condensador). Se observan los 6 pulsos formados por el puente de diodos. El valor medio del
voltaje es 521.3[V]. La velocidad, a diferencia del caso anterior tarda más tiempo en alcanzar su
estado estacionario (cerca de 0.7[s]), alcanzando un valor de 1474[rpm].
Los instrumentos y herramientas de análisis con que cuenta PSIM permiten obtener fácilmente
los valores de potencia activa y reactiva, además de los THD de las señales de interés. Es así
como se tienen los siguientes valores extraídos desde la simulación
ܲ ൌ 10.096544[‫]ܹܭ‬
ܲ‫3175.0 = ܨ‬
ܶ‫ܦܪ‬௩ = 68.78%
ܶ‫ܦܪ‬௜ = 10.78%
Además, se tiene que los valores de THD de la simulación del ítem 1.12 son casi nulos ya que las
señales no presentan distorsión alguna, dado que sólo se utiliza como alimentación una fuente
sinusoidal ideal.

16

Más contenido relacionado

La actualidad más candente

arranque-de-motores-trifasicos
 arranque-de-motores-trifasicos arranque-de-motores-trifasicos
arranque-de-motores-trifasicosEléctricos BMC
 
Armadura y sus efectos
Armadura y sus efectosArmadura y sus efectos
Armadura y sus efectoszvicente21
 
Rele termico
Rele termicoRele termico
Rele termicoVIS SRL
 
Variadores de frecuencia (drives)
Variadores de frecuencia  (drives)Variadores de frecuencia  (drives)
Variadores de frecuencia (drives)misiku_mich
 
Practica 7 generador sincrono ii
Practica 7 generador sincrono iiPractica 7 generador sincrono ii
Practica 7 generador sincrono iiDuperlyLopezGamboa1
 
Electrónica digital: Circuitos secuenciales sincrónicos
Electrónica digital: Circuitos secuenciales sincrónicos Electrónica digital: Circuitos secuenciales sincrónicos
Electrónica digital: Circuitos secuenciales sincrónicos SANTIAGO PABLO ALBERTO
 
Preinforme rectificador controlado
Preinforme rectificador controladoPreinforme rectificador controlado
Preinforme rectificador controladoLautaro Narvaez
 
Maquinas sincronas y de cd
Maquinas sincronas y de cdMaquinas sincronas y de cd
Maquinas sincronas y de cd20_masambriento
 
sistemas de protecciones en baja tensión
sistemas de protecciones en baja tensión sistemas de protecciones en baja tensión
sistemas de protecciones en baja tensión Numa Abreu
 
Controladores y acciones de control
Controladores y acciones de controlControladores y acciones de control
Controladores y acciones de controljeickson sulbaran
 
Calculo de corto circuito e impedancias
Calculo de corto circuito e impedanciasCalculo de corto circuito e impedancias
Calculo de corto circuito e impedanciasLeandro Marin
 
Electrónica potencia 2
Electrónica potencia 2Electrónica potencia 2
Electrónica potencia 2JUAN AGUILAR
 
Transformadores (conexiones y pruebas)
Transformadores  (conexiones y pruebas)Transformadores  (conexiones y pruebas)
Transformadores (conexiones y pruebas)norenelson
 

La actualidad más candente (20)

arranque-de-motores-trifasicos
 arranque-de-motores-trifasicos arranque-de-motores-trifasicos
arranque-de-motores-trifasicos
 
Factor de potencia
Factor de potencia Factor de potencia
Factor de potencia
 
Armadura y sus efectos
Armadura y sus efectosArmadura y sus efectos
Armadura y sus efectos
 
Rectificadores no controlados
Rectificadores no controladosRectificadores no controlados
Rectificadores no controlados
 
Rele termico
Rele termicoRele termico
Rele termico
 
Variadores de frecuencia (drives)
Variadores de frecuencia  (drives)Variadores de frecuencia  (drives)
Variadores de frecuencia (drives)
 
Practica 7 generador sincrono ii
Practica 7 generador sincrono iiPractica 7 generador sincrono ii
Practica 7 generador sincrono ii
 
Electrónica digital: Circuitos secuenciales sincrónicos
Electrónica digital: Circuitos secuenciales sincrónicos Electrónica digital: Circuitos secuenciales sincrónicos
Electrónica digital: Circuitos secuenciales sincrónicos
 
Preinforme rectificador controlado
Preinforme rectificador controladoPreinforme rectificador controlado
Preinforme rectificador controlado
 
Maquinas sincronas y de cd
Maquinas sincronas y de cdMaquinas sincronas y de cd
Maquinas sincronas y de cd
 
sistemas de protecciones en baja tensión
sistemas de protecciones en baja tensión sistemas de protecciones en baja tensión
sistemas de protecciones en baja tensión
 
94825930 cap-12-trifasicos
94825930 cap-12-trifasicos94825930 cap-12-trifasicos
94825930 cap-12-trifasicos
 
Laboratorio n8
Laboratorio n8Laboratorio n8
Laboratorio n8
 
MAQUINA SINCRONICA
MAQUINA SINCRONICAMAQUINA SINCRONICA
MAQUINA SINCRONICA
 
Controladores y acciones de control
Controladores y acciones de controlControladores y acciones de control
Controladores y acciones de control
 
Calculo de corto circuito e impedancias
Calculo de corto circuito e impedanciasCalculo de corto circuito e impedancias
Calculo de corto circuito e impedancias
 
Electrónica potencia 2
Electrónica potencia 2Electrónica potencia 2
Electrónica potencia 2
 
Dc machines 1
Dc machines 1Dc machines 1
Dc machines 1
 
Cap 05 osciladores
Cap 05 osciladoresCap 05 osciladores
Cap 05 osciladores
 
Transformadores (conexiones y pruebas)
Transformadores  (conexiones y pruebas)Transformadores  (conexiones y pruebas)
Transformadores (conexiones y pruebas)
 

Destacado

Preinforme rectificador no controlado
Preinforme rectificador no controladoPreinforme rectificador no controlado
Preinforme rectificador no controladoLautaro Narvaez
 
Preinforme fuente switching
Preinforme fuente switchingPreinforme fuente switching
Preinforme fuente switchingLautaro Narvaez
 
Introducción PSIM
Introducción PSIMIntroducción PSIM
Introducción PSIMDavid López
 
final control motores AC
final control motores ACfinal control motores AC
final control motores ACLautaro Narvaez
 
final rectificacion no controlada
final rectificacion no controladafinal rectificacion no controlada
final rectificacion no controladaLautaro Narvaez
 
final rectificadores controlados
final rectificadores controladosfinal rectificadores controlados
final rectificadores controladosLautaro Narvaez
 

Destacado (9)

preinforme PWM
preinforme PWMpreinforme PWM
preinforme PWM
 
Preinforme rectificador no controlado
Preinforme rectificador no controladoPreinforme rectificador no controlado
Preinforme rectificador no controlado
 
Preinforme fuente switching
Preinforme fuente switchingPreinforme fuente switching
Preinforme fuente switching
 
Introducción PSIM
Introducción PSIMIntroducción PSIM
Introducción PSIM
 
final fuente switching
final fuente switchingfinal fuente switching
final fuente switching
 
final control motores AC
final control motores ACfinal control motores AC
final control motores AC
 
final rectificacion no controlada
final rectificacion no controladafinal rectificacion no controlada
final rectificacion no controlada
 
final PWM
final PWMfinal PWM
final PWM
 
final rectificadores controlados
final rectificadores controladosfinal rectificadores controlados
final rectificadores controlados
 

Similar a Preinforme control motores AC

Control de velocidad de motores
Control de velocidad de motoresControl de velocidad de motores
Control de velocidad de motoresTHiiNK
 
Informe del sentron pac4200
Informe del sentron pac4200Informe del sentron pac4200
Informe del sentron pac4200julianrz
 
Control escalar motor_de_induccion_trifasico.
Control escalar motor_de_induccion_trifasico.Control escalar motor_de_induccion_trifasico.
Control escalar motor_de_induccion_trifasico.Armando Aguilar
 
30672573 reporte-de-practica-pwm-555
30672573 reporte-de-practica-pwm-55530672573 reporte-de-practica-pwm-555
30672573 reporte-de-practica-pwm-555AdRix MarTz
 
Variadores de frecuencia
Variadores de frecuenciaVariadores de frecuencia
Variadores de frecuenciaHamilton Rios
 
Documentacion3 variador de velocidad
Documentacion3 variador de velocidadDocumentacion3 variador de velocidad
Documentacion3 variador de velocidadJOSE GONZALEZ
 
357474244 la-maquina-de-corriente-continua-operando-como-generador
357474244 la-maquina-de-corriente-continua-operando-como-generador357474244 la-maquina-de-corriente-continua-operando-como-generador
357474244 la-maquina-de-corriente-continua-operando-como-generadorfernandomedina183
 
Variadores de frecuencia_tida_13-14
Variadores de frecuencia_tida_13-14Variadores de frecuencia_tida_13-14
Variadores de frecuencia_tida_13-14Gabriel Malagon
 
Microcontroladores: Inversor trifásico SPWM para el control de velocidad de u...
Microcontroladores: Inversor trifásico SPWM para el control de velocidad de u...Microcontroladores: Inversor trifásico SPWM para el control de velocidad de u...
Microcontroladores: Inversor trifásico SPWM para el control de velocidad de u...SANTIAGO PABLO ALBERTO
 

Similar a Preinforme control motores AC (20)

Informe 3-eli325
Informe 3-eli325Informe 3-eli325
Informe 3-eli325
 
Control de velocidad de motores
Control de velocidad de motoresControl de velocidad de motores
Control de velocidad de motores
 
Informe del sentron pac4200
Informe del sentron pac4200Informe del sentron pac4200
Informe del sentron pac4200
 
Fundamentos básicos de un servomotor
Fundamentos básicos de un servomotorFundamentos básicos de un servomotor
Fundamentos básicos de un servomotor
 
Control escalar motor_de_induccion_trifasico.
Control escalar motor_de_induccion_trifasico.Control escalar motor_de_induccion_trifasico.
Control escalar motor_de_induccion_trifasico.
 
370368291 4-docx
370368291 4-docx370368291 4-docx
370368291 4-docx
 
analisis deslastre
analisis deslastreanalisis deslastre
analisis deslastre
 
Variadores de velocidad
Variadores de velocidadVariadores de velocidad
Variadores de velocidad
 
30672573 reporte-de-practica-pwm-555
30672573 reporte-de-practica-pwm-55530672573 reporte-de-practica-pwm-555
30672573 reporte-de-practica-pwm-555
 
Variadores de frecuencia
Variadores de frecuenciaVariadores de frecuencia
Variadores de frecuencia
 
Variadores de frecuencia
Variadores de frecuenciaVariadores de frecuencia
Variadores de frecuencia
 
Documentacion3 variador de velocidad
Documentacion3 variador de velocidadDocumentacion3 variador de velocidad
Documentacion3 variador de velocidad
 
357474244 la-maquina-de-corriente-continua-operando-como-generador
357474244 la-maquina-de-corriente-continua-operando-como-generador357474244 la-maquina-de-corriente-continua-operando-como-generador
357474244 la-maquina-de-corriente-continua-operando-como-generador
 
Variadores de frecuencia_tida_13-14
Variadores de frecuencia_tida_13-14Variadores de frecuencia_tida_13-14
Variadores de frecuencia_tida_13-14
 
1.6 1.7
1.6 1.71.6 1.7
1.6 1.7
 
Apuntes control i unidad iii
Apuntes control i   unidad iiiApuntes control i   unidad iii
Apuntes control i unidad iii
 
Pwm modulation
Pwm modulationPwm modulation
Pwm modulation
 
DISEÑO DE UN SERVO.pdf
DISEÑO DE UN SERVO.pdfDISEÑO DE UN SERVO.pdf
DISEÑO DE UN SERVO.pdf
 
Microcontroladores: Inversor trifásico SPWM para el control de velocidad de u...
Microcontroladores: Inversor trifásico SPWM para el control de velocidad de u...Microcontroladores: Inversor trifásico SPWM para el control de velocidad de u...
Microcontroladores: Inversor trifásico SPWM para el control de velocidad de u...
 
231274831 frenado-dinamico
231274831 frenado-dinamico231274831 frenado-dinamico
231274831 frenado-dinamico
 

Preinforme control motores AC

  • 1. UNIVERSIDAD TÉCNICA FEDERICO SANTA MARÍA DEPARTAMENTO DE ELECTRÓNICA Laboratorio de Electrónica Industrial PREINFORME “Control de motores AC” Experiencia Grupo Fecha 4 Lautaro Narvaez Paredes 8 Juan Vargas Hernández 29/11/2010 Revisado por Nota
  • 2. Laboratorio de Electrónica Industrial, Segundo Semestre 2010 1. PREINFORME 1.1 Escriba la ecuación de torque de un motor de inducción. A partir de esta expresión explique por qué el control de este motor es más complejo que el motor DC. A partir del modelo eléctrico del motor de inducción se puede escribir la siguiente ecuación que representa el torque 3‫݌‬ ܶ= ‫߱ݏ‬௘ ܴ௥ ∙ ܸ ଶ ௦ ቀܴ௦ + ܴ௥ ଶ ቁ + ሺܺ௦ + ܺ௥ ሻଶ ‫ݏ‬ Donde, p: ߱௘ : ܸ: ௦ ܴ௥ : ܺ௥ : ܴ௦ : ܺ௦ : Número de polos Frecuencia de red (߱௘ = 2ߨ݂௘ ) Voltaje de alimentación Resistencia de rotor Reactancia de rotor Resistencia de estator Reactancia de estator Luego, de la fórmula anterior se tiene que el torque depende directamente de la frecuencia por lo cual es necesario utilizar un sistema que permita obtener múltiples frecuencias a partir de la de red. Esto claramente presenta una mayor complejidad que la máquina de corriente continua, donde el torque sólo depende de la corriente de armadura. 1.2 Si un motor de inducción gira a 1440[rpm], y la frecuencia de alimentación es de 50[Hz]. ¿Cuántos polos tiene el motor? La siguiente ecuación rige la velocidad de giro de un motor de inducción ߟ= 60݂ ‫݌‬ Donde η es la velocidad en [rpm], f la frecuencia de alimentación y p el número de pares de polos del motor, despejando se obtiene ‫=݌‬ 60݂ 60 ∙ 50 = ≈2 ߟ 1440 Luego, el motor posee 4 polos. 1
  • 3. Laboratorio de Electrónica Industrial, Segundo Semestre 2010 1.3 Los métodos de control más utilizados para máquinas de inducción son el control vectorial y el control de V/f constante. Explique brevemente cada uno de ellos. Modulación Vectorial: A través de la modulación vectorial se desea controlar de manera independiente el flujo y el torque del motor. De esta forma, se puede controlar el motor AC como si se tratase de un motor DC. Al considerar un inversor trifásico de dos niveles es posible contar con 8 posibles estados de conmutación. Por lo tanto, el control de los 3 semiconductores de la rama superior del inversor se puede definir mediante palabra digital de 3 bit. Estos 3 bit dan origen a 8 estados del inversor los cuales se pueden representar como 8 vectores de tensión (vectores generadores). En la siguiente imagen se representan los vectores generadores Figura 1. Vectores Generadores En la siguiente figura se muestra cómo es posible modular un vector en el sector 1 (entre V1 y V2) 2
  • 4. Laboratorio de Electrónica Industrial, Segundo Semestre 2010 Figura 2. Vector en el sector 1 Luego, para realizar la modulación es necesario calcular los tiempos Ta y Tb. Para ello se debe considerar la representación de los 8 vectores generadores 2 ‫ ܧ ܧ‬௝ଶగ ‫ ܧ‬௝ସగ ൬െ െ ݁ ଷ െ ݁ ଷ ൰ ൌ 0 3 2 2 2 2 ‫ ܧ ܧ‬௝ଶగ ‫ ܧ‬௝ସగ 2 ሬሬሬԦ ܸଵ ൌ ൬൅ െ ݁ ଷ െ ݁ ଷ ൰ ൌ ‫ܧ‬ 3 2 2 2 3 ሬሬሬԦ ܸ଴ = ሬሬሬԦ ܸଶ ൌ ௝గ 2 ‫ ܧ ܧ‬௝ଶగ ‫ ܧ‬௝ସగ 2 ൬൅ ൅ ݁ ଷ െ ݁ ଷ ൰ ൌ ‫ ݁ ∙ ܧ‬ଷ 3 2 2 2 3 ሬሬሬԦ ൌ ܸଷ ௝ଶగ 2 ‫ ܧ ܧ‬௝ଶగ ‫ ܧ‬௝ସగ 2 ൬െ ൅ ݁ ଷ െ ݁ ଷ ൰ ൌ ‫ ݁ ∙ ܧ‬ଷ 3 2 2 2 3 ሬሬሬԦ ൌ ܸସ 2 ‫ ܧ ܧ‬௝ଶగ ‫ ܧ‬௝ସగ 2 ൬െ ൅ ݁ ଷ ൅ ݁ ଷ ൰ ൌ ‫ ݁ ∙ ܧ‬௝గ 3 2 2 2 3 ሬሬሬԦ ܸହ ൌ ௝ସగ 2 ‫ ܧ ܧ‬௝ଶగ ‫ ܧ‬௝ସగ 2 ൬െ െ ݁ ଷ ൅ ݁ ଷ ൰ ൌ ‫ ݁ ∙ ܧ‬ଷ 3 2 2 2 3 ሬሬሬԦ ൌ ܸ଺ ௝ହగ 2 ‫ ܧ ܧ‬௝ଶగ ‫ ܧ‬௝ସగ 2 ൬൅ െ ݁ ଷ ൅ ݁ ଷ ൰ ൌ ‫ ݁ ∙ ܧ‬ଷ 3 2 2 2 3 ሬሬሬԦ ൌ ܸ଻ 2 ‫ ܧ ܧ‬௝ଶగ ‫ ܧ‬௝ସగ ൬൅ ൅ ݁ ଷ ൅ ݁ ଷ ൰ ൌ 0 3 2 2 2 Al estar en el primer cuadrante, la tensión de carga queda determinada por ሬԦ ܸൌ ܶ௔ ܶ௕ ܶ௢ ሬሬሬԦ ሬሬሬԦ ሬሬሬԦ ܸଵ ൅ ܸଶ ൅ ܸ ܶ௦ ܶ௦ ܶ௦ ௢ Luego, los tiempos en que cada vector generador está activo se definen según 3
  • 5. Laboratorio de Electrónica Industrial, Segundo Semestre 2010 ܸ௥௘௙ ߨ ܶ௦ ∙ ‫ ݏ݋ܥ‬ቀ െ ߶ቁ ‫ܧ‬ 3 ܸ௥௘௙ ܶ௕ ൌ √3 ܶ ∙ ܵ݅݊ሺ߶ሻ ‫ ܧ‬௦ ܶ௦ ൌ ܶ௢ ൅ ܶ௔ ൅ ܶ௕ ܶ௔ ൌ √3 Control V/f constante: Es una técnica más simple que el control vectorial y consiste en mantener constante la relación entre el voltaje de alimentación y la frecuencia, de modo tal de tener un flujo constante. La manera más común de implementar este tipo de control es a través de la utilización de PWM. El control se realiza midiendo la velocidad de giro, y a partir del resultado se puede determinar la referencia de voltaje y frecuencia. El siguiente esquema muestra la situación Figura 3. Esquema de control de A/f constante 1.4 Muestre el circuito de potencia del variador de frecuencia trifásico Eurotherm 605C. Explique cada uno de sus componentes. 4
  • 6. Laboratorio de Electrónica Industrial, Segundo Semestre 2010 Figura 4. Diagrama de bloques del circuito de potencia y sus conexiones reales Como se puede observar en la figura anterior la potencia que viene de la red trifásica se conecta de la siguiente manera: la primera fase en el primero de los conectores (L1) la siguiente en L2 y la tercera fase en L3, la tierra física se conecta en la primera de las 4 conexiones para tierra que tiene el sistema. En las dos siguientes conexiones (alado de L3) están los puntos para medir el voltaje continuo que le entrega el rectificador al inversor. Este voltaje esta medido desde la entrada al inversor no de la salida del rectificador, pues acá ya viene filtrado. Las 3 siguientes conexiones corresponden a las salidas del inversor que entregan la potencia al motor, la se usan 2 nomenclaturas dependiendo de cómo estén llamadas las conexiones en el motor: M1 U, M2 V, M3 W. También hay disponible una tierra para conectar el chasis del motor. Los terminales DBR permiten monitorear el voltaje CC en el inversor para evitar que en modo regenerativo este supere valores que podrían dañar el inversor, controlando esto al interruptor de freno. Finalmente están 2 terminales para monitorear la temperatura del motor y entregarle esta información al control. En el diagrama de bloques se puede observan cómo se interconectan todas las unidades: las tres fases se conectan al rectificador, luego la salida CC del rectificador es filtrada para eliminar el ripple, luego hay un circuito de carga para el condensador que evita peaks muy grandes de corriente mientras el condensador se carga al valor de el voltaje CC. 5
  • 7. Laboratorio de Electrónica Industrial, Segundo Semestre 2010 1.5 Explique para qué sirve cada uno de los botones del panel de control que se muestra en la figura 5.1. Figura 5. Panel de control de la 605c TECLAS PARA OPERAR EL INVERSOR LOCALMENTE Control - Cambia la dirección rotación del motor. Solo opera cundo el inversor está en modo "Local Speed Control" Control - Activa el motor a una velocidad determinada por el parámetro JOG SETPOINT. Cuando la tecla esta desactivada el inversor vuelve a estar detenido. Solo opera cuando el inversor es detenido y se encuentra en el modo "Local Start/Stop" Control - Activa el motor a una velocidad determinada por el parámetro LOCAL SETPOINT o REMOTE SETPOINT Puesta a cero - Reinicia cualquier falla y entonces activa el motor. Solo opera cuando el inversor esta en modo "Local Start/stop" Control - Detiene el motor. Solo opera cuando el inversor está en modo "Local Sequence" Puesta a cero - Reinicia cualquier falla y limpia el mensaje desplegado si la operación no está activa Control - Intercambia entre control local y remoto para las secuencias de Encendido y Apagado (Seq) y Control de Velocidad (Ref). Cuando se intercambia el modo de operación, el panel muestra automáticamente la referencia y los botones de desplazamiento estarán habilitados para modificar la referencia 6
  • 8. Laboratorio de Electrónica Industrial, Segundo Semestre 2010 TECLAS PARA PROGRAMAR EL INVERSOR Navegación - Permite desplazarse hacia arriba a través de la lista de parámetros Parámetro - Incrementa el valor del parámetro mostrado Comando de reconocimiento - Confirma acción cuando se encuentra en menú de comandos Navegación - Permite desplazarse hacia abajo a través de la lista de parámetros Parámetro - Decrementa el valor del parámetro mostrado Navegación - Muestra el nivel anterior del menú Parámetro - Regresa a la lista de parámetros Acuse de errores - Los acuses desplegarán fallas o mensajes de error Navegación - Muestra el siguiente nivel del menú, o el primer parámetro del actual menú Parámetro - Permite modificar un parámetro editable (esto es indicado por la aparición de → a la izquierda de la línea inferior) Navegación - Intercambia entre ubicaciones actuales dentro del menú de operación y cualquier otro menú. 1.6 Mencione el procedimiento para realizar la autosintonía del inversor. La auto-sintonía se utiliza para identificar y guardar los siguientes parámetros: • Resistencia del estator • Inductancia residual • Inductancias mutuas • Realimentación de corriente (si esta activada en el diagrama de bloques del auto-tune) Luego se sigue la siguiente secuencia en el menú MMI: • • • Con el nivel de visualización ‫ ܦܧܥܰܣܸܦܣ‬seleccionado, se debe activar el menú de autosintonía. Presionar el botón M para revelar la página de ‫.ܧܮܤܣܰܧ ܧܷܱܷܰܶܶܣ‬ Presionar el botón M. Los botones de ascenso y descenso intercambiarán los parámetros entre ‫.ܧܷܴܶ ݕ ܧܵܮܣܨ‬ Seleccione ܴܷܶ‫ .ܧ‬Presionar el botón E para salir del parámetro. En la partida del inversor, la secuencia de auto-sintonía es iniciada. Cuando se completa (después de un máximo de 10 segundos), el inversor es regresado al estado de detención y el parámetro ‫ ܧܮܤܣܰܧ ܧܷܱܷܰܶܶܣ‬es reseteado a ‫.ܧܵܮܣܨ‬ 7
  • 9. Laboratorio de Electrónica Industrial, Segundo Semestre 2010 1.7 ¿Cómo se ajusta la referencia de velocidad del motor? Hay dos formas de controlar la operación en cualquier instante: Start/Stop y Speed Control. Cada una de ellas puede ser individualmente seleccionada para estar bajo control remoto o local. Inicio/Detención local o remoto: Decide como el inversor comenzará y se detendrá Control de velocidad local o remoto: Determina como controlará la velocidad del motor. En cada caso, el control local y remoto es ofrecido utilizando lo siguiente: Local: La estación de operación. Remoto: Entradas y salidas análogas y digitales, Puerto RS232 o el Technology Option. Así, el inversor puede operar en una de las cuatro combinaciones de modos remoto o local siguientes: Figura 6. Combinaciones de modo remoto o local para el inicio, detención y control de velocidad Si la combinación por defecto de Inicio/Detención y Control de velocidad remota no es la adecuada para la aplicación entonces se deben seguir las siguientes instrucciones para seleccionar la combinación adecuada: Vaya al menú LOCAL CONTROL en el nivel 4 y seleccione: LOCAL ONLY: sólo establece de control local REMOTE ONLY: establece sólo mando a distancia LOCAL/REMOTE: permite utilizar la tecla L / R para seleccionar el control 8
  • 10. Laboratorio de Electrónica Industrial, Segundo Semestre 2010 1.8 ¿Cómo se realiza la inversión de marcha? Mientras gira el motor se encuentra en funcionamiento, es necesario detenerlo para poder efectuar el cambio de sentido en el giro que posee; para ello se presiona el botón STOP como mínimo 0,1ሾ‫݃݁ݏ‬ሿ, por lo que es recomendable presionarlo unos 0,5ሾ‫݃݁ݏ‬ሿ, para asegurarse que este se detenga. Una vez que el motor se detiene, se debe habilitar la marcha del nuevo giro. Si no se detiene el motor antes de efectuar esta operación, dicha operación no será considerada por el convertidor. 1.9 ¿Cuál es la frecuencia de conmutación del inversor? El bloque PATTERN GEN permite modificar los parámetros de la PWM, uno de estos parámetros es la frecuencia de conmutación: PATTERN GEN FREQ. Se selecciona una de las tres opciones disponibles para la frecuencia. 0: 3[kHz] 1: 6[kHz] 2: 9[kHz] Acá se presenta un compromiso al elegir la frecuencia pues a mayor frecuencia, menor ruido se le entrega al motor pero las perdidas por conmutación aumentan. Internamente está fijada en 3[kHz] con 0.75 [kW] 9
  • 11. Laboratorio de Electrónica Industrial, Segundo Semestre 2010 1.10 ¿El variador de frecuencia en su conjunto es capaz de entregar energía a la red en el régimen de regeneración? Explique cómo se pueden manejar cargas regenerativas en este variador de frecuencia. Durante el frenado o el sobre-transporte de carga, el motor actúa como generador entregando energía al inversor, esta energía hace subir los niveles de voltaje en el enlace CC por lo que el control está continuamente monitoreando estos niveles. La energía que puede absorber el condensador del enlace es pequeña. Para proteger los circuitos del inversor y el condensador el sistema disipa energía a través de la resistencia de frenado (810V para 400V nominal o 890V para 500V voltaje nominal. se consideran sobre voltaje) que está conectada de forma externa, esta energía no puede ser devuelta a la red porque los diodos del rectificador solo conducen corriente en una dirección. Figura 7. Diagrama del control de la resistencia de frenado También exististe la posibilidad de, en el menú de limitación de corriente, poner un límite para la corriente en modo regenerativo, si la corriente supera este limite el inversor aumenta su frecuencia para compensar esta sobre-corriente. Así en modo regenerativo el inversor posee métodos para disipar energía monitoreando la corriente y el voltaje del enlace DC. 1.11 Comente y señale la importancia de los diferentes parámetros de la tabla 4-3 de manual del inversor. El inversor debe ser sintonizado al motor en uso para coincidir con los parámetros en el inversor a los del motor que está siendo controlado. Los parámetros más importantes son: - Resistencia de estator por fase Inductancia residual por fase Inductancia mutua (magnetizante) por fase La sintonización puede ser realizada en forma manual o ingresando los parámetros conocidos, o calculando los valores de los parámetros usando el circuito equivalente por fase del motor 10
  • 12. Laboratorio de Electrónica Industrial, Segundo Semestre 2010 Los valores de los parámetros se ingresan en VECTOR SETUP el cual se encuentra en el nivel 2 Tabla 1. Tabla 4-3 del manual del inversor Parámetros del VECTOR SETUP Por defecto FALSE VECTOR ENABLE NAMEPLATE RPM MOTOR POLES MOTOR VOLTS SUPPLY VOLTAGE MOTOR CONNECTION AUTOTUNE ENABLE STATOR RES FIELD LEAKAGE INDUC MUTUAL INDUC *1420 rpm 4 *400[v] *xxxx.x [V] *DELTA FALSE *1 [OHM] 0.0% *10 [mH] *1000 [mH] Breve explicación La compensación de deslizamiento está habilitada. Su cambio a TRUE habilita la operación en modo vectorial de medición de flujo. Velocidad nominal del motor Número de polos del motor Máxima salida de tensión al motor. Tensión de alimentación entre líneas rms entregado al inversor (sólo lectura). Tipo de conexión del motor Habilita la característica de auto-sintonía Resistencia por fase del estator Utilizado sólo para diagnóstico Inductancia residual por fase en el estator Inductancia mutua (magnetizante) por fase en el estator *estos valores dependen del “power build” de la unidad indicada en el código del producto 1.12 Simule con PSIM un motor de inducción alimentado por una fuente trifásica sinusoidal, utilizando los parámetros de la tabla 1. Muestre los voltajes y corrientes en estado estacionario. Muestre la velocidad en rpm. Calcule potencia activa y factor de potencia. Tabla 2. Parámetros para la simulación del variador de frecuencia Parámetro Voltaje de alimentación Capacitancia enlace DC Frecuencia nominal del motor Resistencia de estator Inductancia de estator Resistencia de rotor Inductancia de rotor Inductancia magnetizante Momento de inercia Corriente de roce de carga 11 Valor Vs = 380[VRMS ll] CDC = 1000[µF] fo = 50[Hz] Rs = 0,5[Ω] Ls = 1,5[mH] Rr = 0,156[Ω] Lr = 0,74[mH] Lm = 50[mH] J = 0.4[kg·m2] β = 0,4
  • 13. Laboratorio de Electrónica Industrial, Segundo Semestre 2010 Con los parámetros de la tabla anterior se realiza la implementación del circuito en PSIM. En la siguiente imagen se muestra el circuito utilizado Figura 8. Circuito en PSIM Con el circuito anterior y considerando un torque de carga en estado estacionario debido al uso del motor DC (sólo se considera el efecto del roce) ܶൌ‫ܬ‬ ݀߱ ‫݀ܽݎ‬ ൅ ߚ߱ ൅ ܶ௘௟ ൌ 0.4 ∙ 150.8 ൤ ൨ ൌ 60.32ሾܰ݉ሿ ݀‫ݐ‬ ‫ݏ‬ En la siguiente figura se tiene el resultado de la simulación. Al tener un sistema trifásico basta con identificar sólo una de las fases ya que las otras únicamente están desfasadas en el tiempo. Por lo tanto, sólo se muestran los resultados para la fase a. Figura 9. Señales en estado estacionario: a) Voltaje Vab b) Corriente Ia c) Velocidad ω 12
  • 14. Laboratorio de Electrónica Industrial, Segundo Semestre 2010 Debido a que la alimentación del motor se utilizan elementos ideales, las formas de onda obtenidas son perfectamente sinusoidales (voltaje y corriente). Además como no existen elementos de conmutación, los resultados se rigen por el tipo de carga. Se tiene que el voltaje y la corriente se encuentran desfasados en un tiempo ϕ. En la próxima figura se muestran los transientes para la corriente y la velocidad Figura 10. Transiente: a) Corriente Ia b) Velocidad ω Se observa que para que se alcance el estado estacionario deben transcurrir cerca de 400[ms]. La velocidad alcanza un valor estacionario aproximado de 1482.5[rpm], en tanto la corriente pasa de un valor peak cercano a 300[A] mientras el motor acelera a 28.79[A] (20.36[Arms]) una vez que se alcanza la velocidad de operación. Utilizando los instrumentos apropiados (como se muestra en la figura del circuito) es posible obtener directamente los valores de la potencia activa (P) y el factor de potencia (PF). Luego se tiene ܲ ൌ 10.096544ሾ‫ܹܭ‬ሿ ܲ‫ ܨ‬ൌ 0.75565 Los valores anteriores también pueden obtenerse a partir del desfase existente entre el voltaje y la corriente. El coseno de dicho desfase (convertido a las unidades correspondientes) representa el DPF. Como la distorsión es mínima debido a la procedencia de las señales se tiene que DF=1. Luego el factor de potencia es ‫ݏ݋ܥ‬ሺ߶ሻ. A su vez, la potencia activa se calcula a través potencia aparente y el factor de potencia (valores ya conocidos). 13
  • 15. Laboratorio de Electrónica Industrial, Segundo Semestre 2010 1.13 Implemente en PSIM un variador de frecuencia utilizando modulación PWM para el inversor. Simule el accionamiento alimentando el motor AC de la pregunta anterior, utilizando un ´índice de modulación unitario para el inversor. Muestre los voltajes y corrientes del motor en estado estacionario. Muestre el voltaje DC y la velocidad en rpm. Calcule potencia activa y factor de potencia. Calcule el THD del voltaje y la corriente de salida y compare con los anteriores. Se implementa el variador de frecuencia en PSIM lo que se muestra en la siguiente imagen Figura 11. Circuito en PSIM Para obtener el voltaje DC para el inversor se utiliza un puente de diodos y un condensador de CDC=1000[µF]. La modulación se realiza con una triangular de frecuencia 3[kHz] (una de las posibilidades de frecuencia de conmutación para el inversor real) que se compara con una onda sinusoidal de 50[Hz] para cada fase. Se utiliza un índice de modulación unitario. En la siguiente figura se tienen los estados estacionarios para el voltaje y corriente del motor (sólo una fase) 14
  • 16. Laboratorio de Electrónica Industrial, Segundo Semestre 2010 Figura 12. a) Voltaje Vab b) Corriente Ia Las formas de onda obtenidas son claro efecto de la conmutación de los semiconductores. Se observa que la corriente es bastante filtrada debido a la característica RL del motor. Inicialmente la corriente adquiere altos valores, cercanos a los 250[A] para luego alcanzar 22.06[A] en estado estacionario. Cabe destacar que el tiempo en alcanzar este estado (una vez que la velocidad es constante) es mayor que en el caso del ítem 1.12 debido a que durante el transiente la corriente tiene una menor amplitud. Para el voltaje del condensador y la velocidad se tiene lo siguiente Figura 13. a) Voltaje VDC b) Velocidad ω 15
  • 17. Laboratorio de Electrónica Industrial, Segundo Semestre 2010 En el voltaje DC se tiene el riple característico de la salida de un rectificador (más un condensador). Se observan los 6 pulsos formados por el puente de diodos. El valor medio del voltaje es 521.3[V]. La velocidad, a diferencia del caso anterior tarda más tiempo en alcanzar su estado estacionario (cerca de 0.7[s]), alcanzando un valor de 1474[rpm]. Los instrumentos y herramientas de análisis con que cuenta PSIM permiten obtener fácilmente los valores de potencia activa y reactiva, además de los THD de las señales de interés. Es así como se tienen los siguientes valores extraídos desde la simulación ܲ ൌ 10.096544[‫]ܹܭ‬ ܲ‫3175.0 = ܨ‬ ܶ‫ܦܪ‬௩ = 68.78% ܶ‫ܦܪ‬௜ = 10.78% Además, se tiene que los valores de THD de la simulación del ítem 1.12 son casi nulos ya que las señales no presentan distorsión alguna, dado que sólo se utiliza como alimentación una fuente sinusoidal ideal. 16