SlideShare una empresa de Scribd logo
1 de 33
LA TABLA PERIÓDICA   Química 4º ESO ENLACE QUÍMICO
A lo largo de la historia, los químicos han intentado ordenar los elementos de forma agrupada, de tal manera que aquellos que posean propiedades similares estén juntos. El resultado final el  sistema periódico Los elementos están colocados por orden creciente de su número atómico (Z) La utilidad del sistema periódico reside en que los elementos de un mismo grupo poseen propiedades químicas similares GRUPOS a las columnas de la tabla PERÍODOS a las filas de la tabla Se denominan
SISTEMA PERIÓDICO DE LOS ELEMENTOS 58 Ce 140,12 Cerio Lantánidos 6 71 Lu 174,97 Lutecio 70 Yb 173,04 Iterbio 69 Tm 168,93 Tulio 67 Ho 164,93 Holmio 66 Dy 162,50 Disprosio 68 Er 167,26 Erbio 65 Tb 158,93 Terbio 63 Eu 151,96 Europio 62 Sm 150,35 Samario 64 Gd 157,25 Gadolinio 61 Pm (145) Promecio 59 Pr 140,91 Praseodimio 60 Nd 144,24 Neodimio 90 Th 232,04 Torio 103 Lr (260) Laurencio 102 No (255) Nobelio 101 Md (258) Mendelevio 99 Es (254) Einstenio 98 Cf (251) Californio 100 Fm (257) Fermio 97 Bk (247) Berquelio 95 Am 20,18(243) Americio 94 Pu (244) Plutonio 96 Cm (247) Curio 93 Np 237 Neptunio 91 Pa (231) Protoactinio 92 U 238,03 Uranio Actínidos  7 17 Cl 35,45 Cloro 53 I 126,90 Yodo 85 At (210) Astato 9 F 18,99 Flúor 35 Br 79,90 Bromo 18 Ar 39,95 Argón 54 Xe 131,30 Xenón 86 Rn (222) Radón 10 Ne 20,18 Neón 2 He 4,003 Helio 36 Kr 83,80 Criptón 14 Si 28,09 Silicio 6 C 12,01 Carbono 50 Sn 118,69 Estaño 82 Pb 207,19 Plomo 32 Ge 72,59 Germanio 12 Mg 24,31 Magnesio 4 Be 9,01 Berilio 88 Ra (226) Radio 38 Sr 87,62 Estroncio 56 Ba 137,33 Bario 20 Ca 40,08 Calcio 11 Na 22,99 Sodio 3 Li 6,94 Litio 87 Fr (223) Francio 37 Rb 85,47 Rubidio 55 Cs 132,91 Cesio 19 K 39,10 Potasio 89 Ac (227) Actinio 39 Y 88,91 Itrio 57 La 138,91 Lantano 21 Sc 44,96 Escandio 109 Mt (266) Meitnerio 108 Hs (265) Hassio 106 Sg (263) Seaborgio 105 Db (262) Dubnio 107 Bh (262) Bohrio 104 Rf (261) Rutherfordio 48 Cd 112,40 Cadmio 80 Hg 200,59 Mercurio 46 Pd 106,4 Paladio 78 Pt 195,09 Platino 45 Rh 102,91 Rodio 77 Ir 192,22 Iridio 47 Ag 107,87 Plata 79 Au 196,97 Oro 44 Ru 101,07 Rutenio 76 Os 190,2 Osmio 42 Mo 95,94 Molibdeno 74 W 183,85 Wolframio 41 Nb 92,91 Niobio 73 Ta 180,95 Tántalo 43 Tc (97) Tecnecio 75 Re 186,21 Renio 40 Zr 91,22 Circonio 72 Hf 178,49 Hafnio 30 Zn 65,38 Zinc 28 Ni 58,70 Niquel 27 Co 58,70 Cobalto 29 Cu 63,55 Cobre 26 Fe 55,85 Hierro 24 Cr 54,94 Cromo 23 V 50,94 Vanadio 25 Mn 54,94 Manganeso 22 Ti 20,18 Titanio 15 P 30,97 Fósforo 7 N 14,01 Nitrógeno 51 Sb 121,75 Antimonio 83 Bi 208,98 Bismuto 33 As 74,92 Arsénico 16 S 32,07 Azufre 84 Po (209) Polonio 8 O 16,00 Oxígeno 34 Se 78,96 Selenio 52 Te 127,60 Telurio 13 Al 26,98 Aluminio 5 B 10,81 Boro 49 In 114,82 Indio 81 Tl 204,37 Talio 31 Ga 69,72 Galio Metales No metales 4   3   2   7   5   6   1   17 16 18 15 13 14 12 10 9 11 8 6 5 7 4 2 1   3 VII A VI A Gases nobles V A  III A IV A II B I B VI B V B VII B IV B II A I A III B VIII Periodo Grupo 1 H 1,008 Hidrógeno Nombre Masa atómica Número atómico Símbolo Negro  - sólido Azul  - líquido Rojo   - gas Violeta  - artificial Metales Semimetales No metales Inertes
Configuración electrónica y periocidad Litio Sodio Potasio Rubidio Cesio 1s 2  2s 1 1s 2  2s 2  2p 6  3s 1 1s 2  2p 6  3s 2  3p 6  4s 1 1s 2  2s 2  3s 2  3p 6  4s 2  3d 10  4p 6  5s 1 1s 2  2s 2  3s 2  3p 6  4s 2  3d 10  4p 6  5s 2  4d 10  5p 6  6s 1 ns 1 Todos los elementos de un mismo grupo tienen en su capa de valencia el mismo número de electrones en orbitales del mismo tipo Las propiedades químicas de un elemento están relacionadas con la configuración electrónica de su capa más externa Elemento Configuración electrónica Configuración más externa
A) Elementos representativos B) Metales de transición C) Metales de transición interna    Su electrón diferenciador se aloja en un orbital   s  o un orbital  p    Su electrón diferenciador se aloja en un orbital   d Se distinguen varios bloques caracterizados por una configuración electrónica típica de la capa de valencia    El hidrógeno de configuración 1s 1  no tiene un sitio definido dentro de los bloques    Su electrón diferenciador se aloja en un orbital   f
d p s ns 2  np x ns 2 ns 2  (n  1)d x ns 2  (n  1)d 10  (n  2) f x f d 10 d 8 d 7 d 9 d 6 d 4 d 3 d 5 d 2 d 1 p 5 p 4 p 6 p 3 p 1 p 2 s 2 f 10 f   8 f   7 f   9 f   6  f   4 f   3 f  5 f   2 f   1 f 14 f 12 f 11 f 13 s 2 s 1
TAMAÑO ATÓMICO   Disminuye al avanzar en un periodo ,[object Object],Li (1,23  ) Na (1,57  ) K (2,03  ) Rb (2,16  ) (1,23 ) Li ( 0,89  ) Be (0,80 ) B (0,70 ) N (0,66 ) O (0,64 ) F (0,77 ) C
A continuación se muestra con el tamaño relativo de los átomos de los elementos representativos. Los radios están expresados en nm (1 nm = 10 -9  m) Los radios de los átomos varían en función de que se encuentren en estado gaseoso o unidos mediante enlaces iónico, covalente o metálico Los átomos e iones no tienen un tamaño definido, pues sus orbitales no ocupan una región del espacio con límites determinados. Sin embargo, se acepta un tamaño de orbitales que incluya el 90% de la probabilidad de encontrar al electrón en su interior, y una forma esférica para todo el átomo.
Los iones positivos  (cationes)  son siempre menores que los átomos neutros a partir de los que se forman  Los iones negativos  (aniones)  son siempre mayores que los átomos neutros a partir de los que se forman  Li  (1,23  ) F   ( 0, 64  ) Li  ( 0, 68  ) + F   ( 1, 36  ) Pierde  1 e - Gana  1 e -
POTENCIAL DE IONIZACIÓN La energía de ionización mide la fuerza con que el átomo retiene sus electrones.  Energías pequeñas indican una fácil eliminación de electrones y por consiguiente una fácil formación de iones positivos   ,[object Object],[object Object],[object Object]
ELECTRONEGATIVIDAD Sus valores, basados  en datos termoquímicos, han sido determinados en una escala arbitraria, denominada  escala de Pauling , cuyo valor máximo es 4 que es el valor asignado al flúor, el elemento más electronegativo. El elemento menos  electronegativo, el cesio, tiene una electronegatividad de 0,7.   ,[object Object],[object Object]
Los gases nobles. Regla del octeto “ En la formación de un compuesto, un átomo tiende a intercambiar electrones con otros átomos hasta conseguir una capa de valencia de ocho electrones” Los gases nobles tienen una configuración electrónica externa  ns 2  np 6  es decir, tienen 8 electrones en su última capa (excepto el He que tiene 2)  Una capa de valencia con 8 electrones se denomina octeto, y Lewis enunció la  regla del octeto  diciendo:   1 1 7 +1 2 2 6 +2 3 3 5 +3 4 4 4 +-4 5 5 3  3 6 6 2  2 7 7 1  1 8 0 0 0 Grupo Nº de electrones en la capa de valencia Sobran para el octeto Faltan para el octeto Carga del ión I II III IV V VI VII VIII
Iones monoatómicos C A T I O N E S A N I O N E S Son iones formados por un solo átomo  El  catión  se nombra como el átomo del que procede  El  anión  se nombra como el no metal pero acabado en   uro (excepto el ión óxido)  H + Na + K + Mg 2 + Ca 2 + Fe 2 + Fe 3 + Al 3 + Ion hidrógeno Ion sodio Ion potasio Ion magnesio Ion calcio Ion hierro (II) Ion hierro (III) Ion aluminio H   F   Cl   Br   I   S 2   O 2   N 3   Ion hidruro Ion fluoruro Ion cloruro Ion bromuro Ion yoduro Ion sulfuro Ion óxido Ion nitruro
CARÁCTER METÁLICO. ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],Según el carácter metálico podemos considerar los elementos como: ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
[object Object],[object Object],[object Object],ENLACE QUÍMICO Los METALES se estabilizan perdiendo electrones . Los NO METALES se estabilizan ganando o compartiendo electrones .
TIPOS DE ENLACE IÓNICO se establece cuando se combinan entre sí átomos de METAL con átomos de NO METAL COVALENTE se establece cuando se combinan entre sí átomos de  NO METAL METÁLICO se establece cuando se combinan entre sí átomos de METAL
ENLACE IÓNICO CATIONES (Carga positiva) A + Atracción eléctrica entre iones de distinto signo. A +  A - Átomos de METAL (Ceden e- formando cationes ) Átomos de NO METAL (Cogen e- formando aniones ) ANIONES ( Carga negativa ) A -
EJEMPLO:  Formación de cloruro de sodio Coge el electrón del sodio y completa su última capa  Cede su electrón de la última capa al cloro Na Cl Na + Cl -
Se producen atracciones en todas las direcciones del espacio originándose una red espacial . ESTRUCTURA CRISTALINA . Cristal de cloruro de sodio  ( Sal común ) - - - - - - - - - - + + + + + + + + + Las fuerzas que crea un ión actúan en todas direcciones , de modo que cada ión positivo atrae a todos los iones negativos vecinos, rodeándose del mayor número de ellos posible, y viceversa
Mg + O 1s 2   2s 2  2p 6   3s 2 1s 2   2s 2  2p 4 Mg 2+ O 2  + 1s 2   2s 2  2p 6 1s 2   2s 2  2p 6 OCTETO OCTETO El magnesio cede dos electrones al oxígeno. Ambos consiguen completar su octeto  Los iones formados, se atraen fuertemente por tener cargas eléctricas de distinto signo  Este  enlace  se denomina  iónico , ya que  los átomos participantes se encuentran en forma de iones , y  se produce entre metal y no metal  Ion O 2  Ion Mg 2+
PROPIEDADES DE LOS COMPUESTOS IÓNICOS   ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Fragilidad en un cristal iónico presión
[object Object],Disueltos o fundidos si conducen la corriente  eléctrica. ,[object Object],[object Object],Las moléculas de agua se interponen entre los iones de la red y apantallan  las  fuerzas entre los iones que quedan libres. Iones hidratados
Átomos de NO METAL (Se estabilizan compartiendo electrones) ENLACE COVALENTE A cada átomo de flúor le falta un electrón para alcanzar configuración de gas noble, para conseguirlo comparte un electrón con el otro átomo de flúor formando una molécula . EJEMPLO: Formación de la molécula de flúor ( F 2  )  ( SUSTANCIA MOLECULAR APOLAR )   Molécula de flúor  F-F El par de electrones compartido es un enlace covalente. Entre átomos iguales la compartición es perfecta pero si son diferentes el más electronegativo tiene los electrones más tiempo consigo lo que origina  MOLÉCULAS POLARES PUEDEN FORMAR  MOLÉCULAS   Grupos pequeños de átomos unidos por enlace covalente 9  F : 1s 2 2s 2 2p 5   F F
+ F    F o bien Molécula de hidrógeno + Dos átomos de hidrógeno comparten un par de electrones H    H Siempre que  dos átomos  se hallen  unidos por un par de electrones compartidos , se dice que existe un  enlace covalente  entre ellos   Lewis  sugirió que los átomos podían conseguir su octeto compartiendo un par de electrones F F F F átomo flúor átomo flúor molécula flúor par de electrones compartidos  Se representa  con una línea + + + H H H 2 +
Molécula de agua Molécula de amoníaco O = O N    N N + N Entre dos átomos dados se pueden establecer uno, dos y hasta tres enlaces covalentes, hablándose entonces de un  enlace sencillo, doble y triple , respectivamente O O ,[object Object],H + H 2 O H H N + H 3 N H H H N ,[object Object],H H O + O O O N N
Representar las estructuras de Lewis de los siguientes iones: a) H 2 b) HBr c) PH 3    d) H 2 S e) CO 2   H   H H   Br     H   P     S H H       O  =  C  =  O    
Cada átomo de carbono necesita cuatro electrones que consigue uniéndose a otros cuatro átomos, que a su vez se unen a otros cuatro, y así sucesivamente, hasta formar un cristal con muchísimos átomos unidos entre sí por enlace covalente. EJEMPLO: Estructura del  diamante   (SUSTANCIA ATÓMICA) 6 C: 1s 2 2s 2 2p 2 PUEDE FORMAR : SUSTANCIAS COVALENTES ATÓMICAS consisten en muchos átomos unidos por enlace covalente
Los  sólidos covalentes ,también llamados  sólidos  atómicos  o  reticulares , son sustancias cuyos átomos están unidos entre sí mediante enlaces covalentes, formando redes tridimensionales   ,[object Object],Ejemplos: Diamante (C) Cuarzo (SiO 2 )
Propiedades de los compuestos covalentes ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Átomos de METAL (Ceden e- formando cationes) Forma  redes de cationes rodeados por electrones Todos los átomos se ionizan quedando cargados positivamente y se ordenan en el espacio formando un cristal. Los electrones procedentes de la ionización  se mueven entre los cationes ENLACE METÁLICO La nube de electrones  se mueven entre los cationes. Iones positivos formados por los átomos de metal que han perdido electrones. + + + + + + + + + + + + + + + + + + + + + + +
La fuerza que mantiene unidos a los átomos de un metal, formando una red cristalina, se denomina  enlace metálico . Los átomos se colocan formando una  estructura regular En un trozo de sodio metálico, los cationes Na +  están bañados por una nube móvil de electrones cedidos por cada átomo de sodio ATENCIÓN: el enlace metálico solo se puede producir entre átomos de un mismo elemento químico UNA ALEACIÓN: es un mezcla de metales, se funden, se mezclan y luego se enfría. Se pueden volver a separar, no es un enlace. Hexagonal compacta Cúbica compacta Cúbica centrada en el cuerpo + + + + + + + + + + + + + +
Aunque los cationes se  desplacen, los e- de la red amortiguan la fuerza de repulsión entre ellos Por el contrario, en los  Compuestos iónicos este desplazamiento produce la fractura del cristal al  quedar enfrentados  iones del mismo signo Red de un metal Red de un cristal iónico Brillo intenso Conductividad eléctrica Conductividad térmica Maleabililidad  y ductilidad   Capacidad de los e -  para captar y emitir energía electromagnética Gran movilidad de los electrones Los e -  ceden parte de su energía cinética para calentar la red  Se pueden estirar en hilos o extender en láminas T as  de fusión y ebullición Dependen de la fuerza de atracción entre e -  y los iones positivos    PROPIEDADES DE LAS SUSTANCIAS METÁLICAS

Más contenido relacionado

La actualidad más candente

Presentacion tabla periodica alumno Rafael Arguello
Presentacion tabla periodica alumno Rafael ArguelloPresentacion tabla periodica alumno Rafael Arguello
Presentacion tabla periodica alumno Rafael Arguelloarguellokite
 
Enlaceyformulacion3
Enlaceyformulacion3Enlaceyformulacion3
Enlaceyformulacion3lunaclara123
 
Compuestos de coordinacion
Compuestos de coordinacionCompuestos de coordinacion
Compuestos de coordinacionMiller Ruidiaz
 
Enlaces reacciones-leyconservmasa-good-ok-130408181526-phpapp02
Enlaces reacciones-leyconservmasa-good-ok-130408181526-phpapp02Enlaces reacciones-leyconservmasa-good-ok-130408181526-phpapp02
Enlaces reacciones-leyconservmasa-good-ok-130408181526-phpapp02ROSALINDA VAZQUEZ
 
Química Inorganica 2
Química Inorganica 2Química Inorganica 2
Química Inorganica 2Bestia M
 
Unidad 04 2010
Unidad 04 2010Unidad 04 2010
Unidad 04 2010gemaesge
 
Enlace iónico. Química bachillerato
Enlace iónico. Química bachilleratoEnlace iónico. Química bachillerato
Enlace iónico. Química bachilleratoJavier Valdés
 
Enlaces qcos estereoqca qm 2013
Enlaces qcos estereoqca qm 2013Enlaces qcos estereoqca qm 2013
Enlaces qcos estereoqca qm 2013Ciencia SOS
 
Propiedades PerióDicas De Los Elementos
Propiedades PerióDicas De Los ElementosPropiedades PerióDicas De Los Elementos
Propiedades PerióDicas De Los Elementosgvaldm
 
36 Metales De Transicion Ii 15 06 05
36 Metales De Transicion Ii 15 06 0536 Metales De Transicion Ii 15 06 05
36 Metales De Transicion Ii 15 06 05lucasmerel
 
Enlace químico 3ºESO
Enlace químico 3ºESOEnlace químico 3ºESO
Enlace químico 3ºESOPaco_MS
 
Atomos y especies quimicas
Atomos y especies quimicasAtomos y especies quimicas
Atomos y especies quimicasAllan Rubio
 

La actualidad más candente (19)

Presentacion tabla periodica alumno Rafael Arguello
Presentacion tabla periodica alumno Rafael ArguelloPresentacion tabla periodica alumno Rafael Arguello
Presentacion tabla periodica alumno Rafael Arguello
 
Enlaceyformulacion3
Enlaceyformulacion3Enlaceyformulacion3
Enlaceyformulacion3
 
Compuestos de coordinacion
Compuestos de coordinacionCompuestos de coordinacion
Compuestos de coordinacion
 
Enlaces reacciones-leyconservmasa-good-ok-130408181526-phpapp02
Enlaces reacciones-leyconservmasa-good-ok-130408181526-phpapp02Enlaces reacciones-leyconservmasa-good-ok-130408181526-phpapp02
Enlaces reacciones-leyconservmasa-good-ok-130408181526-phpapp02
 
Química Inorganica 2
Química Inorganica 2Química Inorganica 2
Química Inorganica 2
 
Unidad 04 2010
Unidad 04 2010Unidad 04 2010
Unidad 04 2010
 
Lectura #5
Lectura #5Lectura #5
Lectura #5
 
Quimica Contextual I Tercera Unidad
Quimica Contextual I Tercera UnidadQuimica Contextual I Tercera Unidad
Quimica Contextual I Tercera Unidad
 
Enlace iónico. Química bachillerato
Enlace iónico. Química bachilleratoEnlace iónico. Química bachillerato
Enlace iónico. Química bachillerato
 
Enlace iónico
Enlace iónicoEnlace iónico
Enlace iónico
 
Enlaces qcos estereoqca qm 2013
Enlaces qcos estereoqca qm 2013Enlaces qcos estereoqca qm 2013
Enlaces qcos estereoqca qm 2013
 
Propiedades PerióDicas De Los Elementos
Propiedades PerióDicas De Los ElementosPropiedades PerióDicas De Los Elementos
Propiedades PerióDicas De Los Elementos
 
Iónico metálico
Iónico metálicoIónico metálico
Iónico metálico
 
Enlaces quimicos
Enlaces quimicosEnlaces quimicos
Enlaces quimicos
 
36 Metales De Transicion Ii 15 06 05
36 Metales De Transicion Ii 15 06 0536 Metales De Transicion Ii 15 06 05
36 Metales De Transicion Ii 15 06 05
 
Sólidos covalentes
Sólidos covalentesSólidos covalentes
Sólidos covalentes
 
Enlace químico
Enlace químicoEnlace químico
Enlace químico
 
Enlace químico 3ºESO
Enlace químico 3ºESOEnlace químico 3ºESO
Enlace químico 3ºESO
 
Atomos y especies quimicas
Atomos y especies quimicasAtomos y especies quimicas
Atomos y especies quimicas
 

Destacado

Ch3 test prep forslideshare
Ch3 test prep forslideshareCh3 test prep forslideshare
Ch3 test prep forslideshareZB Chemistry
 
Los átomos y sus enlaces
Los átomos y sus enlacesLos átomos y sus enlaces
Los átomos y sus enlacesconocelaciencia
 
Metales, metaloides y no metales
Metales, metaloides y no metalesMetales, metaloides y no metales
Metales, metaloides y no metalesnoraesmeralda
 
Cationes y aniones tabla
Cationes y aniones  tablaCationes y aniones  tabla
Cationes y aniones tablaluizzpereez
 
Comparación DE LOS METALES Y NO METALES
Comparación DE LOS METALES Y NO METALESComparación DE LOS METALES Y NO METALES
Comparación DE LOS METALES Y NO METALESburmandaniel
 
CLASE DE CONFIGURACIÓN ELECTRÓNICA
CLASE DE CONFIGURACIÓN ELECTRÓNICACLASE DE CONFIGURACIÓN ELECTRÓNICA
CLASE DE CONFIGURACIÓN ELECTRÓNICAElias Navarrete
 

Destacado (7)

Ch3 test prep forslideshare
Ch3 test prep forslideshareCh3 test prep forslideshare
Ch3 test prep forslideshare
 
Los átomos y sus enlaces
Los átomos y sus enlacesLos átomos y sus enlaces
Los átomos y sus enlaces
 
Metales, metaloides y no metales
Metales, metaloides y no metalesMetales, metaloides y no metales
Metales, metaloides y no metales
 
EL ENLACE EN LAS MOLÉCULAS
EL ENLACE EN LAS MOLÉCULASEL ENLACE EN LAS MOLÉCULAS
EL ENLACE EN LAS MOLÉCULAS
 
Cationes y aniones tabla
Cationes y aniones  tablaCationes y aniones  tabla
Cationes y aniones tabla
 
Comparación DE LOS METALES Y NO METALES
Comparación DE LOS METALES Y NO METALESComparación DE LOS METALES Y NO METALES
Comparación DE LOS METALES Y NO METALES
 
CLASE DE CONFIGURACIÓN ELECTRÓNICA
CLASE DE CONFIGURACIÓN ELECTRÓNICACLASE DE CONFIGURACIÓN ELECTRÓNICA
CLASE DE CONFIGURACIÓN ELECTRÓNICA
 

Similar a Tabla_periodica_y_enlace

Bloque ii a e 3, 4 y 5 2014 2015
Bloque ii a e 3, 4 y 5 2014 2015Bloque ii a e 3, 4 y 5 2014 2015
Bloque ii a e 3, 4 y 5 2014 2015Alicia Puente
 
Examen 3ª eval 4a y 4b corregido
Examen 3ª eval 4a y 4b corregidoExamen 3ª eval 4a y 4b corregido
Examen 3ª eval 4a y 4b corregidojbenayasfq
 
Química básica tercer año de media general
Química básica tercer año de media generalQuímica básica tercer año de media general
Química básica tercer año de media generalU.E.N "14 de Febrero"
 
Tabla periódica
Tabla periódicaTabla periódica
Tabla periódicamarcocherly
 
Propiedades PerióDicas De Los Elementos
Propiedades PerióDicas De Los ElementosPropiedades PerióDicas De Los Elementos
Propiedades PerióDicas De Los Elementosgvaldm
 
Tabla periodica i
Tabla periodica iTabla periodica i
Tabla periodica ilemora61
 
Las sustancias quimicas
Las sustancias quimicasLas sustancias quimicas
Las sustancias quimicasmiguelandreu1
 
Bloque iii enlace quimico parte i 2017
Bloque iii enlace quimico parte i 2017Bloque iii enlace quimico parte i 2017
Bloque iii enlace quimico parte i 2017clauciencias
 
introduccion a la quimica inorganica.ppt
introduccion a la quimica inorganica.pptintroduccion a la quimica inorganica.ppt
introduccion a la quimica inorganica.pptMiLiBainer
 
Formulacion inorganica
Formulacion inorganicaFormulacion inorganica
Formulacion inorganicaRosmery G.B
 
Periodicidad
PeriodicidadPeriodicidad
Periodicidadmivonney
 

Similar a Tabla_periodica_y_enlace (20)

Tablaperiodica1
Tablaperiodica1Tablaperiodica1
Tablaperiodica1
 
Bloque ii a e 3, 4 y 5 2014 2015
Bloque ii a e 3, 4 y 5 2014 2015Bloque ii a e 3, 4 y 5 2014 2015
Bloque ii a e 3, 4 y 5 2014 2015
 
QG_Relaciones periodicas 2017.pptx
QG_Relaciones periodicas 2017.pptxQG_Relaciones periodicas 2017.pptx
QG_Relaciones periodicas 2017.pptx
 
Examen 3ª eval 4a y 4b corregido
Examen 3ª eval 4a y 4b corregidoExamen 3ª eval 4a y 4b corregido
Examen 3ª eval 4a y 4b corregido
 
Química básica tercer año de media general
Química básica tercer año de media generalQuímica básica tercer año de media general
Química básica tercer año de media general
 
Tabla periódica
Tabla periódicaTabla periódica
Tabla periódica
 
Tabla periodica eso
Tabla periodica esoTabla periodica eso
Tabla periodica eso
 
Tabla periodica eso
Tabla periodica esoTabla periodica eso
Tabla periodica eso
 
Química (I Bimestre)
Química (I Bimestre)Química (I Bimestre)
Química (I Bimestre)
 
Propiedades PerióDicas De Los Elementos
Propiedades PerióDicas De Los ElementosPropiedades PerióDicas De Los Elementos
Propiedades PerióDicas De Los Elementos
 
Tabla periodica i
Tabla periodica iTabla periodica i
Tabla periodica i
 
Las sustancias quimicas
Las sustancias quimicasLas sustancias quimicas
Las sustancias quimicas
 
Bloque iii enlace quimico parte i 2017
Bloque iii enlace quimico parte i 2017Bloque iii enlace quimico parte i 2017
Bloque iii enlace quimico parte i 2017
 
Tablaperiodica2
Tablaperiodica2Tablaperiodica2
Tablaperiodica2
 
introduccion a la quimica inorganica.ppt
introduccion a la quimica inorganica.pptintroduccion a la quimica inorganica.ppt
introduccion a la quimica inorganica.ppt
 
Tabla periodica
Tabla periodicaTabla periodica
Tabla periodica
 
Formulacion inorganica
Formulacion inorganicaFormulacion inorganica
Formulacion inorganica
 
Periodicidad
PeriodicidadPeriodicidad
Periodicidad
 
Quimica10 tercer periodo
Quimica10 tercer periodoQuimica10 tercer periodo
Quimica10 tercer periodo
 
Tablaperiodica2
Tablaperiodica2Tablaperiodica2
Tablaperiodica2
 

Más de martisifre

Enunciados mruv mcu_2011
Enunciados mruv mcu_2011Enunciados mruv mcu_2011
Enunciados mruv mcu_2011martisifre
 
Cinematica refuerzo
Cinematica refuerzoCinematica refuerzo
Cinematica refuerzomartisifre
 
Soluciones exerc mru
Soluciones exerc mruSoluciones exerc mru
Soluciones exerc mrumartisifre
 
Exerc organica
Exerc organicaExerc organica
Exerc organicamartisifre
 
Exerc organica
Exerc organicaExerc organica
Exerc organicamartisifre
 
Trabajo de la tabla periódica
Trabajo de la tabla periódicaTrabajo de la tabla periódica
Trabajo de la tabla periódicamartisifre
 
Formulacion organica
Formulacion organicaFormulacion organica
Formulacion organicamartisifre
 
Calculos químicos
Calculos químicosCalculos químicos
Calculos químicosmartisifre
 
Soluicons exercicis densitat
Soluicons exercicis densitatSoluicons exercicis densitat
Soluicons exercicis densitatmartisifre
 
Formulacion ternaris
Formulacion ternarisFormulacion ternaris
Formulacion ternarismartisifre
 
Formulacion inorganica
Formulacion inorganicaFormulacion inorganica
Formulacion inorganicamartisifre
 
Tabla unidades
Tabla unidadesTabla unidades
Tabla unidadesmartisifre
 

Más de martisifre (20)

Mruv mcu 2011
Mruv mcu 2011Mruv mcu 2011
Mruv mcu 2011
 
Enunciados mruv mcu_2011
Enunciados mruv mcu_2011Enunciados mruv mcu_2011
Enunciados mruv mcu_2011
 
Cinematica refuerzo
Cinematica refuerzoCinematica refuerzo
Cinematica refuerzo
 
Binaris
BinarisBinaris
Binaris
 
Problemas
ProblemasProblemas
Problemas
 
Mrua
MruaMrua
Mrua
 
Soluciones exerc mru
Soluciones exerc mruSoluciones exerc mru
Soluciones exerc mru
 
Repaso lengua
Repaso lenguaRepaso lengua
Repaso lengua
 
Exerc organica
Exerc organicaExerc organica
Exerc organica
 
Exerc organica
Exerc organicaExerc organica
Exerc organica
 
Disolucio
DisolucioDisolucio
Disolucio
 
Trabajo de la tabla periódica
Trabajo de la tabla periódicaTrabajo de la tabla periódica
Trabajo de la tabla periódica
 
Formulacion organica
Formulacion organicaFormulacion organica
Formulacion organica
 
Calculos químicos
Calculos químicosCalculos químicos
Calculos químicos
 
Soluicons exercicis densitat
Soluicons exercicis densitatSoluicons exercicis densitat
Soluicons exercicis densitat
 
Formulacion ternaris
Formulacion ternarisFormulacion ternaris
Formulacion ternaris
 
Formulacion inorganica
Formulacion inorganicaFormulacion inorganica
Formulacion inorganica
 
Modelos
ModelosModelos
Modelos
 
Tabla unidades
Tabla unidadesTabla unidades
Tabla unidades
 
Activitat 5
Activitat 5Activitat 5
Activitat 5
 

Tabla_periodica_y_enlace

  • 1. LA TABLA PERIÓDICA Química 4º ESO ENLACE QUÍMICO
  • 2. A lo largo de la historia, los químicos han intentado ordenar los elementos de forma agrupada, de tal manera que aquellos que posean propiedades similares estén juntos. El resultado final el sistema periódico Los elementos están colocados por orden creciente de su número atómico (Z) La utilidad del sistema periódico reside en que los elementos de un mismo grupo poseen propiedades químicas similares GRUPOS a las columnas de la tabla PERÍODOS a las filas de la tabla Se denominan
  • 3. SISTEMA PERIÓDICO DE LOS ELEMENTOS 58 Ce 140,12 Cerio Lantánidos 6 71 Lu 174,97 Lutecio 70 Yb 173,04 Iterbio 69 Tm 168,93 Tulio 67 Ho 164,93 Holmio 66 Dy 162,50 Disprosio 68 Er 167,26 Erbio 65 Tb 158,93 Terbio 63 Eu 151,96 Europio 62 Sm 150,35 Samario 64 Gd 157,25 Gadolinio 61 Pm (145) Promecio 59 Pr 140,91 Praseodimio 60 Nd 144,24 Neodimio 90 Th 232,04 Torio 103 Lr (260) Laurencio 102 No (255) Nobelio 101 Md (258) Mendelevio 99 Es (254) Einstenio 98 Cf (251) Californio 100 Fm (257) Fermio 97 Bk (247) Berquelio 95 Am 20,18(243) Americio 94 Pu (244) Plutonio 96 Cm (247) Curio 93 Np 237 Neptunio 91 Pa (231) Protoactinio 92 U 238,03 Uranio Actínidos 7 17 Cl 35,45 Cloro 53 I 126,90 Yodo 85 At (210) Astato 9 F 18,99 Flúor 35 Br 79,90 Bromo 18 Ar 39,95 Argón 54 Xe 131,30 Xenón 86 Rn (222) Radón 10 Ne 20,18 Neón 2 He 4,003 Helio 36 Kr 83,80 Criptón 14 Si 28,09 Silicio 6 C 12,01 Carbono 50 Sn 118,69 Estaño 82 Pb 207,19 Plomo 32 Ge 72,59 Germanio 12 Mg 24,31 Magnesio 4 Be 9,01 Berilio 88 Ra (226) Radio 38 Sr 87,62 Estroncio 56 Ba 137,33 Bario 20 Ca 40,08 Calcio 11 Na 22,99 Sodio 3 Li 6,94 Litio 87 Fr (223) Francio 37 Rb 85,47 Rubidio 55 Cs 132,91 Cesio 19 K 39,10 Potasio 89 Ac (227) Actinio 39 Y 88,91 Itrio 57 La 138,91 Lantano 21 Sc 44,96 Escandio 109 Mt (266) Meitnerio 108 Hs (265) Hassio 106 Sg (263) Seaborgio 105 Db (262) Dubnio 107 Bh (262) Bohrio 104 Rf (261) Rutherfordio 48 Cd 112,40 Cadmio 80 Hg 200,59 Mercurio 46 Pd 106,4 Paladio 78 Pt 195,09 Platino 45 Rh 102,91 Rodio 77 Ir 192,22 Iridio 47 Ag 107,87 Plata 79 Au 196,97 Oro 44 Ru 101,07 Rutenio 76 Os 190,2 Osmio 42 Mo 95,94 Molibdeno 74 W 183,85 Wolframio 41 Nb 92,91 Niobio 73 Ta 180,95 Tántalo 43 Tc (97) Tecnecio 75 Re 186,21 Renio 40 Zr 91,22 Circonio 72 Hf 178,49 Hafnio 30 Zn 65,38 Zinc 28 Ni 58,70 Niquel 27 Co 58,70 Cobalto 29 Cu 63,55 Cobre 26 Fe 55,85 Hierro 24 Cr 54,94 Cromo 23 V 50,94 Vanadio 25 Mn 54,94 Manganeso 22 Ti 20,18 Titanio 15 P 30,97 Fósforo 7 N 14,01 Nitrógeno 51 Sb 121,75 Antimonio 83 Bi 208,98 Bismuto 33 As 74,92 Arsénico 16 S 32,07 Azufre 84 Po (209) Polonio 8 O 16,00 Oxígeno 34 Se 78,96 Selenio 52 Te 127,60 Telurio 13 Al 26,98 Aluminio 5 B 10,81 Boro 49 In 114,82 Indio 81 Tl 204,37 Talio 31 Ga 69,72 Galio Metales No metales 4 3 2 7 5 6 1 17 16 18 15 13 14 12 10 9 11 8 6 5 7 4 2 1 3 VII A VI A Gases nobles V A III A IV A II B I B VI B V B VII B IV B II A I A III B VIII Periodo Grupo 1 H 1,008 Hidrógeno Nombre Masa atómica Número atómico Símbolo Negro - sólido Azul - líquido Rojo - gas Violeta - artificial Metales Semimetales No metales Inertes
  • 4. Configuración electrónica y periocidad Litio Sodio Potasio Rubidio Cesio 1s 2 2s 1 1s 2 2s 2 2p 6 3s 1 1s 2 2p 6 3s 2 3p 6 4s 1 1s 2 2s 2 3s 2 3p 6 4s 2 3d 10 4p 6 5s 1 1s 2 2s 2 3s 2 3p 6 4s 2 3d 10 4p 6 5s 2 4d 10 5p 6 6s 1 ns 1 Todos los elementos de un mismo grupo tienen en su capa de valencia el mismo número de electrones en orbitales del mismo tipo Las propiedades químicas de un elemento están relacionadas con la configuración electrónica de su capa más externa Elemento Configuración electrónica Configuración más externa
  • 5. A) Elementos representativos B) Metales de transición C) Metales de transición interna  Su electrón diferenciador se aloja en un orbital s o un orbital p  Su electrón diferenciador se aloja en un orbital d Se distinguen varios bloques caracterizados por una configuración electrónica típica de la capa de valencia  El hidrógeno de configuración 1s 1 no tiene un sitio definido dentro de los bloques  Su electrón diferenciador se aloja en un orbital f
  • 6. d p s ns 2 np x ns 2 ns 2 (n  1)d x ns 2 (n  1)d 10 (n  2) f x f d 10 d 8 d 7 d 9 d 6 d 4 d 3 d 5 d 2 d 1 p 5 p 4 p 6 p 3 p 1 p 2 s 2 f 10 f 8 f 7 f 9 f 6 f 4 f 3 f 5 f 2 f 1 f 14 f 12 f 11 f 13 s 2 s 1
  • 7.
  • 8. A continuación se muestra con el tamaño relativo de los átomos de los elementos representativos. Los radios están expresados en nm (1 nm = 10 -9 m) Los radios de los átomos varían en función de que se encuentren en estado gaseoso o unidos mediante enlaces iónico, covalente o metálico Los átomos e iones no tienen un tamaño definido, pues sus orbitales no ocupan una región del espacio con límites determinados. Sin embargo, se acepta un tamaño de orbitales que incluya el 90% de la probabilidad de encontrar al electrón en su interior, y una forma esférica para todo el átomo.
  • 9. Los iones positivos (cationes) son siempre menores que los átomos neutros a partir de los que se forman Los iones negativos (aniones) son siempre mayores que los átomos neutros a partir de los que se forman Li (1,23 ) F ( 0, 64 ) Li ( 0, 68 ) + F ( 1, 36 ) Pierde 1 e - Gana 1 e -
  • 10.
  • 11.
  • 12. Los gases nobles. Regla del octeto “ En la formación de un compuesto, un átomo tiende a intercambiar electrones con otros átomos hasta conseguir una capa de valencia de ocho electrones” Los gases nobles tienen una configuración electrónica externa ns 2 np 6 es decir, tienen 8 electrones en su última capa (excepto el He que tiene 2)  Una capa de valencia con 8 electrones se denomina octeto, y Lewis enunció la regla del octeto diciendo:  1 1 7 +1 2 2 6 +2 3 3 5 +3 4 4 4 +-4 5 5 3  3 6 6 2  2 7 7 1  1 8 0 0 0 Grupo Nº de electrones en la capa de valencia Sobran para el octeto Faltan para el octeto Carga del ión I II III IV V VI VII VIII
  • 13. Iones monoatómicos C A T I O N E S A N I O N E S Son iones formados por un solo átomo  El catión se nombra como el átomo del que procede  El anión se nombra como el no metal pero acabado en  uro (excepto el ión óxido)  H + Na + K + Mg 2 + Ca 2 + Fe 2 + Fe 3 + Al 3 + Ion hidrógeno Ion sodio Ion potasio Ion magnesio Ion calcio Ion hierro (II) Ion hierro (III) Ion aluminio H  F  Cl  Br  I  S 2  O 2  N 3  Ion hidruro Ion fluoruro Ion cloruro Ion bromuro Ion yoduro Ion sulfuro Ion óxido Ion nitruro
  • 14.
  • 15.
  • 16. TIPOS DE ENLACE IÓNICO se establece cuando se combinan entre sí átomos de METAL con átomos de NO METAL COVALENTE se establece cuando se combinan entre sí átomos de NO METAL METÁLICO se establece cuando se combinan entre sí átomos de METAL
  • 17. ENLACE IÓNICO CATIONES (Carga positiva) A + Atracción eléctrica entre iones de distinto signo. A + A - Átomos de METAL (Ceden e- formando cationes ) Átomos de NO METAL (Cogen e- formando aniones ) ANIONES ( Carga negativa ) A -
  • 18. EJEMPLO: Formación de cloruro de sodio Coge el electrón del sodio y completa su última capa Cede su electrón de la última capa al cloro Na Cl Na + Cl -
  • 19. Se producen atracciones en todas las direcciones del espacio originándose una red espacial . ESTRUCTURA CRISTALINA . Cristal de cloruro de sodio ( Sal común ) - - - - - - - - - - + + + + + + + + + Las fuerzas que crea un ión actúan en todas direcciones , de modo que cada ión positivo atrae a todos los iones negativos vecinos, rodeándose del mayor número de ellos posible, y viceversa
  • 20. Mg + O 1s 2 2s 2 2p 6 3s 2 1s 2 2s 2 2p 4 Mg 2+ O 2  + 1s 2 2s 2 2p 6 1s 2 2s 2 2p 6 OCTETO OCTETO El magnesio cede dos electrones al oxígeno. Ambos consiguen completar su octeto  Los iones formados, se atraen fuertemente por tener cargas eléctricas de distinto signo  Este enlace se denomina iónico , ya que los átomos participantes se encuentran en forma de iones , y se produce entre metal y no metal  Ion O 2  Ion Mg 2+
  • 21.
  • 22. Fragilidad en un cristal iónico presión
  • 23.
  • 24. Átomos de NO METAL (Se estabilizan compartiendo electrones) ENLACE COVALENTE A cada átomo de flúor le falta un electrón para alcanzar configuración de gas noble, para conseguirlo comparte un electrón con el otro átomo de flúor formando una molécula . EJEMPLO: Formación de la molécula de flúor ( F 2 ) ( SUSTANCIA MOLECULAR APOLAR ) Molécula de flúor F-F El par de electrones compartido es un enlace covalente. Entre átomos iguales la compartición es perfecta pero si son diferentes el más electronegativo tiene los electrones más tiempo consigo lo que origina MOLÉCULAS POLARES PUEDEN FORMAR MOLÉCULAS Grupos pequeños de átomos unidos por enlace covalente 9 F : 1s 2 2s 2 2p 5 F F
  • 25. + F  F o bien Molécula de hidrógeno + Dos átomos de hidrógeno comparten un par de electrones H  H Siempre que dos átomos se hallen unidos por un par de electrones compartidos , se dice que existe un enlace covalente entre ellos   Lewis sugirió que los átomos podían conseguir su octeto compartiendo un par de electrones F F F F átomo flúor átomo flúor molécula flúor par de electrones compartidos Se representa con una línea + + + H H H 2 +
  • 26.
  • 27. Representar las estructuras de Lewis de los siguientes iones: a) H 2 b) HBr c) PH 3 d) H 2 S e) CO 2 H  H H  Br    H  P    S H H       O = C = O    
  • 28. Cada átomo de carbono necesita cuatro electrones que consigue uniéndose a otros cuatro átomos, que a su vez se unen a otros cuatro, y así sucesivamente, hasta formar un cristal con muchísimos átomos unidos entre sí por enlace covalente. EJEMPLO: Estructura del diamante (SUSTANCIA ATÓMICA) 6 C: 1s 2 2s 2 2p 2 PUEDE FORMAR : SUSTANCIAS COVALENTES ATÓMICAS consisten en muchos átomos unidos por enlace covalente
  • 29.
  • 30.
  • 31. Átomos de METAL (Ceden e- formando cationes) Forma redes de cationes rodeados por electrones Todos los átomos se ionizan quedando cargados positivamente y se ordenan en el espacio formando un cristal. Los electrones procedentes de la ionización se mueven entre los cationes ENLACE METÁLICO La nube de electrones se mueven entre los cationes. Iones positivos formados por los átomos de metal que han perdido electrones. + + + + + + + + + + + + + + + + + + + + + + +
  • 32. La fuerza que mantiene unidos a los átomos de un metal, formando una red cristalina, se denomina enlace metálico . Los átomos se colocan formando una estructura regular En un trozo de sodio metálico, los cationes Na + están bañados por una nube móvil de electrones cedidos por cada átomo de sodio ATENCIÓN: el enlace metálico solo se puede producir entre átomos de un mismo elemento químico UNA ALEACIÓN: es un mezcla de metales, se funden, se mezclan y luego se enfría. Se pueden volver a separar, no es un enlace. Hexagonal compacta Cúbica compacta Cúbica centrada en el cuerpo + + + + + + + + + + + + + +
  • 33. Aunque los cationes se desplacen, los e- de la red amortiguan la fuerza de repulsión entre ellos Por el contrario, en los Compuestos iónicos este desplazamiento produce la fractura del cristal al quedar enfrentados iones del mismo signo Red de un metal Red de un cristal iónico Brillo intenso Conductividad eléctrica Conductividad térmica Maleabililidad y ductilidad   Capacidad de los e - para captar y emitir energía electromagnética Gran movilidad de los electrones Los e - ceden parte de su energía cinética para calentar la red Se pueden estirar en hilos o extender en láminas T as de fusión y ebullición Dependen de la fuerza de atracción entre e - y los iones positivos    PROPIEDADES DE LAS SUSTANCIAS METÁLICAS