SlideShare una empresa de Scribd logo
1 de 33
Descargar para leer sin conexión
1
3 – Empujes de tierra y muros de contención
1
2
Introducción 2
Introducción 3
3
Introducción 4
Introducción 5
4
Introducción 6
• En proyectos de ingeniería civil es muy común tener que
contener los empujes del suelo.
• Es necesario estimar estos empujes para poder diseñar
las estructuras de contención.
Muros de contención Excavaciones Estabilización de taludes
Introducción 7
Las tres principales situaciones de diseño se pueden
resumir en:
1. Excavaciones
2. Muros de contención
3. Estabilización de taludes
• Es necesario distinguir las estructuras de contención
temporales de las permanentes.
• La estabilidad debe mantenerse en todas las etapas.
• Control de deformaciones es por lo general el problema
mas importante en la práctica.
• Problemas asociados a la napa.
• El relleno es especificado.
• La compactación y el drenaje son aspectos importantes.
5
Muros de contención 8
• Un muro de contención es una estructura que se utiliza
para proporcionar soporte lateral a un terreno, que en
ocasiones es un suelo natural y en otras es un relleno
artificial.
• Existen muchos tipos de estructuras de contención,
cada una adecuada para diferentes aplicaciones.
• La siguiente tabla clasifica a los muros de contención
en dos grandes categorías: sistemas estabilizados
externamente y sistemas estabilizados internamente.
• Los sistemas estabilizados externamente resisten los
empujes de tierra por su peso propio y rigidez.
• Los sistemas estabilizados internamente refuerzan el
suelo para proveer la estabilidad necesaria.
Clasificación de muros de contención 9
Clasificación adaptada de
O´Rourke y Jones, 1990.
(Coduto P., 1999)
6
Muros gravitacionales 10
• Los muros de gravedad se construyen por lo general de
hormigón o de mampostería en piedra, con un gran
espesor, de tal manera que sean despreciables o no se
produzcan los esfuerzos de tensión en ninguna parte de
la estructura.
• El muro solo cuenta con su masa y su resistencia a la
compresión para resistir las fuerzas que sobre el actúan.
Muros cantilever 11
• El muro cantilever (de hormigón armado) consta de un
cuerpo vertical o alzado que contiene la tierra y se
mantiene en posición gracias a la zapata o losa base.
• El peso del relleno por encima del talón, además del
propio peso del muro, contribuye a la estabilidad de la
estructura.
7
Muros criba 12
• El sistema está formado por vigas entrelazadas las
cuales forman un armazón que se rellena con suelo
granular.
• El conjunto actúa como un muro de gravedad y tiene
las ventaja de permitir una tolerancia de asentamientos
diferenciales apreciables.
Gaviones 13
• Los muros de gaviones están formados por cajas
metálicas apiladas llenas de rocas o agregados, que por
lo general tienen dimensiones de 1 m x 1 m de sección
transversal por 2 m de largo.
8
Tablestacas 14
• Están formados por delgados pilotes (entrelazados) que
son hincados en el suelo.
• Son estructuras flexibles cuya estabilidad depende del
anclaje en la parte empotrada, del soporte lateral, o de
la fijación a una estructura rígida.
en voladizo anclados empotrado apuntalado
Berry y Reid, 1993
Tablestacas 15
9
Muros pantalla 16
• Los muros pantalla se construyen en zanjas sostenidas
mediante el uso de lodo bentonítico.
• Después de introducir la armadura se introduce el
hormigón, el cual desplaza el lodo bentonítico.
• Finalmente se realiza la excavación.
Muros pantalla 17
www.aquafin.net/ic_slurry_walls.htm
10
Tierra armada 18
• Se introducen bandas de refuerzo horizontales en un
suelo granular con el fin de estabilizar la masa
mediante la movilización de la resistencia a la fricción
que tiene lugar en el suelo del entorno.
Tierra armada 19
http://cee.engr.ucdavis.edu/faculty/boulanger/geo_photo_album/index.html
11
Tierra armada 20
The reinforced earth company
Tierra armada 21
The reinforced earth company
12
Empujes de tierra 22
• La presión del terreno sobre un muro esta fuertemente
condicionada por la deformabilidad del muro.
• Si el muro y el terreno sobre el que se fundan son tales que
las deformaciones son prácticamente nulas, se está en el
caso de empuje en reposo.
• Si el muro se desplaza, permitiendo la expansión lateral del
suelo se produce una falla por corte del suelo retenido y se
crea una cuña. El empuje disminuye desde el valor del
empuje al reposo hasta el denominado valor del empuje
activo, que es el mínimo valor posible del empuje.
• Por el contrario, si se aplican fuerzas al muro de forma que
éste empuje al relleno, la falla se produce mediante una
cuña mucho más amplia. Este valor recibe el nombre de
empuje pasivo y es el mayor valor que puede alcanzar el
empuje.
• Coeficiente de empuje de tierra en reposo
• Por lo general, los muros de subterráneos se diseñan con
los empujes en reposo.
v
h
oK
'
'
σ
σ
=
Caso en reposo 23
En suelos granulares:
Ko = 1 – sin φ’ (Jaky, 1944)
Calavera J., 1989
13
Caso en reposo (cont.) 24
• La expresión propuesta por Jaky (obtenida
experimentalmente) utiliza el ángulo de fricción en la
falla (peak).
• En algunos casos esta expresión puede no ser la más
adecuada, sin embargo tiende a entregar buenos
resultados.
Caso activo 25
• Si el muro se mueve (traslación o rotación) hacia fuera
los esfuerzos horizontales diminuyen.
• Finalmente se puede alcanzar la falla por corte,
desarrollándose una cuña activa.
14
Caso pasivo 26
• Si el muro se mueve hacia el suelo, los esfuerzos
horizontales aumentan.
• Finalmente se puede alcanzar la falla por corte,
desarrollándose una cuña activa.
h
Desplazamiento necesario para alcanzar el
caso activo y pasivo
≈
27
• Basta un pequeño desplaza-
miento para producir una cuña
activa ( 0.001H en suelo
granular suelto; H:altura del
muro).
• El empuje pasivo se moviliza
en su totalidad con una gran
deformación ( 0.02H en suelo
granular denso).
• Muros no impedidos de rotar
libremente en su base están
sujetos por lo general a una
pequeña rotación y se diseñan
con el empuje activo.
Coduto D., 1999
≈
15
Teoría de Rankine 28
Rankine desarrolló su teoría a mediados del siglo XIX,
asumiendo que:
• El suelo es homogéneo e isotrópico.
• La superficie de falla es plana.
• La superficie posterior del muro es vertical.
• No existe fricción entre el suelo y la parte posterior del
muro.
Estado de Rankine (caso activo)
( )245tan
sen1
sen1
'
'
K 2h
a φ
φ
φ
σ
σ
−=
+
−
==
v
( )
2)(
2)(
sen
hv
hv
σσ
σσ
φ
+
−
=
29
En un terreno sin cohesión (c=0) y con una superficie
horizontal se tiene:
Ka: coeficiente lateral de empuje activo
En la falla:
16
Estado de Rankine (caso pasivo)
( )245tan
sen1
sen1
'
'
K 2h
p φ
φ
φ
σ
σ
+=
−
+
==
v
30
En un terreno sin cohesión (c=0) y con una superficie
horizontal se tiene:
Kp: coeficiente lateral de empuje
pasivo
Estados de Rankine (en suelos cohesivos)
avaactivoh c K2'K' −= σσ
pvph c K2'K' pasivo
+= σσ
31
La distribución de esfuerzos en ambos casos es:
Caso activo Caso pasivo
17
Teoría de Coulomb (método de la cuña), 1776 32
• El método de Coulomb considera la fricción entre el muro
(trasdós) y el terreno, y es mas general que el desarrollado
por Rankine.
• El método considera una cierta cuña de suelo, la cual ejerce
una fuerza P sobre el muro, fuerza que satisface las
condiciones de equilibrio.
• La fuerza real que actuará sobre el muro en el caso activo
será el valor máximo de P obtenido al considerar todas las
cuñas posibles.
• A pesar de que el empuje activo es el mínimo posible con el
que el terreno puede estar en equilibrio, debemos
determinar la cuña correspondiente al máximo valor de este
empuje.
Método de la cuña 33
( )φtanN
( )
1
2
γ θH cotg2
Caso sencillo
• En caso sencillo de un muro de contención vertical, sin roce a
trasdós, relleno horizontal y sin cohesión.
Fuerzas que actúan sobre la cuña:
W : peso del suelo =
P : Resultante de las presiones existentes entre el suelo y el muro.
N : Resultante de los esfuerzos normales sobre el plano de falla elegido.
T : Resultante de los esfuerzos tangenciales sobre el plano de falla
elegido =
18
Método de la cuña
)cotan()-tan(H
2
1
)-W tan()-sen(
)-cos(
W
P
)-sen(FP0F
)-cos(FW0F
2
θφθγφθφθ
φθ
φθ
φθ
===
=⇒=
=⇒=
∑
∑
h
v
245paraanulaseexpresiónEsta
0
)(cos
)cotan(
)(sen
)-tan(
H
2
1P
activo
22
2
φθ
φθ
θ
θ
φθ
γ
θ
+=
=





−
+−=
∂
∂
θ
34
Condiciones de equilibrio:
La cuña activa ( activa), es decir la que da el valor máximo
de P (empuje activo) se puede calcular iterando o
derivando la expresión P( ).
(Ver Lambe y Whitman,
página 186)
Caso sencillo (cont.)
θ
Método de la cuña
)sen(1
)sen(-1
)2-(45tanK
KH
2
1
)2-(45tanH
2
1
PP
2
a
a
222
maxa
φ
φ
φ
γφγ
+
==⇒
===
35
Remplazando activo en la expresión de P se obtiene:
Se asume que Pa actúa a un tercio de la altura del muro
(H/3) y que la distribución de empujes es lineal.
Caso sencillo (cont.)
θ
19
Método de la cuña 36
Caso pasivo
• El método de la cuña para el caso pasivo es igual al del caso
activo, pero con la diferencia que los esfuerzos tangenciales
sobre la superficie de deslizamiento actúan junto con el peso
del suelo W oponiéndose al empuje horizontal P que se ejerce
sobre el muro.
• Aunque el empuje pasivo es el máximo posible para el cual se
suelo puede mantenerse en equilibrio, debe determinarse la
cuña que da lugar al menor valor de este empuje.
Ejercicio 37
Calcular el empuje activo para el muro de contención
de la figura utilizando los métodos de Rankine y de
Coulomb. El relleno es un suelo granular sin cohesión,
además no considere el roce muro-suelo a trasdós.
20
Muros con fricción a trasdós
φφδ
3
2
ó
2
1
≈
38
• En general se desarrollan fuerzas tangenciales entre el suelo y
muro debido a los movimientos relativos entre ambos.
• En la zona activa, el desplazamiento del suelo produce una
fuerza tangencial hacia abajo sobre el muro.
• El ángulo de fricción entre el suelo y el muro se considera
por lo general como una fracción del ángulo de fricción del
suelo.
caso activo caso pasivo
δ
δ
δ
Muros con fricción a trasdós
245 φ+
39
• Se asume que la superficie de falla es recta, lo cual es una
aproximación.
• La figura muestra las fuerzas que actúan en la cuña activa, en
donde P esta inclinado en lugar de horizontal.
• La inclinación de la superficie de falla ya no es .
Empuje activo mediante el método de la cuña
δ
21
Ensayo experimental 40
Lee et al. (2000)
• La figura muestra el esquema de un modelo a escala que
fue ensayado en una centrifuga geotécnica para estudiar
el comportamiento de un muro de contención sometido a
una excitación dinámica.
Ensayo experimental (cont.) 41
Lee et al. (2000)
Muro
Sección del modelo a escala después de haber sido ensayado
22
Caso mas general
( )
( )
( ) ( ) ( )
( )
2
i-sen
i.sensen
+sen
-sen
sen
1
Ka














−+
+
=
β
φδφ
δβ
φβ
β
a
2
a
KH
2
1
P γ=
δ
42
• El método de las cuñas se generalizó para muros de retención
inclinados y superficies del terreno también inclinadas,
teniendo en cuenta la fricción del muro.
• La inclinación de P con respecto a la normal del muro es .
• La expresión de Ka fue deducida por Coulomb en 1776 por el
método de la cuña con superficie de deslizamiento plana.
δ
Efecto de la cohesión 43
• La ecuación anterior (caso general) se dedujo para c=0 y su
empleo para c>0 es aproximado ya que los esfuerzos
horizontales y verticales no son los principales.
• Por lo general no se considera el efecto de la cohesión en el
calculo del roce muro-suelo a trasdós.
• Se recomienda utilizar materiales no cohesivos como
materiales de relleno ya que son mas predecibles que los
materiales cohesivos y tienen mejores propiedades de
drenaje.
aa
2
a KHc2KH
2
1
P −≈ γ
23
Efecto de la napa de agua 44
• Si el aporte de agua (por la acción de la lluvia, infiltraciones
subterráneas, etc.) excede a la capacidad de desagüe, el nivel
del agua puede subir a niveles por sobre la base del muro.
• La existencia de una napa de agua influye considerablemente
en el empuje sobre el muro y por ende en la estabilidad de la
estructura.
sat
vh ''Ku' σσσσ =−=
Drenaje 45
• Para eliminar o disminuir el efecto de la napa de agua se
utilizan sistemas de drenaje que evacuen el agua.
• Una solución es utilizar barbacanas con un sistema de
drenaje y filtro.
• Otra solución es utilizar un drenaje posterior con un tubo
recolector en la base.
barbacana dren
filtro
filtro
dren
tubo
perforado
24
Efecto de la sobrecarga
( ) as Kqz += γσ
46
Efecto de la sobrecarga 47
• Dependiendo de la ubicación y magnitud de la sobrecarga, el
ángulo de la superficie de deslizamiento puede variar; sin
embargo se esta por el lado de la seguridad, ya que el ángulo
de desplazamiento original entrega el mayor empuje sobre el
muro.
• El incremento de esfuerzo horizontal en un punto a una
profundidad z, producido por una presión uniforme q que
actúa sobre una franja flexible es:
Sobrecarga uniforme aplicada sobre una franja “finita”
( ) ( )( )2+cossen-
q
Fh
βααα
π
σ =
h
σ
25
Efecto de la sobrecarga 48
• En muros rígidos el aumento de presión provocado por
la imposibilidad de deformación es equivalente a la
acción de una carga ficticia igual y simétrica en relación
del plano del muro, y tiene por efecto duplicar el valor.
Estos resultados han sido prácticamente confirmados por
las experiencias de Spanger en 1938.
• El factor F se aplica al empuje y debe estar en un rango
desde 1 si se considera al muro como flexible hasta 2 si
se considera como rígido.
Empuje sísmico 49
Mononobe y Okabe
• Consiste en una extensión pseudo-estática de la formula de la
cuña de Coulomb. Fuerzas de inercia horizontales y
verticales actúan sobre la cuña de Coulomb adicionalmente
al peso propio, lo cual genera el empuje total, que para
suelos granulares es:
donde
( )k-1KH
2
1
P vAE
2
AE γ=
( )
( ) ( ) ( ) ( ) ( )
( ) ( )
2
2
2
AE
'-icos'++cos
i--sen+sen
+1'++cos'coscos
'cos
K






−−
=
βαβδ
αφδφ
αβδβα
βαφ
( )





v
h
k-1
k
arctan:α kh : coeficiente horizontal sísmico
Kv : coeficiente vertical sísmico
26
Empuje sísmico
sísmicoP∆
( )
( )
( ) ( ) ( )
( )
2
a
'-icos
i.sensen
'+cos
'-cos
'cos
1
K














−+
+
=
β
φδφ
δβ
φβ
β
50
• La componente estática del empuje activo es Pestático y actúa a
H/3 de la base del muro.
donde
Mononobe y Okabe (cont.)
a
2
aestático KH
2
1
P=P γ=
estáticoAEsísmico PPP −=∆
δ
• La componente sísmica del empuje es y actúa a 2H/3
de la base del muro.
• Estos empujes van inclinados un ángulo con respecto al
muro.
Empuje sísmico 51
Mononobe y Okabe (cont.)
• Las fuerzas de inercia actúan sobre el muro simultáneamente
con el empuje estático y sísmico, como se muestra en la
figura.
• En general se usa Kh entre 0.12 y 0.25 y Kv =1/2Kh ó 0.
'β
δβ ' +
δβ ' +
27
Empuje sísmico 52
Mononobe y Okabe (cont.)
• En el caso como el de la figura hay que incluir la inercia
del peso del terreno sobre el talón.
• El método de Mononobe y Okabe no sirve para suelos
cohesivos.
Observaciones:
Desplazamiento sísmico remanente
• Richards y Elms (1979) propusieron una ecuación para estimar el
desplazamiento lateral del muro de contención sometido a un
sismo, debido al deslizamiento en la base.
• El deslizamiento ocurre cada vez que la aceleración es superior a
la aceleración requerida para alcanzar un FS al deslizamiento igual
a 1.0 (kf). 4
f
max
max
2
max
k
a
ga
v
0.087s 





=
s = desplazamiento horizontal remanente
amax = aceleración máxima del suelo (expresada como fracción de g)
vmax = velocidad máxima del suelo
kf = coeficiente sísmico de fluencia (expresada como fracción de g)
• La velocidad máxima se puede estimar como vmax = c amax, en que c = 70
cm/seg.
• ao se puede considerar como amax, según la zona sísmica que establece la
norma NCh 433; aún cuando se han registrado aceleraciones amax mayores
que ao.
53
28
Coeficiente sísmico horizontal kh
0.43
0.32
0.21
ao
Zona sísmica
• Lo habitual es diseñar con kh = ao/2 y los siguientes factores de
seguridad mínimos.
1.41.3Estática + dinámica
1.51.5Estática
Volcamiento FS.vDeslizamiento FS.dCondición
• Si el desplazamiento es mayor que el admisible se deberá
redimensionar el muro, aumentando kh.
• Si no se admiten desplazamientos laterales se deberá diseñar con
kh igual a amax. En la práctica esto se traduce en disminuir los
factores de seguridad admisibles, proponiéndose FS.d > 1.1 y FS.v
> 1.2. (Ortigosa, 1997).
54
Empuje sísmico en muros de subterráneo 55
• La Norma NCh-433 (Diseño sísmico de edificios) propone una
componente sísmica del empuje con una distribución uniforme.
• La componente estática del empuje de tierras debe evaluarse para
una condición de reposo.
Cr: coeficiente de rigidez adimensional que depende del tipo de suelo .
?: peso unitario del suelo.
H: altura del muro de subterráneo en contacto con el suelo.
Csmax: coeficiente sísmico efectivo máximo.
29
Empuje sísmico en muros de subterráneos 56
Modos de falla en muros rígidos 57
Falla por traslación Falla por rotación
Falla por estabilidad global
Falla estructural
Priyantha W.
30
Estabilidad de un muro de contención 58
• La filosofía básica de diseño se hace verificando que un
determinado muro resista los esfuerzos, no se vuelque, no se
deslice, ni tampoco ejerza presiones en la base del suelo
superiores a las admisibles.
• Los pasos a seguir son los siguientes (en el caso de un muro
gravitacional):
1. Pre-diseño y elección del tipo de muro.
2. Se establecen las propiedades geotécnicas del suelo a
trasdós y en el sello de fundación del muro, es decir ,
etc. (el relleno se especifica). También se debe conocer la
capacidad admisible del suelo al nivel del sello de
fundación.
3. Se calcula el empuje activo.
γφ,
Estabilidad de un muro de contención 59
4. Se calcula el peso del muro.
5. Se calcula la reacción en la base y su posición en la
base, la cual ojalá esté ubicada dentro del tercio central.
Si la resultante de la reacción efectiva N’ se localiza dentro
del tercio central:
( )
b
N'
x6-b4= 21
σ
( )
b
N'
b2-x6= 22σx
Base del muro
N’σ1
σ2
31
Estabilidad de un muro de contención 60
Si la resultante de la reacción efectiva N’ se localiza en el
primer tercio:
x3
N'2
=1σ
x
3x
N’
σ1
Estabilidad de un muro de contención 61
6. Se verifica el esfuerzo aplicado por el muro sobre el terreno,
valor que en el caso estático debe ser
estáticoadmest σσ ≤ sísmicoadmsis σσ ≤y
32
Estabilidad de un muro de contención
≥
62
7. Se verifica el F.S. al volcamiento, definido como:
∑
∑=
volcantesMomentos
sresistenteMomentos
F.S.volc
Para rellenos granulares, factores de seguridad usuales son:
F.S. estático 1.5 y F.S. sísmico 1.2
8. Se verifica el F.S. al deslizamiento, definido como:
∑
∑=
eshorizontalsdeslizanteFuerzas
eshorizontalsresistenteFuerzas
F.S.desliz
Para rellenos granulares, factores de seguridad usuales son:
F.S. estático 1.8 y F.S. sísmico 1.4
≥
≥
≥
Estabilidad de un muro de contención 63
9. Se verifica la resistencia al corte de las secciones del
muro.
10. Si el muro satisface los requerimientos, esta o.k.. En
caso contrario se rediseña y se vuelven a chequear los
puntos 3 al 9.
Observaciones
• Debido a las grandes deformaciones necesarias para
movilizar el empuje pasivo, es recomendable
considerar solamente entre un 33 y un 50% del empuje
pasivo.
• En la fundación, se puede considerar el ángulo de
fricción en la interfaz igual al ángulo de fricción del
suelo si se trata de hormigón vertido en contra del
suelo.
33
Ejemplo 64
• Verificar el pre-dimensionamiento del muro
gravitacional de la figura.
30o (pared muy rugosa)
Empujes en muros flexibles 65
• Mediciones en terreno han demostrado
que la distribución de presiones sobre
estructuras de contención flexibles
puede ser muy distinta de la que
corresponde al empuje activo.
• Terzaghi y Peck (1948) propusieron
una distribución de presiones como el
de la figura, en donde la curva de
presiones representa una envolvente de
las diversas distribuciones reales
posibles.
• En el caso de tablestacados anclados,
la distribución de presiones ejercidas
por el terreno depende en gran parte
del proceso constructivo.

Más contenido relacionado

La actualidad más candente

111644545 ensayos-realizados-a-unidades-de-albanileria
111644545 ensayos-realizados-a-unidades-de-albanileria111644545 ensayos-realizados-a-unidades-de-albanileria
111644545 ensayos-realizados-a-unidades-de-albanileriadavidmariela2880801
 
Diseño de muros de contencio venezuela
Diseño de muros de contencio venezuelaDiseño de muros de contencio venezuela
Diseño de muros de contencio venezuelayesseny villacres
 
Diseño pavimento rigido
Diseño pavimento rigidoDiseño pavimento rigido
Diseño pavimento rigidoluz jara
 
Equipos de compactación de suelos
Equipos de compactación de suelosEquipos de compactación de suelos
Equipos de compactación de suelosAlberto Solano
 
167820324 texto-guia-mecanica-suelos-ii-umss
167820324 texto-guia-mecanica-suelos-ii-umss167820324 texto-guia-mecanica-suelos-ii-umss
167820324 texto-guia-mecanica-suelos-ii-umssEdson Cossio
 
8 ava clase resistencia al esfuerzo cortante diapos (1)
8 ava clase   resistencia al esfuerzo cortante diapos (1)8 ava clase   resistencia al esfuerzo cortante diapos (1)
8 ava clase resistencia al esfuerzo cortante diapos (1)Luisses Huaman Fernadez
 
empujes laterales y ensayo de corte directo
empujes laterales y ensayo de corte directoempujes laterales y ensayo de corte directo
empujes laterales y ensayo de corte directoaaromdavalosmamani
 
Informe de Laboratorio de Ensayo Proctor y Ensayo de cono de densidad
Informe de Laboratorio de Ensayo Proctor y Ensayo de cono de densidadInforme de Laboratorio de Ensayo Proctor y Ensayo de cono de densidad
Informe de Laboratorio de Ensayo Proctor y Ensayo de cono de densidadCarlos Ismael Campos Guerra
 
fallas en los pavimentos
fallas en los pavimentosfallas en los pavimentos
fallas en los pavimentosCesar Simon
 
07 MANUAL MS1 INSTITUTO DE ASFALTO.pdf
07 MANUAL MS1 INSTITUTO DE ASFALTO.pdf07 MANUAL MS1 INSTITUTO DE ASFALTO.pdf
07 MANUAL MS1 INSTITUTO DE ASFALTO.pdfRichyZr
 
Diseño sísmico de edificaciones problemas resueltos
Diseño sísmico de edificaciones problemas resueltosDiseño sísmico de edificaciones problemas resueltos
Diseño sísmico de edificaciones problemas resueltosJeiner SB
 
Aplicación del ensayo de penetración estándar en la determinación de parámetr...
Aplicación del ensayo de penetración estándar en la determinación de parámetr...Aplicación del ensayo de penetración estándar en la determinación de parámetr...
Aplicación del ensayo de penetración estándar en la determinación de parámetr...cristiansorianoc
 
Laboratorio de pesos unitarios de los agregados
Laboratorio de pesos unitarios de los agregadosLaboratorio de pesos unitarios de los agregados
Laboratorio de pesos unitarios de los agregadosDorin Chavez Hurtado
 
12 cap11 presionlateraldelsuelo
12 cap11 presionlateraldelsuelo12 cap11 presionlateraldelsuelo
12 cap11 presionlateraldelsuelomatias diaz
 
Capítulo 5 distribución de esfuerzos en el suelo debido a cargas
Capítulo 5   distribución de esfuerzos en el suelo debido a cargasCapítulo 5   distribución de esfuerzos en el suelo debido a cargas
Capítulo 5 distribución de esfuerzos en el suelo debido a cargasClemer David Maquera Flores
 
Capacidad de Carga.pdf
Capacidad de Carga.pdfCapacidad de Carga.pdf
Capacidad de Carga.pdfRafael Ortiz
 

La actualidad más candente (20)

111644545 ensayos-realizados-a-unidades-de-albanileria
111644545 ensayos-realizados-a-unidades-de-albanileria111644545 ensayos-realizados-a-unidades-de-albanileria
111644545 ensayos-realizados-a-unidades-de-albanileria
 
Ensayo de corte directo
Ensayo de corte directoEnsayo de corte directo
Ensayo de corte directo
 
Diseño de muros de contencio venezuela
Diseño de muros de contencio venezuelaDiseño de muros de contencio venezuela
Diseño de muros de contencio venezuela
 
Diseño pavimento rigido
Diseño pavimento rigidoDiseño pavimento rigido
Diseño pavimento rigido
 
Equipos de compactación de suelos
Equipos de compactación de suelosEquipos de compactación de suelos
Equipos de compactación de suelos
 
Teoría de Rankine (2).pdf
Teoría de Rankine (2).pdfTeoría de Rankine (2).pdf
Teoría de Rankine (2).pdf
 
Presión lateral de suelo
Presión lateral de sueloPresión lateral de suelo
Presión lateral de suelo
 
167820324 texto-guia-mecanica-suelos-ii-umss
167820324 texto-guia-mecanica-suelos-ii-umss167820324 texto-guia-mecanica-suelos-ii-umss
167820324 texto-guia-mecanica-suelos-ii-umss
 
8 ava clase resistencia al esfuerzo cortante diapos (1)
8 ava clase   resistencia al esfuerzo cortante diapos (1)8 ava clase   resistencia al esfuerzo cortante diapos (1)
8 ava clase resistencia al esfuerzo cortante diapos (1)
 
empujes laterales y ensayo de corte directo
empujes laterales y ensayo de corte directoempujes laterales y ensayo de corte directo
empujes laterales y ensayo de corte directo
 
Informe de Laboratorio de Ensayo Proctor y Ensayo de cono de densidad
Informe de Laboratorio de Ensayo Proctor y Ensayo de cono de densidadInforme de Laboratorio de Ensayo Proctor y Ensayo de cono de densidad
Informe de Laboratorio de Ensayo Proctor y Ensayo de cono de densidad
 
fallas en los pavimentos
fallas en los pavimentosfallas en los pavimentos
fallas en los pavimentos
 
07 MANUAL MS1 INSTITUTO DE ASFALTO.pdf
07 MANUAL MS1 INSTITUTO DE ASFALTO.pdf07 MANUAL MS1 INSTITUTO DE ASFALTO.pdf
07 MANUAL MS1 INSTITUTO DE ASFALTO.pdf
 
Diseño sísmico de edificaciones problemas resueltos
Diseño sísmico de edificaciones problemas resueltosDiseño sísmico de edificaciones problemas resueltos
Diseño sísmico de edificaciones problemas resueltos
 
Limite de contraccion
Limite de contraccionLimite de contraccion
Limite de contraccion
 
Aplicación del ensayo de penetración estándar en la determinación de parámetr...
Aplicación del ensayo de penetración estándar en la determinación de parámetr...Aplicación del ensayo de penetración estándar en la determinación de parámetr...
Aplicación del ensayo de penetración estándar en la determinación de parámetr...
 
Laboratorio de pesos unitarios de los agregados
Laboratorio de pesos unitarios de los agregadosLaboratorio de pesos unitarios de los agregados
Laboratorio de pesos unitarios de los agregados
 
12 cap11 presionlateraldelsuelo
12 cap11 presionlateraldelsuelo12 cap11 presionlateraldelsuelo
12 cap11 presionlateraldelsuelo
 
Capítulo 5 distribución de esfuerzos en el suelo debido a cargas
Capítulo 5   distribución de esfuerzos en el suelo debido a cargasCapítulo 5   distribución de esfuerzos en el suelo debido a cargas
Capítulo 5 distribución de esfuerzos en el suelo debido a cargas
 
Capacidad de Carga.pdf
Capacidad de Carga.pdfCapacidad de Carga.pdf
Capacidad de Carga.pdf
 

Similar a 3 empujes de_tierra

Similar a 3 empujes de_tierra (20)

3 empujes de_tierra
3 empujes de_tierra3 empujes de_tierra
3 empujes de_tierra
 
3 empujes de_tierra
3 empujes de_tierra3 empujes de_tierra
3 empujes de_tierra
 
2 resistencia al_corte
2 resistencia al_corte2 resistencia al_corte
2 resistencia al_corte
 
Presion Lateral de Suelos ( ESFUERZOS HORIZONTALES)
Presion Lateral de Suelos ( ESFUERZOS HORIZONTALES) Presion Lateral de Suelos ( ESFUERZOS HORIZONTALES)
Presion Lateral de Suelos ( ESFUERZOS HORIZONTALES)
 
Muros de contencion
Muros de contencionMuros de contencion
Muros de contencion
 
Muros de-sotano-fin...
Muros de-sotano-fin...Muros de-sotano-fin...
Muros de-sotano-fin...
 
muros-de-sotano-fin-180618032056.pdf
muros-de-sotano-fin-180618032056.pdfmuros-de-sotano-fin-180618032056.pdf
muros-de-sotano-fin-180618032056.pdf
 
Muros2011++
Muros2011++Muros2011++
Muros2011++
 
Diseño estructural de muros de contención
Diseño estructural de muros de contenciónDiseño estructural de muros de contención
Diseño estructural de muros de contención
 
Muros
MurosMuros
Muros
 
MUROS DE CONTENCIÓN 1.pptx
MUROS DE CONTENCIÓN 1.pptxMUROS DE CONTENCIÓN 1.pptx
MUROS DE CONTENCIÓN 1.pptx
 
Ponecia10
Ponecia10Ponecia10
Ponecia10
 
Muro contencion
Muro contencionMuro contencion
Muro contencion
 
Mecanica de suelos 2 empuje
Mecanica de suelos 2 empujeMecanica de suelos 2 empuje
Mecanica de suelos 2 empuje
 
28263279 calzadura-conceptos-y-aplicacion
28263279 calzadura-conceptos-y-aplicacion28263279 calzadura-conceptos-y-aplicacion
28263279 calzadura-conceptos-y-aplicacion
 
55988526 curso-muros
55988526 curso-muros55988526 curso-muros
55988526 curso-muros
 
Análisis de excavaciones-re.pdf
Análisis de excavaciones-re.pdfAnálisis de excavaciones-re.pdf
Análisis de excavaciones-re.pdf
 
Diseño de muros de contención
Diseño de muros de contenciónDiseño de muros de contención
Diseño de muros de contención
 
Modulo ii ms2
Modulo ii ms2Modulo ii ms2
Modulo ii ms2
 
UNIDAD TEMATICA N°02 CLASE 05 CAPACIDAD CARGA , TIPOS DE FALLAS (3).pptx
UNIDAD TEMATICA N°02 CLASE 05 CAPACIDAD CARGA , TIPOS DE FALLAS (3).pptxUNIDAD TEMATICA N°02 CLASE 05 CAPACIDAD CARGA , TIPOS DE FALLAS (3).pptx
UNIDAD TEMATICA N°02 CLASE 05 CAPACIDAD CARGA , TIPOS DE FALLAS (3).pptx
 

Más de Aureliano Hernandez Sanchez

Más de Aureliano Hernandez Sanchez (9)

50089888 catalogo-nicoll-agua
50089888 catalogo-nicoll-agua50089888 catalogo-nicoll-agua
50089888 catalogo-nicoll-agua
 
Resolucion de alcaldia_de_la_libre_disponibilidad_de_terrno[1]
Resolucion de alcaldia_de_la_libre_disponibilidad_de_terrno[1]Resolucion de alcaldia_de_la_libre_disponibilidad_de_terrno[1]
Resolucion de alcaldia_de_la_libre_disponibilidad_de_terrno[1]
 
Memoria descriptiva de predio urbano lote 01
Memoria descriptiva de predio urbano lote 01Memoria descriptiva de predio urbano lote 01
Memoria descriptiva de predio urbano lote 01
 
Cronograma electoral 2018
Cronograma electoral 2018Cronograma electoral 2018
Cronograma electoral 2018
 
Constancia de trabajo
Constancia de trabajoConstancia de trabajo
Constancia de trabajo
 
244294107 introduccion-infraestructura-vial-docx
244294107 introduccion-infraestructura-vial-docx244294107 introduccion-infraestructura-vial-docx
244294107 introduccion-infraestructura-vial-docx
 
3 parametros_de_dise_de_infraestructura_de_agua_y_saneamiento_cc_pp_rurales
 3 parametros_de_dise_de_infraestructura_de_agua_y_saneamiento_cc_pp_rurales 3 parametros_de_dise_de_infraestructura_de_agua_y_saneamiento_cc_pp_rurales
3 parametros_de_dise_de_infraestructura_de_agua_y_saneamiento_cc_pp_rurales
 
Mecnica de-suelos
Mecnica de-suelosMecnica de-suelos
Mecnica de-suelos
 
Informe mes de septiembre
Informe   mes de septiembreInforme   mes de septiembre
Informe mes de septiembre
 

Último

Slaimen Barakat - SLIDESHARE TAREA 2.pdf
Slaimen Barakat - SLIDESHARE TAREA 2.pdfSlaimen Barakat - SLIDESHARE TAREA 2.pdf
Slaimen Barakat - SLIDESHARE TAREA 2.pdfslaimenbarakat
 
Diseño de sifones y alcantarillas para obras hidraulicas
Diseño de sifones y alcantarillas para obras hidraulicasDiseño de sifones y alcantarillas para obras hidraulicas
Diseño de sifones y alcantarillas para obras hidraulicasRiegosVeracruz
 
Brochure Tuna Haus _ Hecho para mascotas.pdf
Brochure Tuna Haus _ Hecho para mascotas.pdfBrochure Tuna Haus _ Hecho para mascotas.pdf
Brochure Tuna Haus _ Hecho para mascotas.pdfhellotunahaus
 
diseño de plantas agroindustriales unidad
diseño de plantas agroindustriales unidaddiseño de plantas agroindustriales unidad
diseño de plantas agroindustriales unidaddabuitragoi
 
Torre 222 sobre instalaciones de este mismo edificio
Torre 222 sobre instalaciones de este mismo edificioTorre 222 sobre instalaciones de este mismo edificio
Torre 222 sobre instalaciones de este mismo edificio2021ArqROLDANBERNALD
 
Normas de convivencia para imprimir gratis
Normas de convivencia para imprimir gratisNormas de convivencia para imprimir gratis
Normas de convivencia para imprimir gratisbrasilyamile
 
APORTES Y CARACTERISTICAS DE LAS OBRAS DE CORBUSIER. MIES VAN DER ROHE
APORTES Y CARACTERISTICAS DE LAS OBRAS DE  CORBUSIER. MIES VAN DER ROHEAPORTES Y CARACTERISTICAS DE LAS OBRAS DE  CORBUSIER. MIES VAN DER ROHE
APORTES Y CARACTERISTICAS DE LAS OBRAS DE CORBUSIER. MIES VAN DER ROHEgonzalezdfidelibus
 
Proceso de percepción visual y de reconocimiento
Proceso de percepción visual y de reconocimientoProceso de percepción visual y de reconocimiento
Proceso de percepción visual y de reconocimientoJorge Fernandez
 
Arquitectura moderna nazareth bermudez PSM
Arquitectura moderna nazareth bermudez PSMArquitectura moderna nazareth bermudez PSM
Arquitectura moderna nazareth bermudez PSMNaza59
 
plantilla-de-messi-1.pdf es muy especial
plantilla-de-messi-1.pdf es muy especialplantilla-de-messi-1.pdf es muy especial
plantilla-de-messi-1.pdf es muy especialAndreaMlaga1
 
CERTIFICACIÓN DE CAPACITACIÓN PARA EL CENSO - tfdxwBRz6f3AP7QU.pdf
CERTIFICACIÓN DE CAPACITACIÓN PARA EL CENSO - tfdxwBRz6f3AP7QU.pdfCERTIFICACIÓN DE CAPACITACIÓN PARA EL CENSO - tfdxwBRz6f3AP7QU.pdf
CERTIFICACIÓN DE CAPACITACIÓN PARA EL CENSO - tfdxwBRz6f3AP7QU.pdfasnsdt
 
Guía de actividades y rúbrica de evaluación - Unidad 3 - Escenario 4 - Rol de...
Guía de actividades y rúbrica de evaluación - Unidad 3 - Escenario 4 - Rol de...Guía de actividades y rúbrica de evaluación - Unidad 3 - Escenario 4 - Rol de...
Guía de actividades y rúbrica de evaluación - Unidad 3 - Escenario 4 - Rol de...MayerlyAscanioNavarr
 
Jesus Diaz afiche Manierismo .pdf arquitectura
Jesus Diaz afiche Manierismo .pdf arquitecturaJesus Diaz afiche Manierismo .pdf arquitectura
Jesus Diaz afiche Manierismo .pdf arquitecturajesusgrosales12
 
guia de talles de camitas cucciolos 2024.pdf
guia de talles de camitas cucciolos 2024.pdfguia de talles de camitas cucciolos 2024.pdf
guia de talles de camitas cucciolos 2024.pdfcucciolosfabrica
 
Presentación Proyecto Vintage Scrapbook Marrón (1).pdf
Presentación Proyecto Vintage Scrapbook Marrón (1).pdfPresentación Proyecto Vintage Scrapbook Marrón (1).pdf
Presentación Proyecto Vintage Scrapbook Marrón (1).pdfAdrianaCarolinaMoral2
 
Geometrías de la imaginación: Diseño e iconografía de Querétaro
Geometrías de la imaginación: Diseño e iconografía de QuerétaroGeometrías de la imaginación: Diseño e iconografía de Querétaro
Geometrías de la imaginación: Diseño e iconografía de QuerétaroJuan Carlos Fonseca Mata
 
TIPOS DE LINEAS utilizados en dibujo técnico mecánico
TIPOS DE LINEAS utilizados en dibujo técnico mecánicoTIPOS DE LINEAS utilizados en dibujo técnico mecánico
TIPOS DE LINEAS utilizados en dibujo técnico mecánicoWilsonChambi4
 
Espacios únicos creados por nuestros clientes
Espacios únicos creados por nuestros clientesEspacios únicos creados por nuestros clientes
Espacios únicos creados por nuestros clientesespejosflorida
 

Último (20)

Slaimen Barakat - SLIDESHARE TAREA 2.pdf
Slaimen Barakat - SLIDESHARE TAREA 2.pdfSlaimen Barakat - SLIDESHARE TAREA 2.pdf
Slaimen Barakat - SLIDESHARE TAREA 2.pdf
 
Diseño de sifones y alcantarillas para obras hidraulicas
Diseño de sifones y alcantarillas para obras hidraulicasDiseño de sifones y alcantarillas para obras hidraulicas
Diseño de sifones y alcantarillas para obras hidraulicas
 
Brochure Tuna Haus _ Hecho para mascotas.pdf
Brochure Tuna Haus _ Hecho para mascotas.pdfBrochure Tuna Haus _ Hecho para mascotas.pdf
Brochure Tuna Haus _ Hecho para mascotas.pdf
 
diseño de plantas agroindustriales unidad
diseño de plantas agroindustriales unidaddiseño de plantas agroindustriales unidad
diseño de plantas agroindustriales unidad
 
Arte textil: Tejidos artesanos en la frontera hispano-lusa
Arte textil: Tejidos artesanos en la frontera hispano-lusaArte textil: Tejidos artesanos en la frontera hispano-lusa
Arte textil: Tejidos artesanos en la frontera hispano-lusa
 
1.La locomoción de los seres vivos diseño
1.La locomoción de los seres vivos diseño1.La locomoción de los seres vivos diseño
1.La locomoción de los seres vivos diseño
 
Torre 222 sobre instalaciones de este mismo edificio
Torre 222 sobre instalaciones de este mismo edificioTorre 222 sobre instalaciones de este mismo edificio
Torre 222 sobre instalaciones de este mismo edificio
 
Normas de convivencia para imprimir gratis
Normas de convivencia para imprimir gratisNormas de convivencia para imprimir gratis
Normas de convivencia para imprimir gratis
 
APORTES Y CARACTERISTICAS DE LAS OBRAS DE CORBUSIER. MIES VAN DER ROHE
APORTES Y CARACTERISTICAS DE LAS OBRAS DE  CORBUSIER. MIES VAN DER ROHEAPORTES Y CARACTERISTICAS DE LAS OBRAS DE  CORBUSIER. MIES VAN DER ROHE
APORTES Y CARACTERISTICAS DE LAS OBRAS DE CORBUSIER. MIES VAN DER ROHE
 
Proceso de percepción visual y de reconocimiento
Proceso de percepción visual y de reconocimientoProceso de percepción visual y de reconocimiento
Proceso de percepción visual y de reconocimiento
 
Arquitectura moderna nazareth bermudez PSM
Arquitectura moderna nazareth bermudez PSMArquitectura moderna nazareth bermudez PSM
Arquitectura moderna nazareth bermudez PSM
 
plantilla-de-messi-1.pdf es muy especial
plantilla-de-messi-1.pdf es muy especialplantilla-de-messi-1.pdf es muy especial
plantilla-de-messi-1.pdf es muy especial
 
CERTIFICACIÓN DE CAPACITACIÓN PARA EL CENSO - tfdxwBRz6f3AP7QU.pdf
CERTIFICACIÓN DE CAPACITACIÓN PARA EL CENSO - tfdxwBRz6f3AP7QU.pdfCERTIFICACIÓN DE CAPACITACIÓN PARA EL CENSO - tfdxwBRz6f3AP7QU.pdf
CERTIFICACIÓN DE CAPACITACIÓN PARA EL CENSO - tfdxwBRz6f3AP7QU.pdf
 
Guía de actividades y rúbrica de evaluación - Unidad 3 - Escenario 4 - Rol de...
Guía de actividades y rúbrica de evaluación - Unidad 3 - Escenario 4 - Rol de...Guía de actividades y rúbrica de evaluación - Unidad 3 - Escenario 4 - Rol de...
Guía de actividades y rúbrica de evaluación - Unidad 3 - Escenario 4 - Rol de...
 
Jesus Diaz afiche Manierismo .pdf arquitectura
Jesus Diaz afiche Manierismo .pdf arquitecturaJesus Diaz afiche Manierismo .pdf arquitectura
Jesus Diaz afiche Manierismo .pdf arquitectura
 
guia de talles de camitas cucciolos 2024.pdf
guia de talles de camitas cucciolos 2024.pdfguia de talles de camitas cucciolos 2024.pdf
guia de talles de camitas cucciolos 2024.pdf
 
Presentación Proyecto Vintage Scrapbook Marrón (1).pdf
Presentación Proyecto Vintage Scrapbook Marrón (1).pdfPresentación Proyecto Vintage Scrapbook Marrón (1).pdf
Presentación Proyecto Vintage Scrapbook Marrón (1).pdf
 
Geometrías de la imaginación: Diseño e iconografía de Querétaro
Geometrías de la imaginación: Diseño e iconografía de QuerétaroGeometrías de la imaginación: Diseño e iconografía de Querétaro
Geometrías de la imaginación: Diseño e iconografía de Querétaro
 
TIPOS DE LINEAS utilizados en dibujo técnico mecánico
TIPOS DE LINEAS utilizados en dibujo técnico mecánicoTIPOS DE LINEAS utilizados en dibujo técnico mecánico
TIPOS DE LINEAS utilizados en dibujo técnico mecánico
 
Espacios únicos creados por nuestros clientes
Espacios únicos creados por nuestros clientesEspacios únicos creados por nuestros clientes
Espacios únicos creados por nuestros clientes
 

3 empujes de_tierra

  • 1. 1 3 – Empujes de tierra y muros de contención 1
  • 4. 4 Introducción 6 • En proyectos de ingeniería civil es muy común tener que contener los empujes del suelo. • Es necesario estimar estos empujes para poder diseñar las estructuras de contención. Muros de contención Excavaciones Estabilización de taludes Introducción 7 Las tres principales situaciones de diseño se pueden resumir en: 1. Excavaciones 2. Muros de contención 3. Estabilización de taludes • Es necesario distinguir las estructuras de contención temporales de las permanentes. • La estabilidad debe mantenerse en todas las etapas. • Control de deformaciones es por lo general el problema mas importante en la práctica. • Problemas asociados a la napa. • El relleno es especificado. • La compactación y el drenaje son aspectos importantes.
  • 5. 5 Muros de contención 8 • Un muro de contención es una estructura que se utiliza para proporcionar soporte lateral a un terreno, que en ocasiones es un suelo natural y en otras es un relleno artificial. • Existen muchos tipos de estructuras de contención, cada una adecuada para diferentes aplicaciones. • La siguiente tabla clasifica a los muros de contención en dos grandes categorías: sistemas estabilizados externamente y sistemas estabilizados internamente. • Los sistemas estabilizados externamente resisten los empujes de tierra por su peso propio y rigidez. • Los sistemas estabilizados internamente refuerzan el suelo para proveer la estabilidad necesaria. Clasificación de muros de contención 9 Clasificación adaptada de O´Rourke y Jones, 1990. (Coduto P., 1999)
  • 6. 6 Muros gravitacionales 10 • Los muros de gravedad se construyen por lo general de hormigón o de mampostería en piedra, con un gran espesor, de tal manera que sean despreciables o no se produzcan los esfuerzos de tensión en ninguna parte de la estructura. • El muro solo cuenta con su masa y su resistencia a la compresión para resistir las fuerzas que sobre el actúan. Muros cantilever 11 • El muro cantilever (de hormigón armado) consta de un cuerpo vertical o alzado que contiene la tierra y se mantiene en posición gracias a la zapata o losa base. • El peso del relleno por encima del talón, además del propio peso del muro, contribuye a la estabilidad de la estructura.
  • 7. 7 Muros criba 12 • El sistema está formado por vigas entrelazadas las cuales forman un armazón que se rellena con suelo granular. • El conjunto actúa como un muro de gravedad y tiene las ventaja de permitir una tolerancia de asentamientos diferenciales apreciables. Gaviones 13 • Los muros de gaviones están formados por cajas metálicas apiladas llenas de rocas o agregados, que por lo general tienen dimensiones de 1 m x 1 m de sección transversal por 2 m de largo.
  • 8. 8 Tablestacas 14 • Están formados por delgados pilotes (entrelazados) que son hincados en el suelo. • Son estructuras flexibles cuya estabilidad depende del anclaje en la parte empotrada, del soporte lateral, o de la fijación a una estructura rígida. en voladizo anclados empotrado apuntalado Berry y Reid, 1993 Tablestacas 15
  • 9. 9 Muros pantalla 16 • Los muros pantalla se construyen en zanjas sostenidas mediante el uso de lodo bentonítico. • Después de introducir la armadura se introduce el hormigón, el cual desplaza el lodo bentonítico. • Finalmente se realiza la excavación. Muros pantalla 17 www.aquafin.net/ic_slurry_walls.htm
  • 10. 10 Tierra armada 18 • Se introducen bandas de refuerzo horizontales en un suelo granular con el fin de estabilizar la masa mediante la movilización de la resistencia a la fricción que tiene lugar en el suelo del entorno. Tierra armada 19 http://cee.engr.ucdavis.edu/faculty/boulanger/geo_photo_album/index.html
  • 11. 11 Tierra armada 20 The reinforced earth company Tierra armada 21 The reinforced earth company
  • 12. 12 Empujes de tierra 22 • La presión del terreno sobre un muro esta fuertemente condicionada por la deformabilidad del muro. • Si el muro y el terreno sobre el que se fundan son tales que las deformaciones son prácticamente nulas, se está en el caso de empuje en reposo. • Si el muro se desplaza, permitiendo la expansión lateral del suelo se produce una falla por corte del suelo retenido y se crea una cuña. El empuje disminuye desde el valor del empuje al reposo hasta el denominado valor del empuje activo, que es el mínimo valor posible del empuje. • Por el contrario, si se aplican fuerzas al muro de forma que éste empuje al relleno, la falla se produce mediante una cuña mucho más amplia. Este valor recibe el nombre de empuje pasivo y es el mayor valor que puede alcanzar el empuje. • Coeficiente de empuje de tierra en reposo • Por lo general, los muros de subterráneos se diseñan con los empujes en reposo. v h oK ' ' σ σ = Caso en reposo 23 En suelos granulares: Ko = 1 – sin φ’ (Jaky, 1944) Calavera J., 1989
  • 13. 13 Caso en reposo (cont.) 24 • La expresión propuesta por Jaky (obtenida experimentalmente) utiliza el ángulo de fricción en la falla (peak). • En algunos casos esta expresión puede no ser la más adecuada, sin embargo tiende a entregar buenos resultados. Caso activo 25 • Si el muro se mueve (traslación o rotación) hacia fuera los esfuerzos horizontales diminuyen. • Finalmente se puede alcanzar la falla por corte, desarrollándose una cuña activa.
  • 14. 14 Caso pasivo 26 • Si el muro se mueve hacia el suelo, los esfuerzos horizontales aumentan. • Finalmente se puede alcanzar la falla por corte, desarrollándose una cuña activa. h Desplazamiento necesario para alcanzar el caso activo y pasivo ≈ 27 • Basta un pequeño desplaza- miento para producir una cuña activa ( 0.001H en suelo granular suelto; H:altura del muro). • El empuje pasivo se moviliza en su totalidad con una gran deformación ( 0.02H en suelo granular denso). • Muros no impedidos de rotar libremente en su base están sujetos por lo general a una pequeña rotación y se diseñan con el empuje activo. Coduto D., 1999 ≈
  • 15. 15 Teoría de Rankine 28 Rankine desarrolló su teoría a mediados del siglo XIX, asumiendo que: • El suelo es homogéneo e isotrópico. • La superficie de falla es plana. • La superficie posterior del muro es vertical. • No existe fricción entre el suelo y la parte posterior del muro. Estado de Rankine (caso activo) ( )245tan sen1 sen1 ' ' K 2h a φ φ φ σ σ −= + − == v ( ) 2)( 2)( sen hv hv σσ σσ φ + − = 29 En un terreno sin cohesión (c=0) y con una superficie horizontal se tiene: Ka: coeficiente lateral de empuje activo En la falla:
  • 16. 16 Estado de Rankine (caso pasivo) ( )245tan sen1 sen1 ' ' K 2h p φ φ φ σ σ += − + == v 30 En un terreno sin cohesión (c=0) y con una superficie horizontal se tiene: Kp: coeficiente lateral de empuje pasivo Estados de Rankine (en suelos cohesivos) avaactivoh c K2'K' −= σσ pvph c K2'K' pasivo += σσ 31 La distribución de esfuerzos en ambos casos es: Caso activo Caso pasivo
  • 17. 17 Teoría de Coulomb (método de la cuña), 1776 32 • El método de Coulomb considera la fricción entre el muro (trasdós) y el terreno, y es mas general que el desarrollado por Rankine. • El método considera una cierta cuña de suelo, la cual ejerce una fuerza P sobre el muro, fuerza que satisface las condiciones de equilibrio. • La fuerza real que actuará sobre el muro en el caso activo será el valor máximo de P obtenido al considerar todas las cuñas posibles. • A pesar de que el empuje activo es el mínimo posible con el que el terreno puede estar en equilibrio, debemos determinar la cuña correspondiente al máximo valor de este empuje. Método de la cuña 33 ( )φtanN ( ) 1 2 γ θH cotg2 Caso sencillo • En caso sencillo de un muro de contención vertical, sin roce a trasdós, relleno horizontal y sin cohesión. Fuerzas que actúan sobre la cuña: W : peso del suelo = P : Resultante de las presiones existentes entre el suelo y el muro. N : Resultante de los esfuerzos normales sobre el plano de falla elegido. T : Resultante de los esfuerzos tangenciales sobre el plano de falla elegido =
  • 18. 18 Método de la cuña )cotan()-tan(H 2 1 )-W tan()-sen( )-cos( W P )-sen(FP0F )-cos(FW0F 2 θφθγφθφθ φθ φθ φθ === =⇒= =⇒= ∑ ∑ h v 245paraanulaseexpresiónEsta 0 )(cos )cotan( )(sen )-tan( H 2 1P activo 22 2 φθ φθ θ θ φθ γ θ += =      − +−= ∂ ∂ θ 34 Condiciones de equilibrio: La cuña activa ( activa), es decir la que da el valor máximo de P (empuje activo) se puede calcular iterando o derivando la expresión P( ). (Ver Lambe y Whitman, página 186) Caso sencillo (cont.) θ Método de la cuña )sen(1 )sen(-1 )2-(45tanK KH 2 1 )2-(45tanH 2 1 PP 2 a a 222 maxa φ φ φ γφγ + ==⇒ === 35 Remplazando activo en la expresión de P se obtiene: Se asume que Pa actúa a un tercio de la altura del muro (H/3) y que la distribución de empujes es lineal. Caso sencillo (cont.) θ
  • 19. 19 Método de la cuña 36 Caso pasivo • El método de la cuña para el caso pasivo es igual al del caso activo, pero con la diferencia que los esfuerzos tangenciales sobre la superficie de deslizamiento actúan junto con el peso del suelo W oponiéndose al empuje horizontal P que se ejerce sobre el muro. • Aunque el empuje pasivo es el máximo posible para el cual se suelo puede mantenerse en equilibrio, debe determinarse la cuña que da lugar al menor valor de este empuje. Ejercicio 37 Calcular el empuje activo para el muro de contención de la figura utilizando los métodos de Rankine y de Coulomb. El relleno es un suelo granular sin cohesión, además no considere el roce muro-suelo a trasdós.
  • 20. 20 Muros con fricción a trasdós φφδ 3 2 ó 2 1 ≈ 38 • En general se desarrollan fuerzas tangenciales entre el suelo y muro debido a los movimientos relativos entre ambos. • En la zona activa, el desplazamiento del suelo produce una fuerza tangencial hacia abajo sobre el muro. • El ángulo de fricción entre el suelo y el muro se considera por lo general como una fracción del ángulo de fricción del suelo. caso activo caso pasivo δ δ δ Muros con fricción a trasdós 245 φ+ 39 • Se asume que la superficie de falla es recta, lo cual es una aproximación. • La figura muestra las fuerzas que actúan en la cuña activa, en donde P esta inclinado en lugar de horizontal. • La inclinación de la superficie de falla ya no es . Empuje activo mediante el método de la cuña δ
  • 21. 21 Ensayo experimental 40 Lee et al. (2000) • La figura muestra el esquema de un modelo a escala que fue ensayado en una centrifuga geotécnica para estudiar el comportamiento de un muro de contención sometido a una excitación dinámica. Ensayo experimental (cont.) 41 Lee et al. (2000) Muro Sección del modelo a escala después de haber sido ensayado
  • 22. 22 Caso mas general ( ) ( ) ( ) ( ) ( ) ( ) 2 i-sen i.sensen +sen -sen sen 1 Ka               −+ + = β φδφ δβ φβ β a 2 a KH 2 1 P γ= δ 42 • El método de las cuñas se generalizó para muros de retención inclinados y superficies del terreno también inclinadas, teniendo en cuenta la fricción del muro. • La inclinación de P con respecto a la normal del muro es . • La expresión de Ka fue deducida por Coulomb en 1776 por el método de la cuña con superficie de deslizamiento plana. δ Efecto de la cohesión 43 • La ecuación anterior (caso general) se dedujo para c=0 y su empleo para c>0 es aproximado ya que los esfuerzos horizontales y verticales no son los principales. • Por lo general no se considera el efecto de la cohesión en el calculo del roce muro-suelo a trasdós. • Se recomienda utilizar materiales no cohesivos como materiales de relleno ya que son mas predecibles que los materiales cohesivos y tienen mejores propiedades de drenaje. aa 2 a KHc2KH 2 1 P −≈ γ
  • 23. 23 Efecto de la napa de agua 44 • Si el aporte de agua (por la acción de la lluvia, infiltraciones subterráneas, etc.) excede a la capacidad de desagüe, el nivel del agua puede subir a niveles por sobre la base del muro. • La existencia de una napa de agua influye considerablemente en el empuje sobre el muro y por ende en la estabilidad de la estructura. sat vh ''Ku' σσσσ =−= Drenaje 45 • Para eliminar o disminuir el efecto de la napa de agua se utilizan sistemas de drenaje que evacuen el agua. • Una solución es utilizar barbacanas con un sistema de drenaje y filtro. • Otra solución es utilizar un drenaje posterior con un tubo recolector en la base. barbacana dren filtro filtro dren tubo perforado
  • 24. 24 Efecto de la sobrecarga ( ) as Kqz += γσ 46 Efecto de la sobrecarga 47 • Dependiendo de la ubicación y magnitud de la sobrecarga, el ángulo de la superficie de deslizamiento puede variar; sin embargo se esta por el lado de la seguridad, ya que el ángulo de desplazamiento original entrega el mayor empuje sobre el muro. • El incremento de esfuerzo horizontal en un punto a una profundidad z, producido por una presión uniforme q que actúa sobre una franja flexible es: Sobrecarga uniforme aplicada sobre una franja “finita” ( ) ( )( )2+cossen- q Fh βααα π σ = h σ
  • 25. 25 Efecto de la sobrecarga 48 • En muros rígidos el aumento de presión provocado por la imposibilidad de deformación es equivalente a la acción de una carga ficticia igual y simétrica en relación del plano del muro, y tiene por efecto duplicar el valor. Estos resultados han sido prácticamente confirmados por las experiencias de Spanger en 1938. • El factor F se aplica al empuje y debe estar en un rango desde 1 si se considera al muro como flexible hasta 2 si se considera como rígido. Empuje sísmico 49 Mononobe y Okabe • Consiste en una extensión pseudo-estática de la formula de la cuña de Coulomb. Fuerzas de inercia horizontales y verticales actúan sobre la cuña de Coulomb adicionalmente al peso propio, lo cual genera el empuje total, que para suelos granulares es: donde ( )k-1KH 2 1 P vAE 2 AE γ= ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 2 2 2 AE '-icos'++cos i--sen+sen +1'++cos'coscos 'cos K       −− = βαβδ αφδφ αβδβα βαφ ( )      v h k-1 k arctan:α kh : coeficiente horizontal sísmico Kv : coeficiente vertical sísmico
  • 26. 26 Empuje sísmico sísmicoP∆ ( ) ( ) ( ) ( ) ( ) ( ) 2 a '-icos i.sensen '+cos '-cos 'cos 1 K               −+ + = β φδφ δβ φβ β 50 • La componente estática del empuje activo es Pestático y actúa a H/3 de la base del muro. donde Mononobe y Okabe (cont.) a 2 aestático KH 2 1 P=P γ= estáticoAEsísmico PPP −=∆ δ • La componente sísmica del empuje es y actúa a 2H/3 de la base del muro. • Estos empujes van inclinados un ángulo con respecto al muro. Empuje sísmico 51 Mononobe y Okabe (cont.) • Las fuerzas de inercia actúan sobre el muro simultáneamente con el empuje estático y sísmico, como se muestra en la figura. • En general se usa Kh entre 0.12 y 0.25 y Kv =1/2Kh ó 0. 'β δβ ' + δβ ' +
  • 27. 27 Empuje sísmico 52 Mononobe y Okabe (cont.) • En el caso como el de la figura hay que incluir la inercia del peso del terreno sobre el talón. • El método de Mononobe y Okabe no sirve para suelos cohesivos. Observaciones: Desplazamiento sísmico remanente • Richards y Elms (1979) propusieron una ecuación para estimar el desplazamiento lateral del muro de contención sometido a un sismo, debido al deslizamiento en la base. • El deslizamiento ocurre cada vez que la aceleración es superior a la aceleración requerida para alcanzar un FS al deslizamiento igual a 1.0 (kf). 4 f max max 2 max k a ga v 0.087s       = s = desplazamiento horizontal remanente amax = aceleración máxima del suelo (expresada como fracción de g) vmax = velocidad máxima del suelo kf = coeficiente sísmico de fluencia (expresada como fracción de g) • La velocidad máxima se puede estimar como vmax = c amax, en que c = 70 cm/seg. • ao se puede considerar como amax, según la zona sísmica que establece la norma NCh 433; aún cuando se han registrado aceleraciones amax mayores que ao. 53
  • 28. 28 Coeficiente sísmico horizontal kh 0.43 0.32 0.21 ao Zona sísmica • Lo habitual es diseñar con kh = ao/2 y los siguientes factores de seguridad mínimos. 1.41.3Estática + dinámica 1.51.5Estática Volcamiento FS.vDeslizamiento FS.dCondición • Si el desplazamiento es mayor que el admisible se deberá redimensionar el muro, aumentando kh. • Si no se admiten desplazamientos laterales se deberá diseñar con kh igual a amax. En la práctica esto se traduce en disminuir los factores de seguridad admisibles, proponiéndose FS.d > 1.1 y FS.v > 1.2. (Ortigosa, 1997). 54 Empuje sísmico en muros de subterráneo 55 • La Norma NCh-433 (Diseño sísmico de edificios) propone una componente sísmica del empuje con una distribución uniforme. • La componente estática del empuje de tierras debe evaluarse para una condición de reposo. Cr: coeficiente de rigidez adimensional que depende del tipo de suelo . ?: peso unitario del suelo. H: altura del muro de subterráneo en contacto con el suelo. Csmax: coeficiente sísmico efectivo máximo.
  • 29. 29 Empuje sísmico en muros de subterráneos 56 Modos de falla en muros rígidos 57 Falla por traslación Falla por rotación Falla por estabilidad global Falla estructural Priyantha W.
  • 30. 30 Estabilidad de un muro de contención 58 • La filosofía básica de diseño se hace verificando que un determinado muro resista los esfuerzos, no se vuelque, no se deslice, ni tampoco ejerza presiones en la base del suelo superiores a las admisibles. • Los pasos a seguir son los siguientes (en el caso de un muro gravitacional): 1. Pre-diseño y elección del tipo de muro. 2. Se establecen las propiedades geotécnicas del suelo a trasdós y en el sello de fundación del muro, es decir , etc. (el relleno se especifica). También se debe conocer la capacidad admisible del suelo al nivel del sello de fundación. 3. Se calcula el empuje activo. γφ, Estabilidad de un muro de contención 59 4. Se calcula el peso del muro. 5. Se calcula la reacción en la base y su posición en la base, la cual ojalá esté ubicada dentro del tercio central. Si la resultante de la reacción efectiva N’ se localiza dentro del tercio central: ( ) b N' x6-b4= 21 σ ( ) b N' b2-x6= 22σx Base del muro N’σ1 σ2
  • 31. 31 Estabilidad de un muro de contención 60 Si la resultante de la reacción efectiva N’ se localiza en el primer tercio: x3 N'2 =1σ x 3x N’ σ1 Estabilidad de un muro de contención 61 6. Se verifica el esfuerzo aplicado por el muro sobre el terreno, valor que en el caso estático debe ser estáticoadmest σσ ≤ sísmicoadmsis σσ ≤y
  • 32. 32 Estabilidad de un muro de contención ≥ 62 7. Se verifica el F.S. al volcamiento, definido como: ∑ ∑= volcantesMomentos sresistenteMomentos F.S.volc Para rellenos granulares, factores de seguridad usuales son: F.S. estático 1.5 y F.S. sísmico 1.2 8. Se verifica el F.S. al deslizamiento, definido como: ∑ ∑= eshorizontalsdeslizanteFuerzas eshorizontalsresistenteFuerzas F.S.desliz Para rellenos granulares, factores de seguridad usuales son: F.S. estático 1.8 y F.S. sísmico 1.4 ≥ ≥ ≥ Estabilidad de un muro de contención 63 9. Se verifica la resistencia al corte de las secciones del muro. 10. Si el muro satisface los requerimientos, esta o.k.. En caso contrario se rediseña y se vuelven a chequear los puntos 3 al 9. Observaciones • Debido a las grandes deformaciones necesarias para movilizar el empuje pasivo, es recomendable considerar solamente entre un 33 y un 50% del empuje pasivo. • En la fundación, se puede considerar el ángulo de fricción en la interfaz igual al ángulo de fricción del suelo si se trata de hormigón vertido en contra del suelo.
  • 33. 33 Ejemplo 64 • Verificar el pre-dimensionamiento del muro gravitacional de la figura. 30o (pared muy rugosa) Empujes en muros flexibles 65 • Mediciones en terreno han demostrado que la distribución de presiones sobre estructuras de contención flexibles puede ser muy distinta de la que corresponde al empuje activo. • Terzaghi y Peck (1948) propusieron una distribución de presiones como el de la figura, en donde la curva de presiones representa una envolvente de las diversas distribuciones reales posibles. • En el caso de tablestacados anclados, la distribución de presiones ejercidas por el terreno depende en gran parte del proceso constructivo.