SlideShare una empresa de Scribd logo
1 de 52
2.Metabolismo de los lípidos

2.3 Lipogénesis




   M. en C. Rodrigo Martínez Espinosa
         Bioquímica, Medicina.
Acetil-CoA
Acetil-CoA carboxilasa   1)Proteína acarreadora
                         de biotina.
Forma la Malonil-CoA     2)Biotin carboxilasa.
                         3)Transcarboxilasa.
Sintasa de ácidos grasos
(FAS):
 Adiciona 2 carbones en 4
reacciones
Ejemplo: síntesis de
Palmitato.
Proteína
acarreadora
de acil.

Mantiene el sistema
unido.
Lanzadera de
grupos acetilo
de la
mitocondria al
citosol.
Regulación de síntesis de ácidos grasos.
Rutas de
formación de
otros ácidos
grasos.
Desaturación.
Prostaglandinas
y tromboxanos

Intermediarios en
inflamación, dolor
y fiebre.
Triacilgliceroles

Biosíntesis de
ácido fosfatídico
                       Glicerol
(precursor de
trigliceridos).




                     Glicerol + 2
                    ác. grasos
Glicerol + 3
ác. grasos
Regulación
triglicéridos.
“Ciclo” de triacilglicerol
Gliceroneogenesis
Síntesis de
fosfolípidos

Formación de
membranas
celulares
CONCLUSIONES
Los ác. grasos son sintetizados a partir de acetil-CoA vía seis
reacciones enzimáticas en el citosol.
Malonil-CoA es la primer molécula formada y es el principal
regulador de la síntesis de ác. grasos.
Las hormonas insulina, glucagón y epinefrina son importantes
reguladores en la síntesis de ác. Grasos.
Los trigliceridos están formados por una molécula de glicerol y
tres moléculas de ác. Grasos.
Los trigliceridos son la principal reserva energética del cuerpo.
Las prostanglanidas y los tromboxanos son sintetizados a partir
de ác. Grasos, por la enzima COX.
2.4 Metabolismo del
     colesterol




    M. en C. Rodrigo Martínez Espinosa
          Bioquímica, Medicina.
El Colesterol
es sintetizado en 4
estados a partir de
Acetil-CoA.
Estado 1

 Acetil-coA
     a
 Mevalonato




              Punto de
              regulación
Estado 2   Mevalonato a Isopreno activado
Estado 3
Isopreno activado
        a
    Escualeno
Estado 4
  Escualeno
      a
  Colesterol
Ester de
Colesterol
Regulación de la
síntesis del
colesterol
Hormonas
Esteroideas
derivadas de colesterol.
CONCLUSIONES
•El colesterol se forma a partir de acetil-CoA en 4
estadios, cada uno de los cuales se compone de
varias reacciones enzimáticas.
•La síntesis de colesterol se regula por hormonas y
por las concentraciones intracelulares de colesterol.
•El colesterol es transportado por la sangre en forma
de lipoproteinas. El VLDL lleva el colesterol y
trigliceridos del hígado a otros tejidos.
•Las hormonas esteroideas son producidas a partir
del colesterol, alterando las cadenas laterales y el
anillo esteroideo.
Clase lipogénesis

Más contenido relacionado

La actualidad más candente (20)

Cetogenesis cetolisis
Cetogenesis cetolisisCetogenesis cetolisis
Cetogenesis cetolisis
 
Sintesis de colesterol
Sintesis de colesterolSintesis de colesterol
Sintesis de colesterol
 
Bioquímica lipidos
Bioquímica lipidosBioquímica lipidos
Bioquímica lipidos
 
Síntesis de ácidos grasos
Síntesis de ácidos grasosSíntesis de ácidos grasos
Síntesis de ácidos grasos
 
Diferencias estructurales y funcionales entre el colageno y la elastina
Diferencias estructurales y funcionales entre el colageno y la elastinaDiferencias estructurales y funcionales entre el colageno y la elastina
Diferencias estructurales y funcionales entre el colageno y la elastina
 
Lipoproteínas
LipoproteínasLipoproteínas
Lipoproteínas
 
Metabolismo del glucógeno
Metabolismo del glucógenoMetabolismo del glucógeno
Metabolismo del glucógeno
 
Metabolismo De Ácidos Grasos
Metabolismo De Ácidos GrasosMetabolismo De Ácidos Grasos
Metabolismo De Ácidos Grasos
 
21.digestión y absorción
21.digestión y absorción21.digestión y absorción
21.digestión y absorción
 
Curso Bioquímica 22-Cuerpos cetónicos
Curso Bioquímica 22-Cuerpos cetónicosCurso Bioquímica 22-Cuerpos cetónicos
Curso Bioquímica 22-Cuerpos cetónicos
 
Lipolisis
LipolisisLipolisis
Lipolisis
 
Metabolismo de los lipidos
Metabolismo de los lipidosMetabolismo de los lipidos
Metabolismo de los lipidos
 
metabolismo lipidos
metabolismo lipidosmetabolismo lipidos
metabolismo lipidos
 
Estructura terciaria-de-las-proteínas (1)
Estructura terciaria-de-las-proteínas (1)Estructura terciaria-de-las-proteínas (1)
Estructura terciaria-de-las-proteínas (1)
 
Sintesis del colesterol
Sintesis del colesterolSintesis del colesterol
Sintesis del colesterol
 
24 metabolismo del colesterol
24 metabolismo del colesterol24 metabolismo del colesterol
24 metabolismo del colesterol
 
Beta oxidación
Beta oxidaciónBeta oxidación
Beta oxidación
 
Colesterol
ColesterolColesterol
Colesterol
 
Glucolisis
GlucolisisGlucolisis
Glucolisis
 
Gluconeogénesis
GluconeogénesisGluconeogénesis
Gluconeogénesis
 

Similar a Clase lipogénesis

Clase lipogénesis
Clase lipogénesisClase lipogénesis
Clase lipogénesisRoma29
 
Clase 18 Biosintesis De Acidos Grasos
Clase 18 Biosintesis De Acidos GrasosClase 18 Biosintesis De Acidos Grasos
Clase 18 Biosintesis De Acidos Grasostecnologia medica
 
Biosíntesis de Lípidos (1).. (1).pptx
Biosíntesis de Lípidos (1).. (1).pptxBiosíntesis de Lípidos (1).. (1).pptx
Biosíntesis de Lípidos (1).. (1).pptxQuichimboSonia
 
Lipidos, proteinas, vitaminas y carbohidratos
Lipidos, proteinas, vitaminas y carbohidratosLipidos, proteinas, vitaminas y carbohidratos
Lipidos, proteinas, vitaminas y carbohidratosqlawdya123
 
Síntesis y transporte del colesterol
Síntesis y transporte del colesterolSíntesis y transporte del colesterol
Síntesis y transporte del colesterolMartín Campana
 
Formas Del Suministro De Energia De Los Seres
Formas Del Suministro De Energia De Los SeresFormas Del Suministro De Energia De Los Seres
Formas Del Suministro De Energia De Los SeresAlicia
 
Formas Del Suministro De Energia De Los Seres
Formas Del Suministro De Energia De Los SeresFormas Del Suministro De Energia De Los Seres
Formas Del Suministro De Energia De Los SeresAlicia
 
EXPOSICION TEMAptxsdfghjhgfdsrtyuhgfdsaedrtyu
EXPOSICION TEMAptxsdfghjhgfdsrtyuhgfdsaedrtyuEXPOSICION TEMAptxsdfghjhgfdsrtyuhgfdsaedrtyu
EXPOSICION TEMAptxsdfghjhgfdsrtyuhgfdsaedrtyuEdilbertoDavidOrtzCa
 
Metabolismo del Colesterol
Metabolismo del Colesterol Metabolismo del Colesterol
Metabolismo del Colesterol Lorena Valera
 
Metabolismo del colesterol (Cholesterol Metabolism)
Metabolismo del colesterol (Cholesterol Metabolism)Metabolismo del colesterol (Cholesterol Metabolism)
Metabolismo del colesterol (Cholesterol Metabolism)Fernando Huerta Déctor
 

Similar a Clase lipogénesis (20)

Clase lipogénesis
Clase lipogénesisClase lipogénesis
Clase lipogénesis
 
Clase 18 Biosintesis De Acidos Grasos
Clase 18 Biosintesis De Acidos GrasosClase 18 Biosintesis De Acidos Grasos
Clase 18 Biosintesis De Acidos Grasos
 
Biosíntesis de Lípidos (1).. (1).pptx
Biosíntesis de Lípidos (1).. (1).pptxBiosíntesis de Lípidos (1).. (1).pptx
Biosíntesis de Lípidos (1).. (1).pptx
 
Metabolismo del colesterol
Metabolismo del colesterolMetabolismo del colesterol
Metabolismo del colesterol
 
Diapositivas endocrino2
Diapositivas endocrino2Diapositivas endocrino2
Diapositivas endocrino2
 
Lipidos, proteinas, vitaminas y carbohidratos
Lipidos, proteinas, vitaminas y carbohidratosLipidos, proteinas, vitaminas y carbohidratos
Lipidos, proteinas, vitaminas y carbohidratos
 
Metabolismo generalidades.ppt
Metabolismo generalidades.pptMetabolismo generalidades.ppt
Metabolismo generalidades.ppt
 
Síntesis y transporte del colesterol
Síntesis y transporte del colesterolSíntesis y transporte del colesterol
Síntesis y transporte del colesterol
 
lipogenesiss.ppt
lipogenesiss.pptlipogenesiss.ppt
lipogenesiss.ppt
 
Metabolismo del colesterol
Metabolismo del colesterolMetabolismo del colesterol
Metabolismo del colesterol
 
Formas Del Suministro De Energia De Los Seres
Formas Del Suministro De Energia De Los SeresFormas Del Suministro De Energia De Los Seres
Formas Del Suministro De Energia De Los Seres
 
Formas Del Suministro De Energia De Los Seres
Formas Del Suministro De Energia De Los SeresFormas Del Suministro De Energia De Los Seres
Formas Del Suministro De Energia De Los Seres
 
EXPOSICION TEMAptxsdfghjhgfdsrtyuhgfdsaedrtyu
EXPOSICION TEMAptxsdfghjhgfdsrtyuhgfdsaedrtyuEXPOSICION TEMAptxsdfghjhgfdsrtyuhgfdsaedrtyu
EXPOSICION TEMAptxsdfghjhgfdsrtyuhgfdsaedrtyu
 
Metabolismo de lipidos
Metabolismo de lipidosMetabolismo de lipidos
Metabolismo de lipidos
 
METABOLISMO DE LIPIDOS.pptx
METABOLISMO DE LIPIDOS.pptxMETABOLISMO DE LIPIDOS.pptx
METABOLISMO DE LIPIDOS.pptx
 
Metabolismo del Colesterol
Metabolismo del Colesterol Metabolismo del Colesterol
Metabolismo del Colesterol
 
Metabolismo Fisiologia Humana
Metabolismo Fisiologia HumanaMetabolismo Fisiologia Humana
Metabolismo Fisiologia Humana
 
Metabolismo del colesterol (Cholesterol Metabolism)
Metabolismo del colesterol (Cholesterol Metabolism)Metabolismo del colesterol (Cholesterol Metabolism)
Metabolismo del colesterol (Cholesterol Metabolism)
 
Infrome bioquímica
Infrome bioquímicaInfrome bioquímica
Infrome bioquímica
 
ESTUDIANTE
ESTUDIANTE ESTUDIANTE
ESTUDIANTE
 

Más de Roma29

Rodrigo mtz.bender figuras_c38_expresion_de_gen
Rodrigo mtz.bender figuras_c38_expresion_de_genRodrigo mtz.bender figuras_c38_expresion_de_gen
Rodrigo mtz.bender figuras_c38_expresion_de_genRoma29
 
Rodrigo mtz.bender figuras_c39_genetica_molecular
Rodrigo mtz.bender figuras_c39_genetica_molecularRodrigo mtz.bender figuras_c39_genetica_molecular
Rodrigo mtz.bender figuras_c39_genetica_molecularRoma29
 
Actividad, imagenes interactivas
Actividad, imagenes interactivasActividad, imagenes interactivas
Actividad, imagenes interactivasRoma29
 
Carnitina contra hiperamonemia
Carnitina contra hiperamonemiaCarnitina contra hiperamonemia
Carnitina contra hiperamonemiaRoma29
 
Hiperglucemia de estrés
Hiperglucemia de estrésHiperglucemia de estrés
Hiperglucemia de estrésRoma29
 
Toxicocinética dosis
Toxicocinética dosisToxicocinética dosis
Toxicocinética dosisRoma29
 
Metabolismo de tóxicos
Metabolismo de tóxicosMetabolismo de tóxicos
Metabolismo de tóxicosRoma29
 
Lineamientos toxicologia
Lineamientos toxicologiaLineamientos toxicologia
Lineamientos toxicologiaRoma29
 
Toxicología abs, dist.
Toxicología abs, dist.Toxicología abs, dist.
Toxicología abs, dist.Roma29
 
Riesgo interacción de estatinas
Riesgo interacción de estatinasRiesgo interacción de estatinas
Riesgo interacción de estatinasRoma29
 
Lineamientos exposiciones unam
Lineamientos exposiciones unamLineamientos exposiciones unam
Lineamientos exposiciones unamRoma29
 
Cruci bioq biosíntesis de lípidos
Cruci bioq biosíntesis de lípidosCruci bioq biosíntesis de lípidos
Cruci bioq biosíntesis de lípidosRoma29
 
Glosario bioq anáhuac
Glosario bioq anáhuacGlosario bioq anáhuac
Glosario bioq anáhuacRoma29
 
Manual 2013 2014
Manual 2013 2014Manual 2013 2014
Manual 2013 2014Roma29
 
Mensaje bioq estilos de aprendizaje
Mensaje bioq estilos de aprendizajeMensaje bioq estilos de aprendizaje
Mensaje bioq estilos de aprendizajeRoma29
 
Sint. proteínas
Sint. proteínasSint. proteínas
Sint. proteínasRoma29
 
Examen de bioquímica y biología molecular 4
Examen de bioquímica y biología molecular 4Examen de bioquímica y biología molecular 4
Examen de bioquímica y biología molecular 4Roma29
 
Rna y proteínas
Rna y proteínasRna y proteínas
Rna y proteínasRoma29
 
Dna y genes
Dna y genesDna y genes
Dna y genesRoma29
 
Examen 2 bq anahuac 2013 1
Examen 2 bq anahuac 2013 1Examen 2 bq anahuac 2013 1
Examen 2 bq anahuac 2013 1Roma29
 

Más de Roma29 (20)

Rodrigo mtz.bender figuras_c38_expresion_de_gen
Rodrigo mtz.bender figuras_c38_expresion_de_genRodrigo mtz.bender figuras_c38_expresion_de_gen
Rodrigo mtz.bender figuras_c38_expresion_de_gen
 
Rodrigo mtz.bender figuras_c39_genetica_molecular
Rodrigo mtz.bender figuras_c39_genetica_molecularRodrigo mtz.bender figuras_c39_genetica_molecular
Rodrigo mtz.bender figuras_c39_genetica_molecular
 
Actividad, imagenes interactivas
Actividad, imagenes interactivasActividad, imagenes interactivas
Actividad, imagenes interactivas
 
Carnitina contra hiperamonemia
Carnitina contra hiperamonemiaCarnitina contra hiperamonemia
Carnitina contra hiperamonemia
 
Hiperglucemia de estrés
Hiperglucemia de estrésHiperglucemia de estrés
Hiperglucemia de estrés
 
Toxicocinética dosis
Toxicocinética dosisToxicocinética dosis
Toxicocinética dosis
 
Metabolismo de tóxicos
Metabolismo de tóxicosMetabolismo de tóxicos
Metabolismo de tóxicos
 
Lineamientos toxicologia
Lineamientos toxicologiaLineamientos toxicologia
Lineamientos toxicologia
 
Toxicología abs, dist.
Toxicología abs, dist.Toxicología abs, dist.
Toxicología abs, dist.
 
Riesgo interacción de estatinas
Riesgo interacción de estatinasRiesgo interacción de estatinas
Riesgo interacción de estatinas
 
Lineamientos exposiciones unam
Lineamientos exposiciones unamLineamientos exposiciones unam
Lineamientos exposiciones unam
 
Cruci bioq biosíntesis de lípidos
Cruci bioq biosíntesis de lípidosCruci bioq biosíntesis de lípidos
Cruci bioq biosíntesis de lípidos
 
Glosario bioq anáhuac
Glosario bioq anáhuacGlosario bioq anáhuac
Glosario bioq anáhuac
 
Manual 2013 2014
Manual 2013 2014Manual 2013 2014
Manual 2013 2014
 
Mensaje bioq estilos de aprendizaje
Mensaje bioq estilos de aprendizajeMensaje bioq estilos de aprendizaje
Mensaje bioq estilos de aprendizaje
 
Sint. proteínas
Sint. proteínasSint. proteínas
Sint. proteínas
 
Examen de bioquímica y biología molecular 4
Examen de bioquímica y biología molecular 4Examen de bioquímica y biología molecular 4
Examen de bioquímica y biología molecular 4
 
Rna y proteínas
Rna y proteínasRna y proteínas
Rna y proteínas
 
Dna y genes
Dna y genesDna y genes
Dna y genes
 
Examen 2 bq anahuac 2013 1
Examen 2 bq anahuac 2013 1Examen 2 bq anahuac 2013 1
Examen 2 bq anahuac 2013 1
 

Clase lipogénesis

Notas del editor

  1. FIGURE 21-1 The acetyl-CoA carboxylase reaction. Acetyl-CoA carboxylase has three functional regions: biotin carrier protein (gray); biotin carboxylase, which activates CO 2 by attaching it to a nitrogen in the biotin ring in an ATP-dependent reaction (see Figure 16-16); and transcarboxylase, which transfers activated CO 2 (shaded green) from biotin to acetyl-CoA, producing malonyl-CoA. The long, flexible biotin arm carries the activated CO 2 from the biotin carboxylase region to the transcarboxylase active site. The active enzyme in each step is shaded blue.
  2. FIGURE 21-1 (part 1) The acetyl-CoA carboxylase reaction. Acetyl-CoA carboxylase has three functional regions: biotin carrier protein (gray); biotin carboxylase, which activates CO 2 by attaching it to a nitrogen in the biotin ring in an ATP-dependent reaction (see Figure 16-16); and transcarboxylase, which transfers activated CO 2 (shaded green) from biotin to acetyl-CoA, producing malonyl-CoA. The long, flexible biotin arm carries the activated CO 2 from the biotin carboxylase region to the transcarboxylase active site. The active enzyme in each step is shaded blue.
  3. FIGURE 21-1 (part 2) The acetyl-CoA carboxylase reaction. Acetyl-CoA carboxylase has three functional regions: biotin carrier protein (gray); biotin carboxylase, which activates CO 2 by attaching it to a nitrogen in the biotin ring in an ATP-dependent reaction (see Figure 16-16); and transcarboxylase, which transfers activated CO 2 (shaded green) from biotin to acetyl-CoA, producing malonyl-CoA. The long, flexible biotin arm carries the activated CO 2 from the biotin carboxylase region to the transcarboxylase active site. The active enzyme in each step is shaded blue.
  4. FIGURE 21-1 (part 3) The acetyl-CoA carboxylase reaction. Acetyl-CoA carboxylase has three functional regions: biotin carrier protein (gray); biotin carboxylase, which activates CO 2 by attaching it to a nitrogen in the biotin ring in an ATP-dependent reaction (see Figure 16-16); and transcarboxylase, which transfers activated CO 2 (shaded green) from biotin to acetyl-CoA, producing malonyl-CoA. The long, flexible biotin arm carries the activated CO 2 from the biotin carboxylase region to the transcarboxylase active site. The active enzyme in each step is shaded blue.
  5. FIGURE 21-6 Sequence of events during synthesis of a fatty acid. The mammalian FAS I complex is shown schematically, with catalytic domains colored as in Figure 21-3. Each domain of the larger polypeptide represents one of the six enzymatic activities of the complex, arranged in a large, tight "S" shape. The acyl carrier protein (ACP) is not resolved in the crystal structure shown in Figure 21-3, but is attached to the KS domain. The phosphopantetheine arm of ACP ends in an — S H. After the first panel, the enzyme shown in color is the one that will act in the next step. As in Figure 21-4, the initial acetyl group is shaded yellow, C-1 and C-2 of malonate are shaded pink, and the carbon released as CO 2 is shaded green. Steps 1 to 4 are described in the text.
  6. FIGURE 21-6 (part 2) Sequence of events during synthesis of a fatty acid. The mammalian FAS I complex is shown schematically, with catalytic domains colored as in Figure 21-3. Each domain of the larger polypeptide represents one of the six enzymatic activities of the complex, arranged in a large, tight "S" shape. The acyl carrier protein (ACP) is not resolved in the crystal structure shown in Figure 21-3, but is attached to the KS domain. The phosphopantetheine arm of ACP ends in an — S H. After the first panel, the enzyme shown in color is the one that will act in the next step. As in Figure 21-4, the initial acetyl group is shaded yellow, C-1 and C-2 of malonate are shaded pink, and the carbon released as CO 2 is shaded green. Steps 1 to 4 are described in the text.
  7. FIGURE 21-6 (part 3) Sequence of events during synthesis of a fatty acid. The mammalian FAS I complex is shown schematically, with catalytic domains colored as in Figure 21-3. Each domain of the larger polypeptide represents one of the six enzymatic activities of the complex, arranged in a large, tight "S" shape. The acyl carrier protein (ACP) is not resolved in the crystal structure shown in Figure 21-3, but is attached to the KS domain. The phosphopantetheine arm of ACP ends in an — S H. After the first panel, the enzyme shown in color is the one that will act in the next step. As in Figure 21-4, the initial acetyl group is shaded yellow, C-1 and C-2 of malonate are shaded pink, and the carbon released as CO 2 is shaded green. Steps 1 to 4 are described in the text.
  8. FIGURE 21-6 (part 4) Sequence of events during synthesis of a fatty acid. The mammalian FAS I complex is shown schematically, with catalytic domains colored as in Figure 21-3. Each domain of the larger polypeptide represents one of the six enzymatic activities of the complex, arranged in a large, tight "S" shape. The acyl carrier protein (ACP) is not resolved in the crystal structure shown in Figure 21-3, but is attached to the KS domain. The phosphopantetheine arm of ACP ends in an — S H. After the first panel, the enzyme shown in color is the one that will act in the next step. As in Figure 21-4, the initial acetyl group is shaded yellow, C-1 and C-2 of malonate are shaded pink, and the carbon released as CO 2 is shaded green. Steps 1 to 4 are described in the text.
  9. FIGURE 21-6 (part 5) Sequence of events during synthesis of a fatty acid. The mammalian FAS I complex is shown schematically, with catalytic domains colored as in Figure 21-3. Each domain of the larger polypeptide represents one of the six enzymatic activities of the complex, arranged in a large, tight "S" shape. The acyl carrier protein (ACP) is not resolved in the crystal structure shown in Figure 21-3, but is attached to the KS domain. The phosphopantetheine arm of ACP ends in an — S H. After the first panel, the enzyme shown in color is the one that will act in the next step. As in Figure 21-4, the initial acetyl group is shaded yellow, C-1 and C-2 of malonate are shaded pink, and the carbon released as CO 2 is shaded green. Steps 1 to 4 are described in the text.
  10. FIGURE 21-6 (part 6) Sequence of events during synthesis of a fatty acid. The mammalian FAS I complex is shown schematically, with catalytic domains colored as in Figure 21-3. Each domain of the larger polypeptide represents one of the six enzymatic activities of the complex, arranged in a large, tight "S" shape. The acyl carrier protein (ACP) is not resolved in the crystal structure shown in Figure 21-3, but is attached to the KS domain. The phosphopantetheine arm of ACP ends in an — S H. After the first panel, the enzyme shown in color is the one that will act in the next step. As in Figure 21-4, the initial acetyl group is shaded yellow, C-1 and C-2 of malonate are shaded pink, and the carbon released as CO 2 is shaded green. Steps 1 to 4 are described in the text.
  11. FIGURE 21-6 (part 7) Sequence of events during synthesis of a fatty acid. The mammalian FAS I complex is shown schematically, with catalytic domains colored as in Figure 21-3. Each domain of the larger polypeptide represents one of the six enzymatic activities of the complex, arranged in a large, tight "S" shape. The acyl carrier protein (ACP) is not resolved in the crystal structure shown in Figure 21-3, but is attached to the KS domain. The phosphopantetheine arm of ACP ends in an — S H. After the first panel, the enzyme shown in color is the one that will act in the next step. As in Figure 21-4, the initial acetyl group is shaded yellow, C-1 and C-2 of malonate are shaded pink, and the carbon released as CO 2 is shaded green. Steps 1 to 4 are described in the text.
  12. FIGURE 21-6 (part 8) Sequence of events during synthesis of a fatty acid. The mammalian FAS I complex is shown schematically, with catalytic domains colored as in Figure 21-3. Each domain of the larger polypeptide represents one of the six enzymatic activities of the complex, arranged in a large, tight "S" shape. The acyl carrier protein (ACP) is not resolved in the crystal structure shown in Figure 21-3, but is attached to the KS domain. The phosphopantetheine arm of ACP ends in an — S H. After the first panel, the enzyme shown in color is the one that will act in the next step. As in Figure 21-4, the initial acetyl group is shaded yellow, C-1 and C-2 of malonate are shaded pink, and the carbon released as CO 2 is shaded green. Steps 1 to 4 are described in the text.
  13. FIGURE 21-7 Beginning of the second round of the fatty acid synthesis cycle. The butyryl group is on the Cys — S H group. The incoming malonyl group is first attached to the phosphopantetheine ム S H group. Then, in the condensation step, the entire butyryl group on the Cys — S H is exchanged for the carboxyl group of the malonyl residue, which is lost as CO 2 (green). This step is analogous to step 1 in Figure 21-6. The product, a six-carbon β -ketoacyl group, now contains four carbons derived from malonyl-CoA and two derived from the acetyl-CoA that started the reaction. The β -ketoacyl group then undergoes steps 2 through 4, as in Figure 21-6.
  14. FIGURE 21-10 Shuttle for transfer of acetyl groups from mitochondria to the cytosol. The mitochondrial outer membrane is freely permeable to all these compounds. Pyruvate derived from amino acid catabolism in the mitochondrial matrix, or from glucose by glycolysis in the cytosol, is converted to acetyl-CoA in the matrix. Acetyl groups pass out of the mitochondrion as citrate; in the cytosol they are delivered as acetyl-CoA for fatty acid synthesis. Oxaloacetate is reduced to malate, which can return to the mitochondrial matrix and is converted to oxaloacetate. The major fate for cytosolic malate is oxidation by malic enzyme to generate cytosolic NADPH; the pyruvate produced returns to the mitochondrial matrix.
  15. FIGURE 21-11 Regulation of fatty acid synthesis. (a) In the cells of vertebrates, both allosteric regulation and hormone-dependent covalent modification influence the flow of precursors into malonyl-CoA. In plants, acetyl-CoA carboxylase is activated by the changes in [Mg 2+ ] and pH that accompany illumination (not shown here). (b) Filaments of acetyl-CoA carboxylase (the active, dephosphorylated form) as seen with the electron microscope.
  16. FIGURE 21-22a Regulation of glyceroneogenesis. (a) Glucocorticoid hormones stimulate glyceroneogenesis and gluconeogenesis in the liver, while suppressing glyceroneogenesis in the adipose tissue (by reciprocal regulation of the gene expressing PEP carboxykinase (PEPCK) in the two tissues); this increases the flux through the triacylglycerol cycle. The glycerol freed by the breakdown of triacylglycerol in adipose tissue is released to the blood and transported to the liver, where it is primarily converted to glucose, although some is converted to glycerol 3-phosphate by glycerol kinase.
  17. FIGURE 21-22 Regulation of glyceroneogenesis. (b) A class of drugs called thiazolidinediones are now used to treat type 2 diabetes. In this disease, high levels of free fatty acids in the blood interfere with glucose utilization in muscle and promote insulin resistance. Thiazolidinediones activate a nuclear receptor called peroxisome proliferator-activated receptor γ (PPAR γ ), which induces the activity of PEP carboxykinase. Therapeutically, thiazolidinediones increase the rate of glyceroneogenesis, thus increasing the resynthesis of triacylglycerol in adipose tissue and reducing the amount of free fatty acid in the blood.